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Chapter 1

Introduction

1.1 Motivation for the project

Electronic devices play an increasingly important role in everyday life. Just think of the
computer, mobile phone, digital camera and radio, that are heavily using electronics. If
one could open such a device one can easily check that inside the nice package real elec-
tronic devices can be found. For the design of these simulation techniques are essential,
at the basis of which mathematics is the key ingredient.
Integrated circuits or chips are made of very small silicon slices; silicon is a semiconduc-

tor material. They communicate with the environment by means of external electronic
pins. Figure 1.1 shows a typical application of a chip produced by NXP Semiconductors.
The chips will process external input signals in a predefined way that is determined by
its physical and topological properties. Many input signals are analogue, which means
that they really occur during a certain time interval. Examples are human speech, sound

Figure 1.1: A possible application of a silicon chip produced by NXP.
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Figure 1.2: Some raw material of Silion.

intensity, vibrations and all other physical phenomenons that can happen in nature.
Those signals can be measured and processed directly by analogue circuits. The new
generation of chips is digital, which means that they only can process digital signals.
Digital signals can be obtained from analogue signals by quantification. They only have
a finite number of values at a finite number of time-points. Digital circuits are e.g. the
backbone of the computer. They can also be used to process analogue signals once they
are converted by an A/D converter. Vice versa the produced digital signal can be con-
verted back to an analogue output signal.
Building an integrated circuit like a computer chip is a very complex process. During

this process first the silicon components are made and then these components are prop-
erly connected by a conducting metal like copper. Of course, one needs a construction
plan to design a chip and test it with a computer. From the construction plans, masks
with the circuit patterns are made. Under carefully monitored conditions, a pure silicon
crystal is grown. Circuit manufacturing requires the use of crystals with an extremely
high grade of perfection. The silicon is sawed into thin wafers with a diamond saw. The
wafers are then polished in a number of steps until their surface has a perfect mirror-like
finish. The silicon wafer is covered with a layer of insulating silicon oxide. A covering
film of protective material that is sensitive to light is put on top of the insulating silicon
oxide. UV-light is shone through a mask and onto the chip. On the parts of the chip that
are hit by light, the protective material breaks apart. The wafer is developed, rinsed and
baked. The development process removes the parts of the protective material exposed
to light. The wafer is treated with chemicals in a process called ”etching.” This removes
the unprotected insulating material, creating a pattern of non-protected silicon wafer
parts surrounded by areas protected by silicon oxide. The wafer is run through a ”dop-
ing” process that alters the electrical properties of the unprotected areas of the wafer.
These steps are repeated to build the integrated circuit, layer by layer.
Finally, when all components of the chip are done, metal is added to connect the com-
ponents to each other in a process called metalization. First the conducting metal is
deposited on the chip. On top of the metal a layer of UV-sensitive photo resist is added.
Next a mask that describes the desired lay-out of the metal wires connecting the com-



1.1 Motivation for the project 3

Figure 1.3: A pure silicon crystal.

ponents of the chip is used. UV-light is shone through this mask and hits the photo
resist that isn’t protected by the mask. In the next step chemicals are used to remove the
photo resist hit by UV-light. Another step of etching removes the metal not protected
by photo resist. Today advanced circuits may need many different layers of metal to
form all the necessary connections. Once the final layer of connecting metal wires has
been added, the chips on the silicon wafer are tested to see if they perform as intended.
Finally, the chips on the wafer are separated to form individual integrated circuits. Each
chip is packed and subject to another series of tests before it can be used.
The design of Integrated Circuits has become very complex during the last decades. The
transistor is the buildingblock of both analogue and digital circuits. The number of tran-
sistors on a chip has grown nearly exponentially, while the size of a chip stayed nearly
constant. This implies that a single transistor can only occupy a very tiny place of the
IC and thus that very detailed effects have to be taken into account. Therefore the used
transistor models themselves have become very complex. A very famous observation,
also called Moore’s Law, says that the number of transistors per chip doubles in each 18
months. Figure 1.4 illustrates that this law has been approximately realised during the
last thirty years.

The challenge of a chip manufacturer is to design a chip that will have the desired
specifications. This has become a very hard task because of the increasing complexity.
Before producing a chip it is necessary to analyse whether a chip design satisfies the
specifications. Although this can be done by experiments on prototypes, this becomes
impossible for really complex designs. Today the existing computing power allows for
computer-aided design. Here mathematical circuit models are used derived from the
theory of electrical circuits. In particular for analogue circuits it is still important to
simulate all electrical effects. Thus circuit designs can be analysed without making a
prototype. In order to produce first-time-right these simulation techniques have be-
come essential. Figure 1.5 shows several circuit analyses that can be used in the design
flow before IC fabrication. The results of the several types of simulations tell whether
the design satisfies the specifications. It can be used for both optimisation and verifica-
tion. In particular transient analysis is an important tool because then the full nonlinear
dynamics of the circuit can be analysed.
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Figure 1.4: The law of Moore.

NXP Semiconductors (founded by Philips) is a chip manufacturer that also needs tools
to analyse the designed integrated circuits. Its department Design Methods provides
circuit simulation software, among them the in-house analogue circuit simulator Pstar
that is also used at Philips. This PhD project ”High performance circuit simulation for
analogue and mixed digital-analogue applications” is intended to improve the transient
simulation by Pstar.

1.2 Formulation of the problem

Mathematical models play an important role in many applications, such as electronics,
mechanics and control. In this thesis we will consider Integrated Circuit models con-
sisting of so called differential-algebraic equations (DAEs). These equations are usually
solved by robust implicit numerical integration methods. The time-step is determined
using error control, which is based on the most active element. Classical integration
methods pay a lot of attention to robust but also efficient linear algebra software, which
uses features like symmetry, positive definiteness, sparsity or a specific structure like
hierarchy. The resulting method may thus be very robust but not always very efficient.
Because no assumption is made about the structure of the DAE, the linear algebra costs
may be very high.
In particular for linear time-invariant models this is up for improvement if one can
employ their nice structure. Other types for which the classical methods are not very
efficient are DAEs with redundancy. This redundancy may come from the continuous
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Figure 1.5: Circuit simulation is essential for the design world to make chips which
satisfy their specifications.

DAE formulation (the real model). This means that we effectively have a much smaller
solution space. But redundancy can also arise after numerical discretisation of the DAE.
In this case not all unknowns need the same time-steps to guarantee at least a prescribed
accuracy. The main topic of this thesis therefore is to design methods that increase the speed of
the transient analysis without loss of accuracy by exploitation of this redundancy.
The redundancy of electrical circuit models can be exploited by using multirate time-

integration or by replacing them by simpler models. First, a redundant DAE model
can be reduced by model order reduction (MOR). This technique tries to find a model
of smaller size that approximates the solution of the original DAE, while keeping the
error sufficiently small. We study in particular methods for nonlinear DAE systems,
like Proper Orthogonal Decomposition (POD) and Trajectory PieceWise Linear (TPWL).
Both techniques offer a good starting point for further research on MOR of non-linear
dynamical systems. The TPWL method is a very useful MOR technique to reduce the
simulation time for nonlinear DAE systems. Its main advantage is the application of
well-developed linear model reduction techniques. The POD method delivers reduced
models that are more accurate but unfortunately also much more expensive to simulate.
Hence modifications are necessary like Missing Point Estimation. This topic is studied
in more detail in this thesis.
Second, the redundancy of the numerical model can be reduced by using multirate
schemes. The slowly-varying unknowns are integrated at a coarse time-grid, which
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Figure 1.6: A finished wafer containing the unseparated chips.

has much larger time-steps. A nice property of multirate is that it does not use any
linear structure, in contrast to MOR, but only a relaxation concept. If the coupling is
sufficiently monitored and the partitioning is well chosen, multirate can be very effi-
cient.
Multirate time-integration methods appear to be attractive for initial value problems
for DAEs with latency or multirate behaviour. We study the so called Slow-Fast ver-
sion of the BDF scheme because of stepsize control reasons. The BDF methods are very
suitable for the interpolation at the refined time-grid. We also develop the so called
Compound-Fast version that is more stable than the Slow-Fast method. Stability is al-
ways an important and necessary property of time-integration schemes, that should be
conserved for multirate schemes. Therefore it is proven that the Compound-Fast - and
Slow-Fast BDF multirate schemes applied to a stable test equation are stable if the sub-
systems are sufficiently decoupled and the active and slow parts of the system are stable
and solvable. For a general partitioning the active part of a stable DAE or ODE is not
automatically stable. For DAEs, moreover, even the solvability and DAE-index are not
automatically preserved for the active part.
Besides stability also the accuracy is an important topic. For multirate schemes the stan-
dard theory for error estimation is no longer valid because of the coupling. We show
how the local discretisation error can be estimated and controlled. Among other things
we show that the interpolation errors at the interface have to be included.
Since finding a partitioning for a multirate scheme is hard another topic is to study
how this can be done automatically. The found partitioning should optimise the speed-
up factor of the corresponding multirate scheme. For dynamical partitionings it is al-
lowed to update the partitioning during the transient simulation. A multirate scheme
including dynamical partitioning is implemented in Pstar and tested for various circuit
models. For circuit models with small high-frequency subcircuits that are coupled to
relatively large low-frequency subcircuits the results are very satisfactory.
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Figure 1.7: A typical integrated circuit shown on a fingernail.

1.3 Guideline to the document

In Chapter 2 the dynamics of electrical circuits are formulated as a system of differential-
algebraic equations (DAE). Thus the electrical behaviour of a chip can be described
mathematically by the solution of a DAE. We show how the DAE can be derived from
the physical laws for the electrical circuits by means of Kirchhoff’s Laws and the branch
equations. Furthermore several kinds of circuit analysis are enumerated.
Chapter 3 recapitulates some well-known properties of DAEs, like uniqueness and ex-
istence of the solution, stability and the DAE-index. Because it is rarely possible to
compute the solution of a DAE analytically one has to rely on numerical time inte-
gration methods. These methods discretise the time and compute the solution on the
time-grid with the help of integration methods. The time-steps have to be chosen in
such a way that the error will be small enough. Chapter 4 describes several numerical
integration methods for DAEs, such as Linear Multistep Methods and BDF-methods. It
is also shown how the local discretisation error can be estimated and controlled in an
adaptive way.
Chapters 5 and 6 deal with one of the main topics of this thesis, i.e. multirate time-
integration. First an introduction of multirate is given in Chapter 5. Here it is shown
that not all partitionings are allowed in order to preserve stability, solvability or the
DAE-index. We focus on the BDF Compound-Fast method in particular. It is explained
how this method can be efficiently implemented using the Nordsieck data representa-
tion. Section 5.5 deals with the stability of the BDF Compound-Fast multirate schemes
for both the one-step and multistep case. Chapter 5 ends with multirate for hierarchical
circuit models, where the circuit model is modularly organised. Chapter 6 shows how
the local error of these multirate schemes can be controlled by use of the stepsizes and
the partitioning. First in Section 6.1 a mathematical analysis of the local error is carried
out. It turns out that the interpolation errors of the boundary variables play an essential
role. Then it is possible to design error and stepsize controllers for the multirate case.
Chapter 6 also shows how the partitioning of a multirate method can be determined
automatically or even dynamically. A good partitioning will optimise the speed-up fac-
tor of the corresponding multirate scheme. From an efficiency analysis it follows that
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the optimal partitioning can be solved from a discrete optimisation problem. Because
this is too complicated to solve in general, several semi-optimal methods are suggested.
Finally it is described how the partitioning can be updated dynamically during the sim-
ulation.
Chapter 7 deals with the other main topic of this thesis, i.e. model order reduction.
First a general overview and a recapitulation of the MOR theory for linear and nonlin-
ear DAE-systems are given. Because MOR methods of Galerkin type only reduce the
dimension and not the simulation time, Sections 7.7 and 7.8 show some possible solu-
tions, like Missing Point Estimation and interpolation.
Finally, Chapter 8 highlights numerical results of multirate time-integration and nonlin-
ear model order reduction for several circuit models. Because the BDF Compound-Fast
multirate scheme has been implemented in Pstar, also some large industrial test cases
are included.



Chapter 2

Mathematical models for
electrical circuits

2.1 Theory of electrical circuits

Before a circuit can be analyzed it is necessary to have a proper mathematical model.
This section describes a well-known method, Modified Nodal Analysis (MNA), that
is able to model a circuit by a differential-algebraic equation [13, 24, 43]. In general,
electrical circuits consist of electrical components and connecting conductors. Because the
electrical resistance of the conductors is negligible, only the junctions of the conductors
are important. Each junction (or node) in the circuit has its nodal voltage or potential V .
If two nodes in the network have different potentials, there is a voltage difference v be-
tween these nodes. A voltage difference will result in a current i to the highest potential,
that aims to level out the voltages. Conversely, a current implies a voltage difference.
By including voltage and/or current sources one can establish a non-trivial voltage and
current distribution. This distribution obeys the Kirchhoff current and voltage laws as
is explained next.
It is possible to consider a circuit as a graph of two types of elements: nodes and branches.
The branches represent the components, while the nodes represent the junctions of the
conductors. Each branch is connected to a pair of nodes. For this branch these nodes
are divided into positive and negative nodes. The voltage difference v across a branch
is equal to V+ − V−, where V+ and V− are the potentials of the positive and negative
node, respectively. The direction of a positive current is always to the positive nodes. If
the current is negative, it means a positive current to the negative nodes.
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Assume that the network consists of n nodes and b branches. Structurally this can be
stored in the topology matrix A ∈ Rn×b, that is defined by

Aij =

 1 if branch j is incident at node i and node i is positive node of j,
−1 if branch j is incident at node i and node i is negative node of j,
0 if branch j is not incident at node i.

Introduce the vector vn ∈ Rn that contains the nodal voltages, arranged in the same or-
der as the rows of A. Introduce furthermore the vector ib ∈ Rb and vb ∈ Rb that contain
the branch currents and branch voltage differences in the same order as the columns of
A. Note that in general vn = vn(t), ib = ib(t) and vb = vb(t) are time-dependent func-
tions. We will show that these variables are sufficient to model the circuit.
There are two types of equations from physics, that together describe the circuit. First
of all, there are the balance laws or the laws of Kirchhoff. These equations have a topo-
logical character, because they do not depend on the type of the components, but only
on the topology of the circuit.

