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NUMERICAL SOLUTION OF STIFF PARABOLIC 
DIFFERENTIAL EQUATIONS DESCRIBING GAS 
FLUIDIZED BEDS WITH A TWO-PHASE MODEL 

C. E. J. VAN LARE, H. W. PIEPERS and D. THOENES 
Eindhoven University of Technology, Department of Chemical Engineering, Laboratory of Chemical 

Process Technology, PO Box 513, 5600 MB, Eindhoven, Netherlands 

(Receiued 4 December 1989; acceptedfor publication 19 October 1990) 

Abstract-A model for the non-steady-state description of gas fluid&d beds is derived, based on the bubble 
dispersion model. For the solution of the (parabolic) differential equations describing the non-steady- and 
steady-state situations, a new method is used: the decoupling method. It is mathematically and numerically 
not cbmplex and good results are obtained. 

INTRODUCTION 

Residence time distribution (RTD) measurement is a 
strong and (experimentally) relatively simple method 
in determining physical parameters, such as mass 
transfer or mixing coefficients. Therefore, the RTD 
curve has to be measured experimentally and fitted 
numerically. In principle, this method can also be 
applied to chemical reacting systems. For example, in 
gas fluidized beds, information can then be subtracted 
from the start up period, combined with the steady- 
state and/or shut down period. In both cases the 
system in consideration must be described mathemat- 
ically. It is not unlikely one obtains a system of 
equations that is not solvable analytically and some- 
times even not numerically. 

Judd (1985)] give a good insight into mass transfer 
and mixing. Both are simple physical descriptions of a 
gas fluidized bed with just a few (unknown) fitted 
parameters. Results when using this model have been 
good [see, for instance, van Swaaij and Zuiderweg 
(1972), Werther (1978), Bauer (1980). Dry and Judd 
(1985) and van Lare et al. (1990)]. They are mostly 
used for describing the behavior of A- or B-type 
powders, according to the Geldart (1973) classifica- 
tion. We describe both the bubble and the dense phase 
as plug flow reactors with axial dispersion, and allow 
mass transfer between both phases (Fig. 1). 

The numerical methods that are used most for non- 
steady-state problems are the Crank-Nicholson tech- 
nique [for instance Eigenberger and Butt (1976)] and 
orthogonal collocation (Villadsen and Stewart, 1967). 
Both methods can lead to erroneous answers and/or 
excessive calculation time for stiff problems (Hlavacek 
and van Rompay, 1981). 

Van Loon (1987) obtained good results for steady- 
state stiff boundary value problems using the de- 
coupling method. We examined whether this ap- 
proach could be employed for non-steady-state equa- 
tions. It could then be used for a sensitivity analysis. 

A numerical method is described for solving a set of 
(stiff) parabolic differential equations describing the 
non-steady-state behavior of gas fluidized beds. This 
method decouples the equations into a “decoupled 
space”. There the solution is calculated and by back 
transformation the final solution is obtained (analog- 
ous to Laplace transformation). 

Here we have the superficial velocity U with regard 
to the cross-sectional area A of the reactor. The gas 
flows through the dense phase with a volumetric flow 
rate of rp U,,,, A. The factor rp accounts for the fact that 
more gas can flow through the dense phase than is 
described by the two-phase theory (where QY = 1). 
Especially for D-type powders, values of cp greater 
than 1 are important because of the relatively small 
U/(cpU,/ ) values. Even for A-type powders several 
values of cp are reported (Grace and Clift, 1974). 
However these deviations are not that important be- 
cause of the large Lr/( cpU,,,,. ) values. 

Furthermore, we define a mass transfer coefficient 
K, (that can be regarded as k,a) and Eddy dispersion 
coefficients for the bubble phase (&) and dense phase 
(Ed). The bubble hold up 6, the dense-phase porosity 
E,,, rp, K,, E, and E, are taken to be independent ofthe 
height h, implying that height-averaged values are 
used. By definition reaction can only take place in the 
dense phase, because there are no (catalyst) particles 
in the bubble phase. A rate constant k, is defined, 
based on catalyst mass. We consider a first-order 
reaction. 

