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Bad Configurations for Random Walk
in Random Scenery and Related Subshifts

Frank den Hollander, Jeffrey E. Steif, Peter van der Wal

August 16, 2004

Abstract

In this paper we consider an arbitrary irreducible random walk on
Z? d > 1, with i.i.d. increments, together with an arbitrary i.i.d. ran-
dom scenery. Walk and scenery are assumed to be independent. Ran-
dom walk in random scenery (RWRS) is the random process where
time is indexed by Z, and at each unit of time both the step taken by
the walk and the scenery value at the site that is visited are registered.
Bad configurations for RWRS are the discontinuity points of the con-
ditional probability distribution for the configuration at the origin of
time given the configuration at all other times. We show that the set
of bad configurations is non-empty. We give a complete description of
this set and compute its probability under the random scenery mea-
sure. Depending on the type of random walk, this probability may
be zero or positive. For simple symmetric random walk we get three
different types of behavior depending on whether d = 1,2, d = 3,4 or
d > 5. Our classification is actually valid for a class of subshifts having
a certain determinative property, of which RWRS is an example. We
also consider bad configurations w.r.t. a finite time interval (replacing
the origin) and obtain an almost complete generalization of our results.
Remarkably, this extension turns out to be somewhat delicate.
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1 Introduction

1.1 Motivation

An important area in statistical physics concerns itself with the behavior of
Gibbs measures under various types of transformations. In the past 20 years
many examples have been studied in detail, showing that under (typically
simple) transformations the Gibbs property may be preserved, lost or re-
covered. These examples include spin systems under renormalization, spins
systems under stochastic dynamics, disordered spin systems, the Fortuin-
Kasteleyn random cluster model, the fuzzy Potts model, hidden Markov
models, g-function systems, Hamiltonian dynamics and chaotic dynamics.
The history and recent developments of this research area are highlighted
in the proceedings of a workshop held at EURANDOM in December 2003,
organized by van Enter, Le Ny and Redig [2], to appear as a special issue of
Markov Processes and Related Fields. For an overview and for references,
we refer the reader to that volume.

The present paper is a contribution to the above area. We consider
the random process that is obtained by looking at a random scenery on Z¢
along the path of a random walk on Z? This random process, which is
called random walk in random scenery (RWRS), can be viewed as a random
transformation of the random scenery induced by the random walk. The
random scenery is assumed to be i.i.d. and the random walk is assumed to
have i.i.d. increments and to be independent of the random scenery. Under
these assumptions we will show that RWRS is not Gibbs, i.e., the conditional
probabilities for RWRS inside any finite time interval given the configuration
outside are not uniformly positive and not everywhere continuous. We will
give a complete description of the set of discontinuity points, which turns
out to be non-empty. Moreover, we will compute the probability of this set
under the random scenery measure. This probability may be zero or positive
depending on the type of random walk.

1.2 Random walk in random scenery

We begin by defining the random process that will be the object of our
study.

Fix an integer d > 1. Let X = (X, )nez be a sequence of i.i.d. random
variables taking values in a finite set F' C Z¢ according to a common distri-
bution m having full support on F. Let S = (S,)nez be the corresponding



two-sided RANDOM WALK on Z¢, defined by
So=0 and Sp— Sn_1=X,,n€7Z,

i.e., X, is the step at time n and S, is the position at time n. To make S
into an irreducible random walk, we will assume that F generates Z<, i.e., for
all z € Z% there exist n € N and T1,...,ZTy € F such that z1+---+ =z, = =.

Let C = (C,),cza be a field of i.i.d. random variables taking values in
a finite set G with |G| > 2 according to a common distribution having
full support on G. Denote the joint distribution of C' (which is a product
measure on GZd) by pu. We will refer to G as the set of scenery values and
to C' as the RANDOM SCENERY, i.e., C, is the scenery value at site z.

Let

Y = (Ya)nez with Y,=(CoS),=0Cg,

be the sequence of scenery values observed along the random walk. The
joint process
7Z = (Zp)nez with Zn = (Xpn,Yn)

is called the RANDOM WALK IN RANDOM SCENERY ' (RWRS) associated
with m and p.

Let H = F x G. The range of Z, which we denote by €2, is the set of
COMPATIBLE CONFIGURATIONS; in short

Q= {z e HZ: 2 = (z,y = co s(z)) for some z € FZ ce GZd}

with s(z) the walk associated with 2. Observe that € is shift-invariant, is
closed in the product topology and is a proper subshift of HZ. Let P denote
the probability distribution of Z on €. From now on we will consider the
random sequences X, Y and Z as being defined on the common sample
space 2. By our assumptions on m and p, the cylinder set {Z =w on I} =
{Z,, = wy, for n € I} has positive P-measure for all w € 2 and all finite
I CZ.

The main question that we will address in this paper is the following:
Does there exist a version V(- | ) of the conditional probability distribution

P(Zo € | Z=nonZ\{0}), neQ,

In ergodic theory Z is referred to as the T, T *-process. The interest in this process
originally came from the fact that it was conjectured to be a simple and natural example
of a K-automorphism that is not Bernoulli. Kalikow [4] showed that this is indeed the
case for d =1 and simple random walks. This result was extended by den Hollander and
Steif [3] to essentially arbitrary recurrent random walk.



such that the map n — V(- | n) is everywhere/almost everywhere /not almost
everywhere continuous on 27 The same question will be addressed for

P(Xo€-|Z=nonZ\{0}), neg,
P(Yoe-|Z=nonZ\{0}), ne.

In a forthcoming paper we will look at
P(Yp€-|Y =C¢onZ\{0}), ¢eG~

It turns out that this conditional probability distribution has a behavior that
is very different from the one for Z. Indeed, Y is the projection of RWRS
where the steps of the random walk are not registered. Consequently, Y has
as its support the full shift G%. For our results on Z it is essential that €,
the support of Z, is a proper subshift.

1.3 Bad configurations and discontinuity points for subshifts

In this section we view € as a subshift (a shift-invariant and closed subset)
of an arbitrary product space H”, with H a finite set, and we view the
compatible configurations of RWRS as a specific example. For w € €2, define
Zy(w) = wg, and let P be a translation invariant probability measure on 2
that assigns positive measure to all cylinder sets. We view the conditional
probability distribution P(Zy € - | (Z,)n20) as a map from Qg to P(H),
where

Q= {77 e H2MO: there is an w € Q such that w = n on Z\{O}}

is the set of EXTENDABLE CONFIGURATIONS and P(H) is the set of proba-
bility measures on H (as opposed to a map from Q to P(H)).