Kirchhoff’s Current Law (KCL): The algebraic sum of all branch currents leaving
a node is zero at all instants of time.

Kirchhoff’s Voltage Law (KVL): The algebraic sum of all voltage differences around
any closed loop of a network is zero
at all instants of time.

With A,vn,vb and ib it is easy to formulate KCL and KVL:

Aib = 0, (KCL),

AT vn = vb. (KVL).
(2.1)

The constitutive relations (or branch equations) depend on the type of the component.
There are many types of components, but here only the basic circuit components have
been considered. Let ib and vb be the vectors that consist of all branch currents and
voltage differences across the branches. In general each equation of the components can
then be described in an implicit way:

fk(vb,
dvb

dt
, ib,

dib
dt
, t) = 0, k = 1, . . . , b (2.2)

Note that this is a very general formulation indeed, because branch equations are locally
defined. This means that fk only depends on the quantities vb(k), ib(k) in branch k.
Electrical components can be current-defined or voltage-defined. Capacitors and current
sources are current-defined, inductors and voltage sources are voltage-defined, while
resistors can be of both types. Let the vectors vb ∈ Rb and ib ∈ Rb be split into two
parts

vb =

(
vb1

vb2

)
, ib =

(
ib1

ib2

)
, (2.3)

where vb1
, ib1

∈ Rb1 and vb2
, ib2

∈ Rb2 consists of the branch voltages and branch
currents of the current-defined and voltage-defined elements, respectively. Define the
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functions q̂ : R×Rb×Rb2 → Rb and q̌ : R×Rb×Rb2 → Rb such that all current-defined
elements satisfy

∀k=1,...,b1
ib1

(k) =
d

dt
q̂k(t,vb, ib2

) + ĵk(t,vb, ib2
), (2.4)

and all voltage-defined elements satisfy

∀k=1,...,b2
vb2

(k) =
d

dt
q̌k(t,vb, ib2

) + ǰk(t,vb, ib2
). (2.5)

Current-defined elements are also called voltage-controlled components, while voltage-
defined elements are also called current-controlled components. Let the matrix A be parti-
tioned into two parts:

A =
(

A1 A2

)
.

In the new variables the balance laws can be written as

A1ib1
+ A2ib2

= 0, (KCL) (2.6)

AT
1 vn = vb1

,

AT
2 vn = vb2

.

}
(KVL) (2.7)

2.2 Modified nodal analysis (MNA)

In the previous section equations are derived that describe the circuit. In this section
the functions q and j will be derived, such that the circuit is modeled by the following
system of differential-algebraic equations (DAE)

d

dt
q(t, x(t)) + j(t, x(t)) = 0. (2.8)

Circuits without voltage-defined elements as in (2.4) are usually modeled by Nodal Anal-
ysis. However, for the general case we need an extension which is also called Modified
Nodal Analysis (MNA). We already saw that the constitutive relations of the two types of
components can be formulated as

ib1
= d

dt q̂(t, (vT
b1
,vT

b2
)T , ib2

) + ĵ(t, (vT
b1
,vT

b2
)T , ib2

),

vb2
= d

dt q̌(t, (vT
b1
,vT

b2
)T , ib2

) + ǰ(t, (vT
b1
,vT

b2
)T , ib2

).

}
(CR) (2.9)

Left-multiplying the first equation by A1 and using KCL results in

−A2ib2
=
d

dt
A1q̂(t, (vT

b1
,vT

b2
)T , ib2

) + A1ĵ(t, (vT
b1
,vT

b2
)T , ib2

).

Using KVL, we can express vb1
and vb2

in terms of vn. Because (vT
b1
,vT

b2
)T = (vT

nA1,vT
nA2)T =

AT vn, this yields

−A2ib2
= d

dtA1q̂(t,AT vn, ib2
) + A1ĵ(t,AT vn, ib2

),

AT
2 vn = d

dt q̌(t,AT vn, ib2
) + ǰ(t,AT vn, ib2

).

 (2.10)
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The result is a system of n + b2 equations for the n + b2 elements of vn, ib2
. It is well-

known that for a connected circuit the rank of its topology matrix A equals n − 1 [24].
This is caused by the property that the column sum of each column of A is zero. This
means that vn is not yet uniquely determined by equation (2.10). This is the reason
why at least one node has to be grounded. Assume, the k-th element of vn is grounded
at value V∗. In that case, the k-th row of A,A1,A2, the k-th column of A,A1 and the
k-th coordinate of vn have to be removed. This will lead to a new system of n + b2 − 1
equations for the n+ b2 − 1 elements of v̂n, ib2

. For most connected circuit models that
occur in practice this system will be uniquely solvable, although this is not the case for
general DAE models. Let ek ∈ Rn−1 be the k-th unit vector, then we get the additional
condition eT

kvn = V∗. Thus we can write vn = PT
k v̂n + ekV

∗, where v̂n ∈ Rn−1 and
Pk ∈ {0, 1}(n−1)×n is a selection operator with Pkek = 0. Then we get

−PkA2ib2
= d

dtPkA1q̂(t,AT PT
k v̂n + AT ekV

∗, ib2
) + PkA1ĵ(t,AT PT

k v̂n + AT ekV
∗, ib2

),

AT
2 PT

k v̂n + AT
2 ekV

∗ = d
dt q̌(t,AT PT

k v̂n + AT ekV
∗, ib2

) + ǰ(t,AT PT
k v̂n + AT ekV

∗, ib2
).


(2.11)

In practice the ground value V∗ of a circuit is always equal to zero. Define the state

vector x =
(
xT

1 , x
T
2

)T
=
(

v̂T
n, i

T
b2

)T

of dimension d and the functions q, j : R×Rd → Rd,
such that

q(t, x) =

(
PkA1q̂(t,AT PT

kx1, x2)

q̌(t,AT PT
kx1, x2)

)
,

j(t, x) =

(
PkA1ĵ(t,AT PT

kx1, x2) + PkA2x2

ǰ(t,AT PT
kx1, x2) − AT

2 PT
kx1

)
.

Now the grounded circuit is mathematically described by the system of differential-
algebraic equations (2.8) indeed.
It is possible to expand q and j as sums of local contributions of all components [31].

q(t, x) =
∑

elements
Aeqe(t,BT

e x), j(t, x) =
∑

elements
Aeje(t,BT

e x). (2.12)

Here qe, je are the functions that model the branches themselves and Ae,Be are local
extraction and selection mappings. Often Ae = Be. For an ordinary capacitor qe is
simply a scalar. The sizes of qe, je are equal to 1 and 2 for current-defined and voltage-
defined elements, respectively. Thus, in general the Jacobian matrices

C(t, x) =
∂q(t, x)

∂x
=

∑
elements

AeCe(t,BT
e x)BT

e , (2.13)

G(t, x) =
∂j(t, x)

∂x
=

∑
elements

AeGe(t,BT
e x)BT

e (2.14)

are sparse matrices, formed by low-rank updates.
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2.3 Circuit analyses

After deriving the model of an electrical circuit, that is determined by the functions q
and j, one is able to analyse the circuit. In this section several types of circuit analysis-
methods are described.
The Direct current (DC) analysis computes the time-independent steady-state solution
xDC of the circuit. In a steady-state there are only time-invariant equations. This means
that

q(t, x) = qDC(x), C(t, x) = CDC(x),
j(t, x) = jDC(x), G(t, x) = GDC(x).

Furthermore the steady-state solution has the property:

ẋDC = 0.

This implies that d
dtqDC(xDC) = ∂

∂xDC
qDC(xDC)∂xDC

∂t = 0. Hence the steady-state
equation to be solved is the algebraic equation

jDC(xDC) = 0. (2.15)

This is a nonlinear equation in general, that can be solved e.g. by the Newton method.
If the equation is linear, Gaussian elimination is sufficient.
The Alternating Current (AC) analysis considers the effect of applying small signal per-
turbations e(t), with e(0) = 0, to the equation of the DC-solution

d

dt
qDC(x(t)) + jDC(x(t)) − e(t) = 0, x(0) = xDC. (2.16)

Note that the function q does not depend explicitly on t. At t = 0, the solution x(t) is
equal to the steady-state solution x0 = xDC, while the dynamic behaviour is caused by
an independent small sine-wave excitation e(t), that is added to the circuit as a source
function. It is convenient to consider a sine-wave as the imaginary part of the complex
harmonic function. The imaginary part of a complex vector z is defined as =[z]. Thus

e(t) = e∗ sin(ω0t) = e∗=[eiω0t],

with e∗ ∈ Rn, ω0 ∈ R the angular frequency of e(t) and i ∈ C the complex unity.
Because e∗ is small, ‖e∗‖ << 1, the solution will have small differences with the steady-
state solution. Introduce y(t) = x(t) − xDC, then

qDC(x(t))
.
= qDC(xDC) +

∂q
DC

∂x (xDC)y(t),

jDC(x(t))
.
= jDC(xDC) +

∂j
DC

∂x (xDC)y(t).

Since jDC(xDC) = 0, we obtain in first order

d

dt
qDC(x(t)) + jDC(x(t))

.
=

d

dt

(
qDC(xDC) + CDCy(t)

)
+ jDC(xDC) + GDCy(t)

= CDCẏ(t) + GDCy(t).
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If
CDCẏAC(t) + GDCyAC(t) = e∗eiω0t yAC(0) = 0, (2.17)

the AC-solution of the circuit is given by xAC(t) = x0 + =[yAC(t)]. Since yAC(0) = 0we
can use the Fourier transforms F {yAC(t)}(ω) = yAC, F {ẏAC(t)}(ω) = iωyAC(ω) and
F {e(t)}(ω) = e∗δ(ω−ω0). Thus in the frequency domain (2.17) is equivalent to

(iωCDC + GDC)yAC(ω) = e∗δ(ω−ω0).

We can write yAC(ω) = zACδ(ω − ω0), where zAC ∈ Cn solves the complex linear
system

(iω0CDC + GDC)zAC = e∗.

An AC analysis solves this last system.
The Transient analysis treats the full real nonlinear circuit. In general, one is interested
in the behaviour of the system on the time interval [0, T ]. Normally the initial state x0

is known. It could be the steady-state solution to study large signal perturbations, but
this is not necessary. For a transient analysis the initial value problem (IVP){

d
dtq(t, x(t)) + j(t, x(t)) = 0,

x(0) = x0
(2.18)

has to be solved. If x0 = xDC we have a sequence of analyses: first solve (2.15) (”im-
plicit DC”) and then integrate (2.18) in time. The functions q : [0, T ] × Rd → Rd and
j : [0, T ] × Rd → Rd can be derived from physical laws. The solution x(t) describes
the dynamic behaviour of the system for a known initial value, for example the steady-
state. Because (2.18) is a differential-algebraic equation, not all initial states are allowed.
If q is independent of t, the steady-state solution at t = 0 is always a consistent initial
solution. The initial value problem can be solved by numerical tools like Linear Multi-
step Methods or Runge Kutta methods. Due to the algebraic equations and the possibly
stiff behaviour, it is necessary to use implicit methods. In chapter four, the numerical
tools for the transient analysis are investigated.
In many circuits there exists a periodic solution. This solution is often called the periodic
steady-state. In this case, instead of an initial value, a periodicity constraint is specified.
In the periodic steady-state, the functions q(t, x(t)) and j(t, x(t)) are periodic functions
with respect to t. Then the two-point boundary value problem (BVP){

d
dtq(t, x(t)) + j(t, x(t)) = 0,

x(0) = x(T)
(2.19)

has to be solved. Here T is the period of the solution. If the functions q and j are periodic,
the period T can be derived. But if that is not the case it is still possible to have periodic
solutions. Sometimes T is known, but T could also be an additional unknown of the
system. In that case the free oscillator problem has to be solved [25]. Then an additional
equation is solved for the timeshift by setting a specific coordinate xk(0) = xk,o to a
special value (that should be in the range of xk(t)). These problems, with periodicity
constraints, are more difficult to solve, because there are no initial conditions. If the
period T is known, one could use e.g. a shooting method to solve this problem. For
unknown period, a nonlinear eigenvalue problem has to be solved, that is more difficult.
However, for linear systems it is sufficient to determine the eigenvalues of the system
that determine the possible periods.



Chapter 3

Differential-algebraic equations
(DAEs)

3.1 Introduction

Many physical applications, like electronics and mechanics, can be very well modeled
by dynamical systems consisting of differential equations. If the system also included
pure algebraic equations, one speaks about differential-algebraic equations. In this chapter
we will consider the following DAE with state vector x : [0, T ] → Rd{

d
dtq(t, x(t)) + j(t, x(t)) = 0,

x(0) = x0.
(3.1)

The functions q : [0, T ] × Rd → Rd, j : [0, T ] × Rd → Rd and the Jacobian matrices

C(t, x) =
∂q
∂x (t, x) and G(t, x) =

∂j
∂x (t, x) can be derived from physical laws. If the

system describes an electrical circuit, MNA can be used to derive q, j and C,G as is ex-
plained in Chapter 2. The solution x(t) of (3.1) describes the dynamic behaviour of the
system for a known initial value, for example the steady state.
A special case of the DAEs is the ordinary differential equation (ODE). In that case, a tran-
sient analysis computes the solution of the initial value problem{

ẋ = f(t, x),
x(0) = x0.

(3.2)

with f : [0, T ]× Rd → Rd.
The DAE is called semi-explicit if it can be written as:{

ẏ = f(t, x,y),
0 = g(t, x,y).
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The benefit of this type is the strict separation between the differential equations and
the algebraic equations. After introducing the new variable y = q(t, x), the DAE (3.1)
can easily be written into the semi-explicit form{

ẏ = −j(t, x),
0 = y − q(t, x).

The price of this transformation is that the number of unknowns is doubled. There are
more representations of (3.1). Expanding the derivative of q and using the Jacobian
matrix C(t, x) =

∂q(t,x)

∂x results in

C(t, x)ẋ +
∂q
∂t

(t, x) + j(t, x) = 0. (3.3)

From this representation , it follows that if C(t, x) is invertible for all x, the DAE can be
written as an ODE. But in practice, C(t, x) will almost always be singular, because of the
algebraic equations. Then the solution has to satisfy a number of algebraic equations.
Because these algebraic equations also apply at t = 0, a proper initial solution also has to
satisfy the algebraic equations. Such initial solution is called consistent. For DAE-index
1 the stationary solution is a consistent solution, but a general initial value is not. For a
higher index DAE also constraints on time derivatives of x at t = 0 have to be met.