MODEL DESCRIPTION Taking a mass balance over a slice dh leads to 
Several models have been proposed for describing 

gas fluidized beds. The van Deemter (1961) model and 
the bubble dispersion model [for instance Dry and 

+Author to whom correspondence should be addressed. 
- KetG - Cc,) + Ed dhl a2c (la) 
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Fig. 1. Schematic presentation of flow division in a gas fluidized bed 

dCd (1 - 6)&d = 
at 

- ‘pv& 2 - K,(C, - C,) 

+ E,( 1 - 6) Ed 
PC, 
~ - k,(l - 6)(1 - aa)~~Cd ah2 

(lb) 

with boundary conditions: 

for t < 0 there is no (tracer) gas in the reactor: 

C,(O, h) = 0 (2a) 

C,(O, h) = 0 (W 

injection at distributor (h = 0) and backmixing from 
column: 

1 G 
GAG 0) = Cf w ff,.Pe, 1 (t > 0) (24 ll=CJ 

1 3C, 
C& 0) = C,(t) + (1 _fb),Pe, ajr 1 ct ’ 0) !I=0 

(24 
no concentration gradient at fluid bed surface: 

acb 
-1 ah =O h=H 

acii -1 ah 
= 0. 

h=H 
cw 

We define an average residence time r based on the 
total fraction of gas in the reactor and not only on the 
fraction of gas in the bubble phase. For A/B-type 
powders the difference is very small. However, for D- 
type powders it is essential to take the fraction of gas 

in the dense phase into account. Furthermore, we 
define an average residence time for the bubble phase 
(Q,) and for the dense phase (td): 

H HS 

tb=G= u-ipu,, 

(with ub = bubble velocity) (3a) 

t _ N = H(1 - @Ed 
d- 

ud v%J- 

(with ud = dense-phase gas velocity) (3b) 

7 =fb7b + (1 -fb)rd = %, with < = 6 + (1 - 6)~~ 

and 

fb = (U - cpU,,)/U = fraction of gas in 
the bubble phase. (3~) 

For A/B-type powders fb N 1, and therefore r N rbr 
which is a common assumption. Making eqs (1) and 
(2) dimensionless leads to 

1 5 a2c, -- 
Pe, (1 - S)&d -W- 

5 
+ Nr (1 - d)Ed c‘i = O (5) 
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with boundary conditions Substitution in eqs (4) and (5) leads to 

C,(O, u) = 0 

C,(O, u) = 0 

(6) !?g =&.peb.!%& + Nk.peb-tcb.i - cd,i) 

(7) 

1 acb 
1 

c 
+ b, 1 - Cb.i-l Pe,.6 

cb(9v O) = cf(9) + fb x d = o t9 ’ O) @) A9 5 

t9> + N,.Pe,.(C,,, - cb,i) + Nr.Pe.,.C,,i 

acb -1 au = 0 
0=1 

(10) 
+ cd,i - cd,i- 1 Ped(l - @Ed 

A9 5 . 

Writing these equations in matrix form gives 

0 0 1 0 
0 0 

PebCNlr + 6/(5.Wl -NN,,.Peb 
-NNt. Pe, Pe,[N,, + N, + (1 - @Ed/(<. As)] 0 (l --f,)ped 1 

0 
0 

-_(Pe,.6/(~.A9))Cb.i-, . 