Our question about continuity of conditional probabilities will be formu-
lated in terms of so-called bad configurations. We use three different notions
of badness for a configuration: (a) bad for Zj, (b) bad for a Zj-measurable
random variable U, (c) bad for a set A C H. In what follows we will always
identify a random variable that is measurable with respect to Zy with a
function on H. For n € N, write A, = ZN[—n,n].

Definition 1.1. Let ©Q and P be as above.

(a) A configuration n € Qg is said to be a BAD CONFIGURATION FOR Zj if
there is an ¢ > 0 such that for all n € N there are » > n and § €
with 0 = n on A,\{0} such that

IP(Zo€-|Z=non A,\{0}) —P(Zy€-|Z=0o0nA,\{0})] >¢



where || || denotes total variation norm on P(H).

(b) Let U be a random variable that is measurable with respect to Z;. A
configuration n € €} is said to be a BAD CONFIGURATION FOR U if there
is an € > 0 such that for all n € N there are m > n and § €  with
d =n on A, \{0} such that

IP(U €12 =nonA\0}) ~B(U €-| Z=6onAu\{0O})] = e.

(c) Let A C H. A configuration n € ) is said to be a BAD CONFIGURATION
FOR A if there is an € > 0 such that for all n € N there are m > n and
d € Qo with 0 = n on A,\{0} such that

IP(Zy € A| Z =non Ay\{0}) —P(Zy € A| Z =6 on Ay\{0})] > e.

In words, for (a), no matter how large n is, by tampering with the config-
uration inside A,,\A,, for some large m > n, the conditional distribution of
Zy can be nontrivially affected; for (b), the distribution of U can be nontriv-
ially affected; for (c), the probability that Zj falls in A can be nontrivially
affected.

Note that (a) is (b) with U = Zp, and that (c) is (b) with U = 14. Note
that n is bad for Zjy if and only if it is bad for some A C H, and that n
is bad for U if and only if it is a bad configuration for some U-measurable
subset of H. We write B(U) for the set of bad configurations for U, and
B(A) for the set of bad configurations for A.

The relationship between bad configurations and discontinuity points is
given by the following theorem, which will be proved in Section 2.

Theorem 1.2.

(1) Fiz A C H and let W(A | n) be any version of the conditional proba-
bility P(Zy € A | Z = n on Z\{0}), viewed as a map from Qy to [0,1].
Then B(A) is contained in the set of discontinuity points for the map
n—=W(Aln).

(1i)) Fiz A C H. There is a version W (A | n) of the conditional probability
P(Zy € A | Z = n on Z\{0}) such that B(A) is equal to the set of
discontinuity points for the map n — W (A | n).

(11i) Analogous properties hold for the other two notions of bad configura-
tion.



Let Py be the probability measure on {2y induced by P. Given a Z-
measurable random variable U, the question whether there exists an every-
where/almost everywhere/not almost everywhere continuous version of the
conditional probability distribution of U given (Z,),-o translates into the
question whether B(U) = (), Py(B(U)) = 0 or Py(B(U)) > 0.

1.4 Bad configurations for RWRS

In the context of RWRS, typical choices for U are Xy, Yy and Zy. The
following theorem will be proved in Section 5.

Theorem 1.3. Assume that m and p satisfy the conditions in Section 1.1.
(i) B(Xo), B(Yo) and B(Zy) are non-empty.
(i) For d=1,2 and ), xm(z) =0,

Py(B(Xo)) = Po(B(Yo)) = Po(B(Z)) = 0.

(iii) For d =3,4 and ) xm(z) =0,

Py(B(Xo)) =0,
0 <P(S, #0 for all n #0) = Py(B(Yy)) = Po(B(Zp)) < 1.

(i) Ford>5 and ) am(xz) =0 ord>1 and ) xm(x)#0,

0< Po(B(XU)) <1,
0< P(Sn 7'5 0 for all n 7é 0) < Po(B(Y[))) < IPU(B(ZU)) < 1.

The proof of Theorem 1.3 is based on a complete description of the sets
B(Xy), B(Yy) and B(Zy), obtained in Section 4.

So far, we have looked at how the conditional distribution at a single
time point depends on the configuration elsewhere. It is quite natural to
also ask how the conditional distribution in a finite time interval depends
on the configuration elsewhere. Therefore, let A be a finite interval in Z,
and define the set of A-EXTENDABLE CONFIGURATIONS, in analogy with the
case A = {0}, as

Qp = {17 € H”\*: there is an w € © such that w =7 on Z\A}.

Given a probability measure on €2, we can, in a way that is analogous to
Definition 1.1, define a configuration in Q, to be bad for Zy = (Z,)nea, bad



for a Z)-measurable random variable U, and bad for a set A C H A These
obvious formulations are left to the reader. A version of Theorem 1.2 again
holds. In Section 7 we will obtain a full generalization of Theorem 1.3.

We finally mention that there are random processes with full support for
which all configurations are bad. The following unpublished example is due
to Rob van den Berg. Let (X,,)nez be i.i.d. {0,1}-valued random variables
with P(X,, = 1) =p € (0,1), p # 5. Forn € Z, let Y, = Iyx, 2x,,,}-
Then Y = (Y},)nez is a stationary random process with full support, called
a 2-block factor in symbolic dynamics. It is easy to show that, for reasons
of parity, every configuration in {0,1}*\% is bad for Y;.

1.5 Outline

The outline of the rest of this paper is as follows. In Section 2 we prove
Theorem 1.2. In Section 3 we look at arbitrary subshifts and give a complete
classification of the bad configurations for those subshifts that have a certain
determinative property, which we call property ©. In Section 4 we show that
RWRS has this property. In Section 5 we prove Theorem 1.3. In Sections 6
and 7 we move on to studying bad configurations for finite intervals A. As
we will see, this extension is somewhat delicate. Indeed, since our main
motivating example of RWRS does not satisfy the analogue of property ©
when |A| > 1, we introduce another property of subshifts, which we call
property #, and study the bad configurations. In Section 7 we show that
RWRS has this property when |A| > 1 and generalize Theorem 1.3.

Remark. In the present paper, although our subshifts are indexed by Z, most
of our results hold equally well for subshifts indexed by Z? In addition,
all our results for RWRS go through if the i.i.d. assumption on the random
scenery is replaced by (translation invariance and) the weaker uniform finite
enerqgy property, i.e.,

min essinf ;1(Cy = ¢ | (C),20) > 0.
ceG

2 Proof of Theorem 1.2

Proof. We give the proofs of (i) and (ii); the proof of (iii) is similar.