3.2 Uniqueness and existence of the solution

For ODEs of type (3.2) it is well-known that there exists a unique continuously differ-
entiable solution if f(t, x) is continuous on [0, T ] and Lipschitz continuous with respect to
x [32]. For DAEs of type (3.1) we need different conditions for q and j.
Here we can use Banach’s contraction theorem that states that each operator T : S → S has
a unique fixed point, if S is a closed Banach space and ‖T x − T y‖ ≤ α‖x − y‖ for α < 1
(see also [37]).
Because q does not always have an inverse, we use the function

g(t, x) := q(t, x) + λj(t, x). (3.4)

Here λ > 0 is an arbitrary positive constant, such that g is an invertible function with
inverse ginv. Let L > 0 and S > 0 be the Lipschitz constants of j and ginv, respectively.
If q, j and ginv are continuously differentiable with Jacobian matrices C(t, x),G(t, x), the
Lipschitz constants L, S can be defined as

L := max{‖G(t, x)‖, (t, x) ∈ I ×Ω}, (3.5)

S := max{‖ [C(t, x) + λG(t, x)]
−1 ‖, (t, x) ∈ I ×Ω}. (3.6)

Theorem 3.1 The DAE (3.1) has a unique solution for t ∈ [0, tend) with tend > 0 if the
functions j and ginv are Lipschitz continuous with finite Lipschitz constants L, S.
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Proof: Consider two solutions x,y that satisfy{
d
dt [q(t, x)] + j(t, x) = 0, x(0) = x0,
d
dt [q(t,y)] + j(t,y) = 0, y(0) = x0,

(3.7)

respectively. Since q(0, x(0)) = q(0,y(0)) = q(0, x0) = q0 we can write{
q(T, x(T)) − q0 +

∫T

0
j(τ, x(τ))dτ = 0,

q(T,y(T)) − q0 +
∫T

0
j(τ,y(τ))dτ = 0,

and

q(T, x(T)) − q(T,y(T)) +

∫T

0

[j(τ, x(τ)) − j(τ,y(τ))]dτ = 0. (3.8)

Using (3.4), this equation (3.8) is equivalent to

g(T, x(T)) − g(T,y(T)) − λ(j(T, x(T)) − j(T,y(T))) +

∫T

0

[j(τ, x(τ)) − j(τ,y(τ))]dτ = 0.

If g is differentiable, there exists a c ∈ Rd for which

∂g
∂x

(T, c)(x(T) − y(T)) = λ(j(T, x(T)) − j(T,y(T))) −

∫T

0

[j(τ, x(τ)) − j(τ,y(τ))]dτ.

Finally we get

‖x(T) − y(T)‖ ≤ ‖
[
∂g
∂x

(T, c)
]−1

‖(λ+ T)‖j(t, x(t)) − j(t,y(t))‖[0,T ].

Because j and ginv are Lipschitz continuous with finite Lipschitz constants L > 0 and
S > 0, we obtain

‖x(t) − y(t)‖[0,T ] ≤ (T + λ)LS‖x(t) − y(t)‖[0,T ].

Then we can always construct a small T for which (T + λ)LS < 1 and x(t) = y(t). Apply
the above mentioned Banach’s contraction theorem with S = L2([0, T ],Rd) to prove ex-
istence and uniqueness of the solution of (3.1). �

Thus a finite S means that C(t, x) + λG(t, x) is invertible for all (t, x). This is exactly
the famous condition for the matrix pencil (C,G) of LTI systems. For finite L and S
it means that we get a unique bounded solution for T = 1

LS . Note that this operator
could even be used to find a numerical solution by a fixed-point iteration on [0, T ]. The
previous results are sufficient to prove the existence and uniqueness of the solution.
Nevertheless we still need an alternative version of Gronwall’s Lemma, that also can
prove well-posedness with respect to small perturbations of the initial solution and the
system itself.
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3.3 Index of differential-algebraic equations

The general form of a DAE is given by

f(t, x, ẋ) = 0. (3.9)

This equation consists of algebraic and differential equations. If ∂f
∂ẋ is invertible, the

DAE can be transformed into an ODE. If f represents the dynamics of an electrical circuit
this will not be the case in general. But after differentiating the DAE sufficiently often
and replacing the algebraic equations by the extra derived differential equations, one
can explicitly express ẋ in terms of x.

Definition 3.2 The (global) DAE-index ν of the DAE (3.9) is the necessary amount of differ-
entiations to get an ODE.

Clearly, ODEs have DAE-index ν = 0. For (3.1), it follows that ν = 0 if C(t, x) is invert-
ible. But in general, it is hard to determine the global index of a system.

Definition 3.3 Consider the matrix pencils: λC(t, x) + G(t, x) with λ ∈ C. The DAE (3.1)
is solvable if det(λC(t, x) + G(t, x)) is only zero for a finite number of values for λ. If G(t, x)
is invertible and if − 1

λ is an eigenvalue of the matrix C(t, x)G(t, x)−1, the pencils are never
invertible.

The following Kronecker decomposition of the matrices C,G is very useful to analyse the
index of linear time-invariant DAEs [32].

Theorem 3.4 Consider the invertible matrix pencil λC + G. Then there exist nonsingular
matrices P and Q, such that

PCQ =

(
Id−s 0

0 N

)
, PGQ =

(
A 0

0 Is

)
. (3.10)

Here, Id−s, Is are identity matrices, while N ∈ Rs×s is a nilpotent matrix.

Consider the DAE (3.1) with exact solution x(t). From Theorem (3.4) it follows that there
exist invertible matrices P and Q such that PC(t, x(t))Q and PG(t, x(t))Q at time-point
t can be written like (3.10).

Definition 3.5 The local DAE-index µ of (3.1) at time-point t equals the nilpotency index of
N. The nilpotency index µ is defined as:

µ = min{k ∈ N : Nk = O}.
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It follows that for all λ

det(C + λG) = det(P−1) det(
(

I + λA 0

0 N + λI

)
) det(Q−1)

= 1

det(PQ)
det(I + λA) det(N + λI).

Because N is a nilpotent matrix all its eigenvalues are equal to zero and it can be trans-
formed into a Jordan upper block triangular matrix with zeros in the diagonal. This
implies that det(N + λI) = λs and

det(C + λG) =
λs

det(PQ)
det(I + λA) = O(λs).

Thus s equals the algebraic multiplicity of the eigenvalue zero. Let g be the geometric
multiplicity of the corresponding eigenspace: g = dim(Null(C)). Then the DAE-index
µ is defined as

µ =

{
0 if s = 0,

1+ s− g if s > 0.

3.4 Stability

Besides the solvability, also the stability of the system is important.

Definition 3.6 Consider the perturbed IVP of (3.1) with initial value x̂0 and solution x̂(t). The
system is stable if:

∀ε>0 ∃δ>0 ‖x̂0 − x0‖ < δ ⇒ ∀t ‖x̂(t) − x(t)‖ < ε. (3.11)

Stability ensures that the difference between the exact and the approximated solution
remains small, if the initial value is changed only a little. This is a useful property,
because the local discretisation errors of an integration method can be considered as
perturbations of the initial value for that timepoint. For many physical systems like
electrical circuits, the time-dependent behaviour is caused by source functions. This
means that these systems can be described by only the DAE{

d
dtq(x) + j(x) + u(t) = 0,

x(0) = x0,
(3.12)

where u(t) is an input function that only depends on t. It is difficult to check the global
stability in general. A possible approach is to check the local stability around the initial
steady state. In this case the stability of the linearised systems at all possible times and
states is determined. For a linear time-invariant (LTI) system, that has constant Jacobian
matrices it is well-known that the system is stable, if the Jacobian matrix is a stable
matrix. This means that all eigenvalues of the Jacobian matrix have strict negative real
parts.
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Let x0 be the steady state of (3.12), with j(x0) = 0. Consider the linearised homogeneous
system around x0

Cẏ + Gy = 0. (3.13)

This system is stable if all roots of

det(sC + G) = 0

have strict negative real part. Furthermore, if (3.13) is stable then also the nonlinear
system itself is locally stable around x0.



Chapter 4

Numerical integration of DAEs

4.1 Introduction

Consider the following system of differential-algebraic equations:

d

dt
q(t, x) + j(t, x) = 0. (4.1)

It is assumed that the exact solution x(t) exists on [0, T ]. This system can describe many
dynamical phenomena in nature, economy or other applications. Very often we are
interested to know the state x(t) on a certain time interval [0, T ] for a given initial condi-
tion. It is rarely possible to compute the solution analytically, in which case one has to
rely on numerical time integration methods. All these methods discretise the time and com-
pute the solution on the time grid with the help of integration methods. The timesteps
have to be chosen in such a way that the error will be small enough. The time inter-
val [0, T ] is discretised into a timegrid {tn, n = 0, . . . ,N}, with hn = tn − tn−1 the n-th
timestep. The numerical approximation at t = tn is denoted by xn. Now, (4.1) is ap-
proximated with use of numerical discretisation or integration methods. In general,
this results in a large system of N nonlinear equations with N unknowns. Usually, it is
possible to compute xn for n ∈ {1, . . . ,N} in a recursive manner:

g(tn, xn−k, . . . , xn) = 0. (4.2)

If xn only depends on the previous solution xn−1, the method is a one step method, e.g.
the Runge Kutta methods. For multistep methods k > 1 such that also xn−2, . . . , xn−2 are
used, which makes them more complex to analyse [15, 21, 32, 48].

Definition 4.1 Consider the numerical solutions {xn, n = 0, . . . ,N} at the timegrid {tn, n =
0, . . . ,N}.

• The global error en is equal to x(tn) − xn.
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• The local discretisation error (LDE) per unit step is equal to the residual of (4.2), after
inserting the exact solution: δn = g(tn, x(tn−k), . . . , x(tn)).

• Let x∗n be the solution of the numerical scheme (4.2), if all previous solutions are exact.

g(tn, x(tn−k), . . . , x(tn−1), x∗n) = 0.

Then, the scaled local discretisation error is equal to dn = x(tn) − x∗n.

A numerical scheme is called consistent with order p, if for constant stepsize h, the local
discretisation error δn = O(hp+1). Here we use the local discretisation error per unit
step in contrast to the also existing local discretisation error per step [48]. The scheme is
convergent with order p, if also the global errors satisfy ‖en‖ = O(hp). Theorem (4.2)
gives some important relations between the local and global error.

Theorem 4.2 Assume that method (4.2) is consistent with order p. Then, the scaled local dis-
cretisation error satisfies (

∂g
∂xn

)
dn = δn.

The global error satisfies the following equation:

∂g
∂xn−k

en−k + . . .+
∂g
∂xn

en
.
= δn.

This is equivalent to(
∂g
∂xn

)
en

.
= −

(
∂g

∂xn−k
en−k + . . .+

∂g
∂xn−1

en−1

)
+

(
∂g
∂xn

)
dn.

Proof: For the scaled local discretisation error we obtain

0 = g(tn, x(tn−k), . . . , x(tn−1), x∗n)

= δn −
∂g

∂xn
dn.

Because of the definition of δn and (4.2), it follows that

0 = g(tn, xn−k, . . . , xn)
.
= δn −

(
∂g

∂xn−k
en−k + . . .+

∂g
∂xn

en

)
.

�

Note that there exists a close relationship between the scaled local error and the global
error. It appears that the global error also depends on the previous global errors. Al-
though theorem (4.2) holds, this asymptotic relation can only be used to estimate the
global error at the next timepoint. Because the rather complex behaviour of the global
error, the LDE or the scaled LDE are controlled instead. If a method is consistent with
order p, it is possible to control the local discretisation error by the stepsizes. Then, it is
necessary to use an estimate δ̂n of the LDE with δ̂n = δn +O(hp+2). If a method is con-
vergent, this means that the global errors tend to zero, if h → 0. However, in practice
the stepsizes are always positive numbers. In that case, stability is also an important
property of a numerical scheme.
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Definition 4.3 A method is called absolutely stable for a given stepsize h and a given differ-
ential equation if the change due to a perturbation of size ε in one of the mesh values xn is not
larger than ε in all subsequent values xm,m > n.

In practice, the absolute stability is investigated for the test equation ẏ = λywith λ ∈ C.
This results in a stability region S ⊂ C, with

hλ ∈ S ⇒ Method is stable for linear test equation with eigenvalue λ.

Definition 4.4 A method is called A(α)-stable with 0 < α < π
2 if

S ⊇ Sα = {z : |arg(−z)| < α, z 6= 0}.

A method is called absolutely stable (A-stable) or unconditionally stable if it is A(π
2 )-stable.

4.2 Linear Multistep Methods

Besides one step methods, it is also possible to use Linear Multistep Methods (LMM). In
contrast to Runge Kutta methods, they do not use only the last numerical solution. This
leads to smoother solutions, but can cause problems with discontinuities. For variable
stepsizes, it is more difficult to analyse them, because now the local errors depend also
on the previous stepsizes. A general representation of the LMM-method to approximate
the solution of (4.1) with fixed stepsizes is:

k∑
m=0

[ρmq(tn−m, xn−m) + hσmj(tn−m, xn−m)] = 0. (4.3)

A k-step method needs k given initial values x0, . . . , xk−1 to start. If only x0 is known,
the other values can be computed iteratively using methods with increasing amount of
steps. Define the vector rn ∈ Rn, which is known at t = tn.

rn = −

k∑
m=1

[ρmq(tn−m, xn−m) + hσmj(tn−m, xn−m)] .

Then each timestep, the next nonlinear algebraic equation has to be solved:

ρ0q(tn, xn) + hσ0j(tn, xn) = rn.

This equation can be solved by e.g. the Newton method. An initial guess for the Newton
process could be the previous solution xn−1, but better predictions can be made by
means of extrapolation. Implicit schemes have the property that σ0 6= 0, which are
necessary if the function q is not invertible which is the case for circuit models.
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An important class of LMM-methods are the Backward Difference Formulae (BDF). Define
for i ∈ {0, . . . , k} the Lagrangian basis polynomial with

ln(tn−i) := δi0. (4.4)

Then the function q(t, x(t)) obeys the next approximation:

q(t, x(t))
.
=

k∑
m=0

ln−m(t)q(tn−m, xn−m).

