

Semantics of reactive systems : comparison and full
abstraction
Citation for published version (APA):
Huizing, C. (1991). Semantics of reactive systems : comparison and full abstraction. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR348201

DOI:
10.6100/IR348201

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR348201
https://doi.org/10.6100/IR348201
https://research.tue.nl/en/publications/a4e7f4d6-445a-438f-b0d8-cd2a9934136b

SEMANTICS OF REACTIVE SYSTEMS:

COMPARISON AND FULL ABSTRACTION

' '

~ • ' • -.> • ',. ~. '~ , ••• '

0

C. HUIZING

SEMANTICS OF REACTIVE SYSTEMS:

COMPARISON AND FULL ABSTRACTION

PROEFSCHRIFf

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J.H. van Lint, voor
een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

vrijdag 8 maart 1991 om 16.00 uur

door

CORNELIS HUIZING

Geboren te Bergen op Zoom

druk: wibro dissertatiedrukkerij, helmond.

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr. W.P. de Roever
en
Prof.dr. K.M. van Hee

To my grandfather

Acknowledgements

I thank Willem-Paul de Roever for his guidance in the research and related work for this
thesis. His stimulation; always on a moment tha.t you least expected it, was essential for the
completion of this thesis.

Rob Gerth has been helping me from my Master's Thesis until now with his sha.rp insight
and his knowledge. His ideas and criticism have shaped my research.

They a.nd my other colleagues a.t the Eindhoven University of Technology created the
open working atmosphere that is so important for the joy in work. I thank them for the
many discussions, or sametimes sound-board sessions, and I will never forget that special
combination of science and comradry that characterises our joint trips.

Many thanks go to Edmé van Thiel, Marieke Munter, and Annelies Vermeulen-Adolfs for
typing various parts of this thesis.

I tha.nk Kees van Hee for his glad willingness to be my second promotor and to help me
with the problems that occurred due to Willem-Pa.ul's lea.ve to Kiel. Furthermore, we had
some interesting discussions and he ga.ve me a view on my thesis from a new angle.

This research was partly carried out in the context oftwo ESPRIT projects, DESCARTES
and SPEC, financlal supported by the European community. I thank Dr. ir. A. Heijligers for
his a.ctive interest as a. director of the fa.culty in the well-being of these projects.

Since I consider the promotion as the ultimate condusion of one's education, I thank a.II
the teachers who have contributed to my knowledge or wha.tever development of the mind I
have gone through. My first teachers were my grandfa.ther, my parents a.nd both my brothers
and what they lea.rned me I relish as the most important. Of the others, I want to mention
Meester van Doorn, Dhr. A. Vermeulen, and Amir Pnueli.

Fina.lly, I thank my wife Inge, pour tout.

Contents

Introduetion 1

1 Everything you always wanted to know about Statecharts but were afraid
to ask 7

2 Full abstraction fora reai-time denotational semantics for an OCCAM-like
language 23

3 Modelling Statecharts behaviour in a fully abstract way 59

4 On the semantics of reactive systems 101

5 Formalisms related to Statecharts 121

A Bibliography of Statecharts 127

Promotiereglement artikel 15.3b 129

Samenvatting 130

Curriculum vitae 132

Introduetion

1

Introduetion

This thesis consists of the five articles below, presenting fundamental aspects of the semantics
of reactive systems.

1. C. Huizing, W.P. de Roever, Everything you always wanted to know about Statecharta
but were afroid to ask, submitted to Information Processing Letters, under the title
Introduetion to design choices in the semantica of Statecharts, 1990.

2. C. Huizing, R. Gerth, W.P. de Roever, FUll Abstroction of a Denotational Bemantics
for an OCCAM-like Language. In Proc. POPL 87, 1987, extended version.

3. C. Huizing, R. Gerth, W.P. de Roever, ModelZing Statecharta in a fully abstroct way.
In Proc. CAAP, LNCS 299, pp. 217-294, 1988, improved and extended version.

4. C. Huizing, R. Gerth, On the semantica of reactive systems.

5. C. Huizing, Formalisms related to Statecharts.

These articles provide a semantic basis for reactive systems from which methods of spec
ification, verification, and, ultimately, programming can he developed.

Since the term reactive system was introduced by Amir Pnueli and David Harel in [HP85],
an increasing amount of research has been dedicated to this topic. Programming reactive sys
tems shows many problems that are in general considered "difficult", and could appear in
areas such as real-time and parallel programming, but were never identified as one single
concept. This concept of reactivity distinguishes reactive systems from the more conven
tional transformational systems. The continuons interaction with its environment makes it
unrealistic to analyse reactive systems as performing a function from input to output.

As we point out in chapter 1, time plays an essential role in reactive systems. Although
a reactive system does not need to he a real-time system in every sense of the word, the
relative timing of input and output events plays an essential role. Therefore, we first study
real-time as such, without the notion of reactivity. For this purpose, we use a language that
is similar to OCCAM and very close to CSP-R [KSR+88]: synchronously communicating
parallel processes with a simple notion of real-time.

We based our denotational semantics on the model presented in [KSR+88] and made the
necessary changes to make it fully abstract.

For a thorough study of semantica we need the concept of full abstroction. An essential
aspect of semantics is abstraction: asemantics should abstract from the partienlar formulation
of the program or specification text and only distinguish programs that really have to be
distinct. To define when programs have to be considered distinct, we define the notion of
observable behaviour. The observable behaviour is that part of the behaviour that is of real

3

4 Semantics of reactive systems: comparison and full abstraction

interest to us (of course, this is a matter of choice). Now one could ask: why not use the
observable behaviour as the semantics of a program? The answer to this lies in the other
essential aspect of a semantics: the properties of the domain. A semantics maps a program
or specification to an object in a domain with certain desired properties. Nowadyas, it is
considered very important that this domain is compositional with respect to the syntactic
operators. This means that the semantics of a compound program Po Q, where o is a
syntactic operator, can bedescribed in terros of thesemantics of the components Pand Q.
This demand makes it in general impossible to use the observable behaviour as a semantica.
Consequently, it is important to find the semantica that is as abstract as possible without
vialating compositionality. This property is called full abstraction (HP79].

With this model as asolid starting point, we studied the semantica of a reactive language:
Statecharts.

In Chapter 1, we motivate that a reactive system should be able to react instantaneously
to stimuli from the environment, i.e., without delay, at least at a conceptual level. This can
raise causal paradoxes that have to be taken care of somehow.

Statecharta adopts, like Esterel, the synchrony hypothesis as formulated by Berry [B]. This
means that output occurs simultaneously with the input that caused it. If applied without
care, this hypothesis can lead to casual paradoxes, such as events disabling their own cause.
In Esterel, these paradoxes are circumvented by forbidding programs by a static check of
the compiler. In Statecharts, they are semantically impossible, because there the influence
of an event is restricted to events that did not cause it. The problem is to model causality
between events that have no preeedenee in time. In the operational semantics of [HPPSS87],
this is done by introducing the notion of micro-steps. Every time step is subdivided into
micro-steps between which only a causality relation holds and no timing relation. On the
level of the denotational semantica this is done by applying an order1 on the events that
occur simultaneously. This order describes in which direction events influence each other.

Another problem that arises in giving a compositional semantica of Statecharts, is its
graphical nature. For textuallanguages, defined by means of a proper syntax, it is clear what
is demanded of a syntax-directed semantics. It has to be compositional (a homomorphism)
with respect to the syntactical operators. For a graphicallanguage, without a proper syntax,
this is not so clear.

In chapter 3, we chose the salution that was implemented in Statecharts at that moment.
In chapter 4 several ways to tackle this problem are discussed and compared in one semantic
framework. This formal treatment makes it possible to formulate three desirabie properties,
or criteria, to match the various solutions against. Unfortunately, it turns out, and is proved,
that it is not possible to combine these three criteria into one semantica. .To end with a
positive remark, we can tell you that we designed a two-levelled semantica that satisfies the
criteria, but on different levels.

Chapter 5 presents some formalisinB that are related to Statecharts: the graphicallanguage
Argos and the process algebra ATP.

The thesis is concluded with a bibliography of Statecharts, including articles and hooks to
be publisbed and documentation of the Statemate system, the implementation of Statecharts.

1To be specific: it is a total preorder

Introduetion 5

References

(HP79]

(HP85]

M.C.B. Hennessy and G.D. Plotkin. FuJl abstraction for a simple parallel pro
gramming language. In Proceedings MFCS '79, LNCS 74, pages pp. 108-120.
Springer, 1979.

D. Hare! and A. Pnueli. On the development of reactive systems. In K.R. Apt,
editor, Logies and Modelsof Concurrent Systems, pages 477--498. NATO, ASI-13,
Springer-Verlag, 1985.

(HPPSS87] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the forma! semantics
of Statecharts. In Proceedings Symposium on Logic in Computer Science, pages
54-64, 1987.

(KSR+88] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun
Kumar. Compositional semantics for reai-time distributed computing. lnfor
mation and Computation, 79(3):21o-256, 1988.

Chapter 1

Everything you always wanted to
know about Statecharts but were
afraid to ask

7

Everything you always wanted to know about Statecharts but
were afraid to ask *

C. Huizingt W.P. de Roever *
Eindhoven University of Technology

Postbus 513
5600 MB Eindhoven

The Netherlands
August, 1990

1 What are Reactive Systems?

There is a fundamental dichotomy in the analysis of computing systems. This dichotomy
crosses all borderlines between sequentia! and parallel systems, central and distributed sys
tems, and between functional and imperative systems. This is the dichotomy between trans
formational and reactive systems [HP85]. Transformational systems are well described by a
relation between input and output value. They read some input value, then produce, perhaps
non-deterministically, an output value and terminate. They have a linear structure, only the
initia! and the final state are of interest. Reactive systems do not compute a function, but
performa continuous interaction with their environment. Whereas a transformational system
is compared toa black box, a reactive system should be compared toa black cactus (terminol
ogy from Amir Pnueli), having several input and output channels. Reactive systems can be
found everywhere, especially in embedded systems. They include digital watches, television
sets, interactive software systems, integrated circuits, etc.

Transformational systems are well stuclied and an abundant number of sound theories for
their formal description and analysis exists. For reactive systems, this is not the case. In
this paper we explain what the problems are and why the language Statecharts is a good
candidate for specifying and programming reactive systems.

2 Why not use transformational description techniques?

One can ask the. question: "If transformational systems are so well studied, why don't you
consider a reactive system as a transformational one?'' Simply gather all the input tagether
and all the output together and say that a reactive system transfarms a sequence of inputs
into a sequence of outputs. The objection is called "feedback". In principle, the behaviour

•This research is partially supported by BRA project "SPEC", ESPRIT 3096.
'e-mail: wsinkees@win.tue.nl or BITNET: wsdckeesh@heitue5
leurrent address: lnstitut für lnformatik und Praktische Matbematik 11 der Christian-Albrechts-Universität

zu Kiel, Preu6erstra6e 1-9, D-2300 Kiel, (West-)Germany; e-mail: wpr@informatik.uni-kiel.dbp.de

9

10 C. Huizing & W.P. de Roever

of the environment, i.e. the input to the system, depends on the reaction of the system, i.e.
previous outputs. Therefore arelation between input sequences and output sequences is not
enough to describe a reactive system. This phenomenon is known as the Brock-Ackermann
paradox ((BA81)). Originally it is in terros of dataflow networks; it gives an example of two
systems that perform the same transformation on sequences. When the output of the systems
is fed back and merged with their input, they suddenly behave differently, even if you consider
the new systems as transformational ones.

Example: Brock-Ackermann paradox for reactive systems. Suppose we have
two systems that read events a and b from the input and then produce a c as an output
for every a it has read. The difference is that system S starts producing output only
after the second input (a orb), whereas system T starts immediately after the first input.
Viewed as sequence transformers, they have the same behaviour (assumed that the input
is always infinite) : both produce a sequence with as many c's as there were a 's in the
input .

Now suppose we put these systems in an environment that does the following . It
produces a's at regular intervals, but as soon as it sees an output of the system occurring,
it switches from a's to b's. Now the two systems behave differently: in this environment,
system S will produce two c's and system T only one, because the moment that the
environment stops sending a's is different.

Apparently, we also have to know when an output is produced. This information can include
a fully timed description of input and output events, but also a more abstract notion of time
is possible, as long as the order of output events relative to the input events is specified. A
simi!ar observation is made by Jonsson and Kok in the context of dataflow networks ((JK89]).

3 Graphical language

Transformational systems have a linear structure and so have conventionallanguages for the
specification and the programming of these systems. The only important states of the system
are the initia! state and the final state and what one describes is the relation between them
or how to go from one to the other.

In a reactive system, however, we have a totally different picture. As we sa.id before, the
"moment" at which new input arrives is relevant to the behaviour of the system. In other
words, the internal state of the system at the time of the input is important for the reaction.
Hence, more attention must be pa.id to these intermediate states. They are not just a point
on the way to the final state, they have a meaning of their own. In many reactive systems
there isn't even a final state! In a conventional textual formalism, statements have a natura!
entry and exit point, namely the beginning and the end of the statement. The sequencing of
statements in the language corresponds to the sequencing of states in the transformational
system that is described. In reactive systems, however, there is no ma.in sequentia! flow of
control and statements can have several entry and exit points, since in any state, new input
from the environment may arrive and change the direction of the execution. Hence, it makes
sense tolook at other languages than the well-known linear/iextual ones.

There exists a graphical formalism that seems quite natura! for our purposes. This is
the state diagram of a finite state machine. For each state, the possible reactions to input
that arrives when the machine is in that state is specified by transitions to other states. The
traditional state diagram gives an intuitively clear picture of this behaviour. States are drawn
as dots, possible transitions as arrows labelled with the input associated to it. In figure 1 we

Everything you always wanted to know about Statecharts 11

have drawn a typical state diagram of a finite state machine with initial state S1 and final
state s2.

a s3
• •

St

~ b

• s2

Figure 1: A typical state diagram of a Finite State Machine

The traditional FSM (Finite State Machine) does not fully serve our purposes. The
only output it produces is a signal that it has reached its final state. A reactive system,
however, may produce output at any time during execution. Hence, we allow our machine
to produce an output whenever it takes a transition. This is essentially the formalism of
the Mealy machine (HU79]. Statecharta is an extension of this formalism. · The lsraelian
company AdCAD1 has developed a programming environment, called STATEMATE, that uses
three graphical formalisros to describe a system. Activitycharts describe the decomposition
of the system into functional units and the interface between them. A Modulechart describes
the physical modules where these units are implemented and the communication channels
connecting them. The actual behaviour of a functional unit can be described by a Statechart.
In this paper we only discuss Statecharts, since this is is the most interesting formalism from
thesemantic point of view. Below we present the essential extensions that David Hare! made
to this formalism. For a more extensive introduetion to the language of Statecharts, we refer
the reader to (Har87].

4 Hierarchy and Structure

There is an important concept that is not covered by the traditional state diagram. This
is the concept of structure. As soon as the system to be described becomes only a little
bit complex, the picture gets messed up with arrows and states, because there is no way to
structure and summarise information. David Harel developed a clear and effective way to
express structure by means of hierarchical states.

We shall introduce these concepts with the help of an example of a reactive system that
is probably quite familiar to the reader. This is a television set with remote controL Input
events are provided by pressing the buttons on the remote control unit and the system reacts
by sending events and changing states.

E.g., there is a button on for activating the set and a button off for putting it back into
standby mode. This behaviour is represented by the following picture(fig. 2).

1 AdCAD is a subsidiary of i-Logix

12 C. Huizing & W.P. de Roever

LTANDBY

Figure 2:

4.1 Depth

The first concept that was added by Hare! is hierarchy or depth in states. This is achieved
by drawing states as boxes that can contain other boxes as substates. When the television is
in state ON, it can he either in normal braadcast mode or in videotext (or teletext) mode. In
the latter mode it shows special text pages that are sent along with the television program.
Switching between these two modes can he done with the button txt. The sub-machine
repcesenting the behaviour is drawn inside the state ON (see fig. 3). This construction can
be applied to any state and thus he nested.

As before, theevent off will take the system from ON to STANDBY, no matter the system
is in the substate NORMAL or VIDEOTXT. This provides a natura! way to express refinement.
One can also consider it as an interrupt without resume: any computation that is going on
inside ON is interrupted by an off event. In both views, it is important that the outer
transition has priority over the transitions inside. Although not present in earlier verslons
of Statecharts, this priority mecharusm is present in the current implementation. One also
encounters it in Esterel.

ON

Figure 3:

We call the state ON an OR-state, because being in ON means being in NORMAL or
VIDEOTXT. The arrow can be used to specify which sub-state should he entered when
the higher level state is entered.

Note that the state changes are in principle not observable, only generated events
are. In a fully detailed specification, the statea NORMAL and VIDEOTXT would contain
a lot of substatea that generate the observable events; at the very end these would be the
glowing of the phosphorus spots on the screen etc.

Everytbing you always wanted to know about Stateebacts 13

4.2 Orthogonality

One of the drawbacks of the conventional finite state machine as a means of specification is
the exponential blowup of the number of states because all possible combinations of states
from different components have to be drawn. With the use of orthogonal states this is can
be avoided. Two independent components can be put together in a so-called AND-state,
separated by a dotted line (see fig. 4). Being in an AND-state means being in all of its
immediate substates at the same time. In [DH88a] this is thoroughly investigated; it is proved
that Statecharta is exponentially more succinct than the traditional formalism of fini te state
machines, and cumulatively so in several aspects.

In the television set, the operations of sound and image are independent from each other.
E.g., switching from normal mode to videotext mode does not affect the sound, see fig. 4. So
we refine the state ON into two orthogonal substatea IMAGE and SOUND.

IMAGE

Figure 4:

For simplicity we have only two sound levels, MUTE and ON. Switching betweenthem is
done with the mute- and the sound- button. Of course, one could refine the state ON inside
SOUND into several substatea rnadelling the various levels of the sound.

4.3 Broadcast

In genera!, candidates for orthogonal components are not fully independent. Some mutual
influence, or communication, should be specified. As in the formalism of the Mealy machine,
one can associate an output to a transition. This output is a braadcast that can be sensed
anywhere in the system and can trigger other transitions.

When you change in the television example from one channel toanother, usually the sound
is turned off for one second, probably to avoid unwanted noises. To model this, we add two
orthogonal components CHANNELS and SM (for switching mute). When you press a channel
button on the remote control, the television switches to that channel and an internal event
sm is generated. That causes the generation of the event mute by a transition in the state
SM and the sound will he turned off. After one second the event sound is generated to turn
it on again. This is done by a special time-out event, written as tm(l). One can see this
is an abbreviation for a counter that is started when the state M UTE is entered; it counts
doek events, e.g. tenth of seconds; when the value 1 second is reached, the time-out event is
generated.

14 C. Huizing & W.P. de Roever

For simplicity, we drew only two channels in the stateehart (see fig. 5). For those who
worry about the duttering of the picture when more channels are drawn, we can say that
there is nice syntactic sugar available to keep specifications like this readable (see [Har87] and
[i-Logix /nc87]).

CHANNELS SM

2/sm

Figure 5:

Summarising, we may say with David Harel[Har88]:

Stateekarts = FSM + depth + orthogonality + broodcast

These enrichments yield a graphical formalism that is structured and easy to understand,
yet Jacks the exponential growth of statesof conventional finite state diagrams when concur
rency is described. In [DH88b], it is showed that Statecharts are double exponentionally more
succinct than state machines.

4.4 Compound events

We have seen that the label of a transition consists of two parts: a trigger that determines if
and when a transition will be taken and an action that is performed when the transition is
taken. This action is in general the generation of a set of events.

In the examples above, the trigger consisted of only one event. In genera!, this can be
any logica! proposition of events. E.g., a transition labelled -,a/\ bfe can betaken when bis
present (either as an input or generated by a transition in an orthogonal component) and at
the same time a is not present. These triggers are called compound events.

5 Time

5.1 Events and transitions

The elementary entity of observation of a reactive system is the event. The environment
sends events to the system to trigger computations, the system reacts to the environment by
sending, or generating in the Statecharts terminology, events. Events are also the means of
communication between parts of the system. Because we want to specify reactive systems at
a high level of abstraction and in a discrete fashion, events are discrete signals, occurring at
a point in time. Events have no duration: they either just occur at a particular moment or

Everything you always wanted to know about Stateebacts 15

they don't occur. Consequently, the program construct that generatea events should have no
duration either. Events are generated at transitions from one state to the other. Hence, these
transitions have this discrete, uninterruptable nature.

In [Lam83, Lam89] a specification method for concurrent systems is proposed. In this
framework, all transitions from state to state are instantaneous. Only residing in a state has
duration. When it cornea to refining the specification, the state description becomes more
detailed, but the transitions remain instantaneous as the "points of no return" in the compu
tation of the next state. This way of specifying turns out to be very useful and Statecharta has
also adopted it. In a state there is literally room for refinement, i.e. drawing substates. Tran
sitions remain the instantaneous change-over from one state to another, no matter whether
they are high or low in the hierarchy of states.

In a reactive system, there is another important reason for this choice. Because new
input may arrive at any moment, it should always be clear what the current state is. Since
transitions have no duration, there are no "transient" periods in between states and the
reaction on a possible input is always well-defined. If we have a discrete time domain, the
moment of time after the change succeeds immediately the moment before the change, there
are no points of time in between.

This is an important advantage when you only have to deal with discrete events and
discrete time. Of course, it is an abstraction from reality. When one looks deep enough into
the electronic implementation, one will encounter a level where discrete reasoning makes no
sense anymore. Statecharts, however, is meant to be a high level specification language that
is used on a level where this abstraction can be maintained and is appropriate.

5.2 How long is the reaction time of the system?

We have only answered one part of the question about the timing of transitions. We know
that they have no duration, but when do they take place, relative to the trigger? How long
does it take the system to compute a reaction?

In a (not timed) transformational system the answer is easy. Any positive amount of time
will do, because we are only interested in whether the output is produced (and what it is, of
course) but not in when it is produced. So as far as time is concerned, the only important
distinction is between fini te and infinite val u es (corresponding to output or no output).

For reactive systems, however, this is not enough. Reactions can interfere with future
inputs, so the moment they occur is important. Even if we don't have to quantify time
explicitly, weneed to know when an output occurs, relative to theevents in the input sequence
(see the Brock-Ackermann paradoxinsection 2). So we have todetermine what the reaction
time of the system is.

One approach is to specify for each situation a concrete amount of time. This is cumher
some and not in accordance to the level of abstraction we are aiming at, since it depends on
the implementation. It forces us to quantify time right from the beginning. At this stage one
is in most cases only interested in the relative order and the coincidence of events.

Another approach is fixing the reaction time to, say, one time unit (assume we have a
discrete time domain). This is simpler, but still not abstract, since specifications using this
principle are difficult to refine without changing their high level meaning.

In many applications, one uses several orthogonal components to describe parts of the
system that are conceptually independent. In the example of the television set, the sound can
be muted by pressing a button on the remote control (event mute) as wellas by generating the

16 C. Huizing & W.P. de Roever

internal event sm when there is a channel switch (see. fig. 5). The latter causes a transition
within the state SM and this generatea the event mute. If we would adopt the approach of
a fixed reaction time of 1 unit, muting by remote control would be faster than muting by
a channel switch. There is absolutely no inherent reason why this should be so. Of course,
this anomaly could be removed by shortening the reaction chain for automatic muting or
artificially lengthening the other one, but this is not the point. Even if this would yield a
"bet ter" or a "more natural" specification, the problem remains that one has to watch closely
the length of reaction chains and the moment in these chains that transitions are taken.

This is the typkal clumsiness of a low level programming language: alocal change of some
statements affects the behaviour of the whole program. Note that such a local change need
not be the correction of an error or something alike. It could wel! be the refinement of an
action. E.g., the transition labelled

question/ answer

one might refine to

question/ consult

and a database server with a transition labelled

consult/answer

So in the processof development, the (syntactic) lengthof a computation is due to change.
A fixed execution time for syntactic entities (transitions, statements, etc.) is therefore not
flexible enough.

This approach has another disadvantage. In practice, a fixed amount of reaction time will
be some kind of upperbound upon the execution times of different statements in different
situations in the actual implementation. So the implementation will have to be artificially
delayed in order tomeet its specification. In many cases, however, we want the reaction to
be as quick as possible. The delay of 1 time unit was only introduced for uniformity and the
implementation is slower than necessary.

A third approach is to leave things open: only say that execution of a reaction takes
some positive amount of time and see at a later stage (closer to the actual implementation)
how much time things did take. This is also awkward, however, since it introduces a lot of
non-determinism, which will make it difficult or even impossible to prove interesting things
at an early stage of the development.

From the discussion above, we see that we want the execution time associated to reactions,
or statements in genera!, to have the following three properties.

• It should be accurate, but not depending on the actual implementation.

• lt should be as short as possible, to avoid artificial delays.

• lt should be abstract in the sense that the timing behaviour must be orthogonal to the
functional behaviour.

We believe that the only choice that meets all these wishes is a zero reaction time. It is precise
and clearly as short as possible. lt is also abstract: changing the functionality of a behaviour,
e.g. extending the reaction chain or adding statements, doesnotaffect the timing behaviour,
since 0 + 0 = 0. This is essentially synchrony hypothesis of Gérard Berry ([BG88]).

Everything you always wanted to know about Stateebacts 17

Na.turally, the question a.rises whether this is implementa.ble. Literally spea.king, the
answer is no beca.use any real computation takes some time. in an actual implementation
it means: the reaction comes before the next input arrives, or, so to say, reactions are not
infinitely fast but at least fast enough. This is not unrealistic: in many cases the frequency
of external events is low relative to the response time of the system. And even in case there
may a.rise problems in the implementation, we believe that these should not interfere with
the workof the programroer/designer at the first stages of development .

a/b b/d a/\dfe

Figure 6:

In fig. 6 you see an example of the consequences of zero response time. When the system
is in states At, Bt and Ct, and event a occurs somewhere, a. chain reaction of tra.nsitions
takes place from left to right: t1 triggers t2 , t2 triggers t3. Nevertheless, all three tra.nsitions
are considered to occur at the same time, as are events a, b, d and e. That is the reason why
transition t3 will be taken: namely, event d occurs simultaneously with event a - even though
it is generated two transitions "later" in the chain - and hence the compound event a 1\ d is
true.

6 N egations and paradoxes

The idea of immediate reaction works fine as long as transitions are only triggered by prim
itive events or conjunctions a.nd disjunctions of primitive events. One needs , however, also
nega.tions of events in the trigger of a transition.

a

Figure 7:

E.g., to specify in fig. 7 that transition t1 has priority over transition t2 , one should change

18 C. Huizing & W.P. de Roever

the label of t2 into a A •b, meaning that the transition should only he taken when a occurs
and b does not occur at the same time (in that case t 1 should he taken). Now consider the
following example (see fig. 8).

Al

•a/b b/a

Figure 8: Causa! paradox

Suppose at some moment T, a and b are not generated outside this statechart. Then
transition t1 can he taken, generating the event b. This causes t2 to he taken, generating the
event a. So apparently, transition t1 should not he taken at all, since it is not enabled. But
then t2 can not he taken, because does not occur. Hence, a does not occur and t1 should he
taken. Etcetera ad infinitum.

One rnight wonder of what use these kind of programs are. In Esterel, for instance, all
programs in which the execution of a statement depends, directly or indirectly, on an event
that is generated as a result of the exectuion of that statement are considered erroneous.

There are, however, statecharta that use these kind of causa! loops in a very natura! way.
Fig. 9 shows a stateehart that specifies in a succinct way that the critica! sections X1 and
X 2 are occupied by at most one process at the time. The equivalent specification in Esterel
would he rejected by the compiler.

I
I
I
I

•a[.in(X2))/b 1

I
I

Xl I
I

A2

•b(•in(Xl))/a

Figure 9: Mutual exclusion

So we are still faced with the problem: what semantics should we give to statecharta as

Everytlting you always wanted to know about Stateeltarts 19

given in fig. 8?

6.1 The micro-step approach

One of the solutions that has been adopted by Statecharta is the introduetion of two levels of
time ([HPPSS87]).

The top level · counts time in macro-steps, these are the observa.ble time steps. Every
macro-step is divided in an arbitrary number of micro-steps. If one transition triggers another
one, they will be taken in subsequent micro-steps, but within the same macro-step. Thus, the
chain of causality inside one macro-step is modelled by a sequence of micro-steps. Although
simultaneons at the top level, i.e., on the level of macro-steps, a transition can never affect
transitions taken in previous micro-steps. So, in the example above, transition h and t2 are
taken in two subsequent micro-steps. Transition t2 cannot kill its trigger t1 , because the latter
took pla.Ce in an earlier micro-step.

This sequence of micro-steps has only operational meaning. In the semantic model
[HGdR88] only the relative order of events are recorded, by means of a totalpre-order for
every macro-step:

a < b means that the occurrence of a is not dependent on b in the current macro-step. Con
sequently, a may cause transitions that generate b, but not the other way round.

a < b and b < a means that a and b cannot cause each other in the current macro-step, e.g.,
a and b are generated by the same transition.

This leads to a compositional, fully abstract semantica for Statecharts, described in the cited
paper.

Compositional means that the semantica of a program is defined in terros of its syntactic
components. In this graphical formalism, syntactic decompositions are, a.o., AND- and OR
decomposition. Compositionality is an important property when it comes to developing and
verifying programs in a structured way, since it allows for specifying program parts, and hence
for programming with specifications, independently of their implementation.

A semantica is fully abstract with respect to some other semantica if it does not distinguish
more programs than is necessary for being compositional. The other semantica describes which
programs should be distinguished at the least , e.g., on basis of an operational definition. Two
programs that cannot be distinguished in any syntactic context must have the same semantica.
Hence, relative to a .particular notion of context, a fully abstract semantics is "best" since it
introduces the least amount of redundancy required for compositional reasoning.

6.2 Another approach

A problem of the approach above is that macro-steps are no Jonger globally consistent. By this
we mean that sometimes a transition is taken when the set of events that occur in the macro
step does not enable its trigger. In the example above (fig. 8) , transition t 1 is taken even
though event a occurs in the macro-step. The reason that such a transition can nevertheless
be taken is that it was enabled somewhere half way the chain of micro-steps, but it triggered
other transitions and these generated events that disabled it .

In the paper [HG89] we study this problem of global consistency and formulate several
desirabie properties of a language for reactive systems. The most important of these are

20 C. Huizing & W .P. de Roever

afb b/a

A2 B2

Figure 10:

modularity, causality and responsiveness. We ca.ll a semantica modular if the interaction of
modules (orthogona.l components) can be understood in terros of macro-steps; it implies globa.l
consistency. Every transition that is taken is enabled by the full set of events occurring at the
current macro-step. Causality says that the behaviour at every macro-step ca.n be decomposed
into a sequence of transitions that form a causa.l cha.in; no transitions are "triggering each
other". In fig. 10 you see an example of this: in some versions of the semantics, both
transitions will be taken, even if a and b don't occur in the environment. Responsiveness
is in essence the property we discussed in section 5.2, na.mely that reactions are simultaneons
with their triggering actions.

The condusion of the paper is that these three properties can not be combined into one
semantics.

In Esterel ([BC85],[BG88],[Gon88]) this problem is circumvented by disa.llowing programs
that would violate causality. The compiler detects these programs and refuses to compile
them. Since this is a static check, some programs in which the paradox can never arise, e.g.,
because of specific va.lues of variables, are nevertheless rejected.

In the paper [HG89] we follow another approach. We propose a two-level semantics in
which the interaction between modules is different from the interaction of components within
a module. Within a module, causality is achieved, thus providing an operationa.l way of
rea.soning on a loca.l sca.le; between modules modularity holds, thus providing a simple and
clean interface that does not presuppose a deta.iled knowledge of the inside mechanics of the
module.