(i) Fix A C H and any version W(A | n) of the conditional probability
P(Zy € A| Z = n on Z\{0}), viewed as a map from g to [0,1]. Suppose



that n € Qg is a continuity point of this map. Then
lim  sup  (W(A|&)-W(A[Q)=0.

n—r00 674690

&=C=n on A, \{0}

Fix ¢ > 0 and let n be so large that the supremum in the expression above
is <e. Let m >n and § € Qg be such that 6 =n on A,\{0}. Abbreviating
Po(- | na,,) =Po(- | Z =n on Ap\{0}), we obtain

P(Zy € A|Z =non Ay\{0}) —P(Zy € A| Z =6 on Ay \{0})]
= | dBo¢Im W10~ [ drole |an,) WA
Qo Qo

< /Q /QOdPO(C | AP (€ | Ga,,) [W(A | Q) = W(A| &)
<e.

Hence n ¢ B(A). (See also Maes, Redig and Van Moffaert [6], Proposi-
tion 4.2.)

(ii) Fix A C H, and for n € Q define
W (A [n) = lim infw, (A | ),
where
wp(A|n)=P(Zy € A| Z=mnon A,\{0}), n €N

The martingale convergence theorem guarantees that W (A | n) is a version
of the conditional probability P(Zy € A | Z = n on Z\{0}).

The main ingredient of the proof that W (A | n) is continuous at config-
urations outside B(A) is the fact that (w,(A | 7))nen is a Cauchy sequence
when 1 ¢ B(A). To see the latter, fix n ¢ B(A) and ¢ > 0. Then, by the
definition of B(A), we can fix an n € N such that for all m > n and § € Qg
with 0 = n on A, \{0},

[wm (A | 1) —wm(A]0)] <e

Hence, for all m > n,

(A | n) = wnlA [ )] = | [ dBo(3 [ s, )um(4] 8) = wn( | )]

< / dPo(5 | na,) |wm(A | ) = wm(A | )|
Qo

<e

)



where we adopted the notation Py(- | 75, ) from the proof of part (i).
To prove continuity outside B(A), fix ¢ > 0, n ¢ B(A) and choose n as
above. Then for all 6 € Qy with § =7 on A,\{0},

[W(A|n)—W(A|J)| = ‘linginfwm(A | n) — liniinfwm(A | 5)‘
= ugnoowm(A | n) — l}%loréfwm(A | 5)‘
= limsup{wpn (4 | 1) — wn(4 ] 6)}]

< limSUP‘wm(A | n) — wn (A | 5)‘

m—o0

<eg

= )

by the above inequality. O

3 Identification of bad configurations for subshifts

In this section we work with the more general setup of Section 1.3, where
Q is an arbitrary subshift of H% and P is a translation invariant probability
measure on ). For  satisfying a certain determinative property (¥ in Defi-
nition 3.3 below) we will explicitly describe the set of bad configurations for
a Zp-measurable random variable U (Theorem 3.6 below). This description
will be purely topological and will not depend on P.

3.1 Insertion and

Definition 3.1. For n € Qy, define
insert(n) = {a € H: w defined by wy = @ and w = n on Z\{0} is in Q}.

In words, insert(n) consists of those elements in H that can be inserted in
1 at time 0 to give a configuration in {2. The following lemma states that if
an element of H cannot be inserted in 7, then it cannot be inserted in any
configuration that agrees with n on a sufficiently large interval around 0.

Lemma 3.2. Let n € Qy. Then there is an n € N such that insert(d) C
insert(n) for all § € Qo with 6 =n on A,\{0}.

Proof. Suppose that for all n € N, there is a 0" € Qy with §" = 7 on
A, \{0} such that a™ € insert(6") for some a” ¢ insert(n). Then, since H
is finite, we can find an a ¢ insert(n) and a subsequence (nj)ren such that
a € insert(§™) for all k € N. Define (w*)zen with w* € Q by putting wk = a

10



and w¥ = 6™ on Z\{0}. Then, clearly, limj_,o w* = w with wy = a and
w = n on Z\{0}. Since Q is closed, it follows that w € , and hence that
a € insert(n), which is a contradiction. O

Our key property of subshifts is the following.

Definition 3.3. A subshift 2 has PROPERTY Q if for all n € Qq, a €
insert(n) and n € N, there is a § € Qg such that § = n on A,\{0} and
insert(d) = {a}.

In words, © has property Q if the following holds. Let 1 be an extendable
configuration for which more than one element of H can be inserted at time
0. Let a be any of these elements. Then, given an arbitrarily large interval
around 0, we can tamper with n outside this interval such that a is the only
element of H that can be inserted in the new configuration.

3.2 Bad configurations

Lemmas 3.4 and 3.5 below give an expression for B(A), the set of bad
configurations for A C H, by means of two inclusions, the second of which
requires property ©. Although B(A) depends on P, the inclusions involve a
set that depends on the subshift 2 only.

Lemma 3.4. For every A C H,
B(A) C{neQq: there are a € A and b ¢ A such that a,b € insert(n)} .

Proof. Suppose that insert(n) C A (resp. C A°). By Lemma 3.2, there is an
n € N such that insert(d) C A (resp. C A€) for all § € Qy with § =7 on A,,.
Hence P(Zy € A| Z = on Ap,) =1 (resp. = 0) for all m > n and for all
0 € Q¢ with § =n on A,. Therefore 7 is not a bad configuration for A. [

Lemma 3.5. Let Q be a subshift with property Q. Then for every A C H,
B(A) D {n € Qq: there are a € A and b ¢ A such that a,b € insert(n)} .

Proof. The claim is trivial for A = (), H. Therefore assume that A # (), H.
Let n € Qy, a € A and b ¢ A be such that a,b € insert(n). Fix n € N. By
property ©, there are d, and d, in Qo with §, = §, = n on A, \{0} such that
insert(d,) = {a} and insert(dy) = {b}. By Lemma 3.2, there is an m > n
such that if { = 0, on Ay, \{0}, then insert(¢() = {a}, while if ( = §, on
A \{0}, then insert(¢) = {b}. Hence,

P(Zo € A| Z = 6, on Am\{0}) = 1,
]P)(Z() €A | Z = 0 on Am\{O}) =0.

11



The latter imply that either

IP(Zy € A| Z =non Ap\{0}) —P(Zy € A| Z = 6§, on A, \{0})] > 3
or

IP(Zy € A| Z =non Ay,\{0}) —P(Zy € A| Z =6, on A, \{0})] > 5.
Hence 7 is bad for A with e = % O

Let U be a Zp-measurable random variable. Then U in a natural way
gives us a partition my of H and a o-algebra oy on H. The following
identification of B(U), the set of bad configurations for U, follows from
Lemmas 3.4 and 3.5.