Differentiating the DAE in t = tn, we get:

h
d

dt
q(t, x(t))

∣∣∣∣
t=tn

+hj(tn, xn)
.
=

k∑
m=0

h

(
d

dt
ln−m(t)

∣∣∣∣
t=tn

)
q(tn−m, xn−m)+hj(tn, xn).

Hence we derive the Backward Difference Formula

k∑
m=0

ρmq(tn−m, xn−m) + hj(tn, xn) = 0,

where ρm, σm satisfy

∀m∈{0,...,k} ρm = h d
dt lm(t)

∣∣
t=tn

,

∀m∈{0,...,k} σm =

{
1 m = k,

0 otherwise.

Define the polynomials:

ρ(z) =
∑k

m=0 ρmz
m, σ(z) =

∑k
m=0 σmz

m.

Consider the shift-operator q with (q x)n = xn+1. This is often also denoted by qxn =
xn+1. Now it is possible to describe an LMM-method with use of the shift-operator as
follows:

ρ(q)xn−k = hσ(q)f(tn−k, xn−k). (4.5)

Note that for a BDF-method one has the restriction that σ(z) = zk is fixed.

Theorem 4.5 An LMM-method is consistent with order p if and only if the polynomials ρ(z)
and σ(z) satisfy next equations:

ρ(1) = 0,

ρ ′(1) − σ(1) = 0,

∀s∈{2,...,p}

∑k
m=0

[
ρm(m− k)s − sσm(m− k)s−1

]
= 0.

(4.6)

The local discretisation error (LDE) of a consistent LMM-method with order p and fixed stepsizes
can be written as

δn = Cph
px(p+1)(tn) +O(hp+1)

with Cp =
∑k

m=0

[
ρm

(m−k)p+1

(p+1)! − σm
(m−k)p

p!

]
. For BDF-methods, Cp = − 1

p+1 = − 1
k+1 .
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Proof: The local discretisation error (LDE) δn is equal to

δn = ρ(q)x(tn−k) − hσ(q)f(tn−k, x(tn−k)).

Then, δn can be approximated in the next way:

δn =
∑k

m=0 ρmx(tn+m−k) − h
∑k

m=0 σmf(tn+m−k, x(tn+m−k))

=
∑k

m=0 ρmx(tn) + h
∑k

m=0 [ρm(m− k) − σm] ẋ(tn)

+ h2
∑k

m=0

[
ρm

(m−k)2

2 − σm(m− k)
]

ẍ(tn) + . . .

+ hp
∑k

m=0

[
ρm

(m−k)p

p! − σm
(m−k)p−1

(p−1)!

]
x(p)(tn) +O(hp+1).

(4.7)

Because an LMM-method is consistent with order p if δn = O(hp+1), indeed ρ(z) and
σ(z) has to satisfy the equations (4.6). �

Definition 4.6 Consider a polynomial P(z). Then, P(z) obeys the root condition, if{
∀z∈CP(z) = 0 ⇒ |z| ≤ 1,
∀z∈C (P(z) = 0∧ z is not simple.) ⇒ |z| < 1.

(4.8)

The LMM-method is called root-stable if ρ(z) obeys the root condition (4.8).

Theorem 4.7 An LMM-scheme is convergent with order k for an ordinary ODE, if it is both
consistent with order k and root stable.

Proof: See [32, 48]. �

Because convergent LMM-methods are root-stable, it always holds for these LMM-
methods that ρ ′(1) 6= 0, because 1 can only be a simple root of ρ(z). Then, it follows
from the equation (4.6) that also σ(1) 6= 0.

To check the absolute stability, the LMM-method is performed for the linear test equa-
tion, which results in:

ρ(q)yn−k = h̄σ(q)yn−k

with h̄ = λh. Now, the characteristic polynomial π(z, h̄) of the numerical scheme is
equal to ρ(z) − h̄σ(z). Then

π(q, h̄)yn−k = 0.

The method is absolutely stable (A-stable) in h̄ if π(z, h̄) obeys the root condition. Note
that root stability is equivalent to absolutely stability in h̄ = 0. Then it is possible to
derive stability regions for the LMM-methods with:

S = {h̄ ∈ C : π(z, h̄) satisfies the root condition.}. (4.9)

There exists a Theorem proved by Dahlquist [32], that states that the order of absolutely
stable LMM-methods is at most 2, while the order of A(α)-stable methods is at most 6.
In practice, the stability regions for special nonlinear functions f may be quite different
from these stability regions. But after linearising f at x = x∗, the eigenvalues of ∂f

∂x

∣∣
x=x∗

can be computed. The timestep h has to be chosen, such that for all eigenvalues hλ ∈ S.
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4.3 The Nordsieck data representation

For an efficient implementation of a Linear Multistep method, like the BDF scheme,
it is important to have a proper data structure. There are several ways to store and
process polynomials, such as the Lagrange, scaled divided difference and Nordsieck
representation. This topic has been studied very thoroughly e.g. in [49]. In this section
we describe the Nordsieck data representation [13, 59, 73]. Let p(t) : R → Rd be a vector-
valued polynomial of degree k. This polynomial can be written as a truncated Taylor
series around an arbitrarily chosen time-point τ1, e.g. τ1 = tn, as

p(t) =

k∑
i=0

1

i!

di

dti
p(τ1)(t− τ1)i. (4.10)

It is very common to expand p(t) in the following scaled form (for some h > 0)

p(t) =

k∑
i=0

(
hi di

dti p(τ1)

i!

)(
t− t1

h

)i

.

This polynomial could describe the time-behaviour of x(t) or q(t, x(t)) at a certain time-
interval [tn−1, tn], where τ1 = tn and h = tn − tn−1. The Nordsieck matrix P̄(τ1, h) ∈
Rd×(k+1) of this polynomial, defined as

P̄ =

(
p(t1)

∣∣∣ h d
dt

p(t1)
∣∣∣ h2

2

d2

dt2
p(t1)

∣∣∣ . . . ∣∣∣ hk

k!

dk

dtk
p(t1)

)
(4.11)

contains all coefficients of this polynomial. Often one does not realise that P̄ is a matrix
for multi-dimensional systems of DAEs. This matrix P̄ is called the transposed Nordsieck
vector if the state dimension d is equal to one. Now, the vector-valued polynomial and
its Nordsieck matrix are related by the following equation, where p̄i is the i-th column
of P̄

p(t) =

k∑
i=0

p̄i+1

(
t− t1

h

)i

= P̄


1

ω
...
ωk

 , ω =
t− τ1

h
. (4.12)

Define
e(k,ω) :=

[
1,ω, . . . ,ωk

]T
. (4.13)

Clearly, the Nordsieck matrix depends on the time-point τ1 and the stepsize h. This
means that changing τ1 or h will also change the Nordsieck vector. If the Nordsieck
matrix P̄(τ1, h1) is available, p(t) can be found from

p(t) =

k∑
i=0

p̄i+1

(
t− t1

h1

)i

= P̄ · e(k,
t− τ1

h1
). (4.14)

Two Nordsieck matrices P̄(τ1, h1) and P̄(τ2, h2) are called equivalent if they represent
the same polynomial p(t). If one Nordsieck matrix P̄ := P̄(τ1, h1) is known, all other
Nordsieck matrices Q̄ := P̄(τ2, h2) can also be computed.
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Define A(k,ω, µ) ∈ R(k+1)×(k+1) by

aij :=

{
0 i < j,(

i−1
j−1

)
ωi−1µi−j i ≥ j. (4.15)

As the following Theorem shows this matrix appears to be needed to describe the rela-
tionship between two equivalent Nordsieck matrices.

Theorem 4.8 Assume that P̄ := P̄(τ1, h1) and Q̄ := P̄(τ2, h2) are two equivalent Nordsieck
matrices that represent the same polynomial p(t). Then the Nordsieck matrices are related by

Q̄ = P̄ · A(k,
h2

h1
,
τ2 − τ1

h2
), (4.16)

where A ∈ R(k+1)×(k+1) is defined in (4.15).

This Theorem can be used to transform the Nordsieck matrices if P̄ and Q̄ have the same
number of columns k. In practice P̄ and Q̄ may also have a different number of columns,
k1 and k2 say. If the polynomial p(t) of degree k1 is represented by P̄, it is only possible
to describe it also with P̄ if k2 ≥ k1. Otherwise, p(t) can only be approximated by a
lower degree polynomial q(t), that is represented by Q̄.

Define the non-square Vandermonde matrix V(k, l) ∈ R(k+1)×(l+1) by

vij :=

{
1 i = j = 1,

(1− j)i−1 otherwise. (4.17)

Definition 4.9 For 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ l + 1 the non-square Vandermonde matrix
V(k, l) ∈ R(k+1)×(l+1) is defined by For 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ l + 1 the matrices
T(1)(k, l,ω, µ),T(2)(k, l,ω, µ) ∈ R(k+1)×(l+1) are defined by

T(1) := A(k,ω, µ) · V(k, l) · V(l, l)−1 (4.18)

T(2) := A(k,ω, µ) ·
[
V(k, l− 1), ek

2

]
·
[
V(l, l− 1), el

2

]−1
(4.19)

where ek
2 , e

l
2 are the unit vectors [0, 1, 0, . . .]T of length k+ 1 and l+ 1, respectively.

The transformations T(1),T(2) can be used to describe the relationship between two
Nordsieck matrices which are not equivalent. In practice they are used if the integration
order changes adaptively.

Theorem 4.10 Consider the polynomial p(t) of degree k1 that is represented by P̄ ∈ Rd×(k1+1)

using time-point τ1 and stepsize h1. Let Q̄ ∈ Rd×(k2+1) be the Nordsieck matrix of q(t) of
degree k2 with time-point τ2 and stepsize h2. Then we obtain the relationships

Q̄ = P̄ · T(1)(k1, k2,
h2

h1
,
τ2 − τ1

h2
) ⇔ q(τ2 − jh2) = p(τ2 − jh2), 0 ≤ j ≤ k2,

Q̄ = P̄ · T(2)(k1, k2,
h2

h1
,
τ2 − τ1

h2
) ⇔ {

q(τ2 − jh2) = p(τ2 − jh2), 0 ≤ j ≤ k2 − 1
d
dt

q(τ2) = d
dt

p(τ2)

between the Nordsieck matrices and the corresponding polynomials.
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Using the transformation matrix T(1) is similar to Lagrangian interpolation, while T(2)

guarantees a smooth transition between p and q around τ2.

4.4 The Backward Difference Formula (BDF)

For variable step the coefficients ρ0, . . . , ρk will depend on the chosen stepsizes. Then
it becomes useful to view the BDF method as a special Predictor-Corrector method.
Then at each timestep the previous data xn−1, . . . , xn−k is represented by a polynomial,
which is called the predictor polynomial. This polynomial is corrected by use of the newly
computed xn such that we get the corrector polynomial. For the next step this corrector
polynomial is used as predictor polynomial.

Consider the polynomial qn−1(t) that interpolates the solutions of q(t, x) at the previous
computed (k + 1) time-points {tn−k−1, . . . , tn−1}. This polynomial is used as predictor
polynomial for the new time-interval, so we have

pn(t) = qn−1(t) (4.20)

At tn the polynomial pn(t) can be used as prediction for the numerical solution, while
the corrector polynomial qn(t) has a corrected value at t = tn. More precisely, we ex-
press the corrector polynomial in terms of the predictor polynomial and the Lagrangian
basis polynomial ln(t), that satisfies (4.4). After finding the correct values xn,q(tn, xn)
at t = tn we can define the corrector polynomial as follows

qn(t) := pn(t) + (q(tn, xn) − pn(tn))ln(t).. (4.21)

Here ln(t) is the Lagrangian basis polynomial that has been defined in (4.4). Because of
(4.21) we have the property

qn(tn−j) =

{
q(tn, xn) j = 0,

pn(tn−j) 1 ≤ j ≤ k . (4.22)

The BDF-method approximates the term d
dtq(t, x) at t = tn by d

dtqn(tn).

d

dt
qn(tn) + j(tn, xn) = 0. (4.23)

Lemma 4.11 It is well-known that the derivative of each k-th degree polynomial p(t) can be
uniquely expressed as a linear combination of p(tn), . . . , p(tn−k) like

hn
dp

dt
(tn) = ρn,0p(tn) + . . .+ ρn,kp(tn−k).

Because of the definition of the Lagrangian basis polynomial ln(t) in (4.4), this Lemma
implies

hnl
′
n(tn) = ρn,0. (4.24)
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Because both pn(t) and qn(t) have degree k, Lemma 4.11 also yields

hn
d
dtpn(tn) = ρn,0pn(tn) + . . .+ ρn,kpn(tn−k),

hn
d
dtqn(tn) = ρn,0qn(tn) + . . .+ ρn,kqn(tn−k).

The relation between pn(t) and qn(t) implies

hn
d
dtqn(tn) = ρn,0q(tn, xn) + ρn,1pn(tn−1) + . . .+ ρn,kpn(tn−k)

= hn
d
dtpn(tn) + ρn,0

[
q(tn, x(tn)) − pn(tn)

]
.

Using this identity in the equation (4.23) we obtain for xn the nonlinear equation

hn
d

dt
pn(tn) + ρn,0

[
q(tn, xn) − pn(tn)

]
+ hnj(tn, xn) = 0.

Define αn = ρn,0 = hnl
′
n(tn) and bn = hn

d
dtpn(tn) − αnpn(tn). Then xn is the

solution of the nonlinear algebraic equation

αnq(tn, xn) + hnj(tn, xn) + bn = 0, (4.25)

that can e.g. be solved by the Newton method. The vector bn represents the contri-
bution of the previous timesteps to the current nonlinear system. In this way the BDF
method can be applied on a time-grid using variable stepsizes. Usually the stepsizes are
used to control the accuracy of the method.