6.3 Current Statecharts

Regrettably, the current implementation ha.s left the micro-step approach and treats time in
a more primitive fa.shion. There is never any synchrony between actions and reactions and
hence the causa.l problems disappear. An event generated by a transition is only ava.ilable
during the next (micro-)step. Hence, the behaviour of a program is very dependent on the
length of reaction cha.ins. Time proceeds independently from the steps in the computation,
but there is no consistency is enforced in what happens during one time step (in contrary to
the approach of Esterel).

Everything you always wanted to know about Statecharts 21

7 Condusion

We introduced the notion of reactive systems and explained why they are different from the
more conventional transformational systems. We introduced the graphical language State
eharts as a description formalism for reactive systems. For the first time the rationale behind
the design decisions of Statecharta is explained in relation to the specific nature of reactive
systems. In order to he able to react at any moment at an incoming input, transitions are in
stantaneous, whereas states have duration. To avoid accumulation of time in reaction chains,
the reaction time should he zero.

Furthermore, we showed a semantic problem that arises when reactions take no time and
we pointed out various solutions to this problem. These solutions were not discussed in detail;
the reader is referred to the literature.

Finally, we want to answer the question of one of our reviewers who is afraid that "the
beautiful, simple and elegant ideas of Statecharta perish in a muddle of 'transitions', 'events',
'actions', (...)etc. There must he a basis of, say, three basic notions and four clear, unique
relations among them. But when trying to derive this, I quickly came into a confusion (...)."
Although he has a point here, we can say that some work on this has been done in[HG89] and
especially in [Mar90], where an impravement on the notion of refinement has been obtained.

Acknowledgement

This paper arose out of work for the ESPRIT project DESCARTES (937) on Statecharts.
In this project we collaborated intensely with Amir Pnueli and colleagues from AdCAD.
Obviously, our paper owes a lot totheir many presentations and their views u pon Statecharts.
We thank Iko Keesmaat for his help in referencing Petri nets and Wolfgang Reisig for his
thorough reading and his important comments.

References

[BA81]

[BC85]

[BG88]

[DH88a]

[DH88b]

J.D. Broek and W.B. Ackerman. Scenarios: a model of non-deterministic
computation. In Diaz and Ramos, editors, Formalization of Programming
Concepts, LNCS 107, pages 252-259. Springer-Verlag, 1981.

G. Berry and L. Cosserat. The synchronous programming language esterel
and its mathematica! semantics. In Proc. CMU Seminar on Concurrency,
LNCS 197, pages 389-449, 1985.

G. Berry and G. Gonthier. The esterel synchronous programming lan
guage: Design, semantica, implementation. Technica! report, Ecole Nationale
Supérieure des Mines de Paris, 1988. Technica! Report.

D. Drusinsky and D. Harel. On the power of cooperative concurrency. In F.A.
Vogt, editor, Proc. Concurrency '88, LNCS 335, pages 389-449. Springer
Verlag, 1988.

D. Drusinsky and D. Harel. On the power of cooperative concurrency. In
Proceedings of Concurrency 88, pages 74-103. Springer-Verlag, 1988.

22

[Gon88]

[Har87]

[Har88)

[HG89)

(HGdR88)

[HP85)

[HPPSS87]

[HU79]

C. Huizing & W.P. de Roever

G. Gonthier. Sémantiques et modèles d'exécution des langages réactifs syn
chrones; Application à ESTEREL. PhD thesis, University of Orsay, 1988.

D. Hare!. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, 1987.

D. Hare!. On visual formalisms. Communications of the ACM, 31:514- 530,
1988.

C. Huizing and R. Gerth . On the semantics of reactive systems. Deliverable
in ESPRIT 3096 usPEC", Eindhoven University of Technology, 1989.

C. Huizing, R. Gerth, and W.P. de Roever. Modelling statecharts behaviour
in a fully abstract way. In Proc. 13th GAAP, LNCS 299, pages 271-294, 1988.

D. Hare! and A. Pnueli. On the development of reactive systems. In K.R.
Apt , editor, Logies and Modelsof Concurrent Systems, pages 477-498. NATO,
ASI-13, Springer-Verlag, 1985.

D. Hare!, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the forma!
semantics of Statecharts. In Proceedings Symposium on Logic in Computer
Science, pages 54-64, 1987.

J .E. Hopcroft and J.D. Ullman. Introduetion to automata theory, languages
and computation. Addison-Wesley, Reading, 1979.

[i-Logix lnc87] i-Logix lnc. The Languages of STATEMATE, 1987. in Documentation for the
STATEMATE System.

[JK89)

[Lam83)

[Lam89)

[Mar90)

B. Jonsson and J.N. Kok. Comparing two fully abstract dataflow models.
In Parallel Architectures and Languages Europe, pages 217-234. LNCS 366,
Springer-Verlag, 1989.

L. Lamport . Specifying concurrent program modules. ACM TOP LAS, 5:190-
222, 1983.

L. Lamport . A simple approach to specifying concurrent systems. Communi
cations of the ACM, 32(1):32-45, January 1989.

F. Maraninchi. Statecharts: sémantique et application à la spécification de
systèmes. PhD thesis, INP Grenoble, 1990.

Chapter 2

Full abstraction for a reai-time
denotational semantics for an
OCCAM-like language

23

Full Abstraction of a
Reai-Time Denotational Semantics for an

OCCAM-like Language1

C. Huizing'l
R. Gerth

W.P. de &ever

Department of Mathernaties and Computing Science,
Eindhoven University of Technology,

P.O. Box 513, 5600MB Eindhoven, The Netherlands,
October 1986

ABSTRACT

We present a fully abstract semantica for reai-time distributed computing of the
Ada and OCCAM kind in a denotational style. This semantica turns termination,
communication along channels, and the time communication takes place, into
observables. Yet it is the coarsest semantica to do so which is syntax-directed
(this is known as full abstraction). It ·extends the linear history semantica for
CSP of Francez, Lehman and Pnueli. Our execution model is based on maximizing
concurrent activity as opposed to interleaving (in which only one action occurs at
the time and arbitrary delays are incurred between actions). It is a variant of the
maximal parallelism model of Salwicki and Müldner.

1. Introd uction

Although reai-time embedded systems are surrounding us in a growing number of appli
cations, little reileetion has been given to the theoretica! foundations of their design. Here,
one encounters probieros of

• language design: what are the right primitives for prescrihing real- time computing;

• semantica: what computational roodels underly reai-time computing:

• syntax-directed specification: how does one express the behaviour of reai-time systems,
so as to allow modular design;

• verification: how does one prove the correctness of reai-time programs.

Reai-time languages include Ada[A83], OCCAM [Occ84], Chili [BW82), ESTEREL [BC85],
LUSTRE [BCH85] and Statelan [Har84]. We are interested in reai-time embedded systems,
in which the system and the environment interact, yet are autonomous. Therefore, languages
such asEstereland LUSTRE, that expressevent driven and externally clocked systems, do not
serve our purposes. Statelan has a highly developed expressive power as to concurrency and

1Tbis paper is basedon C. Huizing's M.Sc. Thesis [HGR85)
2T be autbors are working in and partially supported by Esprit Project 937; Debugging and Specification

of Real-Time Embedded Systems (DESCARTES).

26 C. Huizing, R. Gerth, W.P. de Roever

real-time. However, this very fact causes such probieros when defining its semantica that no
undisputed results on the meaning of the language exists. Finally,_ studies of Milner's [Mil83]
and ourselves [KSRGA86] seem to indicate that on the level of model bullding synchronous
communication (as in Ada and OCCAM) is more basic than asynchronous communication
(as in Chili). This leaves us Ada and OCCAM to concentrate on.

Preceding studies [KVR83, KR85] on specification and verification of real- time systems stress
the urgent need for a clear understanding of the underlying model.
The primary aim of this paper is to find the right model for real-time, synchronously commu
nicating distributed systems, and to prove that it is the right one, indeed, within that context.

We cannot adopt the usual model based on arbitrary interleaving in order to treat con
currency, because this model allows arbitrary delays between any two actions of a process to
occur. For reai-time embedded systems, however, where time constraints are the rule, one at
least should have an a priori bound on such delays, since otherwise reai-time constraints can
never be provably met. Our model, basedon the notion of maximal parallelism [SM81], takes
the view that no unnecessary delays are incurred at any time.

Since our ultimate aim is specifying and verifying the timing behaviour of a distributed sys
tem from the timing behaviours of its components, the specification language should refer to
a global notion of time (cf. the analysis of local doek synchronization algorithms in [HMM85]).

So, our semantic model is based on maximizing activity and a global notion of time. On
basis of this characterization, we define a denotational, so-called linear history, semantica
along the lines of [FLP84]. In an independent way, we define what should be observable
about the behaviour of a program. In principle, the semantica should record exactly this
observable behaviour [OH86] in order to be syntax directed. Consequently, we search for
the minimal amount of information additional to the observables that makes the semantica
syntax-directed. In literature, such a semantica is known as fully abstract [Mil83, HP79].

In genera!, fully abstract, (hence) syntax directed, semantica derive their interest from the
fact that they determine exactly the amount of information which must be expressed in a
specification language for it to be syntax directed. That is, for allowing the specification of
a composite construct to he expressed in terros of the specification of its components - the
very basis of modular design.

The semantica of [KSRG86], our starting point, turns out to he not fully abstract. We
modify this model and prove that a fully abstract model is obtained indeed. In compliance
with the usual definition of full abstraction, we show that any two programs with a different
semantica admit a different observable behaviour when embedded in an appropriate context
and vice versa.

Basically, the semantics of a program is the set of all histories that can be called forth
by an environment. Technically, these histories record the observable information. In our
case, the latter expresses that the process is waiting for another process and is required to
enforce maximal activity (namely, if two processes are waiting for each other, this behaviour
is not maximal and hence should be ruled out). Therefore, the history of the denotation of

Full Abstraction lor a.n OCCAM-like La.ngua.ge 27

the program P that distinguishes P from a program Q need not he observably different from
the histories in the denotation of Q.

We construct a context for these programs that exploits these non-observa.ble differences.
Whenever the history signa.ls waiting, the context should not be waiting and vice versa. In
that way, the combined behaviour of the program in this context is ma.xima.l, because there is
no unnecessary waiting. We can construct the context in such a way that (1) this behaviour
is observable and (2) any history with the same observa.ble behaviour but with a different
waiting behaviour will not be maxima.! in this context (because there will a.lways be some
unnecessary waiting). Hence, the other program cannot display this combined behaviour in
the given context, resulting in the required observable difference.

A number of roodels are known from literature (RR86, Bro83, BM83] and our own work
(KSRGA86]. For classica.! tempora.! logic, which treats time qualitatively, finally fully ab
stract roodels have been obtained (BKP86]; however, quantitative treatments of time based
on tempora.! logic, such as needed for rea.l-time (BH81, HS86, KR85, Mos83], have not yet
rea.ched that level of sophistication. Timed PetriNets (BM83] display impressive power, but
do not support modular design as enforced by Ada or OCCAM. (Bro83] gives a relevant and
early study on rea.l-time, in the context of functiona.l languages. The aims of (RR86] are
ciosest to ours, a.lthough their approach is based on some different decisions concerning the
observability of programs. ·

The paper is structured as follows. In Section 2 we give the synta.x of our programrning
language and its (intuitive) semantica. Section 3 presents our execution modeland section 4
our notion of observa.ble behaviour. A denotationa.l semantica that is not fully abstract, yet is
intuitively appealing, is given in Section 5. In Section 6 we give an operationa.l semantica that
defines the observa.ble behaviour of a program and relate it to the denotationa.l semantica.
Section 7 is the heart of this paper. Herein wedefine and motivate full abstraction, modify the
denotationa.l semantica and prove that it is fully abstract. Section 8 draws some conclusions
and statea open problems. In the appendix the synta.x of our language and it semantica are
given.

2. The Language DNP-R

In this section the synta.x and informa.l semantica of our OCCAM-like DNP-R are defined.
Denotationa.l and operationa.l semantica of this language are given in Sections 5 and 6.

2.1. Syntax

Definition 1.

• Var is thesetof program variables, rangedover by x.

• Chan is thesetof channels, rangedover by a; A Ç Chan

28 C. Huizing, R. Gerth, W.P. de Roever

• e denotes some expression, b; some boolean expression, and n some integer-valued ex
pression.

• The context-free syntax of DNP-R is given by the following BNF-grammar:
S .. - x:= eI gISt; St I IOC I *IOC I StiiAS2 I [S]A
g ::= a!e I a?x wait n I-
IOC ::= [O:'=t b;;g;'-+ S;] 0

Next we impose some context-sensitive constraints. These are needed to ensure that (I)
channels are unidirectional, connecting at most two processes and (2) no variabie is shared
between two processes. For this we need some more notation.

Definition 2. For any S, generated by the above grammar

• ichan{ S) denotes the set of internal channels of S, which is defined as the union of
all sets A occurring in any substatement SdiAS2 of S.

• chin(S) denotes the (external) input-channels of S, defined as thesetof all channels a
occurring in an input command a? x somewhere inside S and not contained in ichan(S).

• chout(S) denotes the (external) output-channels of St, defined likewise.

• hid(S) denotes the hidden-channels of S, defined as the union of all sets A that occur
in a construct [St]A somewhere inside S.

• var(S) denotes the write-variables of S, defined as thesetof all variables that occur
intheleft-hand side of an assignment or an input command somewhere in S . 0

Definition 3. Stat, thesetof all DNP-R statements, is the set of statements generated
by the grammar in Definition 1, satisfying:

(i) if SE Stat, then chin(S) n chout(S) = 0

(ii) if StiiAS2 E Stat, then St E Stat and S2 E Stat and

(ii.l) var(St) n var(S2) = 0
(ii.2) (chin(St) n chout(S2)) U (chout(St) n chin(S2)) Ç A

(ii.3) chin(St) n chin(S2) = chout(S1) n chout(S2) = 0

(iii) if [SJA E Stat, then SE Stat and A = ichan(S)

(iv) if S E Stat and StiiAS2 is a substatement of S, then none of the channels in A occur
anywhere outside StiiAS2 inS.

0

Examples. The following statements are excluded by Definition 3.

ad (i). a?x; a!O
A process cannot send values to itself.

Full Abstraction (or an OCCAM-like Language 29

ad (ü.l). x:= OIJex := 1
There are no shared variables.

ad (ü.2). a?xJI{I3}a!O
The index set should at least contain a.

ad (ü.3). a?xJJAa?y and a!111Aa!2
A channel connects exactly two processes: one sender and one receiver.

ad (üi). [a?xll{a}a!O]e
The index set of the hiding operator should be {a}.

ad (iv). [a?xll{a}a!l]{a}i [a?yli{a}a!l]{a}
Although hidden, the name a may be used only for one channel. Otherwise, we cannot
impose the global maximality constraints in the definition of the operational semantics
(see Chapter 6). As we have no procedures, this restrietion raises no problems. For
the denotational semantics, which we will prove fully abstract, this restrietion can be
dropped.

2.2. Informal semantica

The intuitive meaning of sequentia! composition (St; S2) should be clear.

The output command a!e sends the value of expression d along channel 'a. The input
command receives a value on channel a and stores it in the variabie x. An input action
has to synchronize with an output action and vice versa. Consequently, execution of such an
action may involve waiting until a communication partner becomes available. Our execution
model willensure that such waiting is minimized. In the parallel composition Sti!AS2 the
components St and S2 are executed concurrently and synchronously. A is a set containing
the joint channels of St and S2 and explicitly gives the communications that have to be syn
chronized.
Hiding [SJA of statement S has no effect on its execution but changes what can be observed
about such an execution: communications along channels in A are internalized and cannot
be observed anymore.

The iterative command ûOC stands for repeated execution of the I/0 guarded condi
tional IOC (see below) while at least one of the boolean expressions b; yields true.

The empty statement - is like a skip action but takes zero time. It allows us to have
pure boolean guards and empty branches in a guarded conditional.

The Input/Output guarded Conditional [D~t b;; g; -+ S;] allows waiting for a set
of I/0-commands, na.mely, the set of all commands g; for which the boolean expression b;
yields true. If the guard g; is empty (-), the branch S; can be executed if b; yields true, If
none of the booleans yields true, the conditional does not fail, but is skipped. There is no
priority of local actions over communications or vice versa.
A conditional ma.y also contain wait-guards, b;; wait n . Such a wait-guard is passed as soon

30 C. Huizing, R. Gerth, W.P. de Roever

as the associated walting time, n, bas elapsed (provided b; evaluates to true). As indicated
earlier, such walt-guards allow walting for I/0-actions to time out. Local actions and com
munications have priority over passing walt-guards.

3. Reai-time execution model

As stated in the introduction, our semantica is based on the maximal parallellam model of
(SM81] . This model is intended to express the behaviour of a system in which every concur
rent process runs on its own dedicated processor. Hence, no unnecessary delays are incurred.
More specifically, the model suspends process execution only in case no local action is pos
sibie and no partner is avallable for communication. As soon as an action becomes possible,
execution must proceed.

To illustrate the effect of this model of execution, consider the program
P;a!3ll{a}[a?:r-> -DfJ?:r-> -JII{p}Q;/3!4 ·

Here P and Q denote two terminating programs, not contalning I/0-actions. Two scenarios
are possible:

1. The value 3 is sent along a and the third component gets stuck (deadlock).

2. The value 4 is sent along {3 and the first component gets stuck.

In roodels that allow finite but unbounded delay of actions, such as interleaving models, both
scenarios are always possible. In our model, however, both scenarios are only possible if P
and Q terminate at the same time. If P terminatea before Q, the communication on a will
be performed immediately and, hence, the communication on {3 will not occur and vice versa
if Q terminatea before P. Consequently, in our execution model the choice of communication
is highly dependent on the timing behaviour of the components.
To obtaln a manageable and analyzable semantica, the following idealizations are imposed.
Time proceeds in discrete steps. Every elementary action (assignment, communication, pass
ing a guard) takes one time step3 . In a parallel statement, processes start executing simulta
neously.

4. Observable behaviour

The decision as to what should he observable about a program and what not, is closely
connected to the purpose of the language. As onr language should be able to describe reai
time reactive systems (Pnu85), which are continuously interacting with the environment and

3 We take the view lhal evalualing an expression takes time. Hence, wait n, even if n evaluales to 0, takes
1 time unit.

Full Abstraction for an OCCAM-like Language 31

often non-terminating, -these interactions should be observable. Therefore, the observable
behaviour of a program includes the sequences of communications and the time at which they
occur. It also includes the program state at start and, in case the program terminates, the
final state. Deadlock is deliberately not an observable entity. Nevertheless, we can observe in
definite suspension of execution, as we can observe the progressof time. Consequently, we can
distinguish deadlocked programs from normally terminated ones, but we cannot distinguish
them from (internally) divergent programs. This contrasta with (RR86] in which deadlock
and non-termination observably differ.

With any programPand starting state u we associate its set of possible behaviours: O[P]u.
This is formalized by the operational semantica in Section 6. A behaviour part is a pair
< r,h >, where T is the end state if P terminatea - otherwise T = oo - and h is a, pos
sibly infinite, sequence (also called history) of time records, each time record being a set of
communication records; if the value v was sent along channel a at the t-th time step, then
the communication record av is a memher of the t-th element of h. Hence, the length of h
corresponds to the time of terrnination. If several communications occur simultaneously, then
this set contains more then one record. The empty set in a sequence implies that one time
step passed without anything observable happening. This occurs when every active process
was either waiting or doing an internal action (assignment, passing a guard).

Deflnition 4: we adopt the following notation.

• >. stands for the empty sequence

• t" represents the n-fold repetition of time record t

• h1 h2 represents the concatenation of the sequences h1 and h2

• I hl denotes the length of the sequence h

• h[i] represents the i-th element of the sequence h; if i > lhl, we define h[iJ = 0

• htA denotes the restrietion of sequence h to thesetof channels A: (htA)[i] ={avE
h(i]la E A}

• h1 < h ("h1 is a. prefix of h") iff there exists a. sequence h2 such tha.t h1h2 = h.

0

5. Denotational Semantica

Our denotational semantica, V, is a linea.r history sema.ntics along the lines of [FLP84) . The
domain consist s of non-empty, prefix-closed sets of pairs; ea.ch pair consisting of a. state or
bottorn (..L) and a. fini te history teading to that state. A bottorn-state indica.tes that the pair
corresponds to an incomplete computation. Infinite behaviours are modeled by their sets of
finite approximations (and not by < oo,h >as in the operational semantics).
To give sense to the notion of approximation, we turn our domain into a complete partial
order (cpo) with set inclusion as the ordering relation and < .l,À > as least element . All

32 C. Huizing, R. Gerth, W.P. de Roever

denotations, V , will be prefix-closed. Thls means that for any < u, h >E V and h' < h we
have < .L, h > E V. Thls cpo structure also allows us to define the semantica of the iterative
construct as a least fixed point. For more information on epos and their use in denotational
semantics, see [deB80] . In ordertoenforce maximal progress, the denotational semantics has •
to record whether processes are suspended and on which communications they are suspended.
Thls is done by adding so-called "readies"4 to the sets in the histories. The presence of a
ready Ra in a history has as meaning: some process was waiting during this time for a com
munication along channel a. E.g., the denotation of the program P = a!O includes the pairs
< u, ao > , < u, Raao > , <u, RaRaao >, ... , whereas the denotation of Q = wait 1; a?x
includes < u',0a" > , < u',0R0 a" > , < u,0RaRaav >, ... for any value v, each pair
signifying a Jonger period of waiting (u is the starting state, u' is defined by u'(x) = v and
u'(y) = u(y) for y "/.x).
These histories reflect the idea that the semantics must give the meaning of a statement in
every environment, since the actual environment is not known. Now, if we execute Pand Q
in parallel, due to the maximality in our model, communlcation will happen at the earllest
possible time, hence, at time step 2. So, we have to discard all histories that express a Jonger
period of waiting. Thus, in the parallel merge of two denotations we only combine consistent
histories. I.e., we combine only those histories that

(i) have no common readies at the same time. So, e.g., RaR aao and 0R aao are not
consistent. Thus maximality is enforced.

(ii) agree on the communications on the joint channels. So, e.g., a0 and 0a0 or R01a 0 and
0a1 are not consistent. Thus synchronlzation of communications is expressed.
To be more specific, the semantics of the parallel composition is as follows:

V[PtiiAP2)u =Cl{ < Utllau2,hti1Ah2 >I
< u;, h; >E V[P;)u ,
maximal(ht, h2), synchronous(ht, h2, A),
c01nparable(u1 ,ht,u2,h2)}

This definition uses the following operators.

C I is the dosure function that extends a set to the smallest prefix-closed set that contains it.
Utllau2 is a strict function defined by

(utllau2)(x) d;j u2(x) if u2(x) ::/=u(x),
{

u1 (x) if u1(x) ::/= u(x)

u(x) otherwise

(hence, udla .L = .L llaC72 =.L).
This definition is unambiguous, because Pt and P2 cannot both change x (there are no shared
variables).

hti1Ah2 is defined by

(hd1Ah2)[j) d;j (ht[j] U h2[j])\{R01Ia E A}

•This terminology comes from the ready-set semantics for TCSP [OH86]. There, a ready also signifies the
wi!lingness of a process to communicate in the future. No such willingness is implied bere.

Full Abstraction for an OCCAM-like Language 33

(remember the convention tha.t h(j] = 0 if j > lhl).
This is the pointwise union, except tha.t readies on channels in A are not preserved; they are
not needed anymore.

maximal(ht. h2) ~ Vj, a :Ra f. ht (j] n h2(j]
embodles the maximality eenstraint of (i) above,

synchronous(h1,h2,A) ~ Vj,a,v: a E A-+ (avE ht(j]+-+ avE h2(j])
expresses synchrony as in (ü) above,

comparable(ut, ht, u2, h2) ~ Vu E {1, 2} :u; =.i-+ lh3-il :5 lh;l
guarantees that no incomplete history will be merged with a Jonger one. 0

To understand the necessity of this constraint, consider the program P = a!OII{a}a?x

Then,e.g., <l..,RaRa >E V(a?x)u

and <.l,x >E V[a!O]u
Without the comparability check we would have
<.i,00 >=<.i llu .i,R"R"II{o},\ >E V[a?xll{o}a!O]u
This would imply that there exists a possible computation of P that takes at least two time
steps. The intended meaning of P is, however, that it should terminate immediately after
one time step, during which the successful communication took place.

These three constraints together will be referred to as consistency. The full definition of
V can be found in appendix A.

6. Operational Semantics

We give an operational semantics 0, by defining a syntax-directed transition system along the
lines of Plotkin [Plo83] and by imposing, in a second stage, a notion of maximizing progress
globally on this system. Thus, maximality is enforced by local constraints during parallel
composition in the denotational semantics, and is enforced in the operational semantics by
globally constraining the possible behaviours of a program. Hence, CJ captures - indeed de
fines - exactly the observable behaviour in a way that is independent from the denotational
semantics.

6.1. The Labelled Transition System
As expected, the operational semantics is based on a labelled transition relation that trans
forms configurations consisting of pairs of statements and states. We write

(P, u) .!::. (P', u')

if the statement P in state u can be transformed into statement P' in state u' in one time
step. The label L consists of two components: Lc, the set of communications that take place
during this step and LN, a natura! number indicating the number of local actions that are
performed during the step. The second component is needed to define in the second stage
the maximality of steps.

34 C. Huizing, R. Gerth, W.P. de Roever

In the appendix this transition relation is inductively defined by a set of axioms and rules.
Here, we discuss some representative cases:

assignment:
(1,0)

(x:=e,a)-+ (-,a{a(e)/x})
The statement x := e terminates in one step; this is indicated by the empty statement on the
right-hand side. The state is updated accordingly. The empty set in the label denotes that
no communications take place and the number 1 indicates that one local action is performed.

output command:

(
I) (O,O<u(eJ) (-) a .e, a ---+ '0'

(') (0,0) (') a.e,a -+ a.e,a
In the first transition the communication is performed and hence the statement terminates.
In the second transition the process waits for a communication. This waiting is not considered
to be alocal action.
As in Plotkin's operational semantics for CSP [Plo83], the first axiom involves assumptions
about the availability of communication partners. These assumptions are validated in the
parallel-rule. Unlike Plotkin's semantics, the second axiom involves assumptions about the
absence of communication partners. Such assumptions are validated at the second stage,
when maximality is imposed.

parallel statement:
Ljr6 =L~r6 ,(P~o<>) ~ (P{,<>;),(P"u) ~ (P~,<>~)

(PtiiAhu ~ (P{IIAP;,u')

where L = (Lî + L2, Li U L~)

{
a~(x) ifxEvar(Pl)

a'is defined by a'(x) = a~(x) if x E var(P2)
. a' otherwise

The condition LirA = L~ rA guarantees that all communications along channels in A are
synchronized.
Note that this rule enforces that in both components time proceeds. This is in accordance
with our reai-time model.

6.2. Imposing Maximality
The above transition system generates non-maximal computation steps, too. For instance,
the program

P = a?xll{<>}a!3

admits both the transitions

a)

b)

)
O,{O<J} { } (P,a -+ (-ll{a)-,0' 3/x) and
(O,u}

(P,a) -+ (P,a).
In the latter transition both a?x and a!x are unnecessary idling.

Full Abstraction for an OCCAM-like Language 35

We shall rule out such a transition by imposing an order on transition labels, and by requir
ing in Definition 7 of our operational semantica below that all transitions are maximal with
respect to this order.

Deflnition 5.
Let I he a set of channels, ~I is an order relation on labels, defined as follows:

0

where Ï stands for the complement of I.

Deflnition 6 .
A transition (P, a) .!:. (Q, r) is maximal iff for every L', Q', r' with (P, a) .S (Q', r') and
L ~I L' we have L = L', where I= ichan(P).
Now we see that transition b) in the above example is not ma.ximal, because (0, 0) ~{<>} (0, { a3}).
This leads to the operational semantica 0 (a full definition can he found in appendix B).

Deflnition 7.
Let Po he a DNP-R program and uo a state.
O[Po]uo =
{< u,h > I3P; ... ,u;-,Li : 'v'l ~i~ !hl:

},

(P;-t,<Y;_t) .S (P;,u;) is maximal,h[i] = Lff vis(P;-t)
A(lhl < oo -+ u = ulhl 1\ terminated (l'ihl)
/\(I hl = 00 -+ (1 = 00)

where vis(P) = Chan\hid(P), the visible channels of Pand terminated (P) is a predicate
that is true if P consists only of empty statements, combined with !IA,; or [·]A·
The operational and denotational semantics, 0 and V , are related by the following.

Theorem 1. 0 = f3 o V, where f3 is an abstraction function . 0

Here, f3 deletes all non-observable information, viz. readies, and smoothes away the differences
between the two domains; e.g., infinite chains of finite histories are replaced by their limits.
The tedious proof of this theorem can he found in appendix B. It is non-trivia!, as it proves
the equivalente of two completely different ways of expressing ma.ximality.

7. A Fully Abstract Semantics

Define a context C as a program with several "holes" in it; let C(P) denote the program
obtained by replacing each of these holes by the program text P.

Definition 8: a semantica V is fully abstract w.r.t . a semantica 0 iff for all programs
Pand Q : V[P] = V[Q] <=> \;/ contexts C : [C(P)] = O[C(Q)]. 0

36 C. Huizing, R. Gerth, W.P. de Roever

This definition can be found in the literature [HP79]. lts motivation lies in the following

(Folk?) Theorem 2: 1) is fully abstract w.r.t. 0 iff

(i) 1) is syntax-directed,

(ii) 1) is the coarsest semantics that distinguishes at least as much as 0 does. 0

This notion of full abstraction is too restrictive for our purposes, as it assumes that the
syntaxis context-free. In view of the fact that DNP-R has a context-sensitive syntax, we use
the following modification.

Definition 9. P, Q E Stat are syntactically comparable iff for any context C holds

C(P)EStat {::> C(Q)EStat

In effect, this boils down to P and Q having the same sets chin, chout, ichan, and var.
We redefine full abstraction as follows:

0

Definition 10. A semantics S is fully abstract w.r.t. a semantics 0 iff for all syntac
tically comparoble programs P and Q:
D(P] == D[Q] {::> V contexts C : O[C(P)] = O(C(Q)]. o
Relative to this modilied notion, 1) is not fully abstract with respect to 0 either. We can
show this with the aid of an example - the usual example that shows that the readiness
semantics of CSP [Plo83) is not abstract. The following programs

P = [true--+ a!Ootrue--+ ,B!ODtrue--+ [a!O--+ -0,6!0--+ -))

Q == (true --+ a!OOtrue --+ ,6!0)

have different semantics and yet cannot be distinguished by any context.
The solution to this problem is taking the convex-elosure of program denotations:
if < u,h1Rh2 >, < u,h1R2h2 >E 1) then all pairs< u,h1Rh2 > with R1 Ç R Ç R1 U R2 are
added to V . ·
Although this turns the readiness semantics into a fully abstract one, thls does not suffice in
our case. Consider for instanee the two programs

P = (true --+ wait 1; a!OOtrue(-+ a!O--+ -Dtrue--+ -JO true --+ a!O]

Q == [true --+ wait l;a!OOtrue[-+ a!O--+ -Otrue--+ -).

These two programs have different denotations, since e.g., the pairs < u, 0Raao >,
< u,0RaRaao >, ... occur in the denotation of P, but do not occur in the denotation of
Q (the first branch does not generate an Ra in the secend ·time step, neither does the in
ner guarded statement). However, there is no context C that can separate these programs:
O(C(P)] = O[C(Q)] for any context C. Before we explain thls, we introduce a useful nota
tien.

Full Abstraction for an OCCAM-like Language 37

Defl.nition 11. A history h' is a ready-extension of a history h, notation h' ÇR h, off
lh'l = lhl and for any i~ lhl:

h'(i) \ h(i] ~ Readies,

where Readies = {Ra.lo: E Chan}. 0

Note that a history which is consistent with h' is also consistent with h, if h' 2:R h.
A ready can only he observed indirectly as a result of its function in the parallel merge of
denotations; it prevents the history in which it occurs from merging with any other history
with a ready on the same channel at the sametime instant. Now, observe that above, every
distinguishing history in the denotation of P is, in fact, a ready-extension of one in the de
notation of Q.