Theorem 3.6. Let 2 be a subshift with property © and let U be a Zy-
measurable random wvariable. Then

B(U)={ne€Q: {U(a): a € insert(n)}| > 1}.

In particular,
B(Zy) = {n € Qp: |insert(n)| > 1}.

Proof. By definition,
B(U) — UAGO'UB(A)'

Since 2 has property ©, it follows from Lemmas 3.4 and 3.5 that

B(U)={n€Qy: thereare Acoyandac A, b¢ A
such that a,b € insert(n)}.

O

In words, B(U) is the set of configurations for which we can insert elements
from different partition elements of 7.

To close this section, we give an example of a subshift ) not satisfy-
ing property © and a translation invariant probability measure P on 2 for
which the containment in Lemma 3.5 fails (the reverse containment holds
by Lemma 3.4). Let Q be the subshift of {0,1,2}? consisting of those con-
figurations in which 0 is followed by 0 or 1, 1 is followed by 1 or 2, and 2
is followed by 2 or O (this is an example of a so-called Markov shift). It is
obvious that 2 does not satisfy property ©. Let P be the unique stationary
probability measure on € corresponding to the Markov chain on {0, 1,2}
that with probability 1/2 stands still and with probability 1/2 increases by
1 (mod 3). For any A # (),{0, 1,2}, trivially B(A) = 0, but the right-hand
set in Lemma 3.5 is non-empty.

12



4 Identification of bad configurations for RWRS

The following lemma, shows that the results of Section 3 apply to RWRS.

Lemma 4.1. Let Q be the subshift associated with RWRS. Then Q satisfies
property Q.

Proof. Fix n € Qq, (x,¢) € insert(n) and n € N. To prove that Q satisfies
property O, we have to show that there is an w € Q such that w = n on
Ay \{0} and insert(wz\ 03) = {(,c)}. We will achieve this by showing that
the class of w € Q satisfying conditions (C1-C3) below have this property
and that this class is non-empty. Before giving the mathematics, we describe
the idea. After choosing w to be (z,¢) at time 0 and to agree with n on
A, \{0}, we define w elsewhere so that

(1) the random walk in positive time reaches the origin, a fixed site y far
away, as well as all the sites nearby y,

(2) the scenery value revealed at y is different from that revealed at the sites
nearby v,

(3) y is reached at some negative time.

In this way we can recover the scenery value seen at time 0 (since the walk

comes back to 0 at some positive time) and we can recover the step at time

0 (since every choice for this step other than x yields an element outside Q).
Let w € Q0 be such that

(Cl):  wp=(z,¢),w=mnon A,\{0} and Si(w) = 0 some k > 0.
Let y € Z% be such that
(y+D)nN R[—n,n] =0,

where D = {71 —xo: 71,73 € F'} and R|_,, ;) is the set of sites the walk can
possibly visit between times —n and n (i.e., £ all the partial sums of < n
elements from F). Let w € Q be such that

(C2): Sj(w) =y for some | < —n.

Let ¢1,co € G with ¢1 # ¢3. Let w be such that for all z € y + D there is an
integer m, = m,(w) > n such that

c ifz=uy,

(03) . sz (UJ) = z and sz (w) - { co ifze Y+ D\{O}

13



It is easy to see that an w € € satisfying conditions (C1-C3) exists
(recall that the random walk is irreducible). Moreover, if § is the restriction
w to Z\{0}, then insert(d) = {(z,¢)}. Indeed, (C1) allows us to retrieve the
scenery value ¢ seen at time 0 while (C2-C3) allows us to retrieve the step
z taken at time 0. O

By Theorem 3.6 and Lemma 4.1, the respective sets of bad configurations
for RWRS are given by:

Corollary 4.2.

B(Xo) = {neQ: |{x € F: (x,c) € insert(n) for some c € G}| > 1}
B(Yo) = {neQ: |{ceG: (x,c) € insert(n) for some z € F}| > 1}
B(Zy) = {ne€Q: |insert(n)| > 1}.

In words, the bad configurations for Xy, Yy and Zj are precisely those con-
figurations for which more than one value can be inserted for the missing
coordinate at time 0.
Note that
B(Zy) = B(Xo) U B(Yp).

5 Proof of Theorem 1.3

The proof is based on Lemmas 5.1-5.6 below.

5.1 Key lemmas
Lemma 5.1.
(i) Po(B(Yy)) < Po(B(Zo)) = Po(B(Xo)) + Po(B(Yo)\B(Xo)).
(ir) Po(B(Xo)) < Po(B(Zo)) = Po(B(Y0)) + Po(B(Xo)\B(Y0))-
(iii) o (B( ).
Proof. (i-ii) These are immediate from the relation B(Zy) = B(Xo)UB(Yp).
(iii) To prove the first inequality, let n € Qo be good for Xy but bad for Yy,

and let w € Q be a configuration such that w = n on Z\{0}. Since 7 is good
for Xy, we have by Corollary 4.2 that

Yo)\B(Xo)) < P(Sn # 0 for all n # 0) < Py(B(Yy)

Hz € F': (z,c) € insert(n) for some ¢ € G}| = 1.

14



So, if (z,c) € insert(n) for some ¢ € G, then z = X((w). Since 7 is bad for
Yo, we can find c¢1,co € G with ¢; # ¢y such that (Xo(w),c1), (Xo(w),c2) €
insert(n). This implies that S, (w) # 0 for all n # 0.

To prove the second inequality, let w € Q be such that S, (w) # 0 for all
n # 0, and let 1) be the restriction of w to Z\{0}. Then (Xy(w), c) € insert(n)
for all ¢ € G. Hence,

H{ec € G: (z,c) € insert(n) for some z € F'}| = |G| > 1,
and therefore 7 is bad for Yj. O

Let S_ ={S,: n <0} and Sy = {S,: n > 0} denote the past, respec-
tively, the future of the random walk. Define random sets Is C I; C A
by

L = {z€8_: (z+4D)NSy #0}U{z€ S;: (z+D)NS_ #0},
I, = {#z€S_: (z+D)CS;},

where D = {z1 — z9: x1,79 € F'}. Both these sets are measurable w.r.t. S.

Lemma 5.2. Let p = max.cq u(Co = c¢). Then

E (plh\) <Py (B(Xp)) < E((1 — oIt - p))lfz/lD|> ,

where E denotes expectation w.r.t. P.