As shown before polynomials can be stored efficiently by use of Nordsieck matrices.
Introduce the dimensionless coefficients ξn,m

ξn,m =
tn − tn−m

hn
, (4.26)

then the Lagrangian polynomial ln(t) can be expanded as

ln(t) = t−tn−1

tn−tn−1
· t−tn−2

tn−tn−2
· · · t−tn−k

tn−tn−k

= t−tn+tn−tn−1

tn−tn−1
· t−tn+tn−tn−2

tn−tn−2
· · · t−tn+tn−tn−k

tn−tn−k

=
(

1
ξn,1

t−tn

hn
+ 1
)
·
(

1
ξn,2

t−tn

hn
+ 1
)
· . . . ·

(
1

ξn,k

t−tn

hn
+ 1
)

= 1+
(

1
ξn,1

+ . . .+ 1
ξn,k

)(
t−tn

hn

)
+ . . .+

(
1

ξn,1
· · · 1

ξn,k

)(
t−tn

hn

)k

.

(4.27)

From this expansion it is easy to derive the Nordsieck vector l̄n, such that

ln(t) =

k∑
i=0

l̄ni+1

(
t− tn

hn

)i

. (4.28)

Define also the Nordsieck matrices P̄n
, Q̄n of the predictor and corrector polynomials

pn(t),qn(t). From what has been said in the previous section it follows that all nec-
essary time derivatives for the BDF methods are sufficiently stored in P̄n

, Q̄n. The re-
lations pn(t) = qn−1(t) and qn(t) = pn(t) + (q(tn, xn) − pn(tn))ln(t) are equivalent
to

P̄n
= Q̄n−1A(k,

hn

hn−1
, 1), (4.29)

Q̄n
= P̄n

+ (q(tn, xn) − p̄n
1 )
(
l̄n
)T
. (4.30)
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The transformation matrix A(k, hn

hn−1
, 1) was defined in (4.15). The parameters αn,bn

can also be derived from the Nordsieck vectors{
αn = l̄n2 ,

βn = p̄n
2 − αnp̄n

1 .

If extrapolation is used for the solution x as an initial guess for the Newton method,
the polynomials pn,qn are not sufficient because q(t, x) is not invertible. Therefore also
the predictor and corrector polynomials yn(t), xn(t) for x(t) have to be stored by the
Nordsieck matrices Ȳn

, X̄n. Like (4.29) these vectors are related by

Ȳn
= X̄n−1A(k,

hn

hn−1
, 1), (4.31)

X̄n
= Ȳn

+ (xn − ȳn
1 )
(
l̄n
)T
. (4.32)

Now the Newton method can be started using the extrapolated value ȳn
1 .

Assume that the number of time-steps k is variable. Since the degrees of the polynomials
ln(t),pn(t),qn(t) depend on k, the relation pn(t) = qn−1(t) can not be achieved if k
decreases at the new timestep. Then qn−1(t) can be approximated by a lower degree
polynomial pn(t), only looking like qn−1(t) in the neighbourhood of tn. Usually this is
done by means of interpolation, e.g.

pn(tn − jhn) = qn−1(tn − jhn), j = 0, . . . , kn (4.33)

or
pn(tn − jhn) = qn−1(tn − jhn), j = 0, . . . , kn − 1,

d
dtpn(tn) = d

dtqn−1(tn).
(4.34)

The second approach (4.34) has the advantage that the piecewise polynomial solution
is differentiable at tn because qn−1(t) and pn(t) have a smooth transition at tn. In [73],
this subject is investigated in more detail. If the integration order k decreases, P̄n

, Ȳn

are approximated by

P̄n
= Q̄n−1T(i)(kn−1, kn,

hn

hn−1
, 1), (4.35)

Ȳn
= X̄n−1T(i)(kn−1, kn,

hn

hn−1
, 1), (4.36)

where i = 1 or i = 2. The transformation matrices T(1),T(2) have been defined in
Definition 4.9 in section (4.3).

4.5 Error analysis of the BDF method

This section contains some important properties of the local errors for the BDF method.
The theorems are given without proofs; they can be found e.g. in [59]. Remind that the
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local discretisation error per unit step is defined as the residual of the numerical scheme
after inserting the exact solution. It appears that the order p of the local discretisation
error of the k-step BDF-method with k steps is equal to k.

Theorem 4.12 The k-step BDF-method has a local discretisation error (LDE) δn of order p = k,
such that

δn = Cp,nh
p+1
n q(p+1)(tn, x(tn)) +O(hp+2

n ), (4.37)

where the error constant Cp,n satisfies

Cp,n = −
ξn,1 · · · ξn,p

(p+ 1)!
.

Because of this Theorem we have the following asymptotic behaviour for δn

δn = − 1
(p+1)!ξn,1 · · · ξn,ph

p+1
n q(p+1)(tn, x(tn)) +O(hp+2

n ). (4.38)

Thus all BDF-methods with k > 0 are consistent for ODEs. However, for DAEs, it is still
possible that the global error does not have the same order if the DAE-index is larger
than one. The scaled local error dn is defined as the difference between x∗n and the exact
solution x(tn), where x∗n is the solution of the scheme if all previous solutions are exact.
The relationship between the scaled LDE and the LDE is equal to:

J(tn, x(tn))dn
.
= δn. (4.39)

where J(t, x) = αnC(t, x) + hnG(t, x) is the Jacobian matrix, which is used to solve the
implicit equation (4.25).
For an explicit ODE we have J(t, x) = αnI + hn

∂f
∂x (t, x), which implies that the scaled

LDE has the same order as the LDE. However, this is not true for DAEs in general, if the
Jacobian matrix C(t, x) is not invertible.
An advantage of the scaled LDE is that the influence of the higher DAE-index is mea-
sured by dn but not by δn. If for a solvable DAE the local DAE-indices are smaller or
equal than µ at all timepoints, we have for the scaled LDE

dn = O(hp+1−µ
n ).

This is a reason to use dn instead of δn, although δn is easier to estimate.

Theorem 4.13 Let pn(t) be the predictor polynomial and qn(t) the corrector polynomial for
the values of q(t, x). Assume that q(p+1)

n (tn) = q(p+1)(tn, x(tn)) + O(hn). Consider the
LDE estimate δ̂n with

δ̂n :=
−1

ξn,p+1
(qn(tn) − pn(tn)). (4.40)

Then, this estimator has sufficient accuracy, which implies that δ̂n = δn +O(hp+2
n ).

Thus (4.40) can be used to estimate the local discretisation error. Note that qn(tn),pn(tn)

are the first columns of the corresponding Nordsieck matrices Q̄n
, P̄n. It is just the dif-

ference between the predicted and corrected value at t = tn. The estimate d̂n of the
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scaled local error can be computed by

d̂n = [J(tn, x(tn))]
−1
δ̂n. (4.41)

Note that J(tn, x(tn)) is already factorised at the end of the Newton method. It also
applies for an automated scaling.

4.6 Adaptive stepsize control

As noted above for BDF-methods, the order p is equal to the number of steps k. Then
the LDE per unit step δn can be estimated by the following scaled difference

δ̂n =
−1

ξn,p+1
(q̄n,1 − p̄n,1).

Here (q̄n,1 − p̄n,1) is the difference between the corrected and predicted values of q at
tn. In [59] it is shown that if hn−k = O(hn) for all k the LDE estimate of a BDF-method
with order p, satisfies:

δ̂n = − 1
(p+1)!ξn,1 · · · ξn,ph

p+1
n q(p+1)(tn, x(tn)) +O(hp+2

n )

= − 1
(p+1)!hn

∏p
k=1

(∑k−1
i=0 hn−i

)
q(p+1)(tn, x(tn)) +O(hp+2

n ).
(4.42)

Define ϕ̂, such that

δ̂n =
1

p!
h2

n(hn−1 + hn) · · · (hn−p+1 + · · ·+ hn)Φ̂(tn, x(tn)).

This means that

Φ̂(tn, x(tn)) = −
1

p+ 1
q(p+1)(tn, x(tn)) +O(hn).

Introduce for all n
ϕ̂n := ‖Φ̂(tn, x(tn))‖.

Then, because all stepsizes are positive, it follows that

r̂n := ‖δ̂n‖ = ϕ̂n
1

p!
h2

n(hn−1 + hn) · · · (hn−p+1 + · · ·+ hn). (4.43)

This model describes the behaviour of r̂n with respect to the stepsizes. It is a rather
complex error model, which depends on p previous stepsizes. Note that for one-step
methods, r̂n only depends on the last stepsize hn. This error estimate r̂n must satisfy
the constraints

∀nr̂n ≤ TOL, (4.44)

where TOL is the tolerance level. Often model (4.43) is simplified, to make the analysis
less complex. Introducing

Ωn =
1

p!
ξn,1 · · · ξn,p
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for all n, implies that r̂n also satisfies the model

r̂n = ϕ̂nΩnh
p+1
n .

Now, it is assumed thatΩn is nearly independent of the stepsize sequence, soΩn = 1+
O(hn). Note that for fixed stepsizes, Ωn = 1. Furthermore, define ψ̂n by ψ̂n = φ̂nΩn,
then

r̂n = ψ̂nh
p+1
n . (4.45)

This means that ψ̂n
.
= ϕ̂n also is nearly independent of the stepsizes.

Let ε = θTOL be the wanted accuracy, where 0 < θ < 1 is a safety factor. In the most
classic DAE-solvers, the stepsize controllers use the elementary control law (4.46) together
with some additional nonlinear control actions. Here

hn =

(
ε

r̂n−1

) 1
p+1

hn−1. (4.46)

The nonlinearity is caused by the many logical if-else statements. However, the log-
arithmic version of the elementary control law is linear. In practice, the stepsize con-
troller is a combination of a linear and a non-linear part. In the classical case, the linear
part is an ordinary deadbeat-controller, while the non-linear part may consist of satu-
rations, dead-zones, memory, etc. In [52], Söderlind proposes to expand the linear part
to a PID-controller with free control parameters and to reduce the non-linear part. Lin-
ear controllers result in much smoother stepsize sequences than the original non-linear
controllers. Therefore the controlled timestep variations are claimed to be less sensi-
tive with respect to parameter variations than in classical time integration procedures.
Hence, the results obtained with automatic control will be more robust and better suited
for optimisation purposes than before. The smoothness of the stepsize and error sequences

is quantified by means of the number s(x) =

√∑N
m=1(xm − xm−1)2/‖x‖2. Fig. (4.1)

shows the structure of the classical stepsize controllers.

Figure 4.1: Structure of classical approach to stepsize control.

Adaptive stepsize control is used to control the local errors of the numerical solution. For
optimisation purposes special stepsize controllers can ensure that the errors and step-
sizes also behave smoothly. For onestep methods, the stepsize control process can be
viewed as a digital (i.e. discrete) linear control system for the logarithms of the errors
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and steps. For the multistep BDF-method this control process can be approximated by
such a linear control system. This section shows how digital linear control theory can be
used to design better stepsize controllers. For more information the reader is referred
to [59, 62, 63].
It seems attractive to use control-theoretic techniques for error control. Figure 4.2 shows
the block diagram of this feedback control system. The process model E(q) and the con-
troller model H(q) are described below.

Figure 4.2: Diagram of adaptive stepsize control viewed as a feedback control system.

The logarithmic version of the onestep error model (4.45) is

log r̂n = (p+ 1) loghn + log ϕ̂n. (4.47)

Writing log r̂ = {log r̂n}n∈N, logh = {loghn}n∈N and log ϕ̂ = {log ϕ̂n}n∈N, this implies
that the sequence log r̂ can be viewed as the output of a digital (i.e. discrete) linear con-
trol system, where logh is the input signal and log ϕ̂ is an unknown output disturbance.
We can denote all linear models with finite recursions for log r̂ by

log r̂ = E(q) logh+ log ϕ̂, (4.48)

where q is the shift-operator, with q(loghn) = loghn+1, and where E(q) is a rational
function of q:

E(q) =
L(q)

K(q)
=

λ0q
M + · · ·+ λM

qM + κ1qM−1 + · · ·+ κM
. (4.49)

For the onestep model, we just have that E(q) = (p + 1) is constant. However, it is not
possible to derive a linear model of this form for the multistep BDF methods. In this
case for a p-step method, we have the following nonlinear model for log r̂

log r̂n = 2 loghn+log(hn−1+hn)+· · ·+log(hn−p+1+· · ·+hn)+log ϕ̂n−logp!. (4.50)

Note that log r̂n also depends on the previous stepsizes, because it is a multistep method.
In [33] it is tried to approximate this model by the previous model for onestep methods,
but this is not the optimal choice. Another possibility is to use an adaptive process
model which is based on parameter identification.
If the stepsizes only have small variations, also linearisation can be used [49]. In [59] it
is proved that the linearised model is equal to

log r̂n = (1+ γp) loghn + (γp − γ1) loghn−1 + · · ·+ (γp − γp−1) loghn−p+1 + log ϕ̂n,

(4.51)
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where γm =
∑m

n=1
1
n form ∈ N. This model can also be cast in the form (4.48), where

E(q) =
(1+ γp)qp−1 + (γp − γ1)qp−2 + · · ·+ (γp − γp−1)

qp−1
. (4.52)

The logarithmic version of the controller for the elementary control law in eqn. (4.46) is

loghn − loghn−1 =
1

p+ 1
(log ε− log r̂n−1). (4.53)

So, also the control action can be viewed as a linear feedback controller for the same
linear system. The input logh is computed based on the previous values of the output
log r̂ and the reference log ε. All linear controllers can be denoted by

logh = H(q)(log ε− log r̂), (4.54)

where H(q) is a rational function of q:

H(q) =
B(q)

A(q)
=

β0q
N−1 + · · ·+ βN−1

qN + α1qN−1 + · · ·+ αN
. (4.55)

For the controller of eqn. (4.46) we just have that H(q) = 1
p+1

1
q−1 .