- Ped(l - @&I c 

<As 

__ 
d.1 1 1 

In short: 

(11) $ Xi(~) = A .X’(a) + F’-l(a). acd 

-1 acT 
= 0. #=I 

We use the following parameter definitions: 

p=fb</a lb; ; o=- 

(1 -Jat KeH 
y = (1 - S)Ed Nk = u 

N  =  kc1 - ‘%(I - Ed)&H 
I 

pe _ HU 
u b SE, 

Ped = HU 
E,(f - S)Ed . (12) 

If we assume that the bubble phase is in ideal plug 
flow (Eb = 0), we get the van Deemter (1961) model. If 
we neglect the dense-phase flow we get the well- 
known simplifications 

fb = 1 and < = 6. (13) 

In steady state (aC/&9) = 0), this leads to the modified 
van Deemter model (van Swaaij and Zuiderweg, 
1972). 

THE DECOUPLING METHOD 

The Crank-Nicholson technique uses a finite differ- 
ence in the space variable 0. We, however, use an 
Euler approximation for the time variable 9: 

ac,z cx,i - cx.i- 1 cx,i - cx,i- 1 

89 L+-s$_l = A9 ’ 

with x = b, d. (14) 

1505 

(15) 

(16) 

(17) 

(18) 

This equation is similar to equations describing dy- 
namic systems (Palm, 1983). This is, of course, not 
very surprising, because we are regarding a non- 
steady-state (and therefore dynamic) system. 

Due to matrix A several xi-terms &-e coupled. A 
small computational error will accumulate and be 
amplified because of the iteration process that is ne- 
cessary for calculating the solution at every time step. 
This is the well-known problem of stiffness. If we can 
find a diagonal matrix D instead of matrix A, we will 
get a set of ordinary differential equations. Therefore 
we define matrices A and Q, and vector Y such that 
the following holds: 

AQ=QD and X=QYoY =Q-ix. (19) 

Matrix D contains the eigenvalues of matrix A. Ma- 
trix Q contains the eigenvectors of A: 

rd, 0 0 0-I 
D= 

I 
O&O 0 
0 Od,O I 

and 
10 0 0 4-I 

411 q12 q13 CT14 

Q= 
q2f q22 q23 q24 

[ I. q31 432 q33 q34 
(20) 

q41 q42 q43 q44 

Two negative and two positive eigenvalues were 
always found, due to the definition of the A matrix. 

CES 46-5/6-T 
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We chose to take d, , d2 < 0 and d,, d., > 0. This is Here vector P’(a) contains the p;(a) terms defined in 
however not important, as long as the boundary eq. (25). The constant vector ci can be found by evalu- 
conditions are correctly evaIuated. ating the boundary conditions. Writing eqs (S)-(11) in 

The eigenvector Q(i,j) belongs to the eigenvalue xj-terms, we get 
dj (i,j = 1, 2, 3, 4). 

Substitution of eq. (19) in eq. (18) yields X; (0) = c,- + c1 . x\(O) with Cl = l/(X. Pe,) (27) 

Q_$ Y’(a) = A.Q.Y’(o) + F’-‘(a) (21) 
xi(O) = cI + c2. xi(O) with iz = I/[(1 -J&)Pe,,] 

(28) 

Q.$ Y’(o) = Q.D.Yi(~) + F”(C) 
(29) 

* (22) 
xi(l) = 0 

xi(l) = 0. f3W 

=+ $ Y’(a) = D Y’(a) + P’- ‘(a) This leads to 

11 0 - Cl 01. X’(0) = c, (31) 
with E”-‘(a) = Q-‘.F’-‘(a). (23) co I 0 -<*I. Xi(O) = c/ (32) 

Due to matrix D the y:-terms are now decoupled. 
Equation (23) can be solved by standard procedures [O 0 1 O].X’(l) =o (33) 

for the solution of inhomogeneous differential equa- 
tions. First we define a homogenous solution Y:(a): 

[O 0 0 l]_X’(l) = 0. (34) 