Proof. To prove the first inequality, fix ¢ € G with u(Cy = ¢) = p and
w € Q, and let n be the restriction of w to Z\{0}. If all sites in I;(w)
have scenery value ¢, then (z,c) € insert(n) for all z € F. Indeed, I;(w)
consists of those sites in the past (future) that lie in the D-neighborhood of
the future (past). Changing the step at time 0 can only make two sites in
I (w)NS4(w) and I; (w)NS_(w) land on top of each other that are within the
D-neighborhood of each other. Therefore, changing the step at time 0 can
never lead to a conflict of scenery value. Since |F| > 1 (by the irreducibility
of the random walk), the fact that (z,c) € insert(n) for all x € F implies, by
Corollary 4.2, that 7 is a bad configuration for Xy. By the independence of
the random walk and the random scenery and by the i.i.d. property of the
random scenery, the conditional probability given the walk that all sites in
I (w) have scenery value ¢ is equal to ,0‘[1 @), From this, the first inequality
follows.

To prove the second inequality, again fix ¢ € G and w € (2, and again
let  be the restriction of w to Z\{0}. Let z € Iy(w), and suppose that
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all sites in z + D except z have scenery value ¢. Then (z,¢) € insert(n)
implies that © = Xy(w) (since any change of step at time 0 changes the
scenery value) and hence, by Corollary 4.2, that 1 is not bad for X,. The
probability that all sites in z + D except z have scenery value c is equal to
p!PI=1(1 — p). Moreover, it is easy to see that there is a set J(w) C Ir(w)
such that ¢ y+ D for all z,y € J(w) and |J(w)| > |I2(w)|/|D|. If n is bad
for Xy, then for all z € J(w) it is not possible that all sites in z + D except
z have scenery value c. By the above estimate, the probability of this event
is at most

(1-pP71 1= ) Tl (1-pP1 1= )

From this, the second inequality follows. ]

[T2(w)l/[ D]

Let I=5_nNS,. Note that Iy D I D Is.
Lemma 5.3. P(|I;| = 00) = P(|I]| = o) = P(|I5] = o0) € {0,1}.

Proof. Since {|I;| = oo}, {|I| = oo} and {|Iz] = oo} are exchangeable
events, they each have probability 0 or 1 by the Hewitt-Savage zero-one law
(see e.g. Durrett [1], p. 174). Since I} D I D Iy, we have

P(|11| = 00) > B(|I] = 00) > P(|L| = oo).

It follows from den Hollander and Steif [3], Lemma 3.2, that P(|I2] =
o0) = 1 whenever P(|I| = co) = 1. Hence P(|I| = o0) = P(|I2]| = o).
For v € D, let E, be the event

E,={{z€S_: z—ve S} =00}

Suppose that P(|/;] = co) = 1. Then there is a v € D such that P(E,) > 0.
Since the random walk is irreducible, we can find n € N and z1,...,2, € F
such that v =z + ...+ z,. Let p, = P(X} =z} for 1 <k < n), and define

Ey(x1,...,2p)

= {w € Q: there is an W’ € E, such that Xj(w) = X (') for & <0,

Xi(w) =xp for 1 <k <n, Xp(w) = X_pn(W') for k >n+1}.
We have
P(|I| = 00) > P(Ey(z1,-..,24)) = pn P(Ey) > 0,

and so P(|I| = co) = 1. Hence P(|I;| = 00) = P(|I]| = o0). O
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Lemma 5.4. If P(|I;| < 00) =1, then
Po(B(X0)\B(Yp)) > 0.
Proof. Fix ¢ € G and define the following events:

E, ={S,, =0 for some n > 0},
Ey ={Y,, = cfor all n € Z with S,, = 0},
Es ={Y, =cforalln € Z with S,, € I,}.

(Note that it is not necessary that 0 € I;.) Then
Po(B(X0)\B(Yo)) > P(E1 N Ey N Ejy).

Indeed, if w € E; N Ey, then Yy(w) = ¢ and hence, by Corollary 4.2, n ¢
B(Yp), where 7 is the restriction of w to Z\{0}. If w € FEs, then (z,c) €
insert(n) for all x € F' and hence n € B(X)).

Since ) is measurable with respect to S, and P(Ey N E3|S) > plI+!
a.s. with p = u(Cy = ¢) > 0, we obtain

P(Ey N By N E3) = E(1p,P(E2 N E3|S)) > E(1p, p!1H1).

Since P(E;) > 0 (by the irreducibility of the random walk) and P(pl/tI+1 >
0) = 1 (by the assumption that P(|I;| < oo) = 1), we obtain that P(E; N
By N E3) > 0. 0

Lemma 5.5. Py(B(Z))) < 1.

Proof. Fix c1,co € G with ¢; # ¢3. Let E; be the set of w € §2 for which for
all z € D there are m, > 0 such that

_ _J o ifz=0,
Sm.(w) =z and Y, (w) = { co if z € D\{0}.
Let E5 be the set of w € Q such that S, (w) = 0 for some n < 0. Then
1 =Py (B(Zo)) = Po(2\B(Z))) = P(E1 N Ey).

Indeed, if w € Ey N By, then Zy(w) = (Yo(w),c1) (i-e., only wp is insertable
at time 0) and hence n ¢ B(Zy), where 7 is the restriction of w to Z\{0}.
Since F; and E5 are independent, and

P(Ey) > plPP(Vze D3Im, >0: S, = 2)
with p = min{u(Co = ¢1), u(Co = c2)} > 0, we obtain that P(E, N Ey) >
0. U
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Lemma 5.6. If P(|I;| < o0) =1, then
P(S,, # 0 for all n # 0) < Py(B(Yy)).

Proof. Fix c¢1,co € G with ¢; # ¢co. For z,y € F with z # y, define the event

Ey(z,y) = {(Xo,Yo) = (z,c1), and

{ ¢ if S, = k(x —y) for some k € Z,
Y, = .
co otherwise,

for all n € Z with S,, € Il},
and define

Ey ={S, #0 for all n > 0},
Es = {S, =0 for some n < 0}.

Fix 2,y € F with 2 # y and w € Ey(z,y) N Ey. We claim that w’ defined by

;| own if n #0,
“n = (y,co) ifn =0,

is an element of ). To prove this, we have to show that for all m < n,
Y (w') = Yy, (w') whenever S, (w') = S, (w').

For 0 < m < n, the claim holds because Sy, (w) = Sy, (w') and Yy, (w) = Yy, («')
for all n > 0. For m < n < 0, the claim holds because a change of the step
at time 0 does not affect the self-intersection pattern of the past of the
walk. For m < 0 < n, note that S,,(w') = S, (w') implies that S,,(w) =
Sp(w) — (z —y). Hence, S,,(w) is a multiple of z — y if and only if S, (w) is.
Since Sy, (w), Sp(w) € I1(w) (because w € Ej(z,y)), this in turn implies that
Sm(w), Sp(w) have the same color (either ¢; or ¢z, depending on whether
they are a multiple of  — y or not). Thus

{(z,¢1), (y, c2)} C imsert(n),

where 1 € Qg is the restriction of w to Z\{0}, and hence n € B(Y)) by
Corollary 4.2.