Now we consider the error model (4.48), which is controlled by the linear controller (4.54).
It is assumed that the error model is already available, while the controller still must be
designed. This means that K, L are known, while A,B are unknown. Now, the closed
loop dynamics are described by the following equations:{

logh = Ur(q) log ε+Uw(q) log ϕ̂,
log r̂ = Yr(q) log ε+ Yw(q) log ϕ̂. (4.56)

The transfer functions satisfy

Ur(q) =
B(q)K(q)

R(q) , Uw(q) =
−B(q)K(q)

R(q) ,

Yr(q) =
B(q)L(q)

R(q) , Yw(q) =
A(q)K(q)

R(q) ,
(4.57)

where R(q) = A(q)K(q) + B(q)L(q). In this section we will derive conditions for A,B
such that the closed loop dynamics have some preferred properties.
The output log r̂ depends on the reference signal log ε and the disturbance log ϕ̂. This
means that the control error log ε − log r̂ deviates from zero in general. However, in
(4.56) there is no control error if Yw(q) log ϕ̂ = 0 and Yr(1) = 1. If log ϕ̂ is a polynomial
of degree pA − 1 and Yw(q) log ϕ̂ = 0, we call pA the order of adaptivity. It is always
required that pA ≥ 1 in order to have no control error for a constant disturbance. For
higher order adaptivity the controller is capable to follow linear or other polynomial
trends of the disturbance log ϕ̂. It can be proved that the controller is adaptive with
adaptivity order pA if (q− 1)pA is a divisor of A(q)

A(q) = (q− 1)pAÂ(q)

Because of numerical errors, the disturbance log ϕ̂ can contain alternating noise with
frequency near π. The controller acts like a filter for the stepsizes if

|Uw(eiω)| = O ((|ω| − π)pF) , |ω| → π. (4.58)
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This means that alternations are always filtered, while also frequency components near
|ω| = π are removed. Higher filter order results in a smaller transition band between
the passed and filtered frequencies. Because

lim
|ω|→π

eiω + 1

|ω| − π
= −i,

it follows that the equation (4.58) is equivalent to

|Uw(eiω)| = O(|eiω + 1|pF), |ω| → π.

Because lim|ω|→π e
iω = −1, it follows that

|Uw(z)| = O(|z+ 1|pF), z → −1.

Thus, if Uw(z) is divisible by (z + 1)pF , its filter order is equal to pF. This means that
z∗ = −1 is a zero of Uw(z) with multiplicity pF. It is also possible to filter the output
signal itself. The controller has output filter order pR with respect to w if

|Yw(eiω)| = O ((|ω| − π)pR) , |ω| → π. (4.59)

Again, this is satisfied if Yw(z) is divisible by (z + 1)pR . It is not possible to combine an
error filter with a stepsize filter.
The poles of the system are determined by theN+M roots of the characteristic equation

A(q)K(q) + B(q)L(q) = 0.

If the poles lie inside the complex unity circle, the closed loop system is stable. The abso-
lute values determine the reaction speed of the controllers, while the angles determine
the eigenfrequencies. This means that for real positive poles there are no oscillations.
If the controller is adaptive, we know that the error always will be equal to the reference
level if the disturbance is a low degree polynomial. However, this will never be the case
in practice. Thus it is still possible that the error will be larger than the tolerance level
TOL.
Let R, S be polynomials of degree N+M, such that

S(q) = A(q)K(q) = qN+M + σ1q
N+M−1 + · · ·+ σN+M

R(q) = A(q)K(q) + B(q)L(q) = qN+M + ρ1q
N+M−1 + · · ·+ ρN+M

Let θ be the safety factor such that ε = θ TOL and R(1) = 1 +
∑N+M

k=1 ρk. There are no
rejections, such that r̂n ≥TOL if

• The disturbance ϕ̂ satisfies the inequality:

θR(1)ϕ̂n(ϕ̂n−1)σ1 · · · (ϕ̂n−N−M)σN+M ≤ 1. (4.60)

• The coefficients of R(q) satisfy: ρi ≤ 0, i ∈ {1, . . . ,N +M}, e.g. R(q) = qN+M −
rN+M.

• The previous N+M stepsizes have been accepted.
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The first condition for the disturbance ϕ̂ also depends on the safety factor θ. Note that a
small θ will decrease the number of future rejections indeed. The second condition can
not be satisfied if all poles equal to 0 < r < 1 such that R(q) = (q − r)N+M. However,
for e.g. R(q) = qN+M − rN+M, this property is satisfied.
Note that a small safety factor θ will decrease the number of future rejections because
of the first condition. The second condition is not true if all poles are real positive.
In order to get the optimal control parameters, in [20, 51] a systemetic investigation is
done for a large range of possible control parameters. Below we propose a theoretical
approach which is only based on the closed loop dynamics. Assume that A,B can be
factorised likeA(q) = (q−1)pA(q+1)pRÃ(q) and B(q) = (q+1)pF B̃(q). Then the order
of adaptivity is equal to pA, while the filter orders are pR and pF. Because q = 1 and
q = −1 are not stable poles, it is not allowed that A(1) = B(1) = 0 or A(−1) = B(−1) =
0. Thus it follows that pR = 0 or pF = 0. Let R(q) be the polynomial whose roots are
equal to the wanted poles, then the polynomials A,B are determined by

(q− 1)pA(q+ 1)pRÃ(q)K(q) + (q+ 1)pF B̃(q)L(q) = R(q). (4.61)

The coefficients of A,B are the control parameters, which can be computed from (4.61).
Instead of this theoretical approach, in [20] a systemetic investigation is done for a large
range of possible control parameters.
If the coefficients of the controller H(q) are derived, this controller can be used to com-
pute the stepsizes. Assume that pA ≥ 1, then there exists a polynomial Ā(q) of degree
N− 1, such that A(q) = (q− 1)Ā(q) = (q− 1)(qN−1 + ᾱ1q

N−2 + . . .+ ᾱN−1). Now,

(q− 1)Ā(q) logh = B(q)(log ε− log r̂).

This is equivalent to the control law

hn =

(
ε

r̂n−1

)β0

· · ·
(

ε

r̂n−N

)βN−1
(
hn−1

hn−2

)−ᾱ1

· · ·
(
hn−N+1

hn−N

)−ᾱN−1

hn−1. (4.62)

This controller can easily be implemented in a numerical DAE solver. It needs the N
previous stepsizes hn−1, . . . , hn−N and theN previous error estimators r̂n−1, . . . , r̂n−N.
Controllers with largeN have the disadvantage of a larger storage because of the needed
time history. After discontinuities, the integration order decreases to one, which implies
that the process model is no longer valid. This implies that another stepsize controller
has to be used, which can not use the previous stepsizes and errors. If after rejections,
other control techniques are used, these results do not satisfy the closed loop dynamics.
Since the behaviour of the error estimate is not exactly modelled by the process models,
it is not completely sure that controller (4.62) maintains its properties, such as adaptiv-
ity and filter-properties, for the integration process itself. From the experiments [59] it
seems not always attractive to use higher order adaptive controllers. However, filtering
appears to be attractive because it reduces the high-frequent noise, which makes the
behaviour of the stepsizes and the errors much smoother. To deal with the trade-off
between the smoothness and the speed, optimal control could be applied. In this case, a
cost function should be defined which depends on the stepsize sequence and the error
sequence.
Besides the stepsizes also the integration order can be controlled adaptively. Clearly the
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local error also depends on the integration order and this affects the process model. The
influence of the order to the error of the used BDF scheme can be modelled by:

rn = φn · [wnhn]p+1, (4.63)

where wn is the bandwidth (maximal frequency) of the solution x(t) and p is the order.
Also the optimal order p depends on the dynamical behaviour of the solution. Only if
the bandwidth satisfies wnhn < 1, it is attractive to increase the order p. This means
that for simulations of low accuracy, with large hn, low orders are often preferable.
Because the bandwidth of x(t) is unknown it also has to be estimated. This can be done
by comparing two error estimates of different order. Note that error estimates for lower
order can be derived from the current Nordsieck array [13, 59, 73].



Chapter 5

BDF multirate time-integration
for DAEs

5.1 Introduction

In the previous sections we showed that Integrated Circuits can be modelled mathe-
matically by differential-algebraic equations of type (4.1). In contrast to classical single-
rate time-integration methods, multirate methods integrate parts with different dynam-
ical behaviour, with different stepsizes or even with different schemes. Besides the
coarse time-grid {Tn, 0 ≤ n ≤ N} with stepsizes Hn = Tn − Tn−1, also a fine time-
grid {tn−1,m, 1 ≤ n ≤ N, 0 ≤ m ≤ qn} is used with stepsizes hn,m = tn,m − tn,m−1.
If the two time-grids are synchronised, Tn = tn,0 = tn−1,qn holds for all n. Here qn is

s
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hn−1,1
tn−1,0

tn−1,1

tn,0 = tn−1,qn

Figure 5.1: Schematic overview of multirate time-integration of latent and active parts
at the coarse and fine time-grids.
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called the multirate factor, which satisfies

Hn =

qn∑
m=1

hn,m. (5.1)

For a multirate method it is necessary to partition the variables and equations into an
active (A) and a latent (L) part. This can be done by the user or automatically. Let
BA ∈ RdA×d and BL ∈ RdL×d, with dA + dL = d, be the selection operators with the
orthogonality properties: BABT

A = IA ∈ RdA×dA ,BLBT
A = O,BABT

L = O,BLBT
L = IL ∈

RdL×dL . Then the variables and functions can be split into active (A) and latent (L) parts
xA ∈ RdA , xL ∈ RdL :

x = BT
AxA + BT

LxL,

q(t, x) = BT
AqA(t,BAx,BLx) + BT

LqL(t,BAx,BLx),

j(t, x) = BT
AjA(t,BAx,BLx) + BT

LjL(t,BAx,BLx).

(5.2)

Then equation (3.1) is equivalent to the partitioned system

d
dt

[
qA(t, xA, xL)

]
+ jA(t, xA, xL) = 0,

d
dt

[
qL(t, xA, xL)

]
+ jL(t, xA, xL) = 0.

(5.3)

Of course it is also possible to extend this partitioning into a partitioning of k sub-
systems, where the k sub-systems have a decreasing dynamical activity.

d
dt

[
q1(t, x1, . . . xk)

]
+ j1(t, x1, . . . , xk) = 0,
...

d
dt

[
qk(t, x1, . . . xk)

]
+ jk(t, x1, . . . xk) = 0.

(5.4)

In the sequel we need the selection operators Bi ∈ Rdi×d for i = 1, . . . , k with the
properties

BiBT
j =

{
Ii ∈ Rni×ni if i = j

O if i 6= j
(5.5)

Then the variables and functions can be split in active (A) and latent (L) parts:

x = BT
1 x1 + . . .+ BT

kxk,

q(t, x) = BT
1 q1(t,B1x, . . . ,Bkx) + . . .+ BT

kqk(t,B1x, . . . ,Bkx),

j(t, x) = BT
1 j1(t,B1x, . . . ,Bkx) + . . .+ BT

kjk(t,B1x, . . . ,Bkx).

(5.6)

If the circuit consists of a number of nearly decoupled subcircuits, it is possible to apply
relaxation techniques. The following theoretic results have been derived from [37,44,58,
72], where this topic is investigated more profoundly. It is possible to apply relaxation
to the steady state equations, both in the linear or nonlinear case. However it is also
possible to apply relaxation directly to the DAE (4.1) itself.
If Ax = b is a linear system, that has to be solved and A is split such that A = B − C
with B nonsingular, then a linear relaxation method is given by the following iterations

xk+1 = B−1Cxk + B−1b.



5.2 Types of multirate 41

The idea behind this is that the linear system Bx = d is easy to solve. Note that relaxation
here is equivalent to applying the modified Newton method to Ax − b = 0, where the
Jacobian matrix is approximated by B. For the Jacobi methods, B is a diagonal matrix,
while for Gauss-Seidel, B is a lower-triangular matrix. Note that for the Jacobi version,
parallelism can be used. It is well-known that if the spectral radius ρ(B−1C) is smaller
than one, the solution xk converges to the exact solution. Furthermore, if A is an M-
matrix it follows that ρ(B−1

GS CGS) ≤ ρ(B−1
J CJ) [58]. Here ρ(B−1

J CJ) is independent of
permutations in contrast to ρ(B−1

GS CGS). It can be proved that this is always the case, if
A is diagonally dominant.
The above mentioned idea can be generalised to a nonlinear system. Let F(x) = b be a

nonlinear equation, such that the Jacobian matrix J(x) = ∂F
∂x satisfies

J(x) = B(x) − C(x),

and B(x) is nonsingular. This method converges locally if B−1C is a contraction.
It is also possible to generalise the relaxation to the continuous DAE (4.1) itself result-

ing in Waveform Relaxation (WR) [72]. The Gauss-Seidel version corresponds closely with
multirate methods. Note that the order of the equations is important, because of the
coupling between the variables. An alternative version of waveform relaxation is the
WR Jacobi method. Then all subcircuits can be integrated independently, because the or-
der is not important. This implies that for this version parallelism is possible. In general,
the Jacobi version will converge slower than the Gauss-Seidel method. The WR-method
can also be performed on a sequence of windows [Ti, Ti+1]. In this case, it is possible to
get a better initial guess x0(t), which can improve the convergence speed.

5.2 Types of multirate

Multirate time-integration has the common property that one needs to integrate a parti-
tioned system like (5.4) by using different timesteps for each subsystem. A multirate
method integrates the slowest part with a (large) macrostep H, while the faster subsys-
tems are integrated with smaller microsteps. We assume that no additional macrosteps
are done before all faster subsystems have also been integrated. There are two very
natural types of multirate methods: Two very natural types of multirate methods are
Slowest First and Fastest First.

Slowest First The subsystem with the slowest dynamical behaviour (or with the largest
time constant) is first integrated with one step. Then the subsystems with increas-
ingly faster behaviour are integrated until synchronisation at the end of time in-
terval [Tn−1, Tn].