Substitution of X = Q . Y gives 

0 [l 0 - 5, 0] _Q_ Y’(0) = cI, etc. 
0 edza 0 0 

1 

0 . (24) Evaluating these equations with eq. (26) leads to 

00 0 ed4(a-l) E.gzg' (35) 

with 

E = q21 - d, 

L 

411 - 91q31 q12 - ClqX2 (q13 - Clq33)e-d3 (q14 - i, 4&eed4 
12q4L qz2 - C2qd2 (qz3 - 12q43)e-d’ (q14 - iz444)e-d4 

431e q,,ed2 q33 q34 
Wa) 

qole d, ya2 ed2 Y45 q44 I 

and 

CJ - P;(OI. (q13 - il433) -Pf,m.(q,4 --lilq34) 

g' = Cf -P:(o).(q*, -&643) -PkO.(q,, - 124441 

--P:u).q,l - PlU).q,z 
(36b) 

--P’l(l). q41 - Pi(l). q42 

The (m - 1) terms has been chosen to make sure 
that the solution can easily be calculated at (T = I, as 
will be shown later. 

The particular solution can be determined using the 
following equations: 

$ pj(c$ = dj. pj(c) +$- ‘(a) (j = 1, 2, 3, 4) 

with p,(O) = 0, p2(0) = 0, P3(1) = 0, P,(l) = 0. C-w 

For the complete solution we get 

Y’(a) = ci_ Y;(o) + P’(C)_ (26) 

The following holds: 

&= E-‘.g’. (37) 

Because the inverse matrix E - 1 can introduce some 
computational inaccuracies (NAG, 19X0), it was 
always checked whether the constant vector ci calcu- 
lated by eq. (37) fulfilled eq. (35). This was always the 
case. 

For pi (IT) eq. (25) holds. In finding p:(m) and pi(o) 
the end conditions for these variables have to trans- 
formed into initial conditions. We have 

dp:(a)/da = dfipj(n) =fiml(~) with p;(l) = 0 

(j = 3, 4) (3X) 
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We now define 

r;(c) = pj(l - a) (j = 3, 4). (39) 

This leads to 

dt;(a)/da = - d&l - cr)/da = - dj.p;(f - a) 

q7::q1 - a) (j = 3,4). (40) 

Therefore 

dt;(a)/dg = - di. t;(a) -y;- ’ (1 - a) 

with t:(O) = 0 (j = 3, 4). (41) 

The end condition is now transformed into an initial 
condition and computation is possible. When t:(m) 
has been calculated, p:(u) can be found by inter- 
changing the values according to eq. (39). 

In calculating pi (a), Fi- ’ (0) has to be known. This 
means that an ii.- * value has to be known at every 
possible 0. This iidone by curve-fitting the concentra- 
tion profile of the preceding time step (i - 1) with a 
cubic-spline fit (Hayes, 1974). The integration routine 
can calculate every _?-I value at every desired c 
value, and not only at the points specified by the user. 

A semi-analytical solution of eq. (25) is also pos- 
sible. Then a polynomial curve fit of the concentration 
profiles has to be substituted in the analytical solu- 
tion. Of course this is only possible if the curve fit can 
describe the actual curve with high enough accuracy. 
To start with and for simplicity, we have used a 
numerical solution using the Gear method. 

For calculational purposes (stability) the equations 
for P’(a) have been changed somewhat by eliminating 
A$. By means of vector F’- ’ A9 is introduced 
[eq. (17)]. Multiplying by A9 leads to 

with 

d@“(o)/da = D. P’(a) + fii-‘(0) (42) 

Pi(,) = A3. P’(a) and gi-’ (LT) = A9 _ Fi- l(m). (43) 

With vector Gi-l A.9 is now eliminated. This does not 
change anything about the preceding. 

The same derivations can of course be used when 
negelecting one or two of the axial dispersion coeffi- 
cients E, and/or Ed. The resulting matrices for (E, 
= 0, Ed # 0) and (Eh = 0, Ed = 0) are given in Appen- 

dix A. It is furthermore stressed that with this method 
it is necessary for the parameters to be independent of 
height (except for the concentrations of course). 
Otherwise the decoupling with the matrices can not 
be performed. 

