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1. Summary

On the unit sphere Sq-l in IRq we consider (infinite dimensional) Lie algebras of analytic

vectorfields. By adding suitable "potentials" to these vectorfields the Lie algebras are represented

by a Lie algebra of skew-Hennitean operators in L 2(Sq-l).

This leads to q-dimensional analogues of the algebras discussed in [KR].

We point at some connections with hannonic functions with representations of classical Lie

groups and also at the regularity properties of the one-parameter groups generated by the

representations of our Lie algebra.

2. Some function spaces and operators

By Sq-l we denote the unit sphere in IRq. The solid open ball with radius R, centered at QE IRq

is denoted by BR • If R =I we denote B instead of B 1. On Sq-l we introduce the Hilbert space

L 2(Sq-l) with inner product

1 J - J(j,g) =- fer,) g(r,) do, OOq = do
OOq I~ I= 1 - - I~ I= 1

and norm

11111 =(j,f)t .

00

It is well known that each f E L 2(Sq-l) can be decomposed in spherical hannonics f= ~ ft.
A:=O

Here fA: is the restriction to Sq-l of a harmonic homogeneous polynomial of degree k on IR q. In

short, cf. [Mil],
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-L2(Sq-l) = E9 HP/c(lRq) .
/c:()

Here HP/c(lRq) denotes the space of homogeneous harmonic polynomials of degree k on IRq.

We are especially interested in dense subspaces of "very smooth" functions in L2(Sq-l): Let

R> 1,

-HA(BR) =if I \:;Ir, 0 < r < R, 1: r2lc1lf/c1l2 < co} .
/c:()

Note that HA(BR) consists precisely of those functions fin L 2(Sq-l) which extend to a hannonic

functionfe onBR. Cf. [0].

If we want to emphasize that we consider the (unique) harmonic extension of a certain

f e L2(Sq-l) as a function on BR, we write fe instead off. From [0] we quote

2.1. THEOREM (hannonic multiplication/dilatation)

(i) Let f,g e HA(BR), R > 1, then also the pointwise product fg, defined on Sq-l, has a har

monic extension to BR. So fg e HA(BR)'

(ii) Let feHA(BR),R>1. Let AeIRqxq , IIAII=R 1 <R. Define geL2(Sq-l) by

g~) =fe(A~, I~I =1. Then g e HA(B p), with p =RIR 1.

Finally, we introduce the space of hannonic functions on the closed unit ball and the space of

entire harmonic functions on IR q:

HA(B) = u HA(BR) , HA(IRq) = (1' HA(BR).
R>l R>l

Next we tum to some classes of operators in L 2(Sq-l) which all have a geometric flavour.

2.2. DEFINITION

On the domain HA(BR), fixed R> 1, we define the operators LA (Ae IRqxq, IIAII=R 1 <R),

Z')., (O<A<R), P j (l~i~q), Qj (l~i~q) andNasfoliows. Take I~I = 1 and I!I <R

(LA/) (~)=fe(A~) , (Z').,f)(~)=fe(~),- - --
afe

(Pj /) <F:j = aXj <F:j , (Qj /) (~ = ~d(~

(Nf)~)=~TVfe)<F:j =~ <F:j.

Note that
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1

(N+o.rl /4!<!)=f Sa-1 /e<S!)ds • Reo.>O.
o

The following properties follow from Theorem 2.1 and checking the hannonicity.

2.3. PROPERTIES

(i) LA(HA(BR»cHA(B p) with p =RIR 1

Z).(HA(BR» c HA(Br ) with r =RIA.

ah
(ii) (Z).f)4! <!) =h(~). (Pi!)4! <!) = ax; <!).

(N f)4! <!) =<!T V Ie) <!) .
1

(iii) «N+o.)-l f)e <!)= f sa-l le(s!)ds.
o

(iv) (Qi!)e <!) =xi!4!<!) +(1- I! 1
2)(2N +qr1 :~ C!).

(V) !flk E H Pk(IRq) thenN Ik = klk and

(Qjftl.l.!)= [XjftC!)- 2j-~+q 1!1
2 :t, C!)] + [ 2j-~+q :t, C!)]

The first tenn [. ] E HPk+1(IRq), the second tenn [. ] E HPk- 1(IRq).

Note that bothHA(B) and HA(IRq) are invariant dense subspaces for all mentioned operators.
The operators Rj =Pj - Qj N, 1:S; j:S; q, will frequently occur. They correspond to the tangent
vector fields r.(x) =e· -x·x =e· -x· n onSq- 1•

~'e. :::J J - :::J J _

From straightforward calculations, using the explicit expression for the hannonic extension
(Qi f)e we find the following algebraic relations.

2.4. THEOREM

• PkQ/- Q/Pk =f>klI -2 Qk(2N+qr1 p/

• PkN-NPk=Pk

• NQk-Qk N =Qk- 2 (2N+qr1 p k

• Qk P/- Q/Pk =RkR/-R/Rk =Qk R/- Q/Rk

The operators Pj and Rj are not skew-hennitean in L2(Sq-l). In the next theorem we construct
skew-hennitean operators from the building blocks Pj, Qj and N.

2.5. THEOREM

The operators Pj - Qj N + o.Qj =Rj + o.Qj. with 0. =- q; 1 • 1:S; j:S; q, are skew-hennitean on



-4-

each domain RA(BR ), R > 1.