Fastest First Here the subsystem with the fastest dynamical behaviour (or with the
smallest time constant) is first integrated with one step. Then the subsystems with
decreasingly faster behaviour are integrated.
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Sometimes it is attractive to integrate a slow system together with all faster sub-systems
with one microstep, instead of extrapolating them. Although this compound step is
more expensive, it is also more stable.
Sub-systems can subsequentially be solved, using the results of each other. Multirate
methods with this property are called of Gauss-Seidel type. There are also multirate
methods of Jacobi type, that solve the sub-systems independently. Usually Gauss-Seidel
types is prefered because they are more efficient. However, Jacobi types are more suit-
able for parallelism. It is possible to integrate the subsystems more than once (relax-
ation). For some types of problems it can be proved that the multirate method will
converge to the exact solution. Because convergence is difficult to guarantee and often
very slow, it is better to truncate the relaxation. Very often, each part is integrated just
once, while the accuracy is controlled by stepsize control.
To keep it simple, we will work with a time-independent type of the partitioned system
(5.3) , and denote the active variable y = xA and the slow variable z = xL.

d

dt

[
qA(y, z)

]
+ jA(y, z) = 0, (5.7)

d

dt

[
qL(y, z)

]
+ jL(y, z) = 0. (5.8)

In this section some available multirate methods will be discussed. The multirate meth-
ods are independent of the integration method, but are presented for the Euler Back-
ward scheme. Furthermore, the coarse and fine time-grids are assumed to be synchro-
nised, which means that tn−1,q = Tn = tn,0. Multirate schemes have been investigated
for long, see e.g. [7,16,17,18,46,50,53]. In this section we will summarise some common
approaches.
Semi-implicit multirate methods only integrate the equations (5.7) and (5.8) separately,
while the other parts are estimated by means of extrapolation or interpolation. The
variable z should be a latent variable, that can be integrated with a large step-size H.
This implies that the interpolation of z is expected to be very accurate. A a consequence
z will almost be independent of the prediction errors of the active variables.
The Fast-Slow (FS) method first integrates the fast part (5.7), while zn−1,m is estimated
by means of extrapolation. Next the slow part (5.8) is integrated with one large step-
size H, while y is already known. Often simple zeroth order extrapolation is used with
ẑn−1,m = zn−1. This FS-method is not very useful as step-size control is not possible.
Indeed, if the large step-size H has to be reduced, then numerical solutions of y at other
time-points are required. This implies that all numerical approximations of y at time-
points larger than the new coarse time-point have to be rejected.
The Slow-Fast (SF) method (Algorithm 1) first integrates (5.8) with one large step-sizeH,
while y is found through extrapolation. Then equation (5.7) is integrated with a smaller
step-size h, while z at the intermediate time-points is found by means of interpolation.
Often, zeroth order extrapolation and first order interpolation are used with ŷn = yn−1

and ẑn−1,m = zn−1 + m
q (zn − zn−1) form = 0, . . . , q− 1.
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ALGORITHM 1 The Slow-Fast (SF) method

Extrapolate ŷn and solve for zn:

ŷn − yn−1 = 0
qL(ŷn, zn) − qL(yn−1, zn−1) +HjL(ŷn,yn) = 0

Interpolate ẑn−1,m and solve for yn−1,m+1 (m = 0, . . . , q− 1):

ẑn−1,m − zn−1 −
m

q
(zn − zn−1) = 0

qA(yn−1,m+1, ẑn−1,m+1) − qA(yn−1,m, ẑn−1,m) + hjA(yn−1,m+1, ẑn−1,m+1) = 0

Because these semi-implicit multirate methods use extrapolation, they have unstable
behaviour. To improve the stability the latent part can be integrated using an implicit
compound step. The Compound-Fast (CF) method (Algorithm 2) first integrates (5.7) and
(5.8) together with one large step-sizeH, which results in yn and zn. Then only equation
(5.7) is integrated with a small step-size h, while z is found by interpolation.

ALGORITHM 2 The Compound-Fast (CF) method

Solve for zn and yn:

qA(yn, zn) − qA(yn−1, zn−1) +HjA(yn, zn) = 0
qL(yn, zn) − qL(yn−1, zn−1) +HjL(yn, zn) = 0

Interpolate ẑn−1,m and solve for yn−1,m+1 (m = 0, . . . , q− 1):

ẑn−1,m − zn−1 −
m

q
(zn − zn−1) = 0

qA(yn−1,m+1, ẑn−1,m+1) − qA(yn−1,m, ẑn−1,m) + hjA(yn−1,m+1, ẑn−1,m+1) = 0

Note that yn is computed twice by the CF method. Another possibility is the Mixed
Compound-Fast (MCF) method, which computes yn−1,1 and zn simultaneously. The first
active solution yn−1,1 is already computed at the compound step. Note that yn−1,1

is equal to the solution of the integration of the fastest part for m = 0. In fact, the
CF method and the MCF methods are special cases of the Generalised Compound-Fast
method. The CF method has the benefit that it is more stable and easier to implement,
while the MCF method results in better scaled nonlinear equations which are easier to
solve by the Newton method. This approach is also used by the MROW method [6].
Algorithm 3 shows a generalised version [65] of the Mixed Compound-Fast method,
where α ∈ R. This family of methods contains the Slow-Fast (α → ∞), the Compound-
Fast method itself (α = 1) and the Mixed Compound-Fast method (α = 1

q ).
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ALGORITHM 3 The Generalised Compound-Fast (GCF) method

Interpolate ẑn−1,αq, extrapolate ŷn and solve for yn−1,αq and zn:

ẑn−1,αq − zn−1 − α(zn − zn−1) = 0

ŷn − yn−1 −
1

α
(yn−1,αq − yn−1) = 0

qA(yn−1,αq, ẑn−1,αq) − qA(yn, zn) + αHjA(yn−1,αq, ẑn−1,αq) = 0

qL(ŷn, zn) − qL(yn−1, zn−1) +HjL(ŷn, zn) = 0

Interpolate ẑn−1,m and solve for yn−1,m+1 (m = 0, . . . , q− 1):

ẑn−1,m − zn−1 −
m

q
(zn − zn−1) = 0

qA(yn−1,m+1, ẑn−1,m+1) − qA(yn−1,m, ẑn−1,m) + hjA(yn−1,m+1, ẑn−1,m+1) = 0

Although the integration methods used for the sub-circuits can be A-stable, this is not
the case for the multirate version [50]. Indeed, for multirate methods the results also
depend on the extrapolated or interpolated results of the other part. Thus the stability
will always strongly depend on the used partitioning and on the coupling. In particular,
the extrapolation may cause unstable behaviour. Therefore it is expected that methods
with an implicit compound step are more stable, because they do not employ explicit
extrapolation. Besides the previous methods, in [50] also Implicit multirate method fully
implicit multirate methods exist. Here a large system of algebraic equations is solved
for all subsystems. This means that no interpolation or extrapolation is necessary. Com-
pared to the other multirate methods, it needs more computational time but also has
better stability properties. The solution of the nonlinear equations requires dedicated
solution techniques. Alternatively the solution of a fully implicit multirate method can
be approximated by a convergent Waveform Relaxation method. Table 5.1 summarises
all mentioned types of multirate time-integration.
In the sections below we will focus on the Compound-Fast multirate methods. Mul-

tirate is also applied to the time-integration of ODEs and spatial discretised PDEs [16,
19, 29, 30, 46, 53]. Since Integrated Circuits are modelled by differential-algebraic (DAE)
models, we will concentrate on multirate methods applied to differential-algebraic sys-
tems.

5.3 The BDF Compound-Fast multirate algorithm

This section describes how the BDF Compound-Fast (BDF-CF) multirate algorithm can be
efficiently implemented by means of the Nordsieck data representation. Although also
other implicit methods can be used, like Runge Kutta methods, we use the Backward
Difference Formulae (BDF method) because they use less function evaluations and are
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Table 5.1: Several types of multirate time-integration.
Name: Brief description:
Waveform-Relaxation (WR) All subsystems are independently solved and

updated until convergence,
Jacobi In each iteration the subsystems are

independently solved allowing parallelism.
Gauss-Seidel In each iteration the subsystems are

subsequentially solved in a specific order.
Fully Implicit Multirate type for strongly coupled subsystems

without interpolation or extrapolation. It could
be efficiently implemented by using WR.

Semi-implicit Multirate type for weakly coupled subsystems
with interpolation or extrapolation.

Fastest First All subsystems are subsequentially solved and
updated once in Fastest First order.

Slowest First All subsystems are subsequentially solved and
updated once in Slowest First order.

Fast-Slow (FS) The Fast and Slow subsystems are subsequentially
solved and updated once in Fastest First order.

Slow-Fast (SF) The Fast and Slow subsystems are subsequentially
solved and updated once in Slowest First order.

Compound-Fast (CF) A more stable modification of the SF method
where the complete system is solved at the
coarse time-grid.

Generalised Compound-Fast (GCF) A generalisation of the CF method where during
the compound step the latent part zn is solved
simultaneously with the active part yn−1,αq at
a different time-point tn−1,αq.

Mixed Compound-Fast (MCF) Special case of the GCF method with α = 1
q ,

saving one refinement step.

very well suited for interpolation. For linear multistep methods the solution can always
be represented by a piecewise polynomial, which can be used to interpolate the latent
interface variables without accuracy loss. The BDF algorithm has been described in
more detail in the section 4.1. It stores the previous numerical values in Nordsieck
matrices.
Before we describe the proposed multirate algorithm in detail for both the compound step
and the refinement phase, we have to define the required polynomials for the BDF time-
integration algorithm. Firstly, the BDF integration of order K on the coarse time-grid
needs the Lagrangian basis polynomial ln(t) on {Tn−K, . . . , Tn}, with

ln(Tn−j) =

{
1 if j = 0,
0 if j 6= 0.
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Let l̄n ∈ R(K+1) be the corresponding Nordsieck vector (Chapter 4) of ln(t) which can
be expressed as

ln(t) =

K∑
i=0

l̄ni+1

(
t− Tn

Hn

)i

,

where l̄ni+1 is the i+ 1-st element of the Nordsieck vector

l̄n =

(
ln(Tn), Hn

d

dt
ln(Tn), . . . ,

Hk
n

k!

dk

dtk
ln(Tn)

)T

.

Because of (4.27) and (4.26)

l̄n =

(
1,

1

ξn,1
+ . . .+

1

ξn,k
, . . . ,

1

ξn,1
· · · 1

ξn,k
,

)T

.

The Nordsieck matrices Ȳn
, X̄n

, P̄n
, Q̄n ∈ Rd×(K+1) are needed, where Ȳn

, X̄n represent
the local predictor and corrector polynomials for x(t) and P̄n

, Q̄n are the corresponding
ones for q(t, x(t)), respectively. For instance, the predictor polynomial yn(t) for x(t) on
[Tn−1, Tn] satisfies

yn(t) =

K∑
i=0

ȳn
i+1

(
t− Tn

Hn

)i

,

where ȳn
i+1 is the (i+ 1)-st column of the Nordsieck matrix

Ȳn
=

(
yn(Tn)|Hn

d

dt
yn(Tn)| . . . |

Hk
n

k!

dk

dtk
yn(Tn)

)
.

The multirate k-th order BDF method also re-integrates the active part independently
on a fine time-grid. There it needs a different Lagrange basis polynomial ln−1,m(t) on
{tn−1,m−k, . . . , tn−1,m}, with

ln−1,m(tn−1,m−j) =

{
1 if j = 0,
0 if j 6= 0.

Here the fine-grid Nordsieck matrices Ȳn−1,m
A , X̄n−1,m

A , P̄n−1,m
A , Q̄n−1,m

A ∈ RdA×(k+1)

are needed, of which Ȳn−1,m
A , X̄n−1,m

A represent the local fine-grid predictor and correc-
tor polynomials at the fine time-grid for xA(t) and P̄n−1,m

A , Q̄n−1,m
A are the correspond-

ing ones for qA(t, xA(t), x̂L), respectively. The fine-grid predictor polynomial yn−1,m
A (t)

for xA(t) on [tn−1,m−1, tn−1,m] satisfies

yn−1,m
A (t) =

k∑
i=0

ȳn−1,m
A,i+1

(
t− tn−1,m

hn−1,m

)i

,

where

Ȳn−1,m
A =

(
yn−1,m

A (tn−1,m), . . . ,
hk

n−1,m

k!

dk

dtk
yn−1,m

A (tn−1,m)

)
.
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Figure 5.2: Typical form of the predictor (dashed) and corrector (solid) polynomials at
the coarse (graph at the top) and at the fine time-grid (graph in the middle) with q = 5.

Figure 5.2 shows the typical form of the predictor and corrector polynomials on the
coarse and fine grids. The polynomials are of degree one, which implies the use of lin-
ear extrapolation for the prediction. Clearly, the solution becomes smoother for higher
degree polynomials.
In fact during the compound step a normal BDF step is done for the complete DAE. This
means that the following algebraic system is solved

ρn
0 q(Tn, xn) +Hnj(Tn, xn) + bn = 0, (5.9)

where ρn
0 is an order-dependent parameter and bn is a vector that represents the col-

lected terms of the numerical integration. We can easily express ρn
0 and bn in terms of

l̄n and P̄n by ρn
0 = l̄n2 and bn = p̄n

2 − ρn
0 p̄n

1 (Chapter 4). Here p̄n
1 and p̄n

2 are just the
first two columns of P̄n, the Nordsieck matrix of the predictor polynomial pn(t), which
is set to be equal to the corrector polynomial qn−1(t) of the previous compound step if
the integration order is the same as in the previous timestep.

pn(t) = qn−1(t), yn(t) = xn−1(t). (5.10)

In section 4.3 it is shown that for the corresponding Nordsieck matrices this implies that

P̄n
= Q̄n−1Tn, Ȳn

= X̄n−1Tn, (5.11)

where Tn = T(∗)(Kn, Kn−1,
Hn

Hn−1
, 1) has been defined before in Definition 4.9 (p. 27).