ALGORITHM 

Calculations were done with the NAG library 
(1980-19X9). Computation can of course also be done 
with other libraries and if necessary routines can be 
written by the user himself. 

All used routines will be given at every step. A 
summary of all the major steps is: 

(1) 

(2) 

(3) 

(4) 

Find Q and D, such that AQ = QD (eigen- 
values and eigenvectors). 
Define Y’(U) = Q-‘.X’(a), leading to dY’(cr)/ 
da = D. Y’(a) + i+‘(a), with j?-l(a) = 
Q-‘-F’-‘(a). 
Compute Y i(u) from the homogeneous and par- 
ticulate solution: Y’(a) = ci. Y;(O) + P’(a), with 
&=E-L i fit. 
The final solution is found by back-trans- 
formation: X’(a) = Q Y ‘(6). 

The accuracy of the calculation can be controlled in 
three ways. First of all, the integration routine [for 
Pi(,)] requires a tolerance. Secondly, the user can 
specify many or few Q points at w’hich a solution is 
desired. Thirdly, the A9 value has a direct control over 
matrix A and therefore also over matrices Q and D. 

A flow sheet is given in Fig. 2. Eigenvalues and 
eigenvectors are calculated with the NAG routine 
F02AGF, and inverse matrix with the routine 
FOlAAF. A cubic-spline fit is done with E02BAF, and 
an evaluation of the fit is done with E02BBF. Further- 
more we used the integration routine DOZEBF (Gear 
method routine). 

PO 1 AAF 1 
1 Cb(O.0) = Cd(O.0) = 0 1 

& 
I .= It, ;o:= +ta??] 

;::,I 
DO ZEBF 

I 

1 
determine c, (-01 

gi ,=i , v; ,Yi xi . c' out I 
1 

*, 

STOP 

Fig. 2. Flow sheet of program. 
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Definition offeed and end conditions 
For the RTD the injection pulse has been defined as 

a Dirac pulse: 

The tsCep value has been introduced to make sure that 
the pulse is injected completely and gradually (nu- 
merically speaking). For the final RTD curve this rater, 
value has to be subtracted from the t values. The 
response on a Dirac pulse with t,,,, equal to zero will 
be known. 

Making eq. (44) dimensionless yields 

C,(S) = a,exp [-11:2uz(H</U)2(S - S,,,,)‘]. 
(45) 

Because the surface under a Dirac pulse equals unity 
this leads to 

i- m C,(S)dS = l/z = CO (46) 
Jo - 

with e being the average residence time, and Co the 
total amount of tracer gas injected. 

The total amount of tracer gas entering the reactor 
has to leave the reactor (no reaction) and therefore 

s m 

C,(S)dS = 
II I 

17 

C,,,,(S)dS = l/t. (47) 
0 

Because C, equals l/s, this also leads to the condition 
that the surface under the E(9) curve (which is the 
dimensionless response), equals unity: 

s m 

= E(9)dS = 1. (48) 
n 

We checked whether the calculations fulfilled these 
conditions by taking a summation value according to 

I C,,,(S)AS = l/r = $. (49) 

The %,, value has always been taken large enough to 
acquire a constant summation value, implying that 
9 stop + co* 

Another check was performed by calculating the 
average residence time from the simulated curves. 
This value has to be equal to 9 = 1. 

To fulfill eq. (44) numerically, we computed an a,, 
value according to 

minimize 

RESULTS AND DISCUSSlON 

The program was written in FORTRAN and run 
on VAX/VMS. The CPU time was in the order of 
l-5 min. depending upon matrix type, step sizes and 
tolerance used with the calculations. For all calcu- 
lations the input parameters listed in Table 1 were 
used. As an examnle we used these values because 

Fig. 3. Comparison of residence time distributions of finite- 
1 --~--- ------- ------- diflerence method and decoupling method. 

they are usually encountered in laboratory scale re- 
actors. Fan and Fan (1979, 1980) for instance used the 
same order of values. They also showed that Pe could 
be taken independent of height. Computation is, of 
course, also possible with values that refer to com- 
mercial units. 