The above shows that B(Yp) 2 E1 N By with Er = U, ye .z, B1(2,Y).
But {S,, # 0 for all n # 0} C Q\E3, and so it follows that

B(Yo)\{sn # 0 for all n # 0} D EiNEyNE;.
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Trivially, B(Yy) D {S, # 0 for all n # 0}, and hence

IP[)(B(Y())) - P(Sn ;lé 0 for all n 7é 0) Z P(El N E2 N Eg)

Since Fy and E3 are measurable with respect to S, and P(E1|S) > ,0”1Hrl a.s.
with p = min{u(Cy = c1), u(Cy = ¢2)}, we obtain that P(E; N EaN E3) > 0,
as before. O

5.2
(i)

(iii)

Proof of Theorem 1.3

Fix Z € F, ¢ € G and define a configuration n € Qy by n, = (%,¢)
for all n € Z\{0}. It is easily seen that the sets {(z,¢): = € F}
and {(Z,c): ¢ € G} are both contained in insert(n). It follows from
Corollary 4.2 that 1 is an element of B(Xy), B(Yp) and B(Zp).

If d =1,2 and ), xm(z) = 0, then the random walk is recurrent.
So, P(S_ = Sy = Z% = 1, hence P(|I5] = o) = 1, and therefore
the upper bound in Lemma 5.2 gives Py(B(Xyp)) = 0. Consequently,
Lemmas 5.1(i,iii) yield 0 = P(S,, # 0 for all n # 0) = Py(B(Ys)) =
Po(B(Zo)).-

If d = 3,4 and ), om(z) = 0, then the random walk is transient.
However, P(|I| = oo0) = 1 (see Lawler [5], Section 3), and there-
fore Lemma 5.3 gives P(|I2] = o0) = 1. So, by the upper bound in
Lemma 5.2, again Po(B(Xp)) = 0. Consequently, Lemmas 5.1(3,iii)
yield 0 < (S, # 0 for all n # 0) = Py(B(Yy)) = Po(B(Zy)) < 1.

Ifd>5and ) am(z) = 0orif d > 1 and ) am(xz) # 0, then
P(|I| < o0) =1 (see Lawler [5], Section 3), and therefore Lemma 5.3
gives P(|I1] < o0) = P(|I2| < o0) = 1. So, Lemma 5.2 gives 0 <
Py(B(Xp)) < 1. Consequently, Lemmas 5.1(i,iii) and 5.5 yield 0 <
P(S, # 0 for all n # 0) < Po(B(Yp)) < Py(B(Zp)) < 1. The second
inequality is strict by Lemma 5.6 and the third inequality is strict by
Lemmas 5.1(ii) and 5.4.

Remark. For the proof of Theorem 1.3, the i.i.d. property of the random
scenery was used only in the proofs of Lemmas 5.2, 5.4, 5.5 and 5.6. It is
easily checked that for all these lemmas the uniform finite energy condition
actually suffices (recall the remarks made in Section 1.5).
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6 Identification of bad configurations for subshifts
for finite intervals A

In this section we deal with the situation where the time span on which
we consider the conditional probabilities is not just a single point, but a
finite interval A C Z. Remarkably, the extension turns out to be somewhat
delicate.

6.1 Imnsertion, ©,, A-irreducible configurations, and &,

We begin by extending the definition of property ©. Recall the definition of
QA in Section 1.4.

Definition 6.1. For n € Q,, define
inserty () = {y € H*: w given by w =y on A and w = on Z\A is in Q}.

Definition 6.2. A subshift {2 has PROPERTY O, if for all n € Qp, v €
inserty(n) and n € N, there is a 6 € ) such that 6 = 5 on A,\A and
inserty (0) = {v}.

Clearly, Oy = ©. It is easily checked (we leave this to the reader) that the
analogues of Lemmas 3.2, 3.4, 3.5 and Theorem 3.6 all extend when A is an
arbitrary finite interval.

All this is fine, however, RWRS does not satisfy property O, when |[A| >
2. Indeed, it is never possible to read off from the configuration outside A
in which order the steps are taken during the time interval A. At most it
is possible to read off their total sum. Thus, it is never possible to bring
inserta (6) down to a single configuration inside A when |A| > 2. To remedy
this problem, we introduce a property #, of subshifts (Definition 6.4 below)
that we believe is the key property for RWRS when |A]| > 2.

To define this property, we need some more definitions.

Definition 6.3. Recall that A,, = [-n,n|NZ for n € N.

(a) Define the set of A-IRREDUCIBLE CONFIGURATIONS as

In = {n € Qu: there is an n > 0 such that A,\A # 0 and
if 6 =non Ap\A, then inserty(d) = insertp(n)}.
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(b) For U a Zj-measurable random variable (Zy = (Z5)nea ), define the set
of A-IRREDUCIBLE CONFIGURATIONS FOR U as

I\(U) = {77 € Q) : there is an n > 0 such that A,\A # 0 and
if 6 =n on A,\A, then
{U(7): v € inserta(6)} = {U(7): 7 € inserta(n)}}.

In words, I, is the set of those configurations for which the possible inser-
tions in A cannot be reduced by tampering with the configuration far outside
A. (Note that, by the obvious analogue of Lemma 3.2, there is an n € N
with Ap\A # 0 such that inserta(d) C inserty(n) for all § € Qp with 6 =7
on A, \A.) Similarly for In(U). Note that Iy = Ix(Zy).

The key property replacing Oy reads:

Definition 6.4. A subshift {2 has PROPERTY &, if for all n € Qp, v €
inserty (n) and n € N with A,\A # 0, there is a § € I such that § =7 on
Ap\A and 7y € insertp (0).

In words, # ) guarantees that, by tampering with the configuration outside
any annulus around A, the configuration can be made A-irreducible and can
be made to contain a specified insert of 7 on A. In Section 7 we prove that
RWRS satisfies property # for all finite intervals A.

Obviously, for all A property @, implies property #x. The converse
is false even when A = {0}: the full shift satisfies property #o but not

property Q.