In order to make the semantics fully abstract, it indeed suffices to add all histories that
are ready-extensions of histories in the original denotations.

Defl.nition 12. Va[P)u = { < 0'
1

, h > l3h' :< u', h' >E V[P]u and h 2R h'P

Theorem 3: Va is fully abstract with respect to 0:

Va[P] = Va[Q] {:> VC CJ[C(P)] = O[C(Q)] .

We prove this theorem by two lemmas.

Lemma 1. Va[P] = v .. [Q] '* VC: CJ[C(P)] = O[C(Q))

Lemma 2. V .. (P]-:/; V .. [Q] '* 3C: CJ[C(P)]-:/; CJ[C(Q)]

From these two lemmas, we immediately infer Theorem 2.
Proof of Lemma 1: Suppose V .. [P]u = v .. [Q]u and let C he given.

0

0

0

0

Because Va is defined using induction on the structure of DNP-R, we have Va[C(P)]u =
Va[C(Q)!u and hence ,B(Va[C(P)]u) = ,B(Va[C(Q)]u).
From 0 = ,8 o V we can easily infer 0 = ,8 o Va and hence
O[C(P)]u = O[C(Q)]u. o

Lemma 2 is the more complicated and interesting one. We first give a sketch of the proof.

Assume < r, k >E Va[P]u\Va[Q]u. On the basis of this history k, we shall construct
a program L that produces the "ready-complement" l of k (and some state v). E.g., if
k = {Ra., R{3}0Ra.Rf3, and the only channels occurring in P and Q are o: and ,8, then
I = 0{Ra.,Rf3}R{3Ra. (This will he our running example in what follows .) If we see kas
a key, then I is a loek that fits as tightly as possible around the key (see figure).

5This semantics is also syntax-directed, and, by the nature of {J, also 0 ={Jo V. holds.

38 C. Huizing, R. Gerth, W.P. de Roever

Obviously, l is consistent with k when performing a parallel merge (i.e., in our analogy, the
key can turn in the loek). For any other history k' that is consistent with l, and that has
the same observable behaviour as k, we have k 2R k' (i.e. any other key that turns in the
loek will fit "more loosely" then k). This follows from the construction of l as the tightest
loek fitting around k. Hence, < r,k' >f/. Da[Q)u, since otherwise < r,k >E Da(Q~u, con
tradicting our initia! assumption by definition of Da. So, < T ila v, k'lll >E Da[P 11)u, but
< TI la v, k'ill >f/. Da(Q liL)u for any k' with the same observable behaviour as k .

There is one problem left since there rnlght be other histories, not observationally equiva
lent with k, which are consistent with l, i.e., which canopen the loek. E.g., history 00 is able
to merge with l.
Although 00 and k are observably different (there is a difference in termination time), 00111
is observably the same as k 111. In fact, any such history has to be of smaller length than k.
We detect such "forged" keys by making the loek sensitive to the length of the key. If we
take as a context ((< hole >; 7!0) ll1?x) liL, where l' is a channel not occurring in P, Q or L,
then the occurrence of the communication along l' will serve to indicate termination of the
program in the hole (Por Q). This makes visible the lengthof a shorter history that merges
with l at the time of which this communication occurs. Hence, this context separates P and
Q.
Before proving Lemma 2 we introduce some notation and auxiliary lemma's:

Defl.nition 13.

• If h is a history, then its observable reduct he is defined by hc[i] == { avlav E h[i]}

• If V is a denotation, then its observable reduct vc is defined by
{<u, he> I< u,h >E D} 0

Lemma 3. If there is a< r,h > such that < r,h >E (Da(PI)u)c and < r,h >f/. (Da(P2)u)c
then O[PI)u-:/: O~P2]u.

Proof. Suppose < r, h > is given as in the lemma. There are two cases:

Full Abstraction for an OCCAM-like Language 39

(a) Ifr ;.U., it is clear that < T,h >E ,B('Da[PI]u)\.B('Da[P2)u)and hence O!P1)u ::/= O[P2)u.

(b) If r = .L there must he

(i) some < r',h' >E 'D4 [PI]u with r' ::f=.L and h ~ h', or

(ii) an infinite chain (hn)neN with <.L,hn >E 'D4 [Pl)u for all n and h' = hn forsome n.

This fact is an immediate consequence of the definition of 'D4 •

Ifcase (i) applies, we see that < r',h'c >!/. ('Da[P2)u)", (otherwise < r,h >E ('Da[P2)u)"
by prefix-closure), and we can apply the lemma, since r' ::f=.L and this case has been
proven already.
Ifcase (ii) applies, we know that < oo, h00 >E ,B('Da[Pt]u) where h00 = limn-ooh~.
Because, forsome n, <.L, hn >!/. 'Da[P2l,, < oo, h00 >!/. .B('Da[P2)u) and hence O[P1) ::/=

O[P2]u. D

The following is the key-lemma in the proof.

Lemma 4. Let a history k, a state u ::j=.L, a set of input channels I, and a set of out
put channels 0 be given. Assume that k has the property that whenever av E k[i] and
O!w E k[i] then v = w6 • ,

Then there exists a program L and a state-history pair < v, I > with the following properties:

(i) < v, I >E 'Da[L]u

(ii) v ::j=.L and JIJ = JkJ

(iii) chin(L) = I,chout(L) = 0

(iv) for alll ~i~ JIJ and all a E Ju 0:
O!v E k[i] <-> O!v E l[i]
Ra E k[i] <-+ Ra E l[i]

(v) for all< v',l' >E 'Da[L)u:
v' ::f=.L-+ Jl'J = JIJ and l'c =Ie--+ I ÇR 1'.

Proof. For each channel a E I U 0 we construct a parallel component La . Then L
La1 JJ0 ... JJ0Lan' where /U 0 = {al!···•O!n}· Let n = JkJ. Wedefine La= L~1); ... ;Linl,

. { [a!v--+ -Dwaitl --+ -] if O!v E k[i]
where L~) = wait 1 if O!v !/. k[i]and R a E k[i]

[a!O--+ -Dwaitl--+ -] otherwise

if a E 0.
If a E I we take a?xa instead of a!v and a!O. Now the history I of length n, defined by
property (iv) is clearly generated by L in a terminating computation. The other properties
can be easily checked. o

6 All histories generated by a program have this property.

40 C. Huizing, R. Gerth, W.P. de Roever

This lemma claims that L has aJl the required properties of the loek above. I.e., L pro
duces a history l (expressed by (i)) that is the "ready-complement of k" (formalized by (iv)).
Clause (v) guarantees that loek L does notproduce other histories, that could make it possi
bie for Q to "turn the loek" as well. (iii) ensures that both L liP and L IIQ are syntactically
correct programs . .

Proof of Lemma 2: Suppose V.[P] f:. V.[Q]. Assume, without loss of generality, that
there are r,k and u ;é..L, with < r,k >E V.[P]u\'D.lQ]u. It suffices to prove that there are
C,h and p such that < p,h >E (V.[C(P)]u)c\(V.[C(P)]u)c· (this follows from Lemma 1.)
Let I = chout(P), CJ = chin(P). Applying Lemma 4 to k, u, I and CJ gives us a program
L, history h and state v with the properties (i) to (v) as stated in the lemma. Define

C = (<hole>; 1!0 //AL) /krp?x where A= I U CJ and x is a variabie not appearing in P,Q
or L. Note that C(P) and C(Q) are syntactically correct. Th ere are two cases, depending on
whether T =..L or not.

Case I. r ;é..L.
Let p = (rlluv) {0/x} and h = (klolll)c and let n = lkl. It is clear from properties (i) and
(ii) that

< p, h >=< T llu v, ((klo IIAl) 11-, lo)c > E (Va[((P; -y!O) IIAL) 11-, -y?x]lu)0
•

Now suppose < p,h > E v.[((Q;-y!O) IIAL) 11-,l?x]u)" 0

By definition of Va and .c, there must be < r',k' > E V.[Q]u, < v',l' > E V.[L)u,
< <1'1t91 > E V.['Y!O)u and < <p2,92 > E Va['"Y?x]u, such that consistent (<pi,k'gl,v',l',A),
consistent (<I'IIIuv',k'giiiAl,<p2,Y2b}) (since (k'9IIIA/) ll-,92)c = h and (<I'IIIuvdlu<l'2) = p).
Here k' is chosen such that it only contains readies in I U CJ. (all other readies appear
only on behalf of ready-closure). Straightforward application of all definitions gives us that
91 = ')'o,<pl = r', <1'2 = v'{O/x},g2 = R~'YO· Hence,

(k' YIIIA L') ll-rY2 = k'-yo IIA L' and P = (r'llu v'){O/x}

Because ((k''Yo) IIA l')c = (k')'o IIA l)" = h ,

we see that lk'l = lkl and from properties (ii) and (v) also lkl = lll = ll'l·

Claim 1: k'c =kc and [IC= ze.

(1)

(2)

Proof of claim: suppose avE k'[i], soa f:. ')', then avE (k'YoiiA L)[i], by (1), so avE k[i] or
av E /[i]. If a E A, then av E k[i] n l[i] by consistency. If a rf. A, then av rf. l[i], because a
cannot be in the channels of L. So, in both cases av E k[i]. All other cases are symmetrie.

Claim 2: r' = T

Proof of claim: we know that (r'llu v')({O/x}) = (rllu v){Ofx} by (3). Let y E var. If y E
var(P) = var(Q), then v'(y) = v(y) and hence r'(y) = (r'llu v'){Ofx }(y) = (T llu v){O/x }(y) =
r(y). A similar argument applies if y E var(L) or y rf. var(p) U var(L).

From Claim 1 and property (v) we infer l ÇR l' . (3)

Now we prove: k' ÇR k. Let Ra E k'(i]. Then Ra rf. l'[i] by consistency of k' and l'. Hence,
by (2), Ra rf. l[i] and by (iv): Ra E k(i]. But now we have a contradiction, because, by ready

Full Abstraction for an OCCAM-like Langua.ge 41

dosure a.nd claim 2: < r,k >E Va(Q)u and hence < p,h >E (Va[C(Q))u)c.

Case II T =.L.
Choose p =.Land h = (ki!AlY· Again we prove that < r,k >E Va(QDu, which leads
to a contradiction. H < p, h >E Va[((Q; -y!O !IA L) 11 ï?x)u, then there must he state
history pairs < r',k' >E V4 [Q)u and < v',l' >E Va[L)u with consistent (r',k',v',l'A),
(k' !IA l'c = (k !IA l)c and T1 =.L.
By consistency, in particular comparability, we know that Ik'!~ ll'l· By definition of h1 IIA h2
we have in general:
!(hl !IA h2)! = max(lhll,lh21), so Ik'!= max(lk'l,ll'l) = l(k' !IA 1')1 = !(k !IA l)l = Ik!.
We also have 11'1 = 111. H v' =.L, this follows from the same argument as above a.nd if v' ;l.L,
it is a direct consequente of property (v). Now we can follow the reasoning of case (i) and
obtain k10 = k0 ,l10 = l0 ,T1 = r,L ÇR l',k' ÇR k a.nd < r,k >E Va[Q)u- contradiction. 0

Remark
In this proof we make essential use of the empty statement (-). With it, the separating
context can be defined in an easy and intuitively clear way. Without the empty statement,
we still have full abstraction, but the proof becomes more complicated. Obviously, we can
remove the empty statements from the context, by substituting L~+l for any empty statement
in L~. This may leave us with an empty statement in L~.
Now, if av E k[n], then we can replace L~ by a!v or a?x". If k0 [n] = 0, we may replace
L~ by wait 1. Why? Clearly, there are now pairs of denotations which we cannot separate.
One can show that such pairs of denotations contain < u, kt > respectively < u, kt' >, with
u ;l.L and 3a: R" Et /1. Raf/.t'. 1f there is no empty statement, then, the R01 -record ca.n only
have been genera.ted by rea.dy-closure. This means that < u, kt' > is also part of the first
denotation and hence this state-history pair is not separating.
Consequently, although we cannot construct contexts for all histories, we are still able to do
so for the separating ones.
We do point out that using an empty statement allows us to prove a slightly more general
result than just full abstraction of DNP-R, since in the proof we did not rely on the fact that
the separating history, k, is generated by a DNP-R program.

8. Condusion and fut ure work

The paper answers the question of what syntax directed semantics is the correct one for
prescrihing reai-time distributed computations. After fixing a language - essentially OC
CAM -, fixinga computation model- every concurrent process has its dedicated processor,
thus maximizing activity - and fixing a notion of observability - communications at every
time instant, the starting state a.nd the termination state (if any) - this question admits an
univocal answer: This paper's semantics is indeed the right one, since it is fully abstract and
hence is the semantics that for any program respects its observational behaviour and records
the least amount of non-observables for it to become syntax directed.
In retrospect, the ideas on which the semantics is based proved to he surprisingly natura!.
Basically Francez, Lehmann and Pnueli's method of linear history semantics had to he mod-

42 C. Huizing, R. Gerth, W.P. de Roever

ified,

1) by making waiting for communications explicit, through adding so-called readies, and

2) by realizing that a ready only serves to make certain behaviours illegal and hence, if such
a behaviour is allowed anyway, through other means, the ready is irrelevant. This is the
meaning of "ready-closure".

The semantics provides a good starting point for future work. We mention some topics.

1. Develop a syntax-directed specification language and corresponding proof system
based on this semantica.

2. Develop a fully abstract temporal logic for real-time distributed computing, thus
generallzing [BKP86].

3. Develop decision procedures for the propositional fragment of such a logic.

4. Integrate such a logic into automated specification tools such as Statemate [Har84]
in order to obtain machine support for modular design and its verification.

5. Specialize these specification languages and proof systems toa real-time fragment of
Ada and to OCCAM (through incorporating local clocks).

6. Use the semantics to extend Lamport's ideas on the implementation of modules
[Lam83] to real-time.

7. Develop techniques for the stepwise refinement of real-time programs, possibly along
the lines of [Old86].

8. Relax the idealizations, in our computation model, of synchronization, instantaneous
communication, and unit duration of any atomie action.
Presently, we are working on topics 1, 2, 4, and 5 in the context of ESPRIT project no.
937: Debugging and Specification of Real-Time Embedded Systems (DESCARTES).

References

[A83] ADA (1983), The programming Language Ada Heferenee Manual, LNCS 155, Springer
Verlag, New York.

[deB80] Bakker de, J.W. (1980), Mathematica! Theory of Program Correctness, Pren
tice Hall, London.

[BC85] Berry G., Cosserat L. (1985), The ESTEREL Synchronous Programming Language
and its Mathematica! Semantics, Proc. Seminar on Concurrency, LNCS 197, pp. 389-
449, Springer-Verlag, New York.

[BCH85] Bergerand J-1., Caspi P., Halbwachs N. (1985), Outline of areal-time data flow
language, Proc. IEEE-CS Reai-Time Systems Symposium, San Diego.

[BH81] Bernstein A., Harter Jr. P.K.(1981), Proving Real-time Properties of Programs with
Temporal Logic, Proc. Bth ACM-SIGOPS Symposium on Operating System Principles,
pp. 1-11.

Full Abstraction for an OCCAM-like Language 43

[BKP86) Barringer H., Kuiper R., Pnueli A. (1986), A Really Abstract Concurrent Model
and its Temporal Logic, Proc. 13th ACM Symposium on Principles of Programming
Languages, pp. 173-183.

[BM83) Berthomieu, Menasce, (1983), Analysis ofTimed Petri Nets, Proc. IFIP Confer. on
lnformation Processing, 83, North- Holland.

[Bro83) Broy M. {1983), Applicative Real-Time Programming, Proc. IFIP Confer. on In
formation Processing, 83 (R.A. Mason ed.), pp. 259-264, North-Holland.

[BW82) Branquart P., Louis G., Wodon L.P. (1982), An Analytic Description of CHILL, the
CCITT High Level Language, LNCS 128, Springer-Verlag, New York.

[FLP84) Francez N., Lehmann D., Pnueli A. (1984), A Linear Ristory Semantica of Dis
tributed Programming, Theoret. Comput. Science 32, pp. 25-46.

[HMM85) Halpern J.Y., Megiddo N., Munski A.A. (1985), "Optimal Precision in the Pres
enee of Uncertainty", Technical Report IBM, San Jose.

[HS86) Halpern J.Y., Shoham Y. (1986), A Propositional Modal Logic of Time Intervals,
Proc. Symposium on Logic and computer Science, June 16-18, Cambridge, Mass., IEEE.

(Har84) Harel D. (1984), Statecharts: A Visual Approach to Complex Systems, Proc. of the
Advanced NATO Study Institute on Logies and Models for Verification and Specification
of Concurrent Systems, NATO ASI Series F, Vol.13, pp. 1-44, Springer-Verlag, Berlin.

[HGR85) Huizing C., Gerth R., de Roever W.-P. (1985), Maximal Parallelism, Synchronous
Concurrency and Real Time, Dept. of Comput. Science, University of Utrecht.

[HP79] Hennessy M., Plotkin G. (1979), Full Abstractionfora Simple Parallel Programming
Language, Proc. Math. Foundat. of Comput. Science, LNCS 74, pp. 108-120, Springer
Verlag, New York.

[KR85) Koymans R., de Roever W.-P. (1985), Examples of aReal-Time Temporal Logic
Specification, Proc. Analysis of Concurrent Systems, LNCS 207, pp. 231-252, Springer
Verlag, New York.

[KSRGA86) Koymans R., Shyamasundar R.K., de Roever W.- P., Gerth R., Arun-Kumar
S. (1986), Compositional Semantica for Real-time Distributed Computing, lnformation
and Control, to appear.

[KVR83] Koymans R., Vytopil J., de Roever W.-P. (1983), Real-Time Programming and
Asynchronous Message Passing, Proc. 2nd ACM Symposium on Principles of Dis
tributed Computing, pp. 187-197.

[Lam83) Lamport L. (1983), Specifying Concurrent Program Modules, ACM Trans. on
Progr. Lang. and Systems 5-2, pp. 190-222.

[Mil83] Milner R. (1983), Calculi for Synchrony and Asynchrony, Theoret. Comput. Science
25, pp. 267-310.

[Mos83] Moszkowski B., Manna Z. (1983), Reasoning in Interval Temporal Logic, Proc.
Logies of Programs, LNCS 164, pp. 371-383, Springer-Verlag, New York.

44 C. Huizing, R. Gerth, W.P. de Roever

[Occ84] The Occam Language Reference Manual, Prentice Hall, 1984.

[OH86] Olderog E.-R., Hoare C.A.R. (1986), Specification-Oriented Semantica for Commu
nicating Proceaaea, Acta Informatica, to appear.

[Old86] Olderog E.-R. (1986), Proceas Theory: Semantica, Specification and Verification
(1986), Cm·rent Trends in Concun-ency - Overview and Tutorials (J. W. de Bakker,
W.-P. de Roever, G. Rozenbe.rg, eds.) LNCS 224, pp. 442-510, Springer-Verlag, New
York.

{Plo83] Plotkin G. (1983), An Operational Semantica for CSP, Proc. IFIP Conference on
the Pormal Description of Programming Concepts II, pp. 199-225, North-Holland.

[Pnu85] Pnueli A. (1985), Linear and Branchlng Structures in the Semantica and Logies
of Reactive Systerns, Proc. 12th Colloquium Automata, Languages and Programming
{ICALP}, LNCS 194, pp. 15-33, Springer-Verlag, New York.

[RR86] Reed G.M., Roscoe A.W. (1986), A Timed Model for Communicating Sequentia! Pro
cesses, Proc. 13th Colloquium Automata, Languages and Programming ICALP, Rennes.

(SM81] Salwicki A., Müldner T. (1981), On the Algorithmic Properties Concurrent Pro
grams, LNCS 125, Springer-Verlag, New York.

(SW79] Strunk J .W., White E.B. (1979), The Elements ofStyle, third edition, MacMillan.

[W86) Wegman M.N., What it 's like to he a POPL Referee or How to write an extended
abstract so, that is is more likely to he accepted, BIGPLAN Notices, 21-5, pp. 91-95.

Full Abstraction for an OCCAM-like Language 45

A Appendix

Syntax of the language

s .. - x:= eI g I Sl;S2I GC I *GC I Sllla s2 I [SJA I-
g ::= a!e I a?x I wait n I -
GC ::= (0~=1 b;; g -+ S;]

a is a channel, x a program-variable, e an expression with values in V, n an integer ex
pression, b; boolean expressions, A a set of channels. In St !IA s2, A should at least contain
the joint channels of St and S2. In [S]A, A should contain the internal channels of S. These
sets are added to the syntax in order to achleve a compositional semantics.
Parallel processes do not share variables. For every channel, there is at most one process that
can output values to the channel and at most one process that can input valnes from it.

Denotational Semantics
1> = P(State x His)
State: states, valuating the program variables, or .i.
His: sequences of sets of records, consisting of communication records av (value from channel
a) and readies Ra.
V[S] : State -+ 1>
Ç[g]: P(g)-+ State-+ 1>
Define some auxiliary functions
·+ : (State -+ 1>)-+ (1> -+ 1>) by
IP+(U) = {< u,hth2 > l3u' E State:< u',ht >E UI\< u,h2 >E tp(u')}
R({btilit, ... ,bn;lin},u) = {Ral3i: u(b;) = tt 1\ (g; = a?x)},

{

0 if g = - 1\ u(b) = true
waitvalue(b;g,u) = max(n, 1) if g = wait n 1\ u(b) = true ,

oo otherwise

minwait(Ç, u)= min{ waitvalue(g, u)lg E Ç}.
A set U is prefix-closed
iff < u,h >EU 1\ h = hth2 -+<l.,ht >EU.
Cl(U) is the smallest prefix-closed set that contains U.
Ç[waitn]Gu =Cl{< u,R(G,u)1 > lt = minwait(G,u)l\ t = min(u(d), 1)}
Ç[a!e]Gu =Cl{< u, R(G, u)1{aa(e)} > IO ~ t < minwait(G, u) V t = 0}
Ç[a?x]Gu =Cl{< u, R(G, u)1{av} > IO ~ t < minwait(G,u) V t = 0, v E Values}
Ç[-]Gu =Cl{< u, 0 >}
Ç[b;g]Gu = if u(b) = true then Ç[g]Gu else { <1., À>} fi
1>[S) 1.= { <1., À>} for any S (.X is the empty sequence)
1>[x := e)u =Cl{< u{u(e)fx }, 0 >}
1>(g)o- = Ç[g]{g }u if g :f -
1>[- Ju= Cl{< u, À>}
1>(St; S2) = (1>[S2])+(1>(S1]u)
1>[(Df=1b;;g;-+ Si]]u = Uf=1(1>(S;])+(G[gi)Gu if 3i: u(b;) = true

=Cl{< u,0 >} otherwise
1>[*GC]o- = J.ltp.Àu.if 3i: u(b;) = true then tp+(V[GCDo-) else Cl{< o-,0 > fi

46 C. Huizing, R. Gerth, W.P. de Roever

V[PliiA P2]u =Cl{ < U1lla U2,h1IIA h2 >I
< u;,h; >E V(P;)u,

where

maximal(hh h2), synchronous(h1,h2, A),
comparable(u1, h1, u2h2)} ,

u1 lla u2 is a strict function defined by

(utlla u2)(x) ~ u2(x) if u2(x) f. u(x)
{

u1(x) if u1(x) f. u(x)

u(x) u(x) otherwise

maximal(h1,h2,) tb Vj, a: Rex!/:. ht[j] n h2(j]

synchronous(h1,h2,A) tb Vj,a,v: a E A-+ (avE h1(j]+-+ avE h2[j])

comparable(ul,h1,u2,h2) ~ Vi E {1,2}: u; =.L-+ lh3-il :$ lh;l

V[[S]A]u = Cl{< u, h > l3h' :< u, h' >E V[S]u A h' tÄ = h }, where h' tÄ is the hlstory
that results after deleting all communications and readies on channels in A from h'.
Define terminated as the least predicate on Stat satisfying:

(i) terminated (-)

(ii) if terminated(St) and terminated(S2) then terminated(S1IIA S2)

(iii) if terminated(S) then terminated([S]A)

Operational Semantica

We do not bother to formally define the transition system but concentrate on the transi
tion relation.
-+ Ç (Stat x State) x N x P(C han x V al)) x (Stat x State) is defined as the least relation
satisfying the following set of axioms and rules:
(Notation: instead of (P, u, n, c, P' ,u') E-+ we write (P, u) ~ (P', u').)

la) (wait d, u)

lb) (wait d,u)

0,0
--->

0,0
--->

(-,u)

(wait d',u) where u(d') = u(d)- 1

2) (x:= e,u) ~ (-,u{u(e)fx})

)
O,CX~(•) (-'u) 3a (a!e,u) -'>

3b) (a!e,u) ~ (a!e,u)

4a) (a?x,u) ~ (-,u{vfx})

Full Abstraction for an OCCAM-like Language

4b) (a?x,O') ~ (a?x,q)

Sa) (P,u) .!:.(P',u')

(P;Q,a).!:. (P';Q,a')

5b) (Q.a) ~(q',a') if terminated (P)
(P;Q,a)--. (Q',u')

6a) ([Df=1b;;g;- P;],O') ~ (P;,u) if u(b;) = true and g; = 0

6b) (g;,u) ~ (-,~) if u(b;) = true.
([Of.,1b;;g;-+P;],u) -+ (P;,u)

6c) for all i:u(b;)=tru~(g;,u) ~ (gj,u) h 1 _ ·r (b) fal
0 • w ere 9; = 9i 1 u i = se

((Of.,1 b;;g;-+P;],u) _:. ([Of=t b;;gj-+P;],u)

7a) (ÇS,u)L.!:. (P,u') if u(b;) = true for some i
(..VS,u) -+ (P;..VS,u')

7b) (*{IS, u) ~ (-,u) if u(b;) = false for all i

Sa.) L! tA=L~ rA.(Pt,u) ~ (Pt,u:J,(P,,u) ~ (P;j,aá)

(PtiiAP. ,u) .!:. (P:IIAP;j,u')

8b) (Pt,u) .!:. (Pj,u.'),L•tA=0,terminated (P,)

(PtiiAPo ,.,) .!:; (P:IIA Po,.,')

(P2IIAPt,u).!:. (P2iiAP{.u')

L
9) (P,u) -;: (P',u') where A' = ichan(P')

((PJA,u) --. ((P']A'•"')

47

48 C. Huizing, R. Gertb, W .P. de Roever

B Appendix

Theorem 1 There exists a function (3 such that 0 = (3 o V.

B.l General structure of the proof

Define (3 by
(3(D) = {(a,h} 13h': (a,h'} E D /\ Vi: h[i] = h'[i] \ Readies}

We prove this in several steps, through defining intermediate semantics :TI, .:h, and .13,
each different from the previous one in one essential aspect. We have the following semantics:

(i). 0;

(ii) . .11 forces maximality not by a global constraint on the traces, like in 0, but by readies,
like in V;

(iii) . .J2 performs hiding locally, not by deleting records from the traces, like in .J1;

(iv) . .J3 contains visible readies, like V does;

(v) . V is not defined by a transition relation, like .13, but is compositionally defined, using
fixed points in a cpo of prefix-closed sets.

These semantics are linked one another by the following lemma.

Lemma 1 {Linking)

(i) . 0 = JI

{i i). Jl = J2

{iii}. J2 = (3 0 J3

(iv) . J3 =V

From this lemma, the theorem follows immediately. The proof of this lemma can be found
in the next sections.

B.2 Proof of Linking Lemma (i)

Semantics .11 is based on a similar transition relation as 0 is based upon. The difference is
that the label of this transition relation consists of three fields:

(i). a number that records how many local steps have been taken; thls component is only
there for compatibility with -+.

(ii). a set of communications tha.t have taken pla.ce on both internal and external channels.

(iii). a set of channel narnes that function as the readies Rex in the denotational semantics.

Full Abstraction for an OCCAM-like Language 49

Notation: If L = (n,c,r) is a label of this transition relation, we denote LN = n,Lc =
c,LR = r.

Deflnition 1 --+1ç;; (Stat x States) x (N x P(Chan x Val) x P(Chan)) X (Stat x States) is the

smallest relation that satisfies the Jollowing axioms and rules:

. 0,0,0 () la. wa1td, u -+1 -,u, where u d = 0

lb. waitd,u ~1 waitd',u, where u(d') = u(d)- 1

2. x:= e,u ~1 -,u{u(e)/z}

O,a.,,0 1
3a. a!e,u ---1 -,u where u(e) = v

3b. I 0,0,a I
a.e, u ----+1 a.e, u

O,a.,,0 { / } 4a. a?x,u 1 -,u v x

4b.

5a.

Sb.

7
0,0,a

7 a. x, u ----+1 a. x, u

(P,u) __!:.1 (P',u')

L
(P;Q,u) ---->1 (P';Q , u')

(Q, u) __.!:.1 (Q', u')
----L.------- iJ terminated(P).
(P;Q,u) ---->1 (Q',u')

[ö l 1, 0, 0 . () 6a. . b;; 9i --+1 P; , u -------> P;, u iJ u b; = true and 9i = -
•=1

6b.

6c.

(g;, u) __.!:.1 (-,u')
-----------..L--- iJ u(b;) = true .
([.Ö b;;g;----> P;],u) ----+1 (P;,u)

•=1

. [()) 0, 0, Ti l v~: u b; = true:::} (g;,u -------+1 (gi,u)

A l 0,0,R ll. I ' [u b;;g;----> P; ,a -------+1 [u b;;g;----> P;],a
t=l t=l
false

where R = Ur; and gi = 9i iJ a(b;)

1 Remember that we may leave out the curly brackets for singletons, in this case we write "'• instead of
{et.} .

50 C. Huizing, R. Gecth, W.P. de Roevee

(GS,u) _!:.1 (P,u')
L if u(b;) = true for some i.

(*GS,u) --+1 (P;~S,u')
7a.

1, 0, 0 . () f I . 7b. ~S, u ----+1 -,u if u b; = a se for all~

Lf n L~ = 0, Lf rA= Lf rA, (P1, u) __:0.1 P{, uD, (P2, u) __0.1 P~,u~)
Sa. L where

(P1IIAP2 , u) --+1 (P{i\AP~,u~\\Au~)

(P1,u) --+1(P{,uD, L0 rA= 0, terminated(P2)
Sb ----~--~~~~~------------~----------

(PtiiAP2,u) _!:.1 (P{\\AP2,uD (P1\\AP2,u) _!:.1 (Pt\\AP~,uD

(P,u) _!:.1 (P',u')
9 L where A'= ichan(P').

([P]A, u) --+1 ([P')N, u')

Definition 2

J1[Po)uo =Cl { (u,h) \ 'v'l ~i~ \h\3P;,äi,L;:

}

L;
P;-t,Ui-1 ---+1 P;,u;,

h[i] = Lf rvis(P;_t)

\h\ < oo => u= ulhl /1 terminated(Pihl) ,

\h\ = 00 => u = 00

Note that we do not demand maximality of the steps here, since this is already taken care
of in rule Sa. We are going to prove that this is the case.

To prove Linking Lemma (i), it suffi.ces to prove

Lemma 2 (Consistency 1}

n, C I I n, C, T I I
P, u -----+ P , u is a maximal step <::> 3r : P, u ----+1 P , u

Before we prove this lemma, we first prove two fundamental lemmata that establish the
exact relationship between readies and maximality of steps.

Lemma 3 (Ready) Suppose a E chin(P) . Then

n,c,rU{a}
1

n,cU{av},r'
P,u 1<=>3r Çr,vEVai:P,u 1

Full Abstraction for an OCCAM-like Language 51

Proof:
By structural induction w.r.t. P.

For the primitive statements only rules 3 and 4 lead to readies or communications in the
label and for these the lemma is obviously satisfied.