Proof. [M]

The result follows from the equality

The latter equality follows from Gauss' theorem, viz.

o

3. Lie algebras of tangent vector fields on Sq-l and their skew-adjoint representations in
L2(Sq-l)

If we put a non-constant coefficient a in front of (Ric +a QIc), the operator a (Ric +a QIc) will no
longer be skew-hermitean. However,

3.1. THEOREM

Let a E RA(BR ) , R > 1. The operators aRIc + aa QIc +t(Rlca), with 1:S; k:S; q, a=- q;l and

(Rica) = ada +Xlc aaa are skew-Hermitean on the invariant domainRA(BR ) CL2(Sq-l).
XIc n

Further, for the commutator of two such operators, we have

[aRIc+aa QIc +t(Rlca), bRl +abQl-t(R1b)] =

=-(c Ric + ac QIc +t (Ric c» + (dRl +adQl-t (R1d»

with

Proof.

For the first part of the theorem we apply a general trick: Let A , B and S be operators on a
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common invariant domain W in a Hilbert space H.

Suppose that on Wone has A * = A , B * = -B, S* = S and AB = S +BA, then

(AB -tS)* +(AB -tS)=O on W.

In our case take A =multiplication by a in L2(Sq-l), take B =R" + a Q". Let U E HA(BR). Then,
since R" corresponds to a tangent vector field,

a(P" - Q" N + a Q,,) u - (P" - Q" N +a Q,,) au =

- (P"a - Q"N a) u =-(R"a)u .

By taking S =multiplication by -(R"a) the first result follows. The second result follows from a
straightforward calculation. 0

Remark: If a and b extend to hannonic polynomials then also c and d extend to harmonic poly
nomials.
Now we are ready to present the main definition of this paper.

3.2. DEFINITION
q

Let ~ =L a"!lJc =a"!lJc ' a" E HA (BR ), be a vector field (not necessarily tangent) on Sq-l .
"=1

With a we associate the operators (a =-~)- 2

G~)=a" R" +aa"Q" +t(R"aA:) =~T~+a~TQ+t (R T~).

Note that ~T~ corresponds to the vector field a"C!:.Jc - x,,;) =~ - ~T !!)!! which is tangent to
Sq-l.

3.3. THEOREM

(i) The operator G~) maps HA(BR) C L 2(Sq-l) into itself.

(ii) If!2 =bi!i is another vector field with coefficients bi E HA(BR) then we have for the com
mutator

[G~), G(Q)] =G{£)

with

(iii) The Lie algebra of tangent vector fields to Sq-l with coefficients in HA(BR) has
~ H G~) as a skew-Hermitean representation inL2(Sq-l).
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(iv) A sub Lie algebra of (iii) is obtained if one takes the coefficients in the spherical hannonics.
Again ~ H G(~) is a skew-Hennitean representation.

3.4. SPECIAL CASES

I. ~ =K! ' !!. =L! ' K, L e JRqxq • KT =-K, L T=-L.

Substitution leads to G(E) =!T K!i =!T K Tf which is a "moment of momentum" opera
tor. (We used R!T = T. _!!T and!T K! = 0.)
For the commutator ofG(~) and G(!!.) we find G(£) with £. =(KL - LK)!.

Operators of this type establish a Lie-algebra which corresponds to so(JR,q).

II. a =constant b =constant.- -
[G(~), GC!!.)] = G{£.) with £.=C!!.~T _~!!.T)!.

Note that (!!.~T - ~ !!.T) e so(JR,q).

Operators of the fonn G(a +K x), a e JR q , K e so(JR ,q) establish a Lie algebra.

A (q + I) x (q + 1)-matriX-re~en~tion is [:. ~] .

This is an extension of so(JR,q). Cf. also III.

III. ~=K! !!.=L! K,Le JRqxq.

G~)=!T KT(V_!!TV)+a!T K T!+t(V-!!TvlK!

=xTKT(l-xXT) V +!l.=.!. x TK X _.!.xTK x
- -- 2 - - 2 - -

G~)u=!TKTVU-~TK!)!TVU- i (!TK!)+ttrK.

So, we have another extension of so(JR,q) which corresponds both to sl(JR,q) and to Mar
tens' representation of SL(JR,q), cf. [M2]. The extensions ofII and III cannot be combined

into one single small Lie-algebra in a simple way. Nole thallhe matrices{[:T ~]} estab

lish a Lie-algebra only if A T =-A.

Note also that, taking ~ =constant and !!. =4. we find a commutator with

f. =«V _!!TV)!T LTl~ +L!~T!_~!TL T!

=La -axTL TX.- -- -

Only if L T= -L this reduces to L a.

IV. ~ =f~)!. Then G~) =O.

FINAL REMARKS

• The spectra of the operators G~) can be very different from each other. For example, the
moment of momentum operators (case I) have discrete spectra while the spectral properties
of the Rj + aQj are the same as those of dldx inL2(JR).
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• In order to study Lie groups of operators generated by the G~) one needs a Hille-Yosida

Ouchi-theorem adapted for inductive limits of Hilbert spaces. Cf. [L]. One expects the

analyticity domain for the whole Lie group to be HA(B).
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