We defined a relative error in the following way: 

c;d = ’ va ue calculated - value wanted/ l 1 value wanted 1 
100%. 

(51) 

Relative errors based on residence time and surface 
beneath the curve were calculated. The best AS and 
Aa vatues, as well as knots for the cubic-spline tit, 
were determined by taking those values that gave 
stable solutions with a small relative error. The 
boundaries for the integration routine were taken to 
be cr = 0 and 0 = 1. All solutions were calculated with 
Aa = 0.01 and AS = 0.01. The step size in placing the 
knots was taken to be 0.02. 

The tolerance in calculating pi(g) was 10 5. If 
necessary lo-’ was taken. This way, a maximum 
relative error of -5% was always found. Most 
calculations gave a relative error of l-3%. 

First of all a comparison was made between the 
finite-difference method (NAG routine D03PGF) and 
the decoupling method. Results for Peb = 20, 
Pe, = 20 and Nk = 2 are shown in Fig. 3. This shows 
that both methods lead to the same result. The differ- 
ence only occurs in the height of the top. The place 
and shape of the first peak, caused by the bubbles, are 
equal. Dense-phase gas leaves the reactor more slowly 

Table 1. List of parameter values used in 
computation 

P 

u = 0.1 m/s 
u m/ = 0.01 m/s 

d = 0.05 
Ed = 0.40 
H = l.Om 
cp = 1.0 

P 
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and gradually, giving the tail. The shape and pIace of 
the tail are again the same for both methods. 

Due to the stiffness the finite-difference method 
often gave erroneous answers, particularly at some- 
what “low” Pe (< 10) and “high” N, (3 S-10). The 
decoupling method always returned a stable solution 
with a relative error of less than 5%. 

Computations were also made with the non-steady- 
state reaction system. The height concentration pro- 
file and resulting conversion were the same as for the 
steady-state reaction system, using the decoupling 
method and analytical solutions. 

Various computations were made with different 
parameter values. Neglecting one or two Pe terms 
leads, in principle, to difference systems. This is be- 
cause the resulting matrices are completely different. 
Yet comparable solutions were obtained, as is shown 
in Figs 4-10. This indicates the stability of the de- 
coupling method. 

All this shows that the decoupling method is a 
stable method leading to good results. 

Figure 4 shows results for the (2 x 2) matrix, with 
Pe, + GO, Pe, + co and IV, as the parameter. At N, 
= 2 gas exchange is relatively small and, because 

bubbles rise much more faster than the dense-phase 
gas, a peak occurs. When the gas exchange increases 
the curve maximum shifts more towards 9 = I, be- 
cause more gas is transported upwards in the relat- 
ively slow dense phase. If the exchange would get 

0 1 2 3 4 

Dim. flme -8 

Fig. 4. Residence time distribution with fixed Peb and Pe, 
and variable N, [(2 x 2) matrix]. 

150 
P&d) = 10 

n param. = NK 

Fig. 5. Residence time distribution with fixed Pe, and Pe, 
and variable N, [(3 x 3) matrix]. 

Fie. 6. Residence time distribution with fixed Pe, and N& 
and variable Pe, [(3 x 3) matrix]. 

I 2 3 4 

orn Ilme 4 

Fig. 7. Residence time distribution with fixed Pe, and Nk and 
variable Pe, C(3 x 3) matrix]. 

0 1 2 3 4 5 

elm, 

Fig. 8. Residence time distribution with fixed Pe, and Pe, 
and variable Nk [(4 x 4) matrix]. 