For the composite statements sequentia/ composition, iteration, and hiding, the rules are
not dependent on the ready part and do not change it. Hence, the induction step is obvious
for these statements.

This leaves us with only two cases.

guarded statement Write GS = [.8 bii9i--+ Pi] and let I= {i: u(i)= true}. . •=1
0,0,R

Assume that GS,u - 1 and o E R. Then rule 6c must have been applied, hence

R = U r· and
iEl '

0,0,Ru {o}
GS, u 1 C <=> {rule 6c}

{ }
0, 0, ri 1 . { }

RU o = i~ I Ti and 9i, u ---.1 gi, u for any t E I <=>

0 0 r·
there is an i E I with 9i, u ~1 g:, u and o E Ti { <=> }gi is of the form o!e or o?x}

O,ov,0
gi,u 1 forsome v E Val { <=>}

Gs O,ov,0
, 0" 1

parallel composition If one ofthe Pi has terminated, it is trivia!. So assume --.terminated(Pi)
for both i. Then

LU {o}
PdiAP2, u 1 { <=>}

L
Pi,u __..!,1 with combine(L1 , L2, LU {o}, A) { ~}

Pi,u ~1 with combine(Lb L2, LU {o}, A) and oE Lijforsome j { <=>}

L; . -N N - c c - R R . P;,u ------>1 w1th L; = L; ,L; = L; U {ov},L; Ç L; and combme(L11L 2 ,Lu {o},A) and

Li
P3-;, u ----->1 { <=>}

L - -
PiiiAP2,u --+1 with combine(L;,LJ-j,L)
0

From the proof of the ready lemma, it is clear that the same result holds for o E chout(P),
for any v instead of some v.

The next lemma we need states that readies do indeed the samejob as the global max
imality constraint of 0. All steps of -+1 are maxima!. This lemma shows also why a Janus

semantics like .J, is useful: the concept of readies and the maximality constraint can bc
compared in one semantics.

52 C. Huizing, R. Gerth, W.P. de Roever

Lemma 4 {maximality) All steps of -+1 are maxima! ..

Proof:
We prove this by structural induction w.r.t. the program P.

primitive statements One can easily check that all transitionsof primitive statements are
maximal (note that ichan(P) = 0 for any primitive statement P).

parallel composition The case that one of the componentsis terminated, is treated below.
Assume that -.terminated(Pi) for i= 1,2. This is the most interesting case. Suppose we

have

with L <1 Land I= ichan(P1 IIAP2)· Now, because both statements are not terminated, we
know that there are Pi and Li with

Li L·
Pi, u ---+1 and Pi, U~~

with L1IIAL2 = L, L1IIAL2 = L, and, a.o., Lr n L~ = 0 (*).
Assume (1) that L0 = L0 . Since chan(PI) n chan(P2) =A and Lf t A= Lf t A, we know

that Lf = Lf for both i. Furthermore, we must have LN < LN and hence Lf" < Lf" for
some i and hence the sub-step is not maximal, which violates the induction hypothesis.

So assume (2) that LN = LN and hence L0 :j; L0 , whence there is avE L0 \ L0 , where

a E ichan(P1IIAP2). If a E ichan(Pi), we have again a contradiction, because then Pi, u .-!:!.1

is not maximal. If a ~ ichan(Pi), then a E A and hence av E L1 n L2. By the Ready Lemma,
we know that in this case a E Li for i = 1, 2. This is in contradiction with (*).

other compound statements (including parallel composition of which one of the compo
nents has terminated) What is left are situations in which

L L
P, u ---+t {:} F[P], u --->1

in which F[P] is some syntactic operator. In this case, L0 tichan(P) = L0 tichan(F[P]) and
hence

L <ichan{P) L {:} L <ichan{F[PJ) L

This implies, of course, that if P, u _!:...,. is maximal, then also P, u _!:...,. is maximal, which is
exactly the induction step that we had to prove. 0

Now we can prove the consistency lemma, using structural induction w.r.t P.
The proofs for the cases of the primitive statements are obvious, since in these cases, the

ready part of the label is not used for the definition of -+1.

The same holds for sequentia[composition, guarded statement, iteration, and hiding.

Full Abstraction (or an OCCAM-like Language 53

So let us consider parallel composition. Suppose (P1IIAP2, a) _!:.1 C is a maximal step.

Then either rule Sa or Sb must have been applied to achleve this. Hence C = P{ IIAP2, a',

L = L1IIAL2, and P;,a ~1 Pf,a', for i= 1,2, where Lf fA= Lf fA.

Now assume that P1, a ~~ P{, a' is not maxima!. Th en there must exist 11 with L1 <I

- · t1 -C C N - N Ï Lt, where I= 'chan(Pt), and P1.a --+1. If L1 = L1 , then L1 < L1 and PtiiAPz,a --+1

with LC = Lc and LN = L"f + L!j > LN, so P1IIAP2,a _!:.1 is not maxima!, cotrary

to assumption. Consequently, lf ":/: Lf and hence, Lf f I C Lf f I. Since Lt <I Î1, we
know that Lf f Ï = Lf f Ï (Ï = Chan \I). Because A n ichan(P1) = 0, we have Lf fA =

LffA = LffA and hence P1IIAPz,a _!1· Since I Ç ichan(P) we have L <ichan(P) and

(P1IIAP2,a) _!:.1 is not maxima!. Contradiction.

S P L1 P' ' · · al d lik · h P. Lz P' ' N o 1, a --+1 1, a1 JS ma.x.~m an ew1se we can prove t at z, a --+1 2 , a2 • ow

we can apply the induction hypothesis and get:

L; I I - N c P;,a -+t P;,a;, where L; = (L; ,L; ,r;)

We claim that r1 n Tz = 0.
By contradiction, assume that a E r1 n Tz. By the Ready Lemma, we know that there

exists a v such that

Aga.in, by the induction hypothesis, we know that

L[",Lf U {av}
P;, a -------+

and consequently,

where LN = Lf + L!j, LC = Lf U Lf U { Ctv} and hence L <I L, which contradiets the initia!
assumption of maximality. So r1 n Tz = 0 and

where L= (L"f +L!j,LfuLf,(r1 Ur2)\A) and hence LN = LN, LC = Lc.
0

B.3 Proof of Linking Lemma (ii)

The next step is to treat hiding. In V, communication records of channels that appear in
the scope of a hiding operator are removed as soon as the behaviour of this operator is

54 C. Huizing, R. Gerth, W.P. de Roever

computed. In 0, however, this can not be done, since then the maximality constra.int could
not be applied anymore. Computations that are notmaximal may pass through, because the
maximal computation is not visibly different from the non-maximal one. Therefore, hiding is
treated globally. When the computation of the full program is known, the communications
on channels that appear in the scope of a hiding operator are removed from the traces. In .:ft,
this is not necessary anymore, since readies are used locally to ensure that all computations
are maxima!. Hence, we construct .72 , that treats hiding locally and for the rest behaves l.ike

J! ·

Definition 3 -+2Ç (Stat x States) x (N x P(Chan x Val) X P(Chan)) x (Stat X States) is the

smallest relation that satisfies the following axioms and ru/es: 1 to 8 f rom the definition of
-+tand

9
P L P' I ,a ~2 ,u

-----:-:--r- where A'= ichan(P') and L' = (LN,{av E Lc I a !f. A},LR)
L'

[P]A, <T --+2 , u'
P' A

Definition 4

.J2[Po]<1o =Cl { (u, h) 11:11::; i::; lhi3P;, ui, L;:

}

L;
P;-t , Ui-1 --+2 P;,u;,

h[i] = Lf

lhl < oo => <T = ulhl/\ terminated(Pihl),

lhl = 00 => (1 = 00

Aga.in, we have a lemma that immediately implies Linking Lemma (ii).

Lemma 5 (Consistency 2}

L L fvis(P) , ,
P, u --+2 P', u' <=> P, u 1 P , <T

Proof:
For the primitive statements, this is obvious, since for these vis(P) = chan(P).
For sequentia! composition of which the first statement is not terminated, we know tha.t

Lfvis(P) P' , Lfvis(P;Q)
1 P, u t , u <=> P; Q, u . 1 P ; Q, u'

beca.use avE Lc =>avE chan(P) a.nd vis(P;Q) Ç vis(P). We ca.n use the same a.rgumen
ta.tion for itera.tion a.nd the gua.rded statement.

For parallel composition PtiiAP2, we know that if P;, u ~~ P[, u:, then a !/. vis(P;) /\a E

Lf =>a!/. LL

Full Abstraction for an OCCAM-like Language

n,c,r 1

For hiding we have the following equivalences: [P]A, a -----+2 , a' { <==>}
P' A

n,c',r
P, a ----+2 P', a' A é \ A = c { <==>}

n,é',r
P, a 1 P' a' A c' \ A = c A c' = c" n vis(P) { <==>}

n,é',r '
[P]A,a 1 ,~Ac'\A=c/\é=é'nvis(P){<==>}

P' A

n c" r '
[P]A,a ' ' 1 ,~1\c=c"nvis(P)

P1
A

B.4 Proof of Linking Lemma (iv)

55

In .:h, the first component of the label, the number n, is not used anymore, since there is
no global maximality constraint. This makes it possible to move closer to the denotational
semantica. In the third Janus semantics, we don't have this component anymore, but we keep
readies visible.

Defl.nition 5 -+~(Stat x States) x (P(Chan x Val) U P(Readies) X (Stat x States) is defined
by:

Definition 6

L 1 n,c, r 1 {
C-->3C <==>3n,c,r : C-----+2C /\cU RaiaEr}=L

J3[Po]ao =Cl { (a,h) I 'v'l ~i~ ihi3P;,üi,L;:
L;

P;-1,ai-l -+3 P;,a;,

h[i] = Lf
ihi < oo:::} a= alhl A terminated(Pihl),

lhl = oo :::} a= oo

Linking Lemma (iii) follows directly.
The last step is to prove that V = J3 or, more specifically, that (a, h) E V[P)a <=>

(a,h) E .J3[P]a. We prove this with an intertwining of structural induction toP and naturaJ
induction to the length of h. The induction hypothesis is:

lhl <nor Pa substatement of P :::}
((a,h) E V[P]a <=> (a,h) E .73[P]a)

And the induction step is, assuming this, to prove that

(a, Lh) E V[F[P]]a <=> (a, Lh) E .J3[F[PJI]a

where Lis an arbitrary record and Fl.] is some syntactic operator.

56 C. Huizing, R. Gerth, W.P. de Roever

B.4.1 Primitive Statements
la.

'D[waitd]u = Ç[waitd]{waitd}u = Ci{ (u, h}} = .J3[waitd]u

since (waitd,u) ~2 (-,u). The other cases are as easy.

B.4.2 Compound Statements

Induction basis Let (u, À) E 'D[P]u0 • If u =..L, we are done, since { (..L, À)} is the bottorn
element of the cpo and it is always added by the dosure operator Cl. If u #..L, we can easily
see that terminated(P) must hold and u= uo. Hence, by definition, (u, À) E .J3[P)u.

For the indu-ction case, we make use of the following lemma, which is clear from the
definition of .J3.

Lemma 6 (lnduction) (u,Lh) E Cl(.J3[P]uo) {::} there exist P',u' with P,uo __!:.2 P'u' and

(u,h) E .J3[P')u'

Sequentia! Composition Assume -.terminated(P). Then
(u, Lh) E 'D[P; QDuo { <==>}
(u1, Lht) E 'D[P]uo 1\ (u, h2) E 'D[QDu1 1\ h = h1h2 { <==>}
(ut,Lht) E .J3[P]uo/\ (u,h2) E .J3[Q]u1 1\ h = h1h2 {<==>}

P, uo ~ P', u' 1\ (u1, ht) E .J3[P']u' 1\ (u, h2) E .J3[Q]u1 1\ h = h1h2 { <==>}

P, uo ~ P', u' 1\ (u1, ht) E 'D[P']Ju' 1\ (u, h2) E 'D[Q]u1 1\ h = h1h2 { <==>}

P, uo ~ P', u' 1\ (u, h1h2) E 'D[P']; Q]u' 1\ h = h1h2 { <==>}
L

P, uo -----> P', u' 1\ (u, h) E .J3[P']; Q]u' { <==>}
L

P;Q,uo-----> P';Q,u' 1\ (u,h) E .J3[P'];Q]u' {<==>}
(u, Lh) E .J3[P; Q]Juo
0

The other cases are analogous, except iteration and guarded statement, which follow now.

Iteration Assume u0 (b;) = true forsome i, where GS = [Ö b;; g;--> S;]. Then
•=1

(u, Lh) E 'D(* GS]uo { <=:::::>}
(u, Lh) E 'D[* GS]+('D(GS]u0) { <=:::::>}
(ut, Lht) E 'D[GS]Juo A (u,h2) E 'D[* GS]ut Ah= h1h2 { <=:::::>}
(ut, Lh1) E .J3[GS]Juo 1\ (u, h2) E .J3[* GS]]u1 A h = ht h2 { <=:::::>}

GS, uo ~ P, u!J A (ut, ht) E .J3[P)u!J A (u, h2) E .J3[* GS]at Ah = h1h2 { <=:::::>}

GS,uo ~ P,u!J A (ut,ht) E 'D[P]u!JA (u,h2) E 'D[*GS]u1 Ah= h1h2 {<==>}

GS,uo ~ P,u!J 1\ (u,h1h2) E 'D[P;*GS]Ju!JA h = h1h2 {<==>}
L

*GS, uo-----> P; *GS, u!J 1\ (u, h) E .J3[P; *GS]u!J { <==>}

Full Abstraction for an OCCAM-like Language 57

(u, Lh) E .JJ[* GS)uo

ad 1. => is by definition of V[* GS]. <= holds only if the fixed point from this definition
is unique. Since we have strictly growing histories, this is the case. [FLP84)

B.4.3 Guarded Statement

In the following, GS stands for GS = [.El bii9i -> Si) and G = {bii9i I 1 :S i :S n}. If
•=1

~T ~ 1
9i,u--+ g~,u, then GS' =[u bii9i-> Si) and G = {bii9i 11 :Si :Sn}. We first prove the

•=1
following lemma:

Lemma 7 lf minwait(G, u) ~ 1 and L Ç Readies, then (u, Lh) E Ç[gi]Guo <==> (u, h) E
QIW;]G' u0 AL = R(G, uo)

Proof: (u',Lh) E Ç[gi)Gu {::}

1. L = R(G, u) Ah= R(G, u)1- 1{o:v} A 0 :St< minwait(G, u) A 9i is an I/0 command

or 2. L = R(G',u) Ah= R(G,u)1
-

1 At= minwait(G, u) At= min(u(d), 1) Ag= waitd

Then 1 { <==>}

L = R(G', u) Ah= R(G', u)1- 1{o:v} A 0 :St- 1 < minwait(G' ,u) A 9i, u~ 9i, u
and2{:}

L = R(G' , u)Ah = R(G',u)1- 1 At-1 = minwait(G', u)At-1 = min(u(d-1), 1)Ag, u~
waitd- 1,u

And these two cases exactly add up to
(u', h) E Ç[g:JG'u AL = R(G, u)
For histories of length zero, the lemma obviously holds.
0

Now we can prove the induction step for the guarded statement.
(u', Lh) E V[GS]u { <==>}
3i : (u', Lh) E V[Si]+(Ç[gi]Gu) { <==>}
3i,: (u1,Lh1) E Ç(gi]Gu A (u',hz) E V[Si]u1 { <==>}
3i,: (u1,h1) E Ç(g:JG'u AL= R(G,u) A (u',h2) E V[Si)ul {<==>}
3i,: L = R(G,u) A (u',h1hz) E V[Si]+(Ç[gi]G'u) {{:::::::>}

0, Tj 0, Tj

9i , u -----> g~ , u A Uri = LA (u' h) E 1J(GS')u { {:::::::>} 9i, u -- gi, u A Ur; = LA (u' , h} E

.JJ[GS']u {{:::::::>} (u',Lh) E .JJ[GS]u

If L n Readies = 0, the argument is simpte.
0

References

[FLP84] N. Francez, D. Lehman, and A. Pnueli. A linear history semantics for distributed
programming. Theoretica/ Computer Science, 32, 1984.

Chapter 3

Modelling Statecharts behaviour in
a fully abstract way

59

Moelening Statecbarts behaviour in a fully abstract way

C. Huizing

R. Gerth

W.P. de Roever

Eindhoven University ofTechnologyt· t

We present a denotational, strictly syntax-directed, semantics for Statecharts, a graphical, mixed

specification/programming language for real-time, developed by Hare! (H]. This requires first of

all defining a proper syntax for the graphicallanguage. Apart from more conventional syntactical

operators and Üleir semantic counterparts, we encounter unconventional ones, dealing wim Üle

typical graphical structure of me language. 1be synchronous nature of Statecharts makes special

demands on me semantics, especially wiili respect to me causa! relation between simultaneous

events, and requires a refinement of our techniques for obtaining a denotational semantics fur

OCCAM [HGR]. We prove that me model is fully abstract wiili respect to some natura! notion of

observable behaviour. The model presenled will serve as a basis for a further study of

specification and proof systems within the ESPRIT -project DESCARTES.

l. Introduetion

Statecharts beloog together wiili Esterel [B], LUSTRE [BCH], SIGNAL [GBBG] and an

unknown number of local industrial concoctions to Üle group of mixed

specification/programming languages used in development of real-time embedded systems.

Some of these languages (LUSTRE, SIGNAL, Esterel) have no intemal notion of time. An exter

nal signa! must be provided as a clock and me system can use it as it likes to. Hence, various

doek operations can be specified. The disadvantage of this approach is that time constraints and

other specifications w.r.t. the time are not clearly visible in the specification/ program. Stateehans

adopts me view that these specifications should be visible and hence bas an intemal notion of

time.

Statecharts adopts,like Esterel, me synchrony hypothesis as formulated by Berry [B]. This means

Ülat output occurs simultaneously wiili the input that caused it. lf applied without care, this

hypothesis can lead to casual paradoxes, such as events disabling their own cause. In Esterel,

these paradoxes are circumvented by syntactically forbidding situations in which iliey can arise1.

t> Eindhoven University ofTeclmology, Oepanment of Mathernaties and Computing Science, P.O. Box513,
5600 MB Eindhoven, The Netherlands. E-mail; mcvuleutrc31wsinkees.UUCP or:
wsdckeesl@heithe5.BITNET
t) This research was carried out in the context of ESPRIT-project 937, DESCARTES (Debugging and
Specification of Ada Reai-Time Embedded Systems).
I) Recently, thesemantics of Esterel has been changed towards a more semantical check upon paradoxes [G).

-62-

In Statecharts, they are semantically impossible, because. there the infiuence of an event is res

tricted to events that did not cause it. We expect that the semantics of Esterel and Stateehans

coincide in the situations that are allowed by Esterel. The problem is to model causality between

events that have no preeedenee in time. In the operational semantics of [HPSS], this is done by

introducing the notion of micro-steps. Every time step is subdivided into micro-steps between

which only a causality relation holds and no timing relation. On the level of the denotational

semantics this is done by applying a total preorder on the events that occur simultaneously. This

order describes in which direction events infiuence each other.

Another problem that arises in giving a compositional semantics of Statechans, is its graphical

nature. For textual languages, defined by means of a proper syntax, it is clear what is demanded

of a syntax-directed semantics. It has to be compositional (a homomorphism) with respect to the

syntactical operators. Fora graphicallanguage, without a proper syntax, this is not so clear.

Hence, in chapter 3 we first define a syntax of Statecharts that makes use of a restricted set of

natura! operators and primitive objects. These objects and the immediate results of applications of

operators slightly generalise statecharts, by allowing transitlans to be incomplete, i.e., to have no

origin states orncttarget states yet.

Some syntactical operators lack a clear counterpart in conventionallanguages. This is because in

the graphical representation of Statecharts, the notion of area plays an important role, as it defines

a hierarchy of states. Subareas of states are associated with alternative actlvities or concurrent

activities. Transitions leaving a superstate infiuence the behaviour in all its substales (which are

lower in hierarchy). This leads to a semantics in which it is possible to extend the behaviour of

some subchart with the behaviour of the state that is put higher in hierarchy.

Unlike Esterel, Statecharts does not have a restricted kemel of operations, in terms of which all

other features are defined. The designers of Stateehans adopt the view that handy operations

should be provided as long as they can be built in. As a consequence, we had to study a restricted

version of Statechans.

Thesemantics that wedevelopin chapter 4 is compositional w.r.t. the above syntax. The domain

in which Statecharts acquire meaning basically records computations as functions that associate

to every time point a record, (F, C, ~. that represents the activity at that time. Such a record

states the claims, C, (or assumptions) about which events are generated, both in the stateehart and

in its environment; it specifies the foet that the events in F (!;;;;; C) are generated by the Stateehart

itself and, finally, it records in the partlal order :s; on C which events infiuence the occurrence of

which other events.

This semantics turns out to be fully abstract relative to a notion of observation that observes

about any stateehart only the events that are generaled by that stateehart The full abstraction

proof is sketched in chapter 5. This proof has a modular setup, which makes it possible to adapt

it easily to new features in the language. As an example of this, we extend Statecharts with vari

ables and show what extensions have to be made to the proof to handle this.

Example 1

s

Example3

Example4

T,

-63-

Example5

Example 2

s

~-~---
8~

-64-

2. Informal introduetion to Statecharts

We give a short description of the language Stateehans and an intuitive semantics. For a more

basic treatment ofthis, one is referred to [H] aitd [HPSS].

Stateehans is a formalism designed to describe the behaviour of reactive systems [HP]. A reactive

system is a mainly event-driven system, continuously reacting to external and internal stimuli. In

contrast to transformational systems, that perform transformations on inputs thus producing out

puts, reactive systems engage in continuous interactions, dialogues so to say, with their environ

ment. As a consequence, a reactive system cannot be modelled by giving its input and output

alone. It is necessary to model also the timing or causality relation between input and output

events.

Stateehans generalise Fmite State Machines (FSM's), or rather Mealy machines [HU], and arise

out of a conscious attempt tofree FSM's from two serious limitations: the absence of a notion of

hierarchy or modularity and the ability to model concurrent behaviour in a concise way. The

external and intemal stimuli are called events and they cause transitions from one state to the

other. We introduce the basic conceptions now.

2.1. States

In contrast to FSM's, statescan be structured as a tree. We call the descendantsin such a tree sub

states. A state can be of two types: AND or OR. Being in an OR-state implies being in one of its

immediate substates, being in an AND-state implies being in all of its immediate substates at the

same time. The latter construction describes concurrency.

E:xample 1 (see overleaf)

In this pictureSis an OR-state with substates A and B. Being in stateSimplies being in A orB,

but not in both. A, B and T have no substates, a and b stand for events that trigger transitions and

c is a condition. E.g., the transition from A to B is triggered when event a occurs and condition c
is true. These events are called primitive events, because they have no further structure. They can

be generated outside the system, but also by the system itself.

When the system is in A and event a happens and condition cis true, A will go to state B, and also

stay in S. Whenever it is in A orB and b happens it will go to T. The transition to A is a default

transition. When the system is in Tand b happens, it will go to S and hence toA.

Example 2 (see overleaf)

Now, Sis an AND-state with immediate substates A and B. A and B are OR-states with substates

A 1 and A2 respectively B 1 and B2 • Being inS implies being in A and B simultaneously. When

the system is in A 1 and B 2 (and hence also in A, B and S) and b happens it will go to B 1 and also

stay inA 1•

Now, if a happens, it will go sirriUltaneously to A2 andB 2 . Notice also the condition in(B 1) on

the transition from A 2 to A 1• This transition can only be taken if and when the system is in

A 2 and B 1 and event d occurs.

-65-

2.2. Transitions

In the examples above we used simple transitloos from one state to another like in FSM's.

They can be more complicated, however, going from a set of states to a set of states.

Example 3 (see overleat)

When the system is in A 2 and B 1 and a happens, it will go to T, and in particular to C 1 and D 1 •

This is the general case. In this version of the paper, however, we don't allow transitions teaving

more than one state. We do allow, however, transitions entering more than one state.

Notlee the compoundeventon the transitions from A 1 and A 2 • Only when a and b occur simul

taneously this transition will be triggered.

2.3. Actions

In the label of a transition one can specify some events that are generated when the transition is

perfmmed. This is called the action of a transition. These events immediately take effect and can

trigger other transitions.

Example 4 (see overleat)

When the system is in A, C and E and a occurs, a chain reaction of transitions will be performed.

The transition in T 1 will genera te event d; this event will trigger the T 2 -transition, which, on its

turn, will generate b and c and thus trigger the T 3 -transition.

All transitions that are triggered by such a chain reaction are considered too'happen at the same

time. So, in this example, the next state contiguration after (A,C,E) is (B,D,F). But see the sec

tionon causality.

2.4. Events

In genera!, the eventin the label of a transition has the form of a logic proposition, using conjunc

tion, disjunction and negation. A transition labelled a A b can be taken when a and b occur in the

same time step; if the label is avb, it can be taken as soon as a or b occurs; a transition labelled

with -,a can be taken at any time step in which a does not occur. In these formulae, one can use

primitive events a,b,c ... , but also the structured events enter(S) and exit(S), denoting theevent of

entering respectively exiting state S.

Another structured event is the time-out event. The expression time-out(e,n) stands for the time

out of n time units on event e. A transition labelled with this expression will be triggered when

the last occurrence of e was exactly n times ago. One time unit stands for the time that it costs to

take one transition or one chain reaction of transitions. In this version of Statecharts a

specification should go with an additional specification relating time units and physical time.

Events are instantaneous and transient of nature, such in contrast to the conditions, which

represent a more continuous situation. E.g., theevent enter(S) can only be sensed at the time unit

when state S is entered, but the condition in (S) is true throughout the time that the system is in

the state S, in other words between the occurrence of enter(S) and exit(S).

-66-

2.5. Causality

As already mentioned above, transitions can trigger other transitions and all these transitions

occur simultaneously. Tagether with the possibility of negation of events and conditions, this can

raise causal paradoxes.

Eumple 5 (see overleaf)

1be transition labelled with a " ..., b will be triggered when a occurs and b does not occur. This

transition generates an event, c, that triggers another transition which, in its turn, generates b. All

transitions in this chain reaction are considered to be happening at the same time. So b did hap

pen and the first transition could not occur, hence the whole chain reaction did not occur, hence ...

1bese kinds of paradoxes are avoided by giving the following operational interpretation to chain

reactions, which is taken from [HPSS]:

Every time step is subdivided into micro-steps, each of which corresponds to the execution of

one transition. The events that are generated by a transition can only inlluence transitions in the

following micro-steps. So in the example above, the T 1- transition takes place in the first micro

step, triggering the T 2 -transition in the second micro-step. This one generates theevents b and c,
but these cannot prevent the T 1-transition any more, because the latter has taken place in a previ

ous micro-step.

We stress that the micro-steps have nothing to do with time. Their sequentia! occurrence is only

related to the way they can influence each other- no order in time is implied. Maximal sequences

of micro-steps are called macro-steps; a macro-step corresponds to one step in time. Here, maxi

mal means that the sequence of micro-steps cannot be expanded without additional input from the

environment. Hence, in example 4 above, the sequence consisting only of the T 1-transition is not

maximal, because the T rtransition is still possible.

-67-

3. Syntax

In this chapter we give a non-graphical syntax of statecharts. According to this syntax any sta

teehart is built up from primitive objects and some operators. These operators have a natura! rela

tionship with the pictures. The intermediate objects to which the operators are applied are the so

called Unvollendetes or Unvs. These are incomplete statecharts with transitions without souree

state(s) or target state(s). Two operators, Concatenalion and Conneetion, can tie these dangling

arrows together, thus creating complete transitions.

Concatenation makes a complete transition between two Unvollendetes and resembles sequentia!

composition. Conneetion makes a complete transition within one subchart, thus possibly creating

loops.

In Statecharts, there are two types of states: the AND-type and the OR-type. Being in an AND

state means being in all of its immediate substates simultaneously. We call these immediate sub

states and their interlor the orthogonal components of that AND-state. Being in an OR-state

means being in exactly one of its substates. The Unv that builds the interior of an AND-state

respectively OR-state is called anAndChart respectively OrChart.

Statification is the operator that builds the hierarchical structure of statecharts. It puts an Unv

inside a primitive state, i.e., a state without substates, thus creating a structured AND- or OR

state. Semantically, it means executing the subchart inside, with the possibility of interrupting

this execution when one of the (incomplete) transitions leaving the superstate are triggered.

AndCharts and OrCharts are built using the operators Anding and Orring. Anding corresponds

to parallel composition in conventional programming languages. Orring can be compared to

non-deterministic choice.

Finally, Ciosure gives theevents that are considered internal for the particular subchart. which

means that the stateehart will ignore such events whenever they are generated by its environment.

Hiding makes the events that are generated inside a stateehart or Unvollendete invisible to the

outside world. In this sense they are dual. Neither operator has a graphical counterpart in the

language as defined in [HPSS] .

In the Appendix A we give the forma! relationship between the objects generated by the syntax

and the forma! objects representing stateebacts as defined in [HPSS].

3.1. Transition Labels

We de fine the labels that can be associated with transitions. Let a set of elementary events E, and

a set of states l: be given. Define the set of primitive events

EP =E.u{enter(S), exit(S) I Se l:}

Definition.
Thesetof events Eis inductively defined by

i..e E, the null event;

eeEp -+eeE;

ei-ezeEp-+et" ez, e1 vezeE;

-68-

eeE -+...,eeE;

ne IV\{0}, eeE--+ time-out(e, n)eE 0

Remarlcs: ...,e is here considered as an event, in contrast to [HPSS) where it is a condition.

Semantically they are the same, i.e. we also have the "not yet" interpretation. This will be

explained insection 4.1.

We abbreviate enter(S), exit(S) and time-out(e,n) by respectively en, ex(S), and tm(e,n).

Definition.

1be set of conditions C is inductively defined by

true, false e C;

CJ,C2eC-+CtAC2, CJVCzeC;

ceC -+...,ceC;

Se l:-+ in (S)e C

Definition.

1be set of actions A is inductively defined by

~e A, the null action;

eeEp-+eeA;

a;eA for i=l, ... ,n -+DJ, ... ,aneA

Definition.

Lab= {e(c]la IeeE, ceC, aeA}

If e =À., c =true or a=~, we often omit that part ofthe label.

3.2. Unvollendetes

0

0

0

Providing a syntax for Stateehans is done using a notion of incomplete stateehart or Unvollen

dete, abbreviated as Unv. This is a stateehart in the process of being built up. It differs from a

complete stateehart in that it need not have a unique root state (i.e. a state of which all other states

are direct or indirect substates) and that it may have so-called incomplete transitions. Incomplete

transitions are transitions either without souree or without target state(s). These transitions are

pictured as dangling arrows. Any stateehart can be broken up into Unvollendetes and in Chapter 4

we will give the semantics of these Unvollendetes.

We distinguish two kinds of Unvollendetes. The basic Unvs that cannot be decomposed are

called Primitives. They consist of one state with some incomplete transitions. They are, together

with the operators the terminal symbols of the syntaJt. We denote them by

Prim(/,0, A)

where A is the name of a state, I and 0 a set of incoming respectively outgoing transitions. The

other three types of Unvs form the non-terminal symbols of the syntax. PrimCharts are Unvs

with one root state. A complete stateehart is an example of a Primehart without incoming or out

going transitions.

Example 6

Example7

u

Example8

-69-

Conn (U .ta.4)

~a ~e/a
~

-70-

AndCharts fonn the interlor of an AND-state. The operators Conneetion and Concatenation can

not be applied to them. OrCharts fonn the interlor of OR-states and furthennore all Unvs that are

not the interlor of an AND-state. Apart from Anding, all operators can be applied to them. The

structure ofthe non-tenninals is for all three types the same:

PrimChart(/,0), AndChart(/,0), OrChart(/,0)

where I and 0 again denote a set of incoming respectively outgoing transitions.