6.2 Bad configurations

Recall that, by Lemmas 3.4, 3.5 and Theorem 3.6, if our subshift satisfies
property Q, then the bad configurations are identified purely topologically,
i.e., they do not depend on the probability measure P. As indicated above,
this is also the case if we look at property ©5. However, since the full shift
satisfies property #,, we should not expect in general that for subshifts sat-
isfying the weaker property #, the bad configurations can still be described
purely topologically. Rather it is clear that some conditions must now be
placed on the probability measure P. These conditions are formulated in:

Definition 6.5.

(a) A probability measure IP on a subshift {2 is UNIFORMLY NON-NULL ON I
if there is a ¢ = ¢y > 0 such that for alln € N, n € Iy and 7y € inserty (),

P(Z=~yonA|Z=nonA\A) >c.
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(b) Let U be a Zj-measurable random variable. A probability measure
P on a subshift © is FINITARILY MARKOV FOR U ON I, (U) if for all
n € In(U) there is an n € N with A,,\A # 0 such that for all m > n and
for all § € In(U) with 6 =n on Ap\A,

PUe-|Z=0don Ap\A)=P(U €-|Z =nonA,\A).

While the latter property is technical, it is precisely the one satisfied by
RWRS that will allow for a full identification of the bad configurations for
X and Zy. It is, roughly speaking, a two-sided version of a notion recently
introduced by Morvai and Weiss [7], [8], which they call finitarily Markov.
We point out that if € is the full shift, then the property of being finitarily
Markov for Zj on I, trivializes, in the sense that P must be i.i.d.

Lemmas 6.6 and 6.7 below identify the bad configurations for a Zj-
measurable random variable U in analogy with Lemmas 3.4 and 3.5.

Lemma 6.6. Assume that Q is a subshift satisfying property #x and that
P is a probability measure on  that is uniformly non-null on Iy. Let U be
a Zx-measurable random wvariable. Then

B(U) 2 Qx\\IA(U).

Proof. Assume that n € QA\IA(U). Let ¢ = ¢/2, where ¢ is the constant
in Definition 6.5(a). Let n be sufficiently large so that A,\A # (0 and
inserta (6) C inserta (n) for all 6 € Q with 6 = n on A,\A, which is possible
by the analogue of Lemma 3.2. The fact that 7 is not in Iy (U) now implies
the existence of a § € ) such that § =7 on A,\A and

{U(): v €insertp(d)} € {U(y): v € inserta(n)}.

Take ' € inserty (1) such that U(y) # U(y') for all y € inserty (§). Property
#, implies that there is a § € Ip such that &' = n on A,\A and ' €
inserty (¢"). By the analogue of Lemma 3.2, there is an m > n such that for
all ¢ € Qq,

inserty (¢) C insertp(6) whenever (¢ =0 on A, \A
inserty () = inserty(8')  whenever ¢ = ¢ on A, \A.

Hence
P(U = U(y') | Z =6 on Ap\A) =0

while, by the uniform non-null assumption,

PU=U®)|Z=27§ on Ay\A) > c.
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Therefore at least one of the latter two conditional probabilities must differ
from

P(U=U(")|Z=mnonAy,\A)
by at least ¢/2 = e. Consequently, n € B(U). O

Lemma 6.7. Let P be a probability measure on a subshift & and U be a
Zx-measurable random wvariable. Assume that P is finitarily Markov for U
on In(U). Then

B(U) € QA\IA(U).

Proof. Assume that € I, (U). Then there is an n € N with A, \A # 0 such
that for all 6 € Qy with 6 =7 on Ap\A,

{U(y): v € insertp(0)} = {U(7y): v € inserta(n)}.

Observe that any such § is in Ix(U). Using that P is finitarily Markov for
U on Ix(U), we obtain that for all m > n and for all 6 € Q, with 6 =7 on
An\A,

PUe-|Z=don Ap\A) =P(U €-|Z =non A,\A).

Hence n ¢ B(U). O

7 Identification of bad configurations for RWRS
for finite intervals A

As in Section 6, we assume that A C Z is a finite interval. For v =
(%0, Yn)ner € HY, we define X(y) = (Xn(7))nea and Y(7) = (Ya(7))nea

by putting X,,(y) = z, and Y, () = yn.
7.1 4XA and ZA

The following lemma identifies the sets of irreducible configurations for X
and Zj. In Corollary 7.4 below we will see that the complements of these
sets coincide with the sets of bad configurations for X, and Z,.

Lemma 7.1.
(i)

In(X) = {n €M Y Xi(1) =) Xi(y) V7,7 € insertA(n)}-
keA keA
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(i)
IN(Zp) = In(Xh)
N {77 € Qa: [y,7 € imserta(n), X(7) = X()] = v = 7’}-

Proof. (i) Write R for the set in the right-hand side. To show that I (Xs) C
R, assume that n € Qy is such that >, ) Xi(y) # Y pep Xk(y') for some
7,7 € inserty (n). Fix n € N with A,\A # 0, and choose w € Q4 such that
w=yon A and w = n on A,\A. Analogously to the proof of Lemma 4.1,
we define w on Z\A,, so that

(1) the random walk at some time > n reaches a fixed site y far away from
the origin, as well as all the sites nearby y (where far away and nearby
depend on |A]),

(2) the scenery value revealed at y is different from that revealed at the sites
nearby v,

(3) y is reached at some time < —n.

In this way, we get

ZXk(’)’) = ZXk(’)’") V4" € inserty ()
keA kEA

for & € Q) with 0 = w on Z\A. Hence, X(v') is not in {X(v"): v" €
inserta (0)}, and therefore n ¢ Ix(Xy).

To show that R C In(Xy), let n € QA\Ip(X4). Fix n € N with A, \A #
(), and choose 6 € Qp such that § = n on A, \A and inserts (d) C inserta(n).
Since n ¢ In(X4), we have

{X(y): v €insertp(d)} C {X(y): v € insertp(n)}.

Pick v € inserty(n) such that X (y) # X (v") for all 4" € inserty(d). Then
Yok Xk() # Dper Xi(y") for all ¥ € inserty(d). Since inserty(d) C
insert (n), this shows that n ¢ R.

(ii) Write R for the set in the right-hand side. To show that Ix(Z)) C R,
we argue as follows. From the definition of A-irreducibility it is clear that
In(Zn) C Ix(X)). Hence, assume that n € Q, is such that X(y) = X(v/)
for some v,v" € inserty(n) with v # 4/. Fix n € N with A,\A # 0, and
choose w € €2 such that w =y on A and w =7 on A,\A. Define w on Z\A,,
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such that for all £ € A there is an [ ¢ A with Sk(w) = Sj(w). If § € Qp is
given by § = w on Z\A, then +' ¢ insert(d). Hence n ¢ Ix(Zy).