060 

Fig. 9. Residence time distribution with fixed Pe, and N, 
and variable Pe, [(4 x 4) matrix]. 
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Fig. 10. Residence time distribution with fixed N,, and Pe, 
and variable Pe, r(4 x 4) matrix]. 

infinitely great, equilibrium would be reached and the 
gas would rise in plug flow. Therefore there will be a 
Gaussian peak at 9 = 1 for large N,. The average 
residence time of the total gas is described with eq. (3~) 
and of the bubble phase with eq. (3a). This shows that 
rJ7 N S/c z 0.12 (with 6 = 0.05 and cd = 0.4). This 
value is indeed found from Fig. 4. 

Comparable results were obtained with the (3 x 3) 
matrix, with Pe, - a, Pe, = 10 and N, as the para- 
meter (Fig. 5). As can be seen from Figs 4 and 5, the 
influence of N, is sufficient to obtain a reliable IV, 
value from RTD measurements. 

The influence of Pe, is shown in Fig. 6. At N, = 2 
the influence is not that obvious because most gas 
flows through the reactor in the bubble phase. With 
N, = 10 (Fig. 7). the influence is much more obvious, 
due to the higher exchange to the dense phase. At low 
Pe,, the dense phase approaches an ideal mixed sys- 
tem_ Therefore, the top of the curve will shift towards 
9 = 0. Similar results for the (4 x 4) matrix are shown 
in the Figs 8-10. 

CONCLUDING REMARKS 

We deduced equations from the bubble dispersion 
model that can be used for all types of powders. 

A finite difference was taken in the time variable 
instead of in the space variable. After rewriting these 
equations, using rather elementary mathematics, the 
equations were decoupled. Comparable computations 
were performed with the standard Crank-Nicholson 
technique and the decoupling method. This showed 
that both methods gave the same results if calculation 
was possible with the Crank-Nicholson technique. 

The advantages of the decoupling method are that 
it is straightforward, mathematically not very com- 
plex, and leads to good and stable solutions. Of course 
it should be possible to use the decoupling method for 
other non-steady- and steady-state systems. In prin- 
ciple it can be used for a system of many equations, as 
long as it is possible to calculate the eigenvectors, 
eigenvalues and inverse matrices with high enough 
accuracy. An example can be found in Tuin (1989). 

To start with we have taken a grid with uniform 
spacing. It will, of course, be economically more efi- 
cient if a non-uniform spacing is used. For simplicity 

we have not yet done that. This does however not 
affect the decoupling method itself. A semi-analytical 
solution for eq. (25), describing the particular part, 
might also give some improvement. This, however, is 
only the case if an accurate polynomial curve fit is 
possible. This means that many fluctuations in the 
curve should give problems. More research is needed 
in these areas. 

RTD analysis for all types of powders is now pos- 
sible, if sufficient data on the hydrodynamics are 
available. In our future research, hydrodynamics will 
be measured and RTD measurements will be per- 
formed. 
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NOTATION 

specific bubble surface, mz/m3 
coefficient in Dirac pulse [eq. (44) J 
cross-sectional area of reactor, m2 
gas concentration in bubble phase 
gas concentration in dense phase 
total amount of gas injected 
feed concentration 
average concentration of gas leaving the re- 
actor 
eigenvalues of matrix A 
Eddy dispersion coefficient for bubble 
phase, m’/s 
Eddy disperion coefficient for dense phase, 
mL/s 
dimensionless response (C,,,/C,). 
fraction of gas in the bubble phase 
elements vector Pi- I 
differential bed height, m 
total bed height, m 
subscript 
subscript 
mass transfer coefficient based on total gas 
volume, s - 1 
reaction constant based on catalyst mass 
req. (211, kg/(m3 s) 
mass transfer coefficient, m/s 
number mass transfer units 
number of reaction units 
Peclet number for hubbIe phase 
Peclet number for dense phase 
eIements of particulate vector Pi(c) 
transformation elements for pj elements 
[es. (39)l 
superficial velocity, m/s 
bubble velocity, m/s 
dense-phase gas velocity, m/s 
minimum fluidization velocity, m/s 