Definition

Let T1 respectively T0 be thesetof all incoming respectively outgoing transitions; T1r.T0 =0.

Let eeE.ur., /, .. :f~T1 , i, ... eT1, O, ... r;;.T0 , o, ... eT0 and L: T0 -+Lab.

1ben the set of Statecharts is defined by

Stch={VIB--+ V}

and --+ is the derivability relation for the following set of rules:

B --+ PrimChart(0, 0)

PrimChart(/,0)--+ Prim(/,O,A)

PrimChart((lt u/2)\{i}, 01 u02)--+ Stat(i, Prim(It. 0 I· A), OrChart(/2, 0 2)) with ie/2

PrimChart(lt u/2, 01 u02)--+ Stat(Prim(/,O,A), OrChart(/2, 0 2))

PrimChart(I 1 U/2, OtU02)--+ Stat(Prim(/,O,A), AndChart(/2, 0 2))

OrChart(/,0) --+ PrimChart(/,0)

OrChart(J, 0)--+ Ciose(e,OrChart(/,0))

OrChart(/,0)--+ Hlde(e,OrChart(/,0))

OrChart(ltUI2, 0 tU02)--+ Or(OrChart(It. Ot). OrChart(/2, 0 2))

OrChart((ltUiz)\{i}, (OtUOz)\{o})-+Conc(OrChart(/ 1,0 1). o,i, OrChart(/2 , 0 2))

withoeDtand ie/2

OrChart(J\{i}, 0\{o})--+ Conn(o, i, OrChart(/,0)) withoe 0 and ie/

AndChart(I, 0)--+ PrimChart(I, 0)

AndChart(l, 0)--+ Ciose(e,AndChart(/,0))

AndChart(/,0)--+ Hide(e,AndChart(/,0))

AndChart((/ 1 ulz) \ {i t'· ...• i/}. 01 UOz)--+ And(AndChart(I 1, 0 1),

AndChart(/2, 02),{(it, it'), ... ,(in, in'}))

withi;Eit and i;'e/2

3.2.1. Explanation of the operators

Concatenation - Conc(U 1 , o, i, U z)

0

By concatenation two OrCharts are "sequentially composed". An outgoing transition, o, of U 1 is

connected to an incoming one, i, of U 2 , thus creating a complete transition. (See example 6 over

leaf).

-71-

Conneetion- Conn(o,i,U)

Conneetion only differs from concatenation by tak.ing just one chart and making the new transi

tion somewhere inside. In fact we don 't need concatenation if we have conneetion and orring (see

below), but from the semantic point of view, concatenation is more basic. (See example 7 over

leaf).

Statification- Stat(Prim(/,O,A),U)

This is the hierarchy operator; it has no counterpart in conventional PJ:?gramming languages. It

puts an OrChart (U 2) inside a state A (the state of a primitive U 1). An optional incoming transi

tion, i, from U 2 becomes the default of A. (See example 8 overleaf). If U 2 is an AndChart, the

default is left out, because an AND-state needs no default starting point: execution is started in all

immediate substates simultaneously. Of course, these substatescan have defaults associated with

them.

Anding- And(U I• U 2· {(i I• i 1 '), ... ,(in, in')))

Anding in Statecharts corresponds to parallel composition in conventional programming

languages. Two AndCharts are put in parallel. Through Statification, they will become the

orthogonal components of an AND-state. (See example 9 overleaf). Anding is a binary operator,

so if there are to be more than two orthogonal components, it must be applied repeatedly. The

semantic counterpart of Anding is associative and commutative. Note that the orthogonal com

ponents of an And-state are always PrimCharts (charts with one root state). Forked transitions are

made by specifying which of the incoming transitions of the operands should be combined.

Repeatedly applying Anding and combiDing forked transitions creates forks with more than two

target states.

Orring - Or(U 1, U 2)

This is the counterpart of Anding. It puts some OrChans together in non-orthogonal composition,

with the intention of statilkation by an OR-state and can be compared to non-deterministic

choice. (See example 10 overleaf).

Ciosure- Close(e,U)

In [HPSS], the set of primitive events is divided into intemal and extemal events. Extemal events

can be generated outside the stateehart itself, intemal events cannot. For a compositional seman

tics this distinction is oot useful, because events that are intemal to the complete statechart, can

be extemal to some subchart.

Therefore, we introduce an operator that declares some events to be intemal to a subchart mean

ing that such a subchart will not react if one of its intemal events is generated outside. This is not

the same as hiding since these events are still observable.

-72-

Hieling- Hide(e,U)

1be hiding operator makes the specified events invisible for the outside world. Hlding and Cio

sure are in a sense dual. Hiding resnicts the infiuence of the operand on the environment, and

maintains the infiuence of the environment on the operand, whereas Ciosure resnicts the

infiuence of the environment on the component, but maintains the influence of the component on

the environment. If Hiding is muting, then Ciosure is deafening. 1bey can be seen as a conse

quence of the broadcast communication mechanism. The conventional hiding operation, i.e.,

maldng an event or variabie fully local, can be obtained by applying both Ciosure and Hiding to a

component

-73-

4. Sernantics

This chapter presents a denotational semantics of statecharts or rather of Unvs. This semantics is

compositional (syntax-directed) with re gard to the operators defined in Chapter 3.

The maximality of the sequences of micro-steps as described in Chapter 2 corresponds with the

notion of maximal parallelism as modelled in [HGR,GB] (see also [SM]). The teclmiques of

those papers also apply here.

As Statecharts describes a set of contiguradons (as any digital system), a discrete model of time is

adequate. Since it is intended to make global time specifications, we use a global notion of time.

The simplest domain that gives these properties is IN.

At fust sight, Statecharts are quite different from ordinary programrning languages. Simplest to

characterise are sequentiallanguages without jump-like constructs. Once jumps enter the picture

we have to abandon the idea of giving state transformations for each command in isolation. Trad

itionally, this is solved using the idea of continuadons [SW,M].

It is our aim to give a compositional semantics of Statecharts. The semantics of [SW] is only

given for full program blocks in which all labels of gotos appear. In our solution jumps (transi

tions) are made in two stages. In the fust stage we have only half jumps, in which the place where

we are jumping to or where we come jumping from is not specified. These are the incomplete

transitions in the syntax.

In the semantics, we record the behaviour of a subchart only between suchjumps. And we specify

for each history the incomplete transition by which it starts and by which it ends. This

specification is just the syntactical identification of the transition.

In the second stage, by concatenation or conneetion these half jumps are made into full jumps by

identifying an incoming and an outgoing transition. Now we can also give the full ·semantics of

the jump, as we know where we come from and where we go to. This semantics is just the con

catenation of the history that ends in one half of it and the history that starts with the other half. In

case of connection, loops can arise since we jump to the same subchart. Consequently, the

semantics of this construct will be characterised by a fixed-point equation.

Now there is a difference between gotos in conventionallanguages and transitions in Statecharts,

namely, in Statecharts the place where a jump can occur is not completely syntactically deter

mined. Transitions from a superstate can be triggered when execution is anywhere inside that

state. Our solution is to give two options at any moment during execution inside a state: exiting

by the outside transition or continuing the history generaled by the semantics of the interlor of the

state.

4.1. The sernantic domain

The semantics of an (incomplete) statechart, i.e., its denotation, will be a set of histories, each

history corresponding to one possible execution.

-74-

1be set of histories Dl is defined by

Dl= ((i,m,f,o,m)l ieTru{•}. m,nedN,fe(IV-+pC),oeTou{• • .i}, mSn,

Dom(f)={O, ... ,n}}

where T1 and T 0 are the sets of incoming respectively outgoing transition identlfiers from the

syntax, C denotes thesetof so-called c/ock-records, which will be defined later, and 1'1-+p€

denotes the set of partlal functions from IV to €.

A history consists of five components. The first two components give the incoming transition of

the chart by which the executlon starts and the time at which this occurs. The last two com

ponents do the same for the outgoing transit! on. The outgoing transition equals ".i" in case of an

incomplete computatlon. In the case that there is no actual incoming or outgoing transition taken

by the component, we denote this by •. For the start of the execution this is the case when we

have the root state of the complete statechan, or a component of an AND-state that is started

implicitly by an incon$lg transition of another component (see fig). 'The execution can end

without a transition when it is interrupted by another component taking a transition that exits the

complete construct (either an orthogonal composition or a statlfied state).

1be third component of the histrory is a function that associates to each time unit, a so-called

clock record. The precise structure of doek-records, C, is defined later. 'The records associated

to time values less than the starting time contain information about the past. i.e., before the exe

cution of this subchart started. We will need this to describe the occurrence of time-out events

and to evaluate conditions.

Notation:

Let he Dl, h=(i,n,f,o,m). Then we define:

• 1be projections in, out, st, end and-:- are defined by:

h =(in (h), st(h), h, oUl(h), end(h))

lf there is no confusion, we will just write:

h instead of h,

h(st) insteadof h(st(h)),

h (end) insteadof h(end(h)).

0
In order to use fixed-point definitions, our domain will be a complete partlal order (cpo). In fact,

we will use the standard Hoare ordering as in [K&] and represent it, as usual, as inclusion of

prefix-closed sets.

We distinguish extendable andfinished histories. Extendable triples correspond with incomplete

computations and are characterised by a bottorn outgoing transition (.i). We define the following

partlal order on histories:

Defirtition

/5./iffin(/)=in(j') A st(/)=st(f) A out(/)=.iAend(/J5,end(j') Af=? 0

If h 1~h 2 we say that h 1 is a prefix of h2

Definition

-75-

A set of histories His "prejix-closed" iffVheH: h'~h ~h'eH

The function. CL maps a set of histories, H, into the smallest prefix-closed set that contains

H 0
The semantical domain is defined as follows:

Definition
The domain is (V, ~ , .LJD), where V= {Hç;, Dil H is prefix-closed} and

.l/D=0

Theorem

(DJ, ~ , .LID) is a cpo.

Proof:

Standard.

Definition

A total preorder on a set A is abinary relation ~ on A, such that for all a,b,ceA:

(transitivity)

(rellexivity)

(totality)

0

0

0

0

If a~ band b -:t:. a we write a < b. Notice that- ~ induces an equivalence relation- on A: a-b iff

a :Sb "b ~a.

Definition

C = {(F,C, ~) IFç;, Cç;, EP,~ a totalpre-order on C}

For fe Dl define the projections /'", ~, T' and r by:

f (i)= if (i).~(i).T'(i)) andr(i) = ~(i),J-'(i))
If there can be no confusion, instead of (a,b)eT' (i) we will write ~i b or even a :S b. 0

For one particwar time-step, a clock record describes the behaviour of the total system (com

ponent and environment) by C and ~. a total preorder on C. The contri bution of the component is

contained in the set F.

F is the set of events that are generated by the component and C is the set of events that are

assumed to be generated somewhere in the total system (including the component).

Unfortunately the information provided by C and F is oot sufficient. A transition can inlluence

other transitions in the same time step either by triggering them or by preventing them from being

triggered. This inlluence, however, is restricted. A transition can only inlluence transitions that

occur in subsequent micro-steps. This is the way causal paradoxes are avoided.

We have 10 record this restricted inlluence, 100. This leads to the following additional informa

tion.

-76-

A total preorder on the events that occur in the same time step representing the way such

events can inftuence each other. E.g., if event a causes transition t, then we have a <b for all

events b that are generated by transition t. This means that t can never inftuence transitions

that caused a. These relationships can also arise from negative causes: if a transition

labelled a A -.b is taken, we have b < a, because taking such a transition is only possible if

a occurs when b has not been generated. This is the "not yet" interpretation of the not

operator from [HPSS].

Eumple 11 (see tigure in chapter 5).

Ifthe two transitions occur simultaneously, we have b<a in all behaviours. This means that

the T z-transition cannot trigger the T 1-transition, even though it generates b. The trigger of

the latter transition has to come from somewhere else.

1be relationship between the preorder and the micro-steps is as follows.

a<.b ü and only if a occurs in a micro-steps previous to that in which b occurs.

a-b (abbreviation fora!:> b A b ~ a) if and only if a and b occur in the same micro-step.

If an event is generated in more than one micro-step in the same time-step, we only take the first

occurrence into account, since an event is effective during all micro-steps following the miero

Slep in which it is generated.

4.2. Semantics of transitloos

Before we define the semantics of subcharts, we define a tunetion that gives the semantics of

transitions. All behaviours that are consistent with taking some transition, are expressed by the

function T.

Definition

T 0 : E-+ 2'ft is defined recursively as follows:

T0(À)=2E,

T 0(a) = {Cç;.EP laeC} foraeEP

T 0(-.e) = {Cç;.EP I Cl! T 0(e)}

T 0(e 1 A e2) = T o(e 1)nT o(e2)

T 0(e 1 ve2) = T 0 (e 1)uT 0(e2)

To(tm(e,n)) = To(l..) D

T 0(e) gives all sets of events that may occur at the time that a transition labelled with e ! ... takes

place. This is not sufficient for time-out events, for which the past is also relevant. Therefore we

extend T 0 to the tunetion Te that also gives all past histories that are consistent with the transition

taking place.

Definition

6 = ((f,n)l f: IN-+pEp, ne JN,Dom(f)={O, ... ,n})

6 is a set of simplified histories. We are only interested in the end point (also referred to as
end(h)) and inthesets C. The shift operator changes the end point of such a history.

shift(h,j) = (h, max(O,end(h)-i))

TE: E-+ 26 is defined recursively as follows:

TE(a) = {h I h(end)e T 0(a)}

TE(-.e) = {h I h~ T(e)}

-77-

TE(tm (e,n)) = {h I end(h);;: n A shift(h, -n)e T(e)A \fO<i<n: shift(h, -i)e T(-.e)}

TE(e 1 Ae 2)=T(e 1)nT(e2)

TE(et ve 2) = T(e 1)uT(e2) 0

A time-out expression tm(e,n) is satisfied ifthe last occurrence of e was exactly n time steps ago.

This is expressed by shift(j,n)eT(e) (e occurred n steps ago) and by shift(j,-i)eT(-.e) (e did

oot occur later, i.e., the occurrence at -n was the last occurrence). In Statecharts, it does oot

matter whether e occurs at the moment of the time-out, hence, no claims about the present are

made. This is expressed by T0 (tm(e,n)) = {C ICç;Ep}.

The semantics of conditions is defined as follows:

Definition

Tc:C-+26

Tc(true) = T(/,.)

Tc(false) = T(-.true)

Tc(in (S)) = {h 13n < end(h): eneh(n) A \f n<i~end(h): ex(S) ~h(i)}

The semantics of actions is as follows :

Definition

TA:A -+2E,.

TAU!)= 0

TA(a)={a} foraeEP

[]

TA(a 1;a2) = TA(a 1)uTA(a2) fora1.2eA 0
Now we extend the domaio of T to the set of complete labels, Lab, and the codomain to sets of

histories.

Definition

Let ~ be an ordering relation on C and FçC. Then thesetof predecessors of F under ~ is

defined by:

~-pred(F)={aeCi3beF:b <F}

Definition In the following, F, C and ~ abbreviate gF (end), gc(end) and gs; (end) respectively.

T: Lab-+ zU:l is defined as follows:

T(e[c]la)=

{ge2U:ll3he 26
: he TE(e)llTc(c),end(h) = end(g),

'Vi * end(h): gF (i)=0, h=gc,

ex(•)eF,F \ {ex(•)}ç;TA(a)ç;C,

~-pred(F) = h(end),

'Vft.heF:ft-h
0

-78-

We only record the first occurrence of an event, hence not all the events in the action part of the

label have to occur in F. It can well be the case that the environment will generate an event

before (in the sequence of micro-steps) this transition generates it. E.g., if the transition is

labelled a/a it is clear that a should not occur in F, since the transition is still dependent on a

being generaled outside.

4.3. Definition of the semantics

A fimdamental aspect of the semantics is that it describes any behavwur of the system that is con

sistent with the behaviour of the component So, when two components are combined, only those

behaviours should be combined that agree totally on the behaviour of the system. In other words,

the C- and ~-components of the clock records should be equal. The F-components, however,

describe only the local contributions and hence these should be uni lied.

Definition

(F!,Cl, ~1)II(F2,C2. ~2)=(F1UF2,C1. ~!) ifC1 =C2and ~~ = ~2

= undefined otherwise

For / 1,2e Dl, fi 1112 is only defined if .tf s =/i· s. In that case,

(fiiif2)(i): IV -+p C

(flllf2)(i) = / 1 (i~lf2(i) for all i5.min (end(f1),end(f2))

= <Jf (i), .Jf(i).{J(i)) if end(/3-j)<i S.end(/j)

= undefined otherwise

We define the semantic fimction

0:.]: Stch--+ ID

by induction on the structure of Stch in the following sections.

4.3.1. Primitives

0

A primitive bas only one state and no complete transitions. Hence, a possible execution consists

of some incoming transition, possibly waiting in the state until some outgoing transition is trig

gered and then executing this transition. Incomplete executions have no outgoing transitions (but

a .l instead) and the case that the state is never left is expressed, as usual, by having arbitrary long

incomplete executions. The semantics of the outgoing transition is given by the fimction T, the

semantics of waiting is given by a set W. Since waiting is only allowed if none of the outgoing

transitions can be taken, Wis the complement of the set of all behaviours corresponding to taking

one of the transitions. No semantics is given for the incoming transition, only an identification.

At a later stage, this transition will be conneeled to an outgoirig transition of another (or the

same) chart There, the outgoing transition will have a semantics.

Definition

Let

0= {o 1, · ·· ,on),L(o;)=e;[c;]la;,

T; = {h I he T(L(o;)). out(h)=o;}.

Th en

11

W; = T(-.e;)UT(-.c;), W =uW;.
i=l

-79-

[Prim(/,O,S)] =
{ge 6113he Dl~

in (h)e/u { • }, out(h)e Ou { • • .l}

in (h)e/-+ st(h)>O, out(h)e 0 -+he T(L(out(h))

'<:lst(h'JÇ.i<end(h): shift(h,i-end(h))eW

st(h)>O-+ gF (st-l)={ en}

out(h)e { • • .l}-+ gF(end)=0

out(h) *.i-+ gF (end)=hF (end)

'<:ti: f1,f2egF(i)-+ 11-12

8c=hc,gS.=hS.

'<:ti: i *st(g);d * end(g)-+ gF(i) = 0

} CL(ex (S)Iex (*))

4.3.2. Concatenation

0

By concalenating two subcharts. new computations become possible. Namely, by enlering the

first chart, performing a computation that ends in the connecting transition, enlering the second

chart by this transition and perfonning a computation there. In ouf semantics, this corresponds to

simply concalenating the histories from the first chart and those from the second chart that end

respectively start with the connecting transition.

It is still possible howevef, to perfonn a computation in one of the charts in isolation, provided

that it doesn 't start Of end with one of the connecting transitions, because these arenoen lering Of

leaving points anymore.

Hence, the semantics of the concatenation of two subcharts consists of the concalenation of their

respective histories togethef with their own histories (performed by the function conc), from

which the histories that start Of end in a conneetlog transition are deleted (performed by the func

tion delete). We have split this definition into two functions because we need these functions

again in the semantics of Conneetion (below).

Definition

[Conc(UJ, t1. tz, U2)] =delete1,, 1,(conc ([U1], t 1, t2, [U2]))CL

where delete;,j(D) = {heD ltdn(h), out(h)E {i,j}}

and conc(DJ, t1h· Dz)=

{h 13h;eD;:

st(hJ)=st(h)/\end(h!)=st(hz)/\end(hz)=end(h) /\ out(h!) = in(h 2> /\

h =h1llh2 /\ '<:lfJ,f2eh)(end):f1-f2 }uD1UD2

0

- 80-

4-3.3. Conneetion

Since conneetion creates a transition from an OrChart to ltself, the semantics is a fixed point of

the concatenation operator. Note, however, that the deletion of histories starting or ending with

the connecting transitions can only be applied after the fixed-point operation, because these con

neetion points are needed for the repeated application of concatenation.

Definition

[Conn(U,t1, t2)] = delete1,, 1,(J.IX.conc([U], t 1• t 2 , X)fL

where J.L is the least fixed-point operator

4-3.4. Anding

0

Anding two Unvs means executing them in parallel. 111is means that for each time step the

behaviour of both components at that time step should be combined. The definition of this opera

tor, U, can be found insection 4.3.1. Now wedefine how two given histories should be combined.

Definition

Let / 1, !ze Dl. Wedefine the predicate MER GE as follows:

MERGE(h~oh2 , h) <=:>

(i) st(h 1) = st(h2) " end(h 1) = end(hz) " h = h 1llh2

(ii) out(h)*l.-+ 3j: out(h)=out(hj)Aout(h3_j)=•

(iii) out (h)=l.-+ out (h 1)=out (h 2)=l.

(iv) Va,be hF (st): a-b 1\ Va,be hF (st): a-b 0

Case (i) treats complete computations. The computation can only exit the construct via an outgo

ing transition of exactly one of the components (no forlcs on outgoing transitions are allowed).

Hence, at such a moment the other component must be performing some intemal computation.

~sis expressed by lij I< 1/3-j I, where j is the index of the component from which the outgo

ing transition is performed. All computations in f 3-j beyond and including I ij 1-I (this is the

time at which the exiting transition is performed) are discarded by the merge. The remaining

ones are combined. lf the computation is incomplete, we simply merge the histories of the two

components (ii).

Note that f 111/z is a partlal function: if f 1 and fz do not agree on the behaviour of the total system

at some time step, the tunetion is undefined and the predicate equals false.

Definition

[And(U, , Uz, {(t,, w,), ... ,(tn, Wn)J] = {h 13h;e [U;]:

[(3j : in (h)=in (hj) A in (h3-j)=*) v 31Sj Sn: in (h)=tj" in (h 1)=tj "in (h2)=wj]

"MERGE(v 1 ,h 1,vz,h2,v,h)}

0

The execution starts either explicitly by a forked transition (in (h)=tj) or explicitly by a transition

to one of the two components as a result of which execution in the other component is implicitly

started (in(h)=in(hj) and in(h3_j)=•).

- 81 -

4.3.5. Statification

Tilere are two types of Stalification, one with and one without a default

Definition

[Stat(d, U I• U2)] = {h 13hie [Ui]:

((in(h~n(ht)"in(h2)=d) v (in(h)=in(h2)"in(ht)=•) "MERGE(ht.h2,h))}

[Stat(Ut. Uz)] = {h 13hie [Ui]:

[(3j: in(h~n(hj)"in(h3-j)=•) "MERGE(h~oh2,h)} 0

There are two ways to start the execution of an OR -state with inner structure. One can either

take a transition explicitly tosome state(s) inside the outer state (in(j~n(f2)) or take a transi

tion to the outer state and entersome state(s) inside by default (in (f)=in (f1)).

An AND-state has no defaults associated to it, since execution always starts simultaneously in all

of its immediate substates. So, execution starts either by taking a transition to the outer state and

start execution inside implicitly (in (h)=in (h 1) "in (h2)=•) or by entering the inner structure

explicitly (in (h~n (h2)" in (h2)**). The way the componentsof this inner structure are started,

is taken èare of by the semantics of U 2 . CombiRing the histories from the two components and

exiting the construct is not different from Anding and hence this definition can be found in the

previous section.

4.3.6. Hiding and Ciosure

Hiding and Closure are operators that change the behaviour of an Unv only with respect to one

event 1n the rest of this section this is the event a. All the necesssary opera ti ons are first defined

on clock records and later applied uniformly to histories. These operations have the form of rela

tions: aRb means that a can be transformed to b.

Ciosure

Closure with respect to an event a makes the closed stateehart insensitive to all a-events gen

erated outside the chart. Consequently, all histories should be deleted in which a is claimed to

occur (ae C), but in which a is not generated. This is performed by the relation OK. The relation

ld is the identity relation on clock records.

Definition

(Ft . Ct.~t) OK (F2 , C2, ~2) ~ aeC ~ aeF 0
With these operation we can de fine the semantics of Closure.

CWSE = (OK!îld)

[Close(a,U)] = (g I 3h '<:/i: h(i) CLOSE g(i)}

- 82-

Hieling

Hiding an Unv with respect to an event a makes that event fully internat to the Statechart. This

means first of all that any claim of a should be satisfied by a generation of a inside the Unv. In

other words, Ciosure should be applied first. Furthermore, the Unv becomes fully insensitive to

generations of the event a outside and the environment of the Unv becomes insensitive to genera

tions of a inside. This means that the denotation should be saturated with histories that display

any behaviour as far the event a is concemed. The relation SAT performs this. At the end, any

occurrence of a intheF-set is removed by the relation DEL.

Definiüon
<Ft.Ct.~t)SAT(F2, C2, ~2) <=>

aeF2 -+aeC2
F 1 \{a}=F2 \{a}

Ct \{a}=C2\{a}

~~ \{a}= ~2 \{a}

aeF2-+aeF1

(Ft . Ct.~t) DEL (F2, C2, ~2) <=> F2 =Ft\ {a} "Ct =C2 ":5;1 = ~2

HIDE = (OKr.ld)oSAToDEL

(Hide(a,U)] = {g I 3h Vi: h (i) HIDE g (i)}

D
Hiding and Ciosure can not only be applied to primitive events, but also to states. This is tan

tamowu to Closing or Hiding with respect to the events entered and exited.

[Close(S,U)] = [Ciose(en(S),C/ose(ex(S),U))]

[Hide(S,U)] = [Hide(en(S),Hide(ex(S),U))]

-83-

S. Full Abstraction

In this chapter we give a notion of observable behaviour for Statecharts and prove that the

semantics is fully abstract with respect to this notion of observable behaviour. We refer to

[HGR,HePl] for a further explanation a bout full abstraction.

A context is a program with a "hole" in it. If C [X 1 is a context and P a program then C [P 1 is the

program that results from plugging P into the hole, denoted by X, of C. Let 0 (P) give the

observable behaviour of program P.

Definition

Asemantics [.] is fully abstract with respect to 0 iff:

for all p~grams P,Q: [P]=[Q] <=> for all contexts C: 0 (C [P])=0 (C [Q]) 0

Por Statecharts, we choose as the observable behaviour of a stateehart or Unv the events that are

generaled by that stateehart at every time unit. So we define

O(P)=(hF I he (P]}

Theorem

[.]is fully abstract w.r.t. 0

Befare we give the proof, we introduce some preliminary definitions and lemmas. The main

difference between this proof and that of [HGR881 is that the first is much more structured. It can

be easily adapted to extensions of the model, e.g., to cover variables in the language, as shown in

Section 5.1.

Domaio properties

Por the proof of full abstraction, we need some properties of the domain. Namely, not all

prefixed-closed subsets of Dl can be generated by thesemantic function [.].

Lemma 1 Por all programsPe Stch and histories he [P]:

(i) if out(h)=.i, then there exists h'e [P] with out(h) *.i and h~h'.

(ii) there exists h'e [P] with st(h')>st(h), end(h) = end(h)+st(hrst(h),

out(h')=out(h), in (h')=in(h) and '<lst(h')5.i~end(h): h'(i)=h'(i-{st(h')-st(h))).

(iii) if M A=h'~ A and A is a set of events that contains all theevents occurring in P (including

en and ex(S) for states Sin P), then h'e [P].

Proof By structural induction toP.

Properties of histories

In the following definitions, we notatea property of a history by 4>(h), 'l'(h), · · ·, where 4>. ljf, · · ·

are logica! formulas in which h occurs as a free variable.

~b

~u t=•

u ;t*,.l

tr = tm(en(U1 ,m))
or

tr =À

- 84-

Hlde 9a

Close 9a

Close 9ab
Hide 9a

Close 9st.9el

- 85-

Definition A history property ~h) is observable iff for all histories h 1. h2 holds:

~hl)+--+«h2) ~ hf=h~

Definition Let ::: be an equivalence relation on Dl. A fonnwa ' characterises a history h upto =
iff for all histories h' holds:

~h') ~h=h'

Filters

The central notion in the proof is that of the filter. A filter is a context, especially designed to

make properties of histories observable. For every event, we use a filter that observes the pres

enee of this event in the set of claims C of a particwar time-step. For every pair of events we u se

a filter that observes whether this pair is in the total preorder associated to a particwar time unit

ornot.

Definition

Let ~h) and 'V(h) be some properties of histories; a filter for $ by 'I' is a context F [X] such that

for all programs P

3he [P]: ~h) ~ 3he [F[P]] : 'l'(h)

Convention

In the following we refer to an Unvollendete by the name of the root state, if it exists. So in the

example below, S 1 denotes the Unvollendete [<S 1 >,0, 0].

Furthennore, we hide all state narnes to simplify the denotations.

De fine Fa [X]=Ciose(ga, And(Hide(ga,X), Stat(t I• Hide(S " [<S 1 >, 0, 0]),

Conn(t 2 , t3 , Hide(S2 , [<S2 >,(t~ot3}, {tz}])))))

Lemma 2 Let i be an arbitrary integer; then

(i) Fa[X] is a filter for st(h')Si<end(h)Aaehc(i) by gaehF(i).

(ii) Fa[X] is a filterfora ~hc(i) by 8a ~hF (i) ASt(h')Si <end(h).

Proof

(a) [S 1] = {h I in(h)==• . out(h)==•. h (i)e WuT for in (h) :S i<end(h)]CL

where W={(0, C, :S)la ~C} and

T={({ga) , C, :S)I [a, ga)~CA a < 8a} U {(0, C, :S) I [a, ga)I;;; C}

(b) [And(S1 , X)] ={hl 3h 1, h2:h 1e[SI]Ahze [X] A

in(h)=• A(out(h)=•v(out(h)=t AOut(h 2)=t))A

st(h)=st(h 1)=st(h 2) A end(h)=end(h 1)=end(h 2)

0

-86-

hF=hfuhf 1\hC=hf=h'i_ AhS=Ji!j=h~}

(c) Now suppose that h 1e[X] and ~1 (h 1). Take h 2e[S 1], such that hfs=hy.s and

geh2(if. (ii) shows that this is possible. Then from (b), we see that there exists

he[And(S~oX)] withg.,eh(i) 0

CoroUary Let ho be an arbitrary history. Then F4 [X] is a filter for

+.,: 'Vst(h'Y!oi<end(h): hc(i)~a = hff (i)~a by

y.,: 'Vst(h'Y!oi<end(h): g .. ehF(i)+-+aeh0(i)

1bis filter makes the occurrence of theevent a in the C-sets of a history observable. The idea of

tbe proof is to combine several of these filters, thus obtaining a big filter that exactly filters out

tbe bistory we want. To achleve this, we need filters that have a special property that makes it

possible to combine them.

Delinition A filter F [X] for ~ by 'V is transparent for x iff for all programs P:

3he (P]: ~h)AX(h) ~ 3he [F[P]j: 'V(h)AX(h)

Eumple 1be filter Fa is transparent for any property not involving a or g ...

Proposition lfFl and F2 are transparent forx. so is F 1 [F 2 [X]].

1be idea ofthe proofis to combine many filters, each filtering out a specific property of a particu

lar bistory. 1be combination of all these filters should then make all the relevant properties of the

bistory observable. Unfortunately, we cannot directly derive that transparency for two properties

implies transparency for the conjunction of these properties. For this, we need somewhat

stronger notions of filter and transparency.

Delinition

A filterFis transformational if there are functions t, K: D -.+D such that

Delinition

'Vhe [P]: ~h~t(h)e [F[P]] "'ljl(t(h))

'Vhe [F [P]]: 'ljl(h~K(h)e [P] "~K(h))

A filter F is transformationally transparent for x if it is a transformational filter that is tran

sparent for x and furthermore:

X(h) ~ X(t(h))

x(K(h)) ~ x<K(h))

Proposition lf F is a transformational filter for ~ by 'V and it is transformationally transparent for

x1 and forx2• then Fis transformationally transparent forx1 "XZ·

-87-

Proof

he [P] and ~h) and (X1 Ax2)(h) =:>he [P] and ~h) and x1(h) and X2(h) =:> l(h)e [F[P]] and
~l(h)) and XI (t(h)) and x2(t(h)) =:> t(h)e [F[P]] and ~l(h)) and (XI" X2)(l(h))

The reverse is analogous.