To show that R C Ix(Zp), let n € QA\Ix(Zy). Fix n € N with A, \A #
(), and choose d € Qx such that § =n on A,\A and inserts (d) C insert(n).
Since n ¢ Ix(Za), we have in fact that inserty(d) C inserta(n). Let v €
inserty (n)\ inserty (§). There are now two possibilities:

(1) X(vy) # X(y") for all v € insert (0). This implies that n ¢ In(Xy).

(2) X(y) = X(v") for some 4" € insertp(d). Such a 4" cannot be equal to
v, and hence n ¢ R.

O

We next show that RWRS fits into the framework of Section 6.

Lemma 7.2. Let Q be the subshift associated with RWRS. Then Q salisfies
property ®.

Proof. The proof is similar to that of Lemmas 4.1 and 7.1. The details are
left to the reader. O

Lemma 7.3. Let Q be the subshift associated with RWRS and P the corre-
sponding probability measure on €.

(1) P is uniformly non-null on I,.
(11) P is finitarily Markov for Xy on Ix(Xa) and for Zx on Iz(Zy).

Proof. (i) Recall Definitions 6.3(a) and 6.5(a). By the i.i.d. property of the
walk and the scenery, and the fact that the steps and the scenery values
are drawn from finite sets, each possible insertion on A has a probability
> cp > 0. For A-irreducible configurations, the set of possible insertions on
A is independent of the configuration on A, \A for some n large enough, and
non-empty for the configuration on Z\A.

(ii) Recall Definitions 6.3(b) and 6.5(b). By the i.i.d. property of the walk
and the scenery, once the set of possible insertions on A is determined by the
configuration on A, \A for some n large enough, the probability distribution

for the possible insertions on A no longer depends on the configuration on
Z\ Ay, O

Corollary 7.4. B(Xy) = QA\IA(Xp) and B(Zy) = Qa\Ir(Zy).
Proof. This is a direct consequence of Lemmas 6.6, 6.7, 7.2 and 7.3. U

The above results complete our analysis for X, and Z,. The situation
for Y, is different.
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7.2 Y

The following lemma shows the relation between the respective sets of irre-
ducible and bad configurations.

Lemma 7.5.
(i) IN(Z)) C IN(XpA) N IA(Yn).
(it) B(Za) = B(Xa)U B(Ya).

Proof. (i) This is immediate from the definition of A-irreducibility. In Fig-
ure 1, a configuration is given that is irreducible for X, and Y}, but not for
Zx. Hence the inclusion may be strict.

(ii) It is immediate from the definition of bad configuration that B(Z,) 2
B(XA) U B(Yy). To prove the reverse inclusion, it suffices to show that if
w € B(Zy)\B(Xa), then w € B(Yy). This goes as follows. For w ¢ B(X,),
we have ), -\ Xi(w) determined by w on Z\A, say s. If w € B(Z,) also,
then there are steps on A, with the prescribed sum s, for which the path
on A visits a site z for which the scenery value is not determined. But the
presence of such a z guaranteees that w € B(Y)) (in the same way as the
example in Figure 1 gives an element of B(Y})). O

In general, IP is not finitarily Markov for Y, on I5(Yy). Lemma 6.6 tells
us that
B(Yy) 2 Qx\Ix(Ya),

but the reverse inequality fails in general. Indeed, the configuration given
in Figure 1 is both bad and irreducible for Yj.

Next we explain Figure 1. Let n € Q) denote the configuration that is
drawn in the figure:

(1) To see that n € In(X4), note that >, -, Xj(y) has to be located inside
the diamond {(z,y) € Z?: |z|+|y| < 4} for all y € inserty(n). The only
value of this sum that does not lead to a conflicting coloring of the sites
is (2,2), corresponding to S_4 = (—2,—2), as drawn.

(2) To see that n € In(Yy), note that for any § € Q) that agrees with n on
Az \A,

{Y(7): v € insertp(0)} = {(e,0,0,0), (0,0 0 0)}.

Indeed, there are four possible walks on A from (—2,—2) to (0,0), and
along each of these walks the colors seen on A are the two sequences
indicated, irrespective of the color of (—1,—1).

26



(3) To see that n ¢ I5(Zp), note that it is possible to construct an w €
such that w = n on Ag\A and S, (w) = (—1,—1) for some n ¢ A. For
this w the color of (—1, —1) is determined.

(4) To see that n € B(Ya), note that the color of (—1,—1) may be deter-
mined by making the walk return to that site for the first time after an
arbitrarily large time.

Remark. Tt is possible to give an expression for I (Y, ) in the same spirit as
the ones for I5 (X)) and Ix(Z,) in Lemma 7.1. However, this expression is
complicated, and since its complement does not coincide with B(Yy ) anyway,
it is of less interest.

7.3 Generalization of Theorem 1.3

Using basically the same types of arguments as in Section 5, we obtain the
following generalization of Theorem 1.3. The details are left to the reader.

Theorem 7.6. Assume that m and i satisfy the conditions in Section 1.1.
(1) B(Xa), B(Yp) and B(Zy) are non-empty.
(it) Ford=1,2 and ) xm(z) =0,

PA(B(X4)) = PA(B(Yr)) = PA(B(Zy)) = 0.

(iii) For d=3,4 and ) xm(zx) =0,

IEDA(‘B(*XVA)) = 07
0 < P(3n € A: Sy # Su¥m ¢ A) < Pa(B(Ya)) = Pa(B(Z4)) < L.

(iv) Ford>5 and ) xm(z) =0 ord>1 and ) xm(z) # 0,

0< IPA(B(XA)) <1,
0< P(Hn eA: S, 7'5 Sy Vm ¢ A) < IP’A(B(YA)) < IPA(B(ZA)) < 1.

The fact that the < in Theorem 7.6(iii) is an = in Theorem 1.3(iii) is due
to our lack of control of B(Yy).
Finally, define



i.e., the sets of configurations that are bad for some finite interval. By er-
godicity, P(B(X)), P(B(Y)),P(B(Z)) € {0,1}. It follows from Theorem 7.6
that cases (ii-iv) correspond to
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Figure 1: The arrows and the colors represent an element 7 of 4, where
A = {-3,-2,—-1,0}, the set of possible steps is F' = {—,1,+, ]} and the
set of possible scenery values is G = {o,e}. The picture corresponds to
n = (—>,o) for n € (—OO,—4] NZ,m = (J/v .)v mn = (i/a.)a 3 = (<_’.)?"'a
ma = (<_70)7 ms = (\La')a me = (<_7.)7 mr = (<_7.)7 . = (Ta') for
n € [18,00) N Z.
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