Greek letters 
B gas parameter for bubble phase [eqs (4j and 

(12)l 
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gas parameter for dense phase [eqs (5) and 
(191 
bubble hold up 
dense-phase porosity 
relative error [eq. (51)] 
parameter for boundary conditions 
[eqs (27) and (28)] 
average residence time calculated by pro- 
gram simulation 
through flow factor for dense phase 
particle density, kg/m3 
dimensionless time (t/r) 
dimensionless time step for Dirac pulse 
Ceq. (45)l 
dimensionless time at which computations 
are stopped 
step size for dimensionless time 
dimensionless height (h/H) 
step size for dimensionless height 
average residence time based on total 
amount of gas in reactor, s 
average residence time based on gas in 
bubble phase, s 
average residence time based on gas in dense 
phase, s 
total gas fraction in reactor [S + (1 - &Ed] 

Matrices/vectors 
A matrix containing original parameters 

[eqs (17) and (L8)j 
C constant vector for homogeneous solution 

Ceq- (WI 
D diagonal matrix containing the eigenvalues 

of A [eqs (19) and (ZO)] 
E matrix obtained by evaluating the boundary 

conditions [eq. (35)] 
F vector containing concentrations from time 

step i - 1 [eq. (IS)] 
P “decoupled” vector F ( = Q- 1 F) [eq. (23)] 

g vector obtained evaluating the feed and 
boundary conditions [es. (37)] 

P matrix for particulate solution [eq. (XI)] 
P matrix P with extracted LIS values [es_ (42)] 
Q matrix containing the eigenvectors of A 

Ceq. (1917 
R vector F with extracted A9 values [eq. (4211 
X original vector containing bubble and dense 

phase concentrations [eqs (17) and (18)] 
Y “decoupled” vector X (= Q _ ’ X) [eq. (19)] 
Y, homogeneous part of solution differential 

equation ceq. (2411 
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APPENDIX A 

Matrix definition when neglecting Pe, term 
Original equations: 

ac, ix, Nkt 
y$g + 7% + (1 - &Ed (cd - cb) 

1 r PC, 
--,+N 

5 _-___ 
Pe, (1 - @Ed au -----Cc,= 0 (A2) 

‘(I - d)Ed 

with boundary conditions 

C,(O, a) = 0 

C,(O, a) = 0 

C,(9,0) = C,(9) (B > 0) 

(A3) 

(A4) 

(As) 

1 ac, 
Cd(G. 0) = C,(8) + (1 _-f,)pe, da 1 (9 > 0) LW a=ll 
Euler approximation of time variable: 

(A7) 

w3) 
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azG,i dC,,i 
- = (1 --f,)fN 7g- 

with boundary condition 

au* + N,.h.(G,i - C,*iI 
C,(O, ff) = 0 (At% 

+ N,.Pe,.Cd,i + 
C,,; - C,.+, pe,(l - &Ed 

A9 
5 (A% C,(O, a) = 0 (A14) 

C,(9,0) = C,(9) (a > 0) (A13 
Taking IV, = 0 (no reaction) leads to - CN,df + l/t@- As)) 

Ped(Nk + (1 - Qd(t. AQ)) 

Matrix definition when neglecting Pe, and Pe, terms 
Original equations: C,(9,0) = C,(9) (9 > 0). (Al@ 

(All) 
Taking an Euler approximation in the time variable and 
N, = 0: 

ac, ac, 
K(C, - C,) d9 + y da + (1 - 6)Ed 

r Xi, i N, Cd,< - C&-l 1 

+ Nr (1 - 6)Ed 
____ C, = 0 (A12) a0 = - (1 -X) ~ (Cd,, - C&i) - A9 r’ 

(A18) 

Writing in matrix form yields 