Lemma3

(i) If F 1 and F 2 are filters for ~1 by 'I' I respectively ~ by 'lf2, and 'I' I~. then F 2[F t[X]] is a

filter for ~1 by 'lf2. (ii) If F 1 and F 2 are filters for ~1 by 'lft respectively ~ by 'lf2, and F 1 is tran

sparentfor~ andF2 is transparentfor1jf2, thenF2[Ft[X]] is a filterfor~l"~ by'lf1 A'If2· 0
Proof(i) Let he [X] and ~1 (h). Then there exists h 1 e [F 1 [X J] with 'I' I (h), because F 1 is a filter

for ~1 by 'VI· Then ~(h) holds, because 'VI and ~ are equivalent Then there must also exist

h2e [F 2[F t[XJJ] with '1'2· because F 2 is a filter for~ by ljl'2.

For the other direction the proof can be reversed.

Proof(ii) Let he [X] and ~1 (h)AMh). Then there exists h 1e [FdXJ] with 1j1'1 (h)A~(h),
because F 1 is a filter, transparent for ~. 'Then there must also exist h 2e [F lfF 1 [X]]] with

'1'2 " '1'2, because of the transparency of F 2.

For the other direction the proof can be reversed. 0

To observe the ordering between two events we use a filter similar to Fa. Remember that a tran

sition labelled a "-.b can be taken in the case that both a and b occur in the same step, but then b

must have occurred in a later micro-step than a.

Definition FablX I= Close(gtJb, And(Stat(t 1, Hide(T 1, [<T1 >,0, 0]}, Conn(t2 , t3 , T2)), X)},

where T 2 = Hide(T 2,[<T2>,{tû. (t3)]) and L(tz) = b "-.afgab

Lemma 4 Fab is a filter for

st(h)5.i <end(h)" ((a,b) ~hs. (i)" be hc(i)) by Kabe hF (i)

Corollary Let ho be an arbitrary history. Then Fab[X] is a filter for

~ab: Vst(h)5.i<end(h): ((a,b) ds.(i) Abe hc(i))~(a,b) EhTI (i) by

'l'ab: Vst(h)5.i<end(h): (a,b) EhTI (i)~KabehF (i)

IJ

The following filter observes the incoming and outgoing transition, and it enables the other filters

Fa and Fab to make !heir observations also on the past of the original histories. This filter

observes an incoming transition t = * and an outgoing transition u "#. *. l.. Any other combina-

tion can be observed with a similar filter.

Definition

F1., = Close({g,r~. g,nti}, Conc(U 1, t 1, t 2 , Conc(Stat(U2 , Hide({g,1, g,nti}, X), u, t3 , U 3)))),

where U 1 = Hide(U 1• [<U 1 >,0, {t 1}]),

U2 = Hide(U2, [<U2>,{tû, 0]},

U3 =Hide(U3 , [<U3 >,{t3}, {t4}]),

L(t1) = trlg,,.

L(t4)=jjg•Nl•

tr =tm(en(U~om) ifm>O,

=À. ifm=O.

Lemma 5 F,.. is a filter for

- 88-

.,..: in(h)=t Aout(h)=u ASt(h)=m Mnd(h)=n by

'1'111: gs~ehF (m) "8•ndehF (n+l)" end(h)=n+l.

Furthermore, he [F, .. [P}] Ag,1e hF (m) implies st(h)=O

For the purpose of combining these filters we have the following transparencies. Let

+d: ~iSend(ho): hc(i)~a::: hff (i)ta by

"'": vn>~end(h0): hF(i)~a =h!5 (i)~a

•411>: vn>~end(h0): ((a,b) ds(i) Abe h c(i))~a,b) fl!hÖ (i)

'1'411>: vn>~end(ho): (a,b) fl!hÖ (i)~ga11e hF (i)

'1'111 : g,1ehF(n)Ag,ndehP(n+l)

x..: hF~a=h~ ~a.

0

0

Lemma 6 Let the integer k, theevents a, band the transitions t, u be given and let c, d and e be

arbitrary events not of the form 8:r.• gXJ, g,1 or g,nd. Then

F., is transparent for st(h)=k, ;ji, ... ~cd• ~ •• ;ji, and 'XF for any events c and d and any event

e*a. - - -
F.,11 is transparent for st(h)=k, '1'111 , 'Vc• •d• •• and XF for any event c and any two events

(d,e) * (a,b).

F 1 .. is transparent for cehc(i), c~hC(iJ, (c,d)ehs(i), (c,d)~hs(i) and 'XF for any two

events c and d and integer i. 0
Now we can give the actual proof of full abstraction. Let ke [P] \ [Q], such that out(k) * .l.
This is possible because of Lemma 1 (i). Let A={ a 1o •• • , a,J be the set of events occurring in Q,
let t=in(k) and let u=out(k).

Define Fe =Fa, [· · · Fa,[X] · · ·] and Fs =Fa,a, [· · · Fa,a,[X]· · ·],

where EP= (a 1· · · ·, akl·
Take k for the history ho as used in the definitions of •a• 'Va etc. Now, by the corollaries of

Lemma 2 and 4 and Lemma 5 and 6, and by the observation that 'Vtu(h) implies

end(h)=end(h0)+1, F dFc[F1 .. [X]]] is a filter for
- - -•= .a, 1\ ••• 1\ .a, 1\ .a,a, 1\ ••• 1\ .a,a, 1\ ., .. 1\ X.., 1\ • .• 1\ Xa, by

'1': 'I' a, 1\ · · · A 'Va, A 'Va1a1 A · · · A 'Va,a, 1\ 'VtK A Xa, 1\ · • • A Xa,

We can write • and 'V instead of • and 'V for the following reason. Let P be given and suppose

he [P] and, e.g., •ä(h) ASt(h)=m. Then, by transparency of F 111 , there exists h 1 e [F, .. [P]] with

~(h 1)Ag.,ehf (m). This implies that st(h)=O and hence •a~~- For the other direction, we

use that Fa is transparent for st(h)=k. De fine h 1 ==Ah 2 iff h 1 ~ A=h 2 t A. We see that ~ character

ises k upto ==A · Furthermore, 'I' is observable.

By the filter property, we know that there exists Ie [F [P J] with w(l) and hence lp E 0 (F [P]).

This history lP is the history that makes the observable difference between P and Q. ln other

- 89-

words, we claim that l~'EO(F[Q]).

Suppose, by contradiction, that zF e 0 (F [Q]). Then there must be l' e [F [Q J] that is observably

the same as/, i.e.,l'F=zF and, because ;vis an observable property, v(l') must hold. By the filter

property, there exists k'e [Q]I with IP(k'). Because ~ characterises k upto A, we know that k'==Ak.

Then, by Lemma 1 (iii), ke [Q], which contradiets our initial assumption. D

5.1. Variables

One of the advantages of this modolar proof of full abstraction is that it can easily be extended to

cover extensions of the language. We illustrate this by ex tending Statecharts with variables. In

this extension, it is possible to specify actions on a transition as assignments to variables. In the

conditions we can test the values of these variables by aibitrary boolean expressions. Further

more, for every variable x, there is an event changed (x) that is generated when x is written to.

5.1.1. Syntax

Let a set of variables Var with values in V be given and a set of Boolean expressions B (Var)

over these variables as well as a set of V-valued expressions E(Var). We extend the set of

primitive events EP with the set {changed(x) lxe Var}. We extend the syntax of Conditions

with the following clause:

beB(Var)-+beC;

and the syntax of actions:

xeVarAeeE(Var)--+ x:=eeA;

5.1.2. Semantics

Variables are shared and we disallow that two processes (orthogonal components) try to write to

the same variabie in the same step. The effect of a change is feit in the next micro-step following

the action of writing. When a variable is written to, theevent changed(x), or eh (x) for shon, is

generated.

To model this, we introduce a set of internalevents of the form x,., signalling the action of writ

ing the value v to the variabie x.

Ei= {x. I xe Var, ve V}

These events serve only semantic purposes and they can not be used in the labels of transitions.

We redefine the doek-records:

C = {(F,C, :5:)I Fç;;,Cç;,EpuEi, :5: a totalpre-order on C,

Vx, v, v': x,.,x,.•e C--+ v=v',

Vx: (eh (x)e C +-+3v: x.e C) Ax.-ch (x)}

-90-

To give the new definitions of Tc and TA, we introduce v.aluation functions and how to interpret

these on histories.

De&nition A valuation is a panial tunetion from Var to V. We extend it canonically to

B(Var)--+ {true, false} and to E(Var)--+ V.

De&nition Let h be a history, then a(h): Var--+ Vis a valuation defined by

a(h)(x) = v iff 3n~nd(h): x.e hc(n)A Vn <k<end(h)"twe V: Xw dc(k)

We extend the definition of Tc with the following clause:

Tc(b) = (h I a(h)(b)=true}

1be semantics of an assignment is dependent on the evaluation of the expression. This means

that tbe semantics of actions becomes dependent on the history. So we add the history as a

parameter to the semantic function on actions, TA.

TA: A x OI--+ 2/H

TA(Jl.h)=0

TA(a,h)={a} foraeEP

TA(a1;a2,h) = TA(al)uTA(a 2) fora1.2eA

TA(x:=e,h) is (x.la(h)(x)=v}u{eh(x)J D

In tbe semantics of complete labels, TA(a) should be changed by TA(a,h). All other definitions

stay the same.

5.1-3. FuU Abstraction

To rnaintaio full abstraction, weneed a new type of filter to observe theevents x. in the C-sets.

For tbe events eh (x) no filter is needed, because the set EP is extended with these events and

bence the filters of the type F" will take care of this.

Define F zy[X I = Close(g..,., And(Hide(ga,X),Stat(Hide(V 1, [<V 1 >. 0, 0]), t 1,

Conn(t2 , t 3 , Hide(V2, [<V2 >,{t~ot3}, {ty])))))

where L(t2) = eh(x)[x=v]lgn.

This is a filter for
st(hJ>,i <end(h) AX.e he(i) by KnE hF(i) and

x" dc(i) by gX'I ré hF(i) Ast(hJ>,i <end(h)

Proof

The reason that the second case works is that our denotations satisfy the following property:

x"e C--+ eh (x)e C

D

So x"~ C implies either eh (x) ré C or XwE C with v;tx. In both cases the transition cannot be

taken.

-91-

Applying repeated conjunction to this filter, we get that F n is a filter for

~n: '<lst(h)SJS.end(h): x"e hc(l}+-+x"e h~ (i) by

'I'D: '</st(h)S.iSend(h): x"eh~(i)f-+gnehF(i)

For our set A of relevant events, we choose

A= (a la in Q}u(en(S),tx(S)IS in Q}u{eh(x),x" lx in Q}

where in stands for syntactically occurring.

We cannot use a filter for every event in this set, because it is potentially infinite. We must allow

that the set of values, V, is infinite. So we consider the subset A' of events that occur in the his

tory k that makes the difference between [P]I and [Q].

A' =An (x. 13i: x.ekc(i)}

This set is finite, because

(i) the set of variables used syntactically in Q is finite

(ii) for each variabie x there is at most one eventof the form x. in the C-component of a doek

record.

(iii) the number of doek-records in a history is finite

Our new filter becomes:

F .. ,., [· · · F x"v)F [X]] · · ·],

where A'=(x 1 v 1 , · • · , x,. v,.} and F [X] is the filter from the previous proof.

This is a filter for
- -

$': Ax
1
v

1
1\ • • • A$x"v

0
by

1(: 'I' 1\ 'l'x1v1 1\ • • • 1\ 'l'x"v.
- - - -

where c!lxv and 'l'xv are obtained in the same way as the ~a and 'I' a in the previous proof.

Since 1(clearly is observable, we only have to show that $' characterises k upto =A· Because

eh (x)e EP, we have no problems with these events. Furthermore, the ordering of theevents of the

form x. is determined by the ordering of the events of the form eh (x), so we only have to show

that ~' is characteristic for the sentence x"ehc(i). So suppose ~' and x.e~(i). Then

eh(x)e~(i) and hence eh(x)ekc(i). So there mustbesome w with :xwekc(i) and, by $',

:xwek'c(i). This implies that v=w, so x"ekc(i). lf $' and x.ekc(i), then x"eA', by definition,

and hence x.e ~(i), by ~'. If k'=Ak• it is obvious that ~'(k) holds. The rest of the proof stays the

same.

-92-

6. Discussion

In this chapter we discuss a possible other definition of the semantics with respect to causality

between micro-steps.

6.L Other definition on causa~ty

In thesemantics of [HPSS], the influence of a transition is restricted to the transitions that follow

it in the sequence of micro-steps building the macro-step. In our compositional semantics, this

restricted influence is modelled by the pre-order in the clock record. 'This solves the causal para

dox of the transition annulling its own cause (see example 5 in chapter 2), but this solution is not

fully satisfactory. E.g., a transition labelled -.a can always be taken, even if a happens during that

time unit. (lt only differs from a transition labelled by À in as much that it need not be taken when

a bappens.) Furthermore, the semantics depends heavily on the relative order in which the

micro-steps occur, whereas the micro-steps are definitely not observable - they are only intro

duced to solve the causal problems.

A new version of the operational semantics is under study by Pnueli and others, in which global

contradictions are not allowed. A global contractietion occurs when two transitions with

confticting labels take place in the same macro-step. E.g., a transition labelled -.a can never take

place in the same macro-step with a transition labelled .. .la, even if the latter occurs in a later

micro-step. 'This leads to a simpler and more intuitive semantics. The main drawback, however, is

that causal paradoxes such as the one in example now lead to a run time error. There is no

acceptable behaviour anymore to associate to these situations and there is no way to detect them

syntactically.

We can easily adapt the compositional semantics to model this new operational semantics. The

only thing that has to change is the definition of the semantics of a label. Instead of demanding

that the triggering event should only be satisfied by some initia/ segment of the macro-step, we

demand that it should be satisfied by the complete macro-step. The pre-order is only used to

guarantee that there are no circularities in the triggering of transitions by other transitions. In fact,

we could do with a linear order instead of a partlal order, because there is no need anymore to

distinguish events generated in the same micro-step from the same events generated in arbitrary

order. Whether this will yield to a fully abstract model is not sure, since the ordering relation

cannot be made observable in the same way as it is done in the proof of this paper, by means of

the F .w-filter.

-93-

7. Condusion

We presenled a compositional semantics for the graphical specification/programming language

Statecharts, as described in [HPSS]. For this, we had to define a proper generalive syntax. 'The

operators in this syntax have simple graptrical counterparts as well as a natural semantics. The

model extends the model of [HGR,GB] to deal with broadcast and, specifically, with the micro

step semantics of Stateehans as described in [HPSS]. This is a subtie operational notion to deal

with the consequences of the synchrony of action and reaction (called the synchrony hypothesis

by Berry [B]). The compositional semantics doesnotmodel the micro-steps directly, but records

only the occurrence relationship between the generaled events as imposed by the order of micro

steps. After fixlog the notion of observable behaviour, we prove that the semantics is fully

abstract with respect to this notion of observability.

This proof introduces the notion of filter, a special context that makes one aspect of a history

observable. Using filters modularises the proof, since extensions of the language can be handled

by adding new filters. This strategy is shown by the example of adding shared variables to the

languages.

This work serves as a basis for extending the worlc of Hooman on proof-systems for Reai-Time

languages [H] and that of Zwiers [Z].

Acknowledgement

Tbe authors want to thank Amir Pnueli and Jozef Hooman for the stimulating discussions with

them and !heir useful suggestions. Furthermore, we want to thank Ton Kalker who made an

essential suggestion to acquire full abstraction. Special thanks go to S. Ramesh who found a lot

of bugs in earlier versions and who helped very much in finding the definitions for Hiding and

Closure.

Furthermore, we want to thank Edm'e van Thiel and lnge van Drunen for typing this paper.

-94-

References

[B] Berry G., Cosserat L. (1985), The Synchronous Programming Language ESTERELand

its Mathematica! Semantics, in "Proc. CMU Seminar on Concurrency", LNCS 197, pp.

389-449, Springer-Verlag, New York.

[BCH] Bergerand J.-L., Caspi P., Halbwachs N. (1985), Outline of a reai-time dataflow

language, in "Proc. IEEE-CS Reai-Time systems Symposium", San Diego.

[DD] Damm W., D''dmen G. (1987), An axiomatic approach to the specification of distri

buted computer architectures, in "Proc. PARLE Parallel Architectures and Languages

Europe, Vol I", LNCS 258, Springer Verlag, Berlin.

(G] Gonthier G., (1988), Ph.D. Thesis, Institute Nationale de R'echerche en Informatique et

en Automatique, Sophia-Antipolis, to appear.

[GB] Gerth R., Boucher A., A Timed Failures Model forExtended Communicating Processes

(1986), in "Proc. 14th Colloquium Automata, Languages and Programming ICALP",

LNCS 267, pp. 95-114, Springer Verlag, Berlin.

[GBBG] Le Guemic P., Beneviste A., Boumal P., Ganthier T. (1985), SIGNAL: A Data Flow

Oriented Language For Signal Processing, IRISA Report 246, IRISA, Rennes, France.

[H] Hare! D. (1987), Statecharts: A visual Approach to Complex Systems, Science of Com

puter Programming, Vol. 8-3, pp. 231-274.

[HePl] Hennessy M., Plotkin G. (1979), Full Abstractionfora Simple Programming Language,

in "Proc. Math. Foundat. of Comput. Science", LNCS 74, pp. 108-120, Springer Ver

lag, New York.

[HGR] Huizing C., Gerth R., De Roever W.P., (1987), Full Abstraction of a Reai-Time Deno

tational Semantics for an OCCAM-like language, in "Proc. 14th ACM Symposium on

Principlesof Programming Languages POPL" , pp. 223-237.

[Ho] Hooman J. (1987), A compositional proof theory for reai-time distributed message

passing, in "Proc. PARLE Parallel Architectures and Languages Europe, Vol 11", LNCS

259, pp. 315-332.

[HP] Harel D., Pnueli A. (1985), On the Development of Reactive Systems, Logic and

Models of Concurrent Systems, in "Proc. of the NATO Advanced Study lnstitute on

Logies and Models for Verification and Specification of Concurrent Systems", NATO

ASI Series F, Vol.l3, pp. 477-498 Springer Verlag, Berlin.

[HPSS] Hare! D., Pnueli A., Pruzan-Schmidt J., Sherman R. (1987), On the Formal Semantics

of Statecharts, in "Proc. Symposion on Logic in Computer Science (LICS)", pp. 54-64.

[HU] Hopcroft J.E., Ullman J.D. (1979), Introduetion to automata theory, languages, and

computation, Addison-Wesley, Reading.

[K&] Koymans R., Shyamasundar R.K., De Roever W.P., Gerth R., Arun-Kumar S. (1988),

Compositional Semantics for Real-Time Distributed Computing, lnformation and Con

trol, to appear.

-95-

[M] Mazurltiewicz A., Proving algorithms by tail functions, lnformation and Conrrol, 18,

(1971), pp. 220-226.

[SM] Salwicki A., Milldner T. (1981), On the Algorithmic Properties of Concurrent Pro

grams, in "Proc. Logic of Programs", LNCS 125, Springer Verlag, New York.

[SW] Strachey C., Wadsworth C.P., Continuations: A Mathematica! Semantics for Handling

Full Jumps, Technica! Monograph PRG-11, Oxford University Computing Laboratory,

Oxford.

[Z] Zwiers J. (1988), Compositionality and dynamic networks of processes: lnvestigating

verification systems for DNP, Ph.D. Thesis, Eindhoven University of Techno1ogy, to

appear.

-96-

Appendix A

In [HPSS] the set of stateehans is not defined by a generalive grammar, but in a more direct way.

We shall call these objects H-statecharts and define the formal relationship between H

statecharts and the elements of the sets Stch, the expressions generated by the syntax as defined

in chapter 3.

Definition (taken from [HPSS], adapted):

Let a set of states l: and a set of labels Lab be given.

A H-:Statechart is a quintuple (S, p, 'lf, ö, D where

S cl: is the set of states;

p: S -t 25 is the hierarchy function;

v: S -t (AND , OR} is the type function;

ö: S -t 25 is the default function;

T~ SxLabXS is the set of transitions,

with the following restrictions:

Q) VseS:s~p·~)

Qi) Vs 1, s 2 :s 1 *Sz -tp(s 1)(")p(sz)=0

(iii) VseS:ö(s)~ p•(s)

(iv) 3! reS:p•(r)=S "VteT:r~<tr..ru>

(v) V seS: (3xeX:se p(x) "w(x)=AND) -t Vte T:s~ <t r..se' t>

The set of H-statecharts is called HS

Notation: if te Tand t=(s 1, s 2), then <t=s 1, i=l and t>=s2

where p • and p• are the reflexive respectively irretlexive transitive dosure of p.

Wedefine a function R: HS-t Stch as follows:

Leto=(s, p, Ijl, ö, T) be given.

0

Define a tunetion E :S-+ Unv that gives for eaeh stateehart with one root state and its interlor the

associated Unvollendete (PrimChart). Then we ean define:

R(a)=E(r) where ristheroot state of a, i.e., V seS:se p(s).

Define: T1=((t, s)e TXS I set>} v ((s~o s 2)e SXS I s 2eö(s 1)}

To={(s, t)e SxT I se< t}

L:T0 -t Lab

L(s,t)=i

Notation: if ie T1 and i=(t,s), then i >=t> and tr(i)=t if te T, ; >=ö(s 1) if sie S.

if oe T 0 and o=(s, t), then < o= < t and tr(o)=t.

T1 and T 0 will serve as the set of ineoming respeetively outgoing transitions for the Unvollen

detes we are going to use. Since defaults are made out of ineoming transitions, we need some of

these for this purpose.

-97-

Define an auxiliary function Ep:S--+ Unv:

Ep(s)=Prim(l, 0, s) with l={(t, s)e T1l set>} and O={(s, t)e To I se <t}

For U e Unv, de fine

Inc(U) =I if U= <1,0>

Outg(U) = 0 if U= <I, 0>

Weneed a function E;: S--+ Unv that gives for each state the Unvollendete that should be associ

ated to the interlor of that state. lt depends on whether it is an AND-state or an OR-state. We

define E and E; recursively:

E(s)=Ep(s) ifp(s)=0

E(s) = Stat(Ep(s), E;(s), s,s') if p(s) ~ 0 and 'V(s)=OR and (s, s')e/nc(E;(s)) forsome s';

= Stat(Ep(s),E;(s)) if p(s)=0 and 'lf(s)=AND.

E;(s) is defined by two cases.

Let seS be given and p(s)=(s~o ... ,Sn), n> 1.

Distinguish two cases:

(i) 'lf(S) = AND

De fine a sequence of Unvollendetes A 1 , ... ,An as follows:

At =E(st)

Ai=And(Aj-l• E(sj). aj)for2S.jS. n

and ai= {(it. iz)Eitxlzl sieiz> A31 S. k <j :ske i 1 >}

and /1 =lnc(Aj-l), / 2 =lnc(E(sj)).

Then E;(s) = An

(ii) 'lf(S) =OR

Let U =Or(.. Or(E(st), E(sz)), ... ,E(sn))

Let {t~o ... ,tnJ=(teTILCA(t)=s} Here, LCA is a function defined in [HPSS]; LCA(t)

gives the smallest state that encloses transition t:

LetR=<tut>, thenLCA(t)=xiff

1. R~p+(x)

2. '!'(x)= OR

3. VseR: if'lf(S)=OR then R~p+(s)-+xep*(s)

De fine a sequence of Unvollendetes B 0 , ... ,Bn as follows.

B 0 =U

Bi= Conn (Bi-l• oi, ij) for 15. j 5. n,

where tr(ij) = tr(oj)=ti

Then E;(s) =Bn 0

98 C. Huizing, R. Gerth, W.P. de Roever

B Appendix

This appendix contains the proofs of some lemmas in chapter 3.

Lemma 1 (1) For all progromsPE Stch and histories hE [P]:

1. if out(h) =l., then there exists h' E [P] with out(h) ;él. and h :S h'.

2 .. there exists h' E [P] with st(h') > st(h), end(h') = end(h) + st(h')- st(h), out(h') =
out(h), in(h') = in(h), and Vst(h') :Si :S end(h'): h'(i) = h(i- (st(h')- st(h))).

3. i/ h t A = h' fa and A is a set of events that contains all the events occurring in P
{including en(S) and ex(S) for states Sin P), then h' E [P].

Proof By structural induction to P.

1. For a primitive chart P, there is for every history h E [P] a history h' E [P] that is
exactly the same, except that out(h) = *· This history suffices.

For the composite charta, we first prove the following property. For any history h and
chart P, there is a history hE [P], with h5 = h5 and st(~ = st(h). For the primitive
charts, this is guaranteed by the fact that (T U W)5 = ~ . For the composite charts,
this follows from the nature of the MERGE predicate and the weaker I I-operator that
do not change the . 5 components of histories.

Then, if out(h) =l. and MERGE(hl!h2 ,h), we know that out(h1) = out(h2) =l. and
hence there ~e h~, ~; with h; :S h: and ou!(h!) ;é l.. By the property above, one can
always find h~ and h; such that MERGE(h~,h~,h') and a fortiori h :S h'. The same
holds for the 11-operator.

2. Neither the semantics of primitive charts, nor the semantica of the constructors depend
on the partienlar starting and ending points of the histories.

3. Obvious.

Lemma4

Fab is a til ter for

Proof
Let

st(h) :Si < end(h) /\(a, b) ~ h5 (i) /\ b E hc(i) by Y ab EhF(i)

W = {(0, C, :S) I b ~CV a E C}
T = {(F,C, :S) I b E C /\(a~ CVb < a) /\ 9ab E C Agab E FA b < 9ab}

D

T hen, if h E [T2] , for every st(h) :S i < end(h) , we know that h(i) E W or h(i) E T .

Modelling Statecharts in a fully abstract way 99

Furthermore, for any h E H, there exists a h' E ~T2) with h5 f{9~b} = h'5 f{9~b}, because
W UT covers all possibilities of C and ::;, apart from 9ab·

Hence, if h1 E [X], there is a h2 E [T2) with hf. f{9~b} = hi f{9~b}· Then there is a
h~s E [Hide(9ab,X)] with h/ = h~ and hence there is h with MERGE(ht,h2,h).

N ow suppose that (a, b) ~ h~ (i) 1\ b E hf (i) (4>(h)) for some st(ht) ::; i < end(ht). Since
hl{ = hf, we also have 1/>(h2) and b E hf (i), so hf (i) E T. This implies that 9ab E hf{ i), and
because MERGE(ht,hz,h) holds, 9ab E hF(i).

For the converse, suppose 7/J(h), that is, 9ab E hF (i). This implies that 9ab E ht F (i) or
9ab E hf(i). Because 9ab is hidden in X, So hf (i) E T.

Lemma 5

F1,. is a filter for

Proof

<Ptu : in(h) = t 1\ out(h) =u 1\ st(h) = m 1\ end(h) = n by
7/Jtu: 9•t E hF(m) 1\ 9end E hF(n + 1) 1\ end(h) = n + 1
Furthermore, hE [F1,.[P]] 1\ 9.t E hF(m) implies st(h) = 0.

Assume that 9•t and 9end do not occur inf. Let f E [P] and f = (m,•,Ï,u,n) with m > 0.
Then there is 91 E [Uz) with

92 = (m,tz,Ï,u,n)

Clearly, there exists 93 E [Ut) with out(93) = t1, end(g3) = m, st(93) = 0, and 9,1 E 9f(m).
Furthermore, there is h E 2° with 9f(i) = h(i) and en(Ut) E h(O) and en(Ut) ~ h(i) for
i> 0, so hE TE(tm(en(Ut),m)).

Hence, there is

94 E [Conc(Ut,i},tz,Stat(Uz,Hide({9st.9enÛ,P)))]

with !i4 = !izii9J, st(94) = 0, out(94) = *• end(94) = n.
Next, define history 95 with in(95) = t4, st(gs) = n, end(9s) = n + 1, 9end E 9f(n + 1),

and 9ff(i)= gi(i) for i ::; n. Clearly, 95 E [U3] and, hence, there is

h E [Conc(Ut, t1, t2, Conc(Stat(U2, Hide({9•t,9enÛ• P), u, t3, U3)))]

with h = !i4ll!is, st(h) = 0, so 9end E hF(n + 1) and 9•t E hF(m). 0

Lemma6

Let the integer k , the events a, b, and the transitions t, u be given, and let c, d, and e be
arbitrary events not equal to 9:r:, 9:r:y, 9•t. or 9end· Then

Fa is transformationally transparent for st(h) = k, 7/J~u, </l~d, <fe, {!., and XF for any events
c and d and any event c f:. a.

Fab is transformationally transparent for st(h) = k, 7/J~,., </!~, <fe, {!., and XF for any events
c and any two events (d,e) f:. (a,b).

100 C. Huizing, R. Gerth, W.P. de Roever

Ftu is transformationally transparent forcE h0 (i), c rf. h0 (i), (c,d) E h$(i), (c,d) rf. h$(i),
and XF for any two events c and d and any integer i.

Proof
Clear from the proofs of the respective filters. The history transformations are such that they
do not change the properties stated in the lemma. 0

Chapter 4

On the semantics of reactive
systems

101

On the Semantics of Reactive Systems *

C. Huizing R. Gerth

Eindhoven University of Technology t

January 14, 1991

Abstract

We explain that reai-time reactive systems pose specific problems in defining languages
to specify and program them. Three criteria are formulated, responsiveness, modularity,
and causality, that are important to have for a high-level specification language for these
systems. As new results, we prove that these properties can not be combined in one
semantics. Since these properties are mandatory for a structured development of reai
time reactive systems, we introduce a two-levelled semantics in which the tb ree properties
hold on different levels the semantics: global events are treated more abstractly with
respect to time than local events.

1 Introduetion

There is a fundamental dichotomy in the analysis of computing systems. This dichotomy
crosses all borderlines between sequentia! and parallel systems, central and distributed sys
tems, and between functional and imperative systems. This is the dichotomy between trans

formational and reactive systems [HP85]. Transformational systems are well described by a
relation between input and output value. They read some input value, then produce, perhaps
non-deterministically, an output value and terminate. A reactive system, however, maintains
a continuous interaction with its environment. Typically, the environment reacts upon the
output of the system and in many cases the system is not expected to terminate.

Reactive systems can be found anywhere: they include digital watches, interactive soft
ware systems, integrated circuits, reai-time embedded systems. Design, programming and
verification of reactive systems is an important challenge, since existing techniques for trans
formational systems are not satisfactory for this purpose [HP85].

Recently, several formalism for the development of reactive systems have been proposed.
We mention Esterel [BG88, BC85], Lustre [BCH85b], and Statecharta [Har87]. In the devel
opment of these formalisms, serious problems have been encountered. Apparently, it is not
so simple to design a high-levellanguage for reactive systems. The central problem is that all
these languages try to combine the following three properties, or criteria, in one formalism.
These properties are for the first time formally defined in this paper.

The first property is responsiveness, meaning that a system's output comes simultaneously
with the input that causes it. This requires an abstract notion of time, since there is always

•This research is partially supported by ESPRIT projects 937 (DESCARTES) and 3096.
'Department of Matbematics and Computing Science, Eindhoven University of Technology, P.O.Box 513,

5600 MB Eindhoven, The Netherlands. Electronic mail: wsinkees@win.tue.nl or wsdckeesh@heitue5.bitnet.

103

104 C. Huizing & R.T. Gerth

some physical time needed to compute a reaction, ultimately. This property is important for
high-level specification where one does not want to bother -yet- with implementation details
on the one hand, but. on the other hand does want to specify in an accurate, non-fuzzy way.
Furthermore, it allow'S for step-wise refinement, without having to redo the timing over and
over again.

The second property, modularity, means that all parts of the system should be treated
symmetrically. The interface between the environment and the system should be the same as
the interface between the parts of the system itself. Furthermore, every part of the system
should have the same view of the events occurring in the tot al system at any moment. Conse
quently, in all the formalisros mentioned above, the communication mechanism between the
subsystems is the immediate, asynchronous broadcast1 •

The third property, causality, means that for any event generated at a particular moment
there must be a causa! chain of events leading to the action that generated this event. No
causa! loops may occur and no events may be generated "spontaneously", i.e., without an
input event that directly or indirectly caused it. This allows for an intuitive, operational
understanding of the system's behaviour.

Unfortunately, these three properties can not be united in one semantics, as we prove in
the paper. Toprepare the way for this result we classify the semantica of reactive systems
currently a.vailable- for Esterel [BC85, BG88], for Lustre [BCH85b], for Signa! [LBBG85], for
Statecharta [HPPSS87a, i-Logiz /nc89, PS88, HGdR88] -in basically 5 types of semantica,
ea.ch one trying to improve upon the others, but no one succeeding in a semantica which is
satisfactory from the point of view of structured program development. To this end a bare
hones language for reactive systems is introduced, which can be identified with subsets of any
of these languages for the purpose of our criteria. To define and enable comparison of our
various semantica for this language, a simple formalism is introduced for transition systems
with edges labelled by eventfaction pairs. As already stated, we prove that our criteria cannot
he met by any uniform semantics2 •

We know a way out, however. Although very useful, the properties of modularity and
ca.usality are applied at different levels of development. Modularity is useful at a relative high
level, where too much detailed knowledge of the execution of the subsystems would obstruct
a good overview of the system. Causality, however, is useful at the level of operational
reasoning, where a local part of the system can be completely understood. Therefore, we
introduce the concept of modules into the language. A module is a relatively independent
part of the system, in. essence a reactive system in its own right. Between modules, the
principle of modularity holds, thus helping to keep a global understanding of the system.
Within modules, however, the prinCiple of causality holds, making it possible to develop a
smaller subsystem in an intuitive, operational way. This leads to a hybrid semantics: local
events, which are used only inside a module, interact in a way satisfying the causality principle,
whereas global events, which are used between modules, possibly in the whole system, are
treated in a modular fashion.

1IC the travelling time of signals is too high, e.g. widely distributed systems, one ha.s to introduce a.n explicit
dela.y between tbe moment tba.t a.n a.n event can be generated and tbe moment it will actually be sensed by
tbe otber components. Tbis can be done in tbe current framework.

2This is serious, and it is worth to reileet a moment on its implications, for it concerns a veritable principle
of (reactive) distributed computing. After all, structured program development, together with mechanization,
prqmises tbe only hope for improving future software quality; and the important producers of critica! software,
s.a Boeing, McDonald-Dougla.s, Rughes etc., all use specification systems to which our result applies.

On the semantics of reactive systems 105

The paper is structured as follows. In section 2, we define our forma! framework and the
language we are going to use to specify reactive systems. Section 3 defines and discusses the
definitions of the properties we want a semantica for reactive systems to have. Section 4 gives
five proposals of a semantics, illustrating the problems encountered in the attempt to find
a semantics that has a.ll the desirabie properties. In section 5 we introduce the concept of
modules and give asemantics that is modular on one leveland causal on the other, using this
concept.

2 Framework

Let some alphabet of primitive events, Il, be given. Primitive events can be generated by
the environment as an input to the system, or by the processes in the system either as an
output to the environment or for interaction with other processes of the system. These are
instantaneous signals that cannot be interrupted or undone.

We model the behaviour of a reactive system as an infinite sequence of pairs (I, 0), where
I,O Ç II. I is thesetof input events, possibly containing timing information such as doek
ticks. 0 is the set of output events, containing a.ll events generated by the system. I and 0
are not necessarily disjunct. Theevents in I and 0 are considered to occur at the same time.
Hence, the output events are timed by the events. The amount of detail that is desired can
be achieved by providing an regular input event of which the timing is known (e.g., the tick
of an external doek). Thesemantics of a reactive system is the set of a.ll possible behaviours.

We use infinite sequences, since many reactive systems are not expected to terminate.
Termination can be modelled by emitting a special output event and after that producing
only empty output sets.

If Sis a reactive system and S produces output 0 at the moment that input I is provided,
we write

S~S'
I

In general, the state of the system has changed after the transition; the system with its new
state is denoted by S'.

In case of singletons, we sometimes omit the curly braces: S ~ S'
J

Leaving out something in this notation means existential quantification, e.g., S ==? means
I

0
30,S': S ==> S'.

I
We define the semantics O(P0) of a reactive system Po as the set of a.ll behaviours of the

form (h,Gl)(h,G2) ... (In,Gn) ... such that there exist systems Pt,P2, ... ,Pn, ... and for
a.lli>O

holds.

G;
P;-1~P;

I;

Here, we give the language in which we express rea.ctive systems and va.rious proposals for
the semantica as they have been circulating.

2.1 The language

We consider a very simple derivative of Statecharta in which every reactive system is a compo
sition of flat statecharts, i.e. statecharta without hierarchy of states. Such a flat stateehart can

106 C. Huizing & R.T. Gerth

be viewed as a transition system where labels associated to transitions have the form "event
expression/action". When the machine is in the souree state of such a transition and the
event-expression is enabled, the transition will betaken (and if there is no non-deterrninism
present enabling another transition it must be taken) and the action will be performed. This
action is the generation of some primitive events. The event-expression is a propositional
combination of primitive events, e.g.,

A transition labelled with this event-expression becomes enabled either when prirnitive event c
._occurs, or when b occurs and a does not occur, or both. Exactly when the action is performed,

and exactly what "event a does not occur" means, is different in the various versions of the
semantica. A composition of transition systems is executed synchronously: all machines that
can perform a transition at some moment, do this simultaneously.

Defi.nition 1 A Transition Machine is a triple (S,s,T), where Sis a set of states, sE Sis
the initial state, T Ç S x L x S is the set of transitions.

A Transition Machine, or simply machine in the context of this paper, differs from the
classica! Finite State Machine in as much that it has no final state and that its purpose is
not to accept words over its event-alphabet, but to serve as part of a formalism to describe
reactive systems, since general reactive systems are combinations of synchronously executing
transition machines.

Defi.nition 2 A machine expression has the syntax

(machine exp) :::? [(label);] [(state)] (machine)

where (machine) is an Enhanced Finite State Machine, as defined above, and (state) is one
of its states. sM stands for M with initia/ state s, so s'(S,s,T) = (S,s',T). l;M stands
for M prefixed with a transition labelled I, so I; (S, s, T) = (S U { s'}, s', TU {(s', I, s)}), where
s'f/.S.

A reactive system is the composition of one or more machine expressions:

(reactive system) :::? (machine exp) 11· . . ll(machine exp)

lf two reactive systems SI and s2 make a step Logether we write, of course, SI 11 s2 ::b
I

SJ.II s2. lf this step is the combination of two local steps SI à. SJ. and s2 à. S2, we say
I, I.

that these local steps combine into the global step.

3 Criteria

3.1 Responsiveness

We can now define the criteria on which we judge the semantics.
As we have seen, in a reactive system it is important to know how much time elapses

between an input and the resulting output.

On the semantics of reactive systems 107

One approach is to specify for each situation a concrete amount of time. This is cum
hersome and not in accordance to the level of abstraction we are a.iming at. It forces us to
quantify time right from the beginning. At this stage one is in most cases only interested in
the relative order and the coincidence of events.

Another approach is fixing the reaction time to, say, one time unit (assume we have a
discrete time doma.in). This is simpler, but still not abstract, since specifications using this
principle are difficult to refine without changing the.ir high level meaning.

This approach has another disadvantage. In practice, a fixed amount of reaction time will
be some kind of upperbound upon the execution times of different statements in different
situations in the actual implementation. So the implementation will have to be artificially
delayed in order tomeet its specification. In many cases, however, we want the reaction to
be as quick as possible. The delay of 1 time unit was only introduced for uniformity and the
implementation is slower than necessary.

A third approach is to leave things open: only say that execution of a reaction takes
some positive amount of time and see at a later stage (closer to the actual implementation)
how much time things did take. This is also awkward, however, since it introduces a lot of
non-determinism, which will make it difficult or even impossible to prove interesting things
at an early stage of the development.

In our framework it is possible to specify that a certa.in reaction to an input comes si
multaneously wit h that input. Although there is always some physical time needed to do the
computing, in many cases this time is much shorter than the rate of the incoming events.
In other words, the time scale of the computations is much shorter than the time scale of
the environment. Therefore, it makes sense to adopt the abstraction that the reactions are
immediate on the time scale of the environment. N aturally, it depends on the application and
the implementation whether this abstraction is reasonable or not.

This abstraction gives us several important advantages:

(i). The reaction time is accurately known (i.e., 0), even at early stages of the development.
This is important, since the relative timing of input and output events is important in
reactive systems, as we have seen.

(ii). The reaction time does not depend on the actual implementation.

(iii).

(iv).

The reaction time is as short as possible (namely, 0). No artificial delays have to be
introduced at an early stage of development to enforce synchronisation. Later on, when
the implementation is better known, these delays could turn out unnecessary.

The timing behaviour is abstract, allowing further refinement without having to redo
the timing~ E.g., if a certa.in reaction is refined to include several sub-reactions, the
timing behaviour is not changed, since 0 + 0 = 0.

We call a semantica in which it is possible to perform instantaneous reactions responsive.
In our framework this notion can be formalised as follows.

Definition 3 A system S is responsive of there exist input sets / 1 and h and output set 0
such that

0 0
S==> andS ~

/1 h

108 C. Huizing & R. T. Gerth

R.esponsiveness of a system does not teil you much. It only says that there exist two input
sets to which the system reacts differently in the current moment, i.e. immediately. A more
general property is the following.

Notation:
If a. rea.ctive system consists of suhsystems St, ... , Sn, we denote this hy St 11· •• 11 Sn.

Definition 4 A semantica is responsive i/ for any two distinct input sets ft and / 2 and
non-empty output set 0 with 0 n (ft Uh) = 0, there exists a system S such that

s=:b. and s ~
I, I2

In other words, a.ny two different inputs can he distinguished a.nd immediately so.

3.2 Modularity

The fust aspect of modularity is the symmetry of interface. The way the system interacts
with, e.g., a. human heing as part of the environment, should he not different from the way
it interacts with a.nother reactive system. In other words, if we put two reactive systems
together to form a new, bigger one, they see each other's behaviours as sequences of pairs
(I, 0), exactly as the environment sees them. In pa.rticular, the composition of two reactive
systems is defined on basis of their observable behaviours: no inner details of the execution
ca.n he seen by the other system.

The second aspect of modula.rity is the uniformity of the view every subsystem has of
wha.t is going on. When an event is generated, it is broadcast all around the system and it
is immediately available to everyone. Hence, every part of the system has the same view at
any moment. This simplifi.es a.nalysis a.nd design considerably. Of course, this is not realistic
for widely distributed systems in which it takes a considerable time for a signa! to travel
between parts of the system. In this case, one has to introduce an explicit delay between the
moment that an event can he generated and the moment it will actually he sensed by the
other components. We stress, however, that our framework is designed for tightly coupled
systems in which a synchronous execution is realistic.

Definition 5 A semantics is modular i/ for any two systems St and S2 the following two
statements are equivalent:

(i). St 11 Sz ::b. s~ 11 s~
I

(ii). S;
0

' S' for i = 1 2
IuOa-i ' '

where 0 = Ot U 02 and the first step is the combination of the last two.

In this definition we can see the two aspects of modularity. First, the interface between
the subsystems is the same as the interface between a system and its environment, i.e., only
the sets I and 0 are taken into account. Second, the output of one system is immediately
available as input to the other one.

On the semantics of reactive systems 109

3.3 Causality

The combination of the principles modularity and responsiveness is what Gérard Berry calls
the synchrony hypothesis (BG88] . This combination leads to several semantic problems. First,
one can specify systems for which it is unclear what the semantica of their combination
should he. The modular combination of these system can create cycles of reactions in which
the reaction nullifies the action that caused it In Esterel (BC85],(BG88],(Gon88] and Lustre
(BCH85a] combinations like these are simply forbidden. A check at compile time is performed
to rule out programs that (might) give problems. In Statecharta (HPPSS87b] the principle of
modularity is sacrificed to achieve a semantica in which every program combination is !ega!.
In the appendix we discuss all these semantic versions.

Although not modular, these versions have the advantage that they are causa/: for every
event that is generated there is a causa! chain of events that leads to this event. In the
modular-responsive semantica , however, events can occur "out of the blue" 3 .

Definition 6 We call a semantics causa! i/ we can add to every step S ~ S' a partial
I

order :::; on I U 0, such that:

(i). iJS ~ and S ~, and I, 0 "I 0, then there is at least one dependency between I and
I I'

(ii).

0, i.e., 3aEI,bEO witha:Sb

this ordering respects the composition of systems, i.e., if St 11 Sz ~ S~ 11 S2 with causa/
I

order :::;, then there should exist a partioning into processes T1, . .. , Tn and causa/ orders

:St, ... , :Sn such that :S rUi u Oi) =:Si and Tt 11 · . -11 Tn = St 11 Sz, n ~ 2, and for each

i, Ti à T[, these steps combine into the step of St 11 S2.
I;

Here, r denotes the restrietion of a relation.
Note that in (iii) we do not demand equality of the restricted relation and the local

relation, since ft and [z may overlap and two unrelated events in one set may be related in
the other one.

Theorem 1 No semantics of reactive systems can be responsive, modular and causa/ at the
same time.

Proof:
Suppose the contrary. Take events a, b with à "I b. Then, by responsiveness, there must he
St and S2 with

S1 "b S~ and S1 ~ and
a e

Sz á S2 and S2 ~-
b 0

If causality holds, there must he partial orders :S 1 and :S2, such that a :::; 1 band b :::;2 a, since
there is a dependency between {a} and {b}, resp. {b} and {a}.

3 Unless programs in which this may occur are ruled out, as is done in Estereland Lustre.

110 C. Huizing & R.T. Gerth

By modularity, we must have

and for this step no causa.l order exists that respects ~1 and ~2, since a i: b. 0

4 Semantics

We now describe five versions of semantica for reactive systems in the framework described
above.

A Theevents generated as areaction to some input can only be sensed in the step following
the input. The main drawback of this solution is that it is not possible to express
simultaneity of action and reaction. Specifying a chain of reactions and independently
the reaction time becomes cumbersome, because every element in the chain adds one
step to the reaction time. This semantics is not responsive.

B In order to make the semantica responsive, the notion of micro-step was introduced. Every
observable step is divided into an arbitrary number of micro-steps. Action and reac
tion strictly follow each other in micro-steps, but observably take place simultaneously.
A detailed treatment of this semantics, applied to full Statecharts, can be found in
[HPPSS87b] (operationa.l model) and [HG89] (fully abstract model). The problem with
this semantics is that it introduces a lot of non-determinism: if you take the micro-steps
in a different order, you may get a different observable result. This semantica turned
out to be too subtie and non-deterministic to be of practical use.

C Semantica C overcornea this problem by demanding globa.l consistency of every micro-step.
This means that a reaction of the system should not only be enabled by the events
generated in previous micro-steps, but a.lso be enabled by the set of events generated
in the full macro-step. A full description of this semantics can be found in [PS88];
[HR88] gives an axiomatisation of Statecharta based on this semantica. Semantica C
does not fully solve the problem of modularity, i.e., the behaviour of a process cannot be
explained only in terms of macro-steps. This implies that a modular development of the
syatem is cumbersome, since every developer has to know the detailed micro-behaviour
of the other procesaes.

D In semantica D a.ll events that are generated during aome macro-step are considered as
if they were present right from the start of the step, no matter at which particular
micro-step they were generated. As a consequence, the macro-behaviour of a process
suffices to describe its interaction with other processes. The advantage of semantica C
over D, however, is that the first respects causality: each reaction can be traeed back
to the input from the environment via chain of reactions each causing the next one. In
semantica D, however, it is possible that reactions trigger themselves.

E The current implementation of Statecharta models this fifth version of the semantics. This
is an "acceleration" of semantics A. Events are generated at the next step, but before
the reaction of the system has completely died out, no input from the environment

On the semantics of reactive systems 111

is possible. This semantica is heavily non-modular, since one macro-step may contain
several steps of the type of semantica A. Events remain active only for the duration
of such a step, hence, in one macro-step an event can be activa.ted and de-activated
several times, thus leading to a much more complex interface between subsystems than
between the system and the environment.

The following piGture shows how each version of the semantics is an at tempt to improve
on another one.

A responsiveness B E• j ~•pomi~"'"
E

4.1 Micro-semantics

c modularity ___ ___;:....._.. D

The second transition relation is a labelled transition relation in the style of Plotkin [Plo81]
reflecting the transformation of a configuration in one micro-step. A configuration is a pair
(P,v), where

P is the system in its current state

vis thesetof machines (processes) that have already finished the current macro-step

We denote that machine M has finished its macro-step by M. E.g., we may write
M1ll M2ll M3 insteadof M1 11 M2ll M3, {M2} and M1 11 M2ll M3 insteadof M1ll M2ll M3,0 .
We need this information, since in general a machine can only perform a limited amount of
computation in one macro step; in many cases this is exactly one transition. Hence, we have
to know whether a machine is still allowed to perform transitions, or whether it has completed
its current macro-step.

4 .2 Further definitions

Event-expressions are propo~itional fmmulae with primitive events as atomie propositions.
The following definition tells us when a set of primitive events enables an event-expression.

Definition 7 . Let e E II and I Ç II . Then

I I= e iff e EI

I I= e 1 1\ e 2 iff I I= e 1 and I I= e 2

I I= e1 V e2 iff I f= e1 or I f= e2

I f= -.e iff I i6 e.

We define gen(a) as the set of events generated by the action a. So

112

gen(e) = {e} iff e E 11

gen(el,e2) =gen(el) U gen(e2).

C. Huizing & R.T. Gerth

The null machine N is the Transition Machine with only one node and no transitions.

P f+ means: there exist no P', I and 0 such that P ~ P'.
1

4.3 Structure of the step relation

The definition of the step relation4 has the following structure.

(i). There are one or more transition axioms, that define how a transition in one of the
machines is taken.

(ii). There is one universa! rule for parallel composition of machines. This is the following
rule:

Ct~q
PAR -------",...----~1----=----

Ct 11 Cz ~ C~ 11 Cz C2ll Ct ~ C2ll q
1 1

(iii). There is a macro-step rule with which one derives an observable step from a sequence
of micro-steps.

Ha global step uses the same micro-steps as severallocal steps, then these local steps combine
into the global step.

4.4 Semantics A

The transition relations for A are defined by the following axioms and rules.

Al.l sM ~ /a; s' M if (s, ej a, s') is a transition in M and I f= e;
1

0
A1.2 ja;M--+ M where 0 =gen(a);

1

0
O, 02 On

So, -----+ St,Vt-----+ . .. --+ Sn,Vn ~
A2 !uO /uO

0
/uO /uO , where 0 = Ot U ... U On.

So :::::=} Sn
1

In semantica A, theevents generated as aresult of takinga transition become available only
in the next macro-step. This means that after execution of a transition label event/action,
control is left just before the /action-part , which remains for the next macro-step. Axiom 1.2
deals with performing this action. After applying this axiom -the machine has not completed
its macro-step yet: it may still take a transition.

Rule 2 gives the completion of a macro-step and relates the two transition relations. A
macro-step can be made of any maximal sequence of micro-steps.

• Although, traditionally, this relation is called a transition re/ation, we want to reserve this term for the
relation defining the computation steps in the Finite State Machines.

On tbe semantics of reactive systems 113

Although the micro-step relation seems to be not effictive, since the output of later steps is
used as input setfora step, this is not the case. The sequence of micro-steps can be rearranged
in such a way that all output generating steps are at the beginning. Since these steps are not
dependent on the input, no "lookahead" is needed and the computation is effective. After
these steps, no output is generated and the set I U 0 is fixed.

Lemma 1 Bemantics A is order-independent, i.e., if

0 01 On S _/____,.
So, ----+ · · · ----> n> Vn 7"7

I I I

and 7r is a permutation o/[1, ... , n], then there are S~, V~, ... , S~-1, tl..-1 with

0
0><(1) , O><(n) 1 1 So, -----+ ... -----+ Sn,vn h

I I I

Proof. Let i range over 1 ... m and let

O' I I O" 11 11 IIMi,V--+ IIMi,v--+ IIMi ,v i I i I i
be two consecutive steps in the derivation of S0 . Then, by the nature of the transition system,
there must be machines Mj and Mk that did the actual step in the two steps above: Mi ::j; Mf

for i ::j; j and Mj _!!:__, MJ(and for Mk likewise: M[= M[' for i ::j; k and Mk ~ Mf:.
I I

These steps must have been derived either from axiom ALl or from Al.2. Now, by repetitive
application of rule PAR, we can derive that (assume j < k)

11 Mi,v ~ M{ 11·· -11 Mk-tll Mf: 11 Mk+I 11· · ·11 M~,v"\ (v1
\ v)

i I

and

M{ 11· ··I I Mk-tll Mf: 11 Mk+I 11· ··I I M~, v" \ (v
1

\ v) _!!:__, 11 M[', v"
I i

Hence, by repetitively exchanging neighbours in the micro-step sequence, we can achleve
the desired permutation. 0

A consequence of this lemma is that the output of a macro-step does not depend on the
input, since all output generating steps, which are input independent, can be put at the
beginning of the sequence of micro-steps.

Corollary 1 Bemantics A is not responsive.

Lemma 2 Bemantics A is modular.

Proof
(ii) => (i)

Let S ~ S 1 and S ~ S1
• Since rule A2 must have been applied to achleve these

Iu02 Iu02
relations, there exist an n and St' ... ' Sn-1, V}' ... ' Vn, OL ... ' o~-l such that

O'
S,0 I

Iu02uo,

o~-1
------> S1

, Vn / 1

Iu02uo, Iu02uo,

114 C. Huizing & R. T. Gerth

Likewise forT there exist an mand T1, ... 'Tm-1, V1" .. 'Vm,O~ •.•• 'o;n-1 such that

om-I
2

T 1
, Vm f/----+

Iu01uo, Iuo,uo,

By repetitive application of rule PAR, these two sequences can be merged:

OI
SIIT 0 I

' Iuo,uo1
o~-~ SI 11 T o~

-Iu-o-,-u-o-1-+ ' v Iu01 uo,

om-I
2

S 1 IIT',vm / 1
Iuo, uo, Iu01 uo,

and hence, by rule A2,

SIIT S 1 IIT'

(i) => (ii)
0

Suppose SIIT ==> S 1 IIT1
• Then there exist n and So, . .. ,Sn,Vt, ... ,vn,To, . .. ,Tn,

I
0 1 , ••• ,on withSo = S,To = T,Sn = S 1,Tn = T 1,vo = 0,01 U uon = 0, and

By the nature of the transition relation, we know that in all these micro-steps either S; or
T; took the rea.l step, i.e., appeared in the premise of rule PAR. So there is a partition of
{1, .. . , n} into J1 and J2 such that the steps of S have index in J1 and the steps of T have
index in J2. So,

• J s I 0; s I 'T' 'T' tE 1=> i-1,vi-1-----+ irV;A.Li-1=.L;
Iuo,uo,

(where vj is the restrivtion of v; to the processes of S).
Furthermore, Smax(J,) = Smax(J,)+l = .. . = Sn , since S makes no move after the

one indexed with the last element in J1 . And since Sn 11 Tn, Vn / 1 , we also have
Iu01uo,

Smas(J1), vmax(J,) / 1 and thus we have established the premise of rule A2 and we can
Iuo,uo,

conclude
sàs~

where 01 = U Oi and likewise for T with 02 = U Oi . Hence, 01 U 02 = 0 . D
iEJ, iEJ2

One can easily see that semantica A is causal: since the output generating steps are not
dependent on the input, one can use the identity relation as the causality relation for any
step.

4.5 Semantics B

In semantica B, events are sensed in the same macro-step in which the transition takes place
that generatea them, but only from the next micro-step onwards.

Bl sM ~ s1 M if (s , e f a , s1
) is a transition in M and 0 = gen(a).

I

B2

01 02 On
So, --+ S1, v1 ---+ .. . ----+ Sn. v,. !---:--+

I Iu01 IuOn-1 IuOn 0-
0 where , = 0 1 U . . . U 0,.

So ~ S,.
I

On the semantics of reactive systems 115

Note that the sequence of input sets is an ascending cha.in: I U 0; Ç I U Oi+l for any
i< n.

It is easy to see that semantica B is responsive. Let 11 and 12 be given and h i- I2.
Suppose e E h \ h (assume without loss of generality that h \ I2 i- 0), and let a rf. I1 Uh

a - a 0
Then efaM-----+ M, whereas efaM f-;--+. Consequently, efaM ====?Mand efaM ====? M.

I, I2 I, I2
It is easy to find a counterexample for the modularity of semantica B. Take ajbM1 a.nd

bfaM2. Then afbM1 ::b M1 and bjaM2 ~ M2. In contradiction to modualrity, how-
" b

{a,b} . {a,b}
ever, afbM1 II bjaM2 ~ does not hold. One can only denve ajbM1il bjaM2 ====> or

0 "
{a,b}

ajbM1II bjaM2 ~·

Lemma 3 Bemantics B satisfies causality.

Proof: If So ~ s~ is a valid step, and So, 0 ~ . . . On Sn, Vn is the sequence of
I I IuOn-t

micro-steps from the premise of rule 2, define the eauaal order for this step as follows:

a ::! b if there is a micro-step i in which a E I U 0;-1 and b E 0; \(I U 0;_1).

a.nd take the refiexive dosure. We now show that this relation is a partial order. Let in the
following I; be the input set of micro-step i, i.e., I U Oi-1·

(i). ::! is tra.nsitive. Suppose a ::! b a.nd b :::; c. Then there are micro-steps i and j with

a E I; and b E 0; \I;
bEI; and c E 0; \I;

Now, i ~ j, since otherwise I; Ç l;-1 Ç I; and hence, b E I;, which is not the case.
Hence, I; Ç !; a.nd a E I;, which implies a :::; c.

(ü). ::! is anti-symmetrie. Suppose a :::; b a.nd b :::; a. Assume a i- b, then there must be
micro-steps i and j with

a E I; a.nd b E 0; \ l;
b E !; and a E 0 j \ I;

Now, if i~ j, then I; Ç !; and a E !;, soa rf. 0; \I;, which is not the case. A symmetrie
argument for b applies if j ~ i. In both cases we derived a contradiction, hence a = b.

We now have to check that :::; satisfies the properties of a causa! ordering relation.

(i). Suppose S ~ S' a.nd S ~ and Il>O i- 0. Then there must exist a micro-step r, r.
0;

Si-I,Vi-1 S;,v; with b E 0;. Hence, a:::; b.
ru0;_ 1

(ü). Suppose S1 11 S2 + S~ 11 S~ with causa! order :::;. Choose the maximal decomposition,

i.e., M1 11·. ·I I Mn with associated causa! orderinga ::!1, ... , ::!n· By the nature of the
micro-step relation, there can be at most one micro-step in the sequence that led to the
macro-step in which M; makes a step.

116 C. Huizing & R.T. Gerth

o, - o,
Assume that M; made a step at j. So, M; ----+ Mf and hence, M; ===''==> Mf.

ruo1_, ruo1_,

Now, if a ~ b on behalf of this step, we a.1so have a ~i b and vice versa.

H M; did not make a step, we have M; f:-::::+ and hence, M; ~ and no oredering
IuO IuO

relations are induced from this.

4.6 Semantics C

Like in semantics B, events are available in the same macro-step as the transition, but an
additional consistency constréÛnt is made: every transition must be enabled by the complete
set of events that is available after all output has been generated; i.e., consistency must be
méÜntéÜned.

Cl= BI

o, o, o ..
So,-Sz,VI-··· s",v"~

1 luO, Iuó,._, IUOn
o, o, o ..

So,0---+ St,V:l---+ ... ---+ Sn,vn ~
C2 Juó,. IuO,.o luo,. Iuó,. , where Ö; = Ot U ... U 0;.

So~Sn
I

Semantics C is responsive. The same construction as is used for semantica B can be
applied here.

Semantica C is causa.l, since in the derivation of an arbitrary macro-step, the premise of
rule C2 implies the premise of rule B2 and the same argument can be used bere.

By theorem 1, semantica Cis not modular, since it is responsive and causa.l.

4. 7 Semantics D

Like in semantica B and C, events are generated in the samestep as the transition, but, here,
all transitions are triggered by the same set of events, viz. the complete set of events after
the generation of all ouput.

Dl= BI

01 02 On
So, 0 ----+ St, V1 ----+ .. . ----+ Sn, Vn 1--:---:::-+

D2 IUO IuO o Iuo IuO , where 0 = 01 U ... U On.
So ==>Sn

I

The difference between C and D is that in semantica D, transitions can cause their own
trigger. For example,

{a}
ajaM ===> M

0

{a,b}
or ajbM1 11 bjaN2 ====> M1 11 N2

. 0

In semantica C, this is not possible. Although triggers are eva.luated in a global set of
events, there is an additional constraint that the events generated so far must also enable the
transition. This leads to two premises in rule 2: both the complete set, IUÖn, and theevents
that are currently available, I U 0;, must be capable of triggering step i.

On the semantics of reactive systems 117

Semantics D is responsive. Use the same construction as for semantics B.
Semantics D is modular. The proof of modularity of semantics A uses only rule 2 and

rule PAR. Since these rules are the same forsemantics A and D, the same proof can he used
here.

Because semantica D is already responsive and causa!, it cannot satisfy modularity, due
to Theorem 1.

In both semantics C and D, it is not always the case that there exists a macro-step fora
given input. Take for instanee •aJaM. Then

•aJaM ~ M for any I 'i a
I

•aJaM 1-:-+ for any I 3 a
I

Consequently, a premise of rule C2 and D2 that would yield the step •aJaM ~ S forsome
0

0 and S does not exist .
Another example is •a/bM1 11 bjaM2. This example also shows that two well-behaved

systems can lead to problems when put together.

4.8 Semantics E

This semantica is basically semantica A, but now a sequence of macro-steps that cannot he
extended without new input from the environment is squeezed into one macro-step. The
correspondence to semantics B is that events are generated in the micro-step following the
step in which the transition is taken, but they rema.in only for the sequence of micro-steps
that are immediately caused by the transition.

El.l = Al.l

E1.2 = A1.2

E2
0 01U ... UOn P.
ro I n

Here, P, v ~-P', v' abbreviates
I

3 0 01 01 On-I P' 1
PJ ... Pn-101··· n:P,v--+P1,v1--+ ... ----. ,v and0=01U ... UOn

I I I

With the same construction as used for the other semantics, we can prove that semantics
E is responsive. Here, we take the null machine, prefixed with a transition, to avoid unwanted
transitions. First we have efaN ~ JaN. Because the step is finished , we have JaN f7-+ .

h h
Then we have faN~ N. Since Nis the null machine, we can notmove any furhter: N 17--+

Il h
and applying rule E2 with n = 2 we get efaN ~ N. On the other hand, efaN 17--+ and

h h
so e faN 17--+ (apply rule E2 with n = 1).

Iz

118 C. Huizing & R.T. Gerth

Semantics Eis not causa!, since it is possible to have an event that is several times "on"
and "off" during one macro-step. E.g., M1 11M2 where

Th en

M1 = afbM~
M~ = cfaM~'
M2 = bfcM~

e -M1 11M2 --;;-+ /bM~ 11M2 f;;+
/bM~ 11M2~ M~ 11 /cM~_!_. e b

M~ 11 /cM~ f;;-'
M' 11 fcM' ~ M' 11 M' _!_. 1 2 0 1 2 c

/ aM~' 11 M~ f;;
/ aM~' 11 M~ ~ M1' 11 M~ f;;+

Like in semantica C and D, there are systems in semantics E that can not react properly
to some inputs. Take for instanee

M = ({s},s,{(s,afa,s})

Th en
e -

M--;;-+ jaM f;;+
a 0 -

jaM--+ M--+ jaM f-+
a a a

Theorem 2 The following table gives an overview of the properties of the various semantics.

semantics responsiveness modularity causality
A no yes yes
B yes no yes
c yes no yes
D yes yes no
E yes no no

5 Hybrid semantics

From theorem 2 we see that none of the five semantics satisfy all the criteria. Therefore,
we propose a new version of the semantics in which modularity and causality are applied
at different levels. We introduce the notion of modules and local events into the language.
Modules are clusters of one or more subsystems that are closely connected. The idea is that
they can easily be overviewed and hence the criterium of causality is applicable on the events
that arelocalto a module. Theevents tha.t are visible between modules, however, are treated
in a modular fashion, since the interface between modules should be simple and transparent.

On the semantics of reactive systems 119

We change the syntax as follows.

(reactive system) ==> (module) [ll{reactive system)]

(module) ==> mod (locals) in (machine exp) 11·. ·ll(machine exp)

where {locals) denotes a subset of II.
We have to change the micro-semantics in such a way that the label now records the output

of the micro-step. This does not change the relation --+ as restricted to configurations, since
the label Eis not used in the definition of semantica B. This leads to the following definitions.

Ml sM ~ s' M if (s, ej a, s') is a transition in M; I I= e and 0 = gen(a).
I

M2 oM
Po===> Pn

I
where QM = (01 U ... U On) \ H.

The events that are local to the module (denoted by the set H), are removed from the
input of the micro-steps and from the output of the macro-step. Any event that is left must
be global and must be treated as if it was available right frorn the start of the macro-step, in
order to satisfy modularity. Therefore, the output of the micro-steps is added to the initia!
input.

References

[BC85]

[BCH85a]

[BCH85b]

[BG88]

[Gon88]

(Har87]

[HG89]

B. Berry and L. Cosserat; The synchronous prograrnming language Esterel and
its mathematica! semantica. In Proceedings CMU Seminar on Concurrency,
pages 389-449. LN CS 197, Springer-Verlag, 1985.

J.-L. Bergerand, P. Caspi, and N. Halbwachs. Outline of a reai-time data flow
language. In Proceedings IEEE Reai-Time Systems Symposium, 1985.

J.-L. Bergerand, P. Caspi, and N. Halbwachs. Outline of a reai-time dataflow
language. In Proc. IEEE-CS Reai-Time systems Symposium, San Diego, 1985.

G. Berry and G. Gonthier. The esterel synchronous programrning lan
guage: Design, semantica, implementation. Technica! report, Ecole Nationale
Supérieure des Mines de Paris, 1988. Technica! Report.

G. Gonthier. Sémantiques et modèles d'exécution des langages réactifs syn
chrones; Application à ESTEREL. PhD thesis, University of Orsay, 1988.

D. Harel. Statecharts: A visual forrnalisrn for complex systems. Science of
Computer Progromming, 8(3):231-274, 1987.

C. Huizing and R. Gerth. On the semantica of reactive systems. Technica!
report, Eindhoven University of Technology, 1989.

120 C. Huizing & R.T. Gerth

[HGdR88] C. ·Huizing, R. Gerth, and W.P. de Roever. Modelling statecharta behaviour
in a fully abstract way. In Proc. 13th GAAP, LNCS 299, pages 271-294, 1988.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K.R.
Apt, editor, Logies and Modelsof Concurrent Systems, pages 477-498. NATO,
ASI-13, Springer-Verlag, 1985.

[HPPSS87a] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the formal
semantica of Statecharts. In Proceedings Symposium on Logic in Computer
Science, pages 54-64, 1987.

[HPPSS87b] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the formal
semantica of Statecharts. In Proceedings Symposium on Logic in Computer
Science, pages 54-64, 1987.

-[HR88] J. Hooman and S. Ramesh. Statecharta assertional framework. Computing
Science Note CSN 88/14, Department of Mathernaties and Computing Sci
ence, Eindhoven University of Technology, The Netherlands, May 1988.

(i-Logiz /nc89] i-Logiz Inc. The Semantica of STATECHARTS, 1989. in Documentation for the
STATEMATE System.

[LBBG85]

[Plo81]

[PS88]

Guernic P. Le, A. Benveniste, P. Bournai, and T. Gonthier. Signal: A data
flow oriented language for signal processing. Technical Report IRISA Report
246, IRISA, Rennes, France, 1985.

G.D. Plotkin. A structural approach to operational semantica. Technical
report, 1981. Lecture Notes.

A. Pnueli and M. Shalev. What is in a step. Technical report, Department
of Applied Mathernaties and Computer Science, The Weizmann Institute of
Science, Rehovot, Israel, 1988. Draft.

Chapter 5

Formalisros related to Statecharts

121

Formalisrus related to Statecharts

C. Huizing

August, 1990

Si nee this thesis discusses mainly Statecharta as a language for rea.ctive systems, we discuss
severa.J rela.ted forma.lisms now briefiy.

1 Argos

An interesting dia.Ject of Statecharta is Argos [Mar87] [Mar89]. It is derived from Statecharts,
but makes some different decisions and is more restricted in many ways.

The most interesting restrietion is tha.t so-ca.Jled inter-level transitions are not a.llowed.
These are transitions that cross borderlines of states, i.e., transitions between states that are
not immediate descendants of the same parent state (see fig. 1). In Statecharts, one can
a.void this kind of transitions by using the in(...) predicate in the condition of the label of
the transition (see fig. 2). Argos, however, has the philosophy that parts of the specifica.tion
should only communicate by means of events, just like other reactive systems. States are fully
interna.l objects and should not be referred to by other components.

Instea.d, Argos has another mechanism to transport information up the hierarchy. In
contrast to Statecharts, the computation that takes place inside a state is not preempted
when the state is left, but the current time step is completed. Hence, in fig. 3 transitions t 1

a.nd t 2 are not in conilict, but can be taken at the same moment, e.g., when events a and b
are present and, consequently, c will be generated. In Statecharts, however, only one of t 1

and t 2 can be taken at the sa.me time, and since t 2 has priority, this one will be taken and
event c will not be generated.

With this so-ca.lled non-preemptive interrupt, one can transport information from sub
sta.tes to their parent state or other ancestor states by means of events. A very common
exa.mple of this is when an error exit bas to be performed on behalf of an inner component.
Figure 4 shows how this is expressed in Argos: When transition t1 is taken, the event error
is generated and at the same time transition t2 is triggered. As a result, the system goes
directly from state S to Error handler. figures 5 to 8 show several ways to expre11s the same
behaviour in Statecharts. Note that figure 8 depends on a specia.J version of thesemantics in
which generated events are not available until the next step (version E in "On the semantica
of reactive systems".

The important advantage of the Argos specification is that it uses the graphica.J notion of
refinement better. The high-level specification, without the inner components of state A, is a.
correct specification on its own, without any reference to objects that are to be implemented
yet.

Another important difference between Statecharta and Argos is that Argos, like Esterel,
does not a.Jlow any non-deterrninism. All programs that could lead to causa.! paradoxes are

123

124 C. Huizing

illegal, a.lso the programs of the type of figure 9. The compiler checks for this behaviour and
this is implemented in such a way that all non-deterministic programs are also rejected. We
do not want to argue that this is an undesirable side-effect or a design decision, we just want
to mention it here. It is also interesting to mention that in Argos this check is performed at
the composition of sub-charts, not in one global check as the Esterel compiler does it, but at
every application of the operators orthogonal composition and refinement (the Argos version
of statification, an operator that puts one or more sub-eharts inside a super-state).

2 ATP

Not only programming languages have been .designed for reactive systems, also process alge
bras are being defined for this purpose. We mention the timed failure model (GB87), which is
partly basedon upon DNP-R, the language used in Chapter 3 of this thesis_ lt bas the same
restrietion that execution of a statement always takes some positive amount of time. The
same holds for ACPp (BB90). As we point out in Chapter 2, reactive systems need a more lib
èral 'treatment of timing, which is provided by ATP (Algebra of Timed Processes) (NRSV90).
Any amount of asynchronous computation can be performed between the synchronous ticks
of time. This provides a very general, but primitive, främework for discrete time. Concepts
such as maximal parallelism, synchronous communication, etc. can not be expressed, unless
by adding new axioms.

lt is interesting to remark that the way ATP treats time is very sirnilar to how the current
implementation of Statecharts does it. No causal paradoxes can arise, because there is no
notion of synchrony: a reaction can never influence its triggering action.

References

(BB90) J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Technical Report
P8916b, Programming Research Group, University of Amsterdam, March 1990.

(GB87) R. Gerth and A. Boucher. A timed failures model for extended communicating pro
cesses. In Proc. 14th Colloquium Automata, Languages and Progromming ICALP,
LNCS 267, pages 95-114, 1987.

(Mar87) F. Maraninchi. Statecharts: sémantique et application à la spécification de
systèmes. PhD thesis, INP Grenoble, 1987.

(Mar89) F. Maraninchi. Argonaute: Graphical description, semantics and verification of
reactive systems by using a process algebra. In Workshop on Automatic Verifioo
tion methods for Finite State Systems, Grenoble 12-14 June 1989. Springer-Verlag,
1989.

(NRSV90) X. Nicollin, J.-1. Richier, J . Sifakis, and J. Voiron. ATP: an Algebra for Timed
Processes. In Proceedings of the IFIP TC 2 Working Conference on Progromming
Concepts and Methods, Sea of Gallilee, Israel, 1990.

Formalisms rela.ted to Sta.techa.rts

Figure 1

ale

tl

a/error
tl

~

125

Flgure 2

Figure 3

b

t2

Figure 4

error Error handlar

t2

Figure 5

"'
a(in(s)] Error handlar

./

126 C. Huizing

Figure 6

'I

u Error handlar
"\

a

\.. ./

Flgure 7

[in(error)] Error handlar
a

Figure 8

error2 Error handlar
a/error1

error1 /error2

DJ Figure 9

127

Bibliography of Statecharts

Most of the articles and hooks below are referenced somewhere in this thesis, but it makes
sense to present a reasonably complete list of references to Statecharts.

References

[1] D. Drusinsky and D. Hare!. On the Power of Bounded Concurrency I: The Finite Au
tomata Level. Submitted to J. Assoc. Comput. Mach.

[2] D. Drusinsky and D. Hare!. On the Power of Cooperative Concurrency. In Proceedings
of Concurrency 88, pages 74-103. Springer-Verlag, 1988.

[3] D. Drusinsky and D. Hare!. Using Statecharts for Hardware Description and Synthesis.
IEEE Transactions on Computer-Aided Design, 8(7):798-807, July 1989.

[4] D. Hare!. Biting the Silver Bullet. Submitted to IEEE Computer.

[5] D. Hare!. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274, 1987.

[6] D. Hare!. On visual formalisms . Communications of the ACM, 31:514- 530, 1988;

(7] D. Hare!. A Thesis for Bounded Concurrency. In Proc. 14th Symp. on Math. Found. of
Comput. Sci. , LNCS 379, pages 35-48, New York, 1989. Springer-Verlag.

[8] D. Hare! and C.-A. Kahana. On statecharts with overlapping. Submitted, 1990.

[9] D. Hare!, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
and M. Trakhtenbrot. Statemate: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering, 16(4):403-414, April
1990.

(10] D. Hare! and A. Pnueli. On the development of reactive systems. In K.R. Apt, editor,
Logies and Models of Concurrent Systems, pages 477-498. NATO, ASI-13, Springer
Verlag, 1985.

[11] D. Hare!, A. Pnueli, J. Pruzan-Schmidt, and R. Sherman. On the forma! semantics
of Statecharts. In Proceedings Symposium on Logic in Computer Science, pages 54-64,
1987.

(12] D. Hare! and S. Rolph . Modelling and Analyzing Complex Reactive Systems. In Proc.
A/AA Computers in Aerospace VII Conf., Monterey, CA, Oct . 1989.

[13] D. Hare!, R. Rosner, and M. Vardi . On the Power of Bounded Concurrency lil: Reasoning
about Programs. In Symp. qn Logic in Computer Science, pages 479-488. Springer
Verlag, 1990.

[14] T. Hirst and D. Harel. On the Power of Bounded Concurrency II: The Pushdown Au
tomata Level. In Proc. GAAP '90, Trees in Algebra and Programming, pages 1-17.
Springer-Verlag, 1990.

128 Semantics of reactive systems: full abstraction and comparison

[15) J . Hooma.n, S. Ramesh, and W.P. de Roever. A Compositiona.l Axioma.tisation of Safety
and Liveness Properties for Sta.techa.rts. In Proc. of the international BCS-FACS Work
shop Semantica for Concurrency, pages 242-261. Springer-Verlag, 1990.

[16) C. Huizing and W.P. de Roever. Introduetion t~ design choices in the sema.ntics of
Sta.techa.rts. To be publisbed in Information Processing Letters, 1990.

(17) C. Huizing a.nd R. Gerth. On the sema.ntics of rea.ctive systems. Technica.l report,
Eindhoven University of Technology, The Netherlands, 1989.

[18) C. Huizing, R .. Gerth, and W.P. de Roever. Modelling statecharta beha.viour in a. fully
abstract wa.y. In Proc. 19th GAAP, LNCS 299, pages 271-294, 1988.

[19) C. Huizing, R. Gerth, and W.P. de Roever. A compositiona.l semantics for sta.techarts.
Computing Science Note CSN 87/15, Department of Mathernaties and Computing Sci
ence, Eindhoven University of Technology, The Netherlands, 1987.

[20) i-Logix Inc, Burlington, Ma.ss. The Languages ofSTATEMATE, 1987, revised version 1990.
In Documenta.tion for the STATEMATE System.

[21) i-Logix Inc, Burlington, Ma.ss. The Semantica ofSTATECHARTS, 1989. In Documenta.tion
for the STATEMATE System.

[22] F. Mara.ninchi. Statecharts: sémantique et application à la spécification de systèmes.
PhD thesis, INP Grenoble, 1990.

[23] A. Pnueli and M. Sha.lev. Wha.t is in a. step. Technica.l report, Department of Applied
Matheinaties and Computer Science, The Weizma.nn Institnte of Science, Rehovot, lsra.el,
1988. Dra.ft .

[24] S. Rolph and T. Alfa.no. Statemate by Exa.mple: Specifying a. Control System. To be
pnblished, 1990.

[25] S.L. Smith and S.L. Gerhart . Statemate and cruise control: A case2 study. In Proc.
COMPAC/88, 12th Int. IEEE Comput. Software and Applicat. Conf., pages 49-56, New
York, 1988. IEEE Press.

(26] M. Tra.chtman. Elements of Statemate Style: A Framework for Embedded System Speci
fications. 1990. To be published.

129

Promotiereglement artikel 15.3b

The EUT "promotiereglement" requires that if a thesis contains co-authored papers it should
be indicated which parts are bll.'led on active contributions of the author of the thesis.

Chapter 1, which is co-authored by W.P. de Roever is a typical joint artiele that is difficult
to entangle. The artiele found its farm by the joint preparation of a lecture to be given by
W.P. de Roever. Although most of the parts were written by the author of this thesis, they
found its roots in joint discussions.

For chapter 2, the co-authors W.P. de Roever and R. Gerth provided the idea of making
the CSP-R semantica fully abstract. In fact, they put me on this subject. Furthermore, they
contributed a lot to the set-up of the artiele and the actual formulation of the text. The
author of the thesis has formulated the operational semantica of CSP-R, and has found the
way to make the denotational semantics fully abstract, as wel! as the proof.

In the case of chapter 3, the idea came forth from the ESPRIT project DESCARTES.
The co-anthors, R. Gerth and W.P. de Roever "debugged" the ideas of the author of this
thesis, but the technica! work was all his. Gerth and Huizing worked tagether on the proof of
full abstraction and found the idea of modularisation of the proof. The actual modularisation
was Huizing's work.

For chapter 5 the idea of the artiele came forth form unhappiness with the existing se
mantica of statec.harts and found its root in many discussions between the authors and with,
a.o., Amir Pnueli and Willem-Paul de Roever. The author of the thesis made the semant.ic
framework, and Gerth suggested to formulate criteria to evaluate them. Most of the work of
finding which criteria and how to formulate them, was done by the author, although again
it found its root in the discussions with the people mentioned above. I think Amir Pnueli is
responsible for the idea of the criterium of causality.

130

Samenvatting

Reactieve systemen zijn computersystemen die gekenmerkt worden door een voortdurende
interactie met de buitenwereld. Die buitenwereld kan een heel computersysteem op zich
zijn, bijvoorbeeld de boordcomputer van een vliegtuig, maar ook een menselijke gebruiker,
een meet- en regelsysteem, of een combinatie hiervan. Er kan veel afhangen van een snel
en accuraat functioneren van deze systemen; de toepassingen hebben bovendien de neiging
een steeds groter beroep te doen op de computers en steeds minder op de mensen die haar
bedienen. Men denke aan het controlesysteem van een kerncentrale, de automatische piloot
van een verkeersvliegtuig of het antiblokkeersysteem in de remmen van een auto. Juist daarom
is het bedenkelijk dat de theoretische fundering hiervan nog niet zover gevorderd is als die
van conventionele computerprogramma's, de ·zogenaamde transformationele systemen.

Dit proefschrift bestudeert een belangrijk aspect van die theoretische fundering: de se
mantiek. Een semantiek beschrijft het gedrag van een programma of specificatie in een
wiskundig model en kan dienen als basis voor analyse- en ontwerpmethoden.

Dit proefschrift bestaat uit vijf hoofdstukken.
In hoofdstuk 1 wordt uitgelegd wat het fundamentele verschil is tussen reactieve en trans

formationele systemen: de laatste zijn bevredigend te beschrijven als een functie van input
naar output; bij reactieve systemen lukt dit niet omdat er feedback kan optreden van de reac
ties van het systeem via de buitenwereld terug naar het systeem. Daarom is het van belang
te weten wanneer precies een output gegenereerd wordt ten opzichte van de inputs en is een
functie die rijen inputs op rijen ouputs afbeeldt onvoldoende om het hele gedrag te beschrijven.
De consequenties hiervan worden aan de hand van een grafische taal voor reactieve systemen,
Statecharts, bestudeerd. Er wordt beargumenteerd waarom het noodzakelijk is dat de se
mantiek van zo'n taal voldoet aan de synchroniciteitsaanname (synchrony hypothesis), wat
wil zeggen dat de reactie van het systeem gelijktijdig is met de stimulus die haar veroorzaakte.
Dit is alleen conceptueel, omdat er altijd een zekere tijd nodig is om de reactie te berekenen,
maar het is in veel gevallen houdbaar omdat de reactietijd van het systeem veel korter is dan
de intervallen tussen de stimuli.

Toch brengt deze benadering fundamentele problemen met zich mee, omdat er causale
paradoxen kunnen ontstaan, bijvoorbeeld als een reactie haar eigen stimulus ongedaan maakt
(vergelijk kortsluiting, rondzingen, etc.).

In hoofdstuk 4 worden deze problemen uitvoerig bestudeerd aan de hand van één seman
tisch raamwerk waarin verscheidene oplossingen tegen elkaar afgewogen kunnen worden. Dit
gebeurt in het licht van drie criteria, die alle op zich wenselijke eigenschappen van een se
mantiek voor reactieve systemen zijn. Het blijkt dat deze criteria niet tegelijk vervuld kunnen
worden.

Een belangrijke eigenschap van een semantiek is compositionaliteit. Een semantiek is
compositioneel als het gedrag van de combinatie van twee programmadelen beschreven kan
worden in termen van de semantiek van de componenten. Dit betekent dat de semantiek in het
algemeen ingewikkelder wordt: men moet immers a priori rekening houden met alle mogelijke
samenstellingen. Het voordeel is echter dat de semantiek vari een component maar één keer
berekend hoeft te worden en niet steeds bij iedere verandering van het totale programma.
Bovendien verschaft een compositionele semantiek de basis voor analyse- en ontwerpmethoden
volgens een verdeel-en-heers-principe.

Een logisch vervolg op compositionaliteit is full abstraction. Dit houdt in dat alle extra in
formatie die vastgelegd moet worden om compositionaliteit te berekenen ook noodzakelijk is.

131

Bijgevolg onderscheidt een semantiek die aan full abstraction voldoet niet méér programma's
dan noodzakelijk. Abstractie, dat wil zeggen het niet onderscheiden van gelijkwaardige pro
gramma's, is een essentiële eigenschap van een semantiek.

In hoofdstuk 2 wordt een bestaande compositionele semantiek voor een reai-time taal zo
aangepast dat ze aan full abstraction voldoet . In deze taal kan het gedrag van een systeem met
betrekking tot het tijdsverloop nauwkeurig gespecificeerd worden. Dit is in principe geschikt
om het actie-reactie-gedrag van reactieve systemen te beschrijven, maar het moet op een vrij
laag niveau plaatsvinden.

In hoofdstuk 3 wordt Statecharta behandeld, een taal die reactieve systemen op een hoger
niveau kan beschrijven. Er wordt een compositionele semantiek gedefinieerd, wat een nieuwe
definitie van samenstelling van componenten vereist, omdat Statecharta een grafische taal is,
dat wil zeggen uit diagrammen in plaats van tekst bestaat. Full abstraction wordt bereikt en
het bewijs hiervan is modulair opgebouwd. Dat alle elementen van de semantiek noodzakelijk
zijn wordt aangetoond door een zogenaamde context te construeren. Dit is een Statecharta
programma dat tegelijk met een willekeurig ander programma geëxecuteerd kan worden . Een
eventueel verschil in semantiek tussen twee programma's wordt dan zichtbaar in een daadw
erkelijk verschillend gedrag in die context. Dit contextprogramma nu bestaat uit een aantal
modulen, voor ieder element van de semantiek één. Bij een uitbreiding van de taal kan het
bewijs eenvoudig aangepast worden door een module toe te voegen die de overeenkomstige
uitbreiding van de semantiek zichtbaar maakt .

Hoofdstuk 5 ten slotte geeft verbanden aan met talen die verwant zijn aan Statecharts.

132

CURRICULUM VITAE

Ik ben geboren op 12 augustus 1961 in Bergen op Zoom.
In 1979 deed ik eindexamen VWO aan de Christelijke Scholengemeenschap Blaise Pascal

en ging wiskunde studeren aan de Rijksuniversiteit te Utrecht. Na een kortstondige excursie
in de filosofie koos ik het bijvak informatica.

In 1982 deed ik kandidaatsexamen en kwam ik in contact met Willem-Paul de Roever die
er in slaagde mijn belangstelling voor de logica om te buigen naar de theoretische informatica.

In 1985 studeerde ik af met groot bijvak informatica en didactische aantekening. De
scriptie ging over een fully abstract semantiek voor CSP-R.

In hetzelfde jaar kwam ik bij Willem-Paul de Roever aan de toenmalige Technische
Hogeschool Eindhoven te werken als toegevoegd onderzoeker in het ESPRIT-project DES
CARTES.

Sinds 1989 ben ik als universitair docent aan de Technische Universiteit Eindhoven werk
zaam.

·. Stellingen

behorende bij het proefschrift

Semantics of reactive systems: comparison and full abstraction

van

C. Huizing

1. High-level reai-time talen zoals Esterel en Statecharta zijn niet reai-time in de zin
dat er een direct verband is te leggen tussen de executie van een statement en de
werkelijke tijd waarop dat plaats vindt, zoals dat wel in Real-Time CSP en OCCAM
kan.

G. Berry and G. Gonthier, The ESTEREL Synchronous Programming Language:
Design, Semantica, lmplementation. ENSMP-INRIA, Sophia-Antipolis, 1988.

J. Hooman and J. Widom, A temporal-logic based compositional proof system for
reai-time message passing. In Parallel Architecturcs and Languages Europe, volume
11, pages 424-441. LNCS 366, Springer-Verlag, 1989.

2. Vanuit het oogpunt van bruikbaarheid zijn de criteria rcponsiveness (reacties kunnen
ogenblikkelijk plaatsvinden), modularity (interface tussen deelsystemen is dezelfde als
tussen een systeem en de buitenwereld) en causality (gebeurtenissen hangen causaal
samen) ieder op zich zeer wenselijke eigenschappen van een specificatietaal voor re
actieve systemen. Ze zijn echter niet verenigbaar in één semantiek.

Zie hoofdstuk 4, paragraaf 3 van dit proefschrift (stelling 1).

3. In de huidige implementatie van STATEMATE is de semantiek m.b.t. de tijd van "on
entering do .. . " in state S niet gelijk aan die van "on enter(S) do ... ".

Voor een ontwikkelingsomgeving van complexe tijdcritische systemen is een goed
doordachte semantiek essentieel, omdat niemand zulke systemen geheel kan overzien
en uitputtende mechanische verificatie onmogelijk is.

Dat STATEMATE in dit opzicht tekort schiet, blijkt uit hoofdstuk 4 van dit proefschrift
en uit inconsistenties als de bovenstaande. In de toepassingen waar STATEMATE voor
bedoeld is kan dit tot letterlijk levensgevaarlijke situaties leiden.

Zie: STATEMATE version 3.0. i-Logix Inc., Burlington, Mass.

4. Een semantiek heet compositioneel als de betekenis van een samengesteld programma
gedefinieerd is in termen van de semantiek van de samenstellende delen. In het
algemeen moet een compositionele semantiek meer informatie vastleggen dan alleén
het observeerbaar gedrag en zij onderscheidt daardoor ook meer programma's.

Full abstraction is de eigenschap van een semantiek dat zij niet méér programma's
onderscheidt dan noodzakelijk is om compositioneel te zijn, gegeven een bepaalde
notie van observeerbaar gedrag. In het bewijs van full abstraction wordt doorgaans
gebruik gemaakt van een contextprogramma dat semantische verschillen tussen twee
programma's zichtbaar maakt door executie van de programma's in die context.

Doordat er in een reai-time semantiek zoveel meer observeerbaar is aan een pro
gramma en doordat de taal zoveel meer controle geeft over het construeren van de
context, is het full-abstraction-bewijs voor een CSP-achtige taal in het reai-time geval
in dit opzicht eenvoudiger dan in het niet-real-time geval.

Zie hoofdstuk 2, paragraaf 7 van dit proefschrift.

5. Het construeren van de context voor het full-abstraction-bewijs van een specificatie
of programmeertaal is een goede test voor het gemak waarmee men in die taal een
gedrag nauwkeurig kan specificeren.

Zo zou het ontbreken van het empty statement, een skip statement dat geen exe
cutietijd kost, in het oorspronkelijke DNP-R en CSP-R een full-abstraction-bewijs
nodeloos ingewikkeld maken, zonder dat er een inh~rente reden is dat het ontbreekt.

Zie hoofdstuk 2, paragraaf 7 van dit proefschrift.

6. Manna en Pnueli introduceren een manier om het gedrag van een programma P
te beschrijven met een temporeel-logische formule, zeg T(P). In de ene variant,
het engeankerde systeem, geldt niet dat het programma P voldoet aan zijn eigen
formule T(P) (m.a.w. P sat T(P) is niet waar). In de andere variant, het geankerde
systeem, geldt dit wel. Deze tegenintuïtieve eigenschap van de engeankerde variant
wordt onvoldoende genoemd in de motivatie van de geankerde variant.

Zie: .. Z. Manna and A. Pnueli, How to Cook a Temporal Proof System for your Pet
Language. In Proc. of the ACM Symposium on Principles of Programming Lan
guages, Austin, Texas, 10 (January 1983) pp. 101-154.

en: A. Pnueli, Applications of temporal logic to the specificatien and verification
of reactvie systems: a survey of current trends. In Proc. ESPRIT/LPG Advanced
School on Current Trends in Concurrency, LNCS 224, pp. 510-584, 1985.

2

7. Het is een wezenlijke beperking om het tijdsdomein en het domein waarin de bereken
ingsrijtjes gemodelleerd zijn te laten samenvallen (zoals in [K89]). Alle vier de com
binaties van een dicht resp. discreet tijdsdomein met een dicht resp. discreet bereken
ingsdomein zijn zinvol en komen voor.

discreet tijdsdomein dicht tijdsdomein
discreet berekeningsdomein [K89] [PH88]
dicht berekeningsdomein (NRSV90] (K98]

(K89] R. Koymans, Specifying Message Passing and Time-Critica/ Sytems with Tem
poral Logic. Proefschrift Technische Universiteit Eindhoven, 1989.

(NRSV90] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: an Algebra for
Timed Processes. In Proceedings of the IFIP TC 2 Working Conference on Program
ming Concepts and Methods, Sea of Gallilee, Israel, 1990.

(PH88] A. Pnueli, E. Hare!, Applications of Temporal Logic to the Specification of
Reai-time Systems, in Proc. Forma/ Techniques in Real- Time and Fault- Tolerant
Sytems. LNCS 331, pp. 84-98, 1988.

8. Het slecht gemotiveerde besluit van het Rekencentrum van de Technische Universiteit
Eindhoven, en van vrijwel alle faculteiten in zijn kielzog, om de Apple Macintosh com
puter niet te ondersteunen doet vrezen dat het begrip ergonomie nog niet tot deze
instelling is doorgedrongen. Het kan dan ook geen toeval zijn dat juist een van de
belangrijkste onderzoeksinstituten in Nederland op het gebied van de ergonomie, het
Instituut voor Perceptie Onderzoek, een van de weinige instellingen op het univer
siteitsterrein is die deze computers wèl ondersteunt.

9. De keuze tussen dynamische en statische binding, die in een programmeertaal door
gaans door de ontwerper van de taal gemaakt wordt, kan in een natuurlijke taal als
het Nederlands door voegwoorden en zinsbouw aangegeven worden. Bij dynamis
che binding is de waarde van variabelen in een procedure afhankelijk van de context
waarin die procedure wordt aangeroepen. Bij statische binding is de waarde van die
variabelen afhankelijk van de context waarin de procedure is gedeclareerd.

Voorbeeld: "Gisteren zei hij: 'Ik kom morgen' " (statische binding van morgen)
tegenover "Gisteren zei hij, dat hij vandaag zou komen (dynamische binding van
vandaag)".

10. In de paradox van het onverwachte proefwerk (Leraar tot klas: 'Jullie krijgen komende
week een proefwerk, maar je zult het de avond tevoren niet weten') komen beide
partijen tot een juiste gevolgtrekking. De leerlingen beredeneren dat het proefwerk
de laatste dag van de week niet kan worden gegeven, omdat ze het dan de vorige
avond zouden weten; evenzo kan het niet de op een na laatste dag zijn, enzovoorts. Zij
concluderen dat ze geen proefwerk kunnen krijgen. De leraar echter deelt op dinsdag
de blaadjes uit en meent dat hij in overeenstemming met zijn uitspraak gehandeld
heeft: de klas verwachtte het immers niet! Dat beide gevolgtrekkingen tegelijk juist

3

kunnen zijn komt doordat de aankondiging van de leraar ongerijmd (falsum) is. Dit
volgt uit de redenering van de leerlingen. Deze paradox is een instructief voorbeeld
van de wet uit de logica dat uit het ongerijmde alles volgt.

Zie: T .H. O'Beime, Puzzles and paradoxes, Oxford University Press, 1965.

11. De gedachte dat positieve discriminatie nut heeft, berust op een verwarring van het
probleem, ongelijke behandeling in gelijke omstandigheden, en de indicatie van het
bestaan van het probleem, de statistiek van de verdeling.

12. De neiging van verzekeringsmaatschappijen om zich te presenteren als zouden zij
bescherming en veiligheid bieden, in plaats van alleen een financiële vergoeding, is
in de meeste gevallen onjuist, misleidend en moreel verwerpelijk. Deze neiging komt
voort uit een gebrek aan reële verkoopargumenten.

4