Usually the initial guess for the solution of (5.9) is computed by extrapolation, so x̂n =
ȳn

1 . Because the compound step will be much larger than the time-constant of the active
part, we use a modified Newton scheme which relaxes the active part of the residual
by using a small positive weighting factor in front of the active part. For a compound
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step, the active part of xn still must be improved by the refinement phase. After the
refinement we use the updated xn and qn to correct the complete predictor polynomials
pn(t) and yn(t)

qn(t) := pn(t) + (q(Tn, xn) − pn(Tn))ln(t), (5.12)
xn(t) := yn(t) + (xn − yn(Tn))ln(t). (5.13)

For the Nordsieck matrices this means

Q̄n
= P̄n

+ (qn − q̂n)
(
l̄n
)T
, (5.14)

X̄n
= Ȳn

+ (xn − x̂n)
(
l̄n
)T
. (5.15)

Here (qn − q̂n)
(
l̄n
)T

and (xn − x̂n)
(
l̄n
)T

are rank 1 - matrices.
In fact, the refinement solves a new initial value problem for a perturbed DAE but of
smaller size. for each time-point tn−1,m it solves the nonlinear equation

ρ̄n−1,m
0 qA(tn−1,m, xn−1,m

A , x̂n−1,m
L )+hn−1,mjA(tn−1,m, xn−1,m

A , x̂n−1,m
L )+bn−1,m

A = 0,
(5.16)

where x̂n−1,m
L is the interpolated latent part. We are able to compute x̂n−1,m

L from
interpolation-based functions that are constructed between the compound step and the
refinement phase. Another possibility is to compute it from the Nordsieck matrix X̄n,
provided that its latent part is updated during the compound step. Because of (4.14) we
have

x̂n−1,m
L = BLX̄ne(K,

tn−1,m − Tn

Hn
). (5.17)

Furthermore ρ̄n−1,m
0 and bn−1,m

A can be computed in a similar way as for the compound
step: ρ̄n−1,m

0 = l̄n−1,m
2 ,bn−1,m

A = p̄n−1,m
A,2 − ρ̄n−1,m

0 p̄n−1,m
A,1 . The predictor Nordsieck

matrices P̄n−1,m
A , Ȳn−1,m

A are computed similarly by

P̄n−1,m
A = Q̄n−1,m−1

A Tn−1,m, Ȳn−1,m
A = X̄n−1,m−1

A Tn−1,m, (5.18)

where Tn−1,m = T(∗)(kn−1,m, kn−1,m−1,
hn−1,m

hn−1,m−1
, 1) for m > 0. Note that the trans-

formation matrix T(∗) has been defined before in Definition 4.9 (p. 27). For m = 0 we
need the matrices Q̄n−2,q−1

A , X̄n−2,q−1
A which are only available for a static partitioning.

Otherwise we need to transform a part of the coarse Nordsieck matrices Q̄n−1
, X̄n−1. In

contrast to the compound phase it is not very difficult to solve the nonlinear equation
(5.16) because we have an accurate initial guess ŷn−1,m

A = BAȳn−1,m
A,1 in order to start

the Newton method. The derived solution is used to correct the predictor polynomials.
For the Nordsieck representation we get:

Q̄n−1,m
A = P̄n−1,m

A +
(
qA(tn−1,m, xn−1,m

A , x̂n−1,m
L ) − q̂A

) (
l̄n−1,m

)T

, (5.19)

X̄n−1,m
A = Ȳn−1,m

A +
(
xn−1,m

A − x̂n−1,m
A

) (
l̄n−1,m

)T

. (5.20)

Finally, if tn−1,m > Tn the fine-grid corrector polynomials are evaluated at Tn:

BAxn = X̄n−1,m
A e(k,

Tn − tn−1,m

hn−1,m
), BAqn = Q̄n−1,m

A e(k,
Tn − tn−1,m

hn−1,m
), (5.21)

where again we used (4.14).
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5.4 Analysis of conditions for partitioning

For a proper implementation of the previous multirate schemes we assume that the
solvability is preserved for the active part. Furthermore it is also required that the active
part of a stable DAE is also stable and has a DAE-index that is less than or equal to that
of the original DAE.
Consider the linear time-invariant system operator Σ : L2(Rp) → L2(Rd), that satisfies
Σx = Cẋ + Gx. Linear circuit models can also be modeled in this form as

Σx = u(t). (5.22)

Here u(t) ∈ Rp is a time-dependent input source function. Chapter 3 shows that the
system (5.22) is solvable if and only if the spectrum σ(Σ) of Σ is a finite set, and it is
stable if and only if all λ ∈ σ(Σ) have negative real parts. Here σ(Σ) can be related to
the eigenvalues of the matrix pencil λC + G, as σ(Σ) = {λ ∈ C : det(λC + G) = 0}. For a
general partitioning these properties are not preserved for the active part of a DAE.

Example 5.1 Consider the linear 2-dimensional problem Σ : Cẋ + Gx = u where

C = G =

(
0 1

1 0

)
.

This DAE is solvable since det(λC + G) = −(λ+ 1)2, which equals zero only for λ = −1,
so σ(Σ) = {−1} is a finite set. If we take the partitioning with

BA =
(
1 0

)
, BL =

(
0 1

)
,

we get for the active part the unsolvable problem

0ẏ + 0y = u1.

Note that the active part of an explicit ODE is always solvable, because then C = I is
an invertible matrix. However, the stability is not automatically preserved for both the
ODE and the DAE.

Example 5.2 If we take

C =

(
1 0

0 1

)
, G =

(
−1 −2
2 2

)
,

we have a stable ODE with eigenvalues −1
2 ±

1
2

√
7i, but for the active part we get the

unstable differential equation
ẏ = y + u1.

This can happen because G is not a positive definite matrix. Besides the solvability and
stability also the DAE-index of the active part is not always preserved. This will become
clear from the following examples.
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Figure 5.3: Circuit diagram of linear test example for which the nodes 3,4,5 are directly
connected by shorts.

Example 5.3 First we look at a circuit model depicted in Fig. 5.3 of which the nodal
voltages Vk and currents iE1 , i

E
2 , i

L satisfy the following system of DAEs

(KCL for )V1 : V1

R1
+ C1

d
dt (V1 − V2) + j1 = 0,

V2 : C1
d
dt (V2 − V1) + 1

R2
(V2 − V3) = 0,

V3 : 1
R2

(V3 − V2) − iE1 = 0,

V4 : iE1 − iE2 = 0,

V5 : iE2 + 1
R3

(V5 − V6) = 0,

V6 : 1
R3

(V6 − V5) − iL = 0,

V7 : iL + C2
dV7

dt + V7

R4
+ j2 = 0,

(KVL for )iE1 : V4 − V3 = 0,

iE2 : V5 − V4 = 0,

iL : LdiL

dt − (V7 − V6) = 0.

(5.23)

Here we use the current sources j1 = sin(ωst) A, j2 = sin(ωft) Awithωs = 2000π
8 ,ωf =

10ωs and the parameter values C1 = C2 = 1
ω2

sL
F, R1 = 10 Ω, R2 = R3 = R4 = 1 Ω

and L = 0.1 H. The left part of the model appears to be slowly varying because of
the low frequency of j1 and the choice of the electrical parameters. Note that the cir-
cuit model includes additional shorts that do not affect the solution but make the cur-
rents between both parts explicitly available. We consider the partitionings: (xL, xA) =(
(V1, V2, V3, i

E
1 ), (V4, . . . , V7, i

E
2 , i

L)
)

and (xL, xA) =
(
(V1, V2, V3), (V4, . . . , V7, i

E
1 , i

E
2 , i

L)
)
.

Both partitionings correspond to current interpolation and voltage interpolation, re-
spectively. Figures 5.4 and 5.5 show the numerical solution of the active part at the
time interval [0, 10−3]s for both types of interpolation. It turns out that current interpo-
lation leads to non-smooth behaviour, but the results of voltage interpolation are very
good.

Example 5.4 We also look at the following modified circuit model, corresponding to
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Figure 5.4: Numerical solution of the active part of (5.23) for current interpolation.
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Figure 5.5: Numerical solution of the active part of (5.23) for voltage interpolation.
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Figure 5.6: Circuit diagram of linear test example, for which the nodes 4,5,6 are directly
connected by shorts.

the circuit diagram in Fig. 5.6 and having the same parameters and sources as the first
example.

(KCL for )V1 : V1

R1
+ C1

d
dt (V1 − V2) + j1 = 0,

V2 : C1
d
dt (V2 − V1) − iL = 0,

V3 : iL + 1
R2

(V3 − V4) = 0,

V4 : 1
R2

(V4 − V3) − iE1 = 0,

V5 : iE1 − iE2 = 0,

V6 : iE2 + 1
R3

(V6 − V7) = 0,

V7 : 1
R3

(V7 − V6) + C2
dV7

dt + V7

R4
+ j2 = 0,

(KVL for )iE1 : V5 − V4 = 0,

iE2 : V6 − V5 = 0,

iL : LdiL

dt − (V3 − V2) = 0.

(5.24)

Again we consider current interpolation and voltage interpolation: (xL, xA)=(
(V1, . . . , V4, i

L, iE1 ), (V5, V6, V7, i
E
2 )
)

and (xL, xA)=
(
(V1, . . . , V4, i

L), (V5, V6, V7, i
E
1 , i

E
2 )
)
.

This time it turns out from the numerical results that the accuracy is good for current
interpolation, while for voltage interpolation the computed active currents have a large
error.

Thus we get a low accuracy for current interpolation applied to the first example (5.23)
and for voltage interpolation applied to the second example (5.24). The reason for this
behaviour is that for the first model the active circuit contains the inductor. This causes
that the differential index of the DAE for the remaining active part is larger than one.
In this case current interpolation gives problems such that the active voltages are not
approximated correctly. However, with voltage interpolation everything is computed
accurately. For the second model the active circuit does not contain the inductor. This
ensures here that the index is one. Thus current interpolation gives no problems so
that the currents and voltages are correctly approximated. However, with voltage in-
terpolation the active currents are not well computed because they depend now on the
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derivative of the interpolated slow voltages.
From these experiments it follows that the differential index of the active part of the
DAE is very important for semi-implicit multirate. If the index is larger than one, the
active solution will depend on the higher order derivatives of the input. This implies
that we get problems with linear interpolation because then the active solution will be-
come discontinuous. For circuit models it is well-known that they are composed of
subcircuits in a hierarchical way. If these subcircuits have index one we can exploit this
property to get a good partitioning, i.e. make partitionings with interfaces along bound-
aries of subcircuits [31]. Otherwise, it is required to check whether the DAE-index of the
fast and the slow parts of the model are smaller or equal than one. For a Compound-
Fast method it is sufficient to check only the DAE-index of the fast part. In [25, 57] it
has been shown how the DAE-index of an electrical circuit model can be checked in
an automatical way. For example, a circuit has index one if and only if it contains no
inductor/current-source cut-sets nor controlled capacitor/voltage-source loops with at
least one voltage-source.

5.5 Stability analysis of multirate methods

Multirate methods have worse stability properties than ordinary integration methods.
Therefore this section is devoted to analyse the stability of those multirate methods in
particular for the Slow-Fast and for the Compound-Fast methods.
Consider the partitioned nonlinear DAE in (5.7),(5.8) with property jA(0, 0) = jL(0, 0) =
0. Again we denote the fast variable y = xA and the slow variable z = xL. We assume
that the origin is a stable stationary solution, which implies that for all initial conditions
y(t) → 0 and z(t) → 0 if t → ∞. The stability of multirate schemes will only be analyzed
for DAEs with these properties. Furthermore the analysis is done for equidistant time-
grids.

Definition 5.5 Let yn and zn be the numerical approximations of the multirate scheme at the
time-point Tn = nH on the coarse equidistant time-grid for a solvable DAE. The scheme is
called (conditionally) stable if for all initial conditions yn → 0 and zn → 0 if n → ∞. The
multirate scheme is A-stable (or unconditionally stable) if it is stable for all solvable DAEs
with y(t), z(t) → 0 for t → ∞ and for all H,q > 0.

This criterion would require a stability analysis of a nonlinear multi-dimensional recur-
rence relation, which is very complex. In [45] it has been shown that for stability of
all semi-implicit and implicit Euler Backward multirate methods it is necessary that the
system (5.7),(5.8) is monotonically stable in the max-norm. Another possible approach
is to consider the Prothero-Robinson equation [6, 40] as additional test equation, which is
used to analyze the stability on a given trajectory y = ỹ(t), z = z̃(t)

d
dt

[
qA(y − ỹ, z − z̃)

]
+ jA(y − ỹ, z − z̃) = jA(0, 0) = 0,

d
dt

[
qL(y − ỹ, z − z̃)

]
+ jL(y − ỹ, z − z̃) = jL(0, 0) = 0.

(5.25)
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For the rest it is only possible to prove local stability for the linearised system around the
origin. Then we get the following multi-dimensional linear time-invariant DAE (5.26)
or ODE (5.27)(

C11 C12

C21 C22

)
︸ ︷︷ ︸

C

(
ẏ
ż

)
+

(
G11 G12

G21 G22

)
︸ ︷︷ ︸

G

(
y
z

)
=

(
0
0

)
, (5.26)

(
ẏ
ż

)
=

(
A11 A12

A21 A22

)
︸ ︷︷ ︸

A

(
y
z

)
. (5.27)

In [50] it is shown that Euler Backward multirate methods are stable for (5.27) if the
matrix

A =

(
µ(A11) ‖A12‖
‖A21‖ µ(A22)

)
(5.28)

is stable, where µ is a logarithmic norm, that is

µ(A) = lim
h↓0+

‖I + hA‖− 1

h
= lim

h↓0+

log(‖ehA‖)
h

.

The matrix A in (5.28) is stable when σ(A) ⊂ {z ∈ C : |z| < 1}, which is equivalent
to the requirements µ(A11) < 0, µ(A22) < 0 and ‖A12‖‖A21‖ < µ(A11)µ(A22). In
qualitative terms this means that each subsystem is stable and the couplings between
the subsystems are weak.
For ordinary integration methods stability can be studied by looking at the scalar test
equation ẋ = λx with λ ∈ C [32]. For multirate methods for DAEs with two time-steps
h and H, the following two-dimensional test equation could be studied, where y and z are
the active and latent variable respectively(

c11 c12

c21 c22

)
︸ ︷︷ ︸

C

(
ẏ

ż

)
+

(
g11 g12

g21 g22

)
︸ ︷︷ ︸

G

(
y

z

)
=

(
0

0

)
. (5.29)

For ordinary differential equations the following (real) linear test equation is usually
studied [28, 50] (

ẏ

ż

)
=

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

A

(
y

z

)
(5.30)

We will concentrate on the stability of multirate schemes for (5.30). Let yn and zn be the
numerical approximations at the time-point Tn = nH on the coarse time-grid. For Euler
Backward multirate schemes the numerical solutions yn and zn satisfy the following
two-dimensional recurrence relation(

zn
yn

)
=

(
σ ρ

τ ν

)
︸ ︷︷ ︸

M

(
zn−1

yn−1

)
. (5.31)
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Note that yn and zn in (5.31) are swapped compared to y, z in (5.30). The multirate
method is stable if yn and zn tend to zero for n → ∞, which is the case if ρ(M) < 1.
For q = 1, the stability behaviour of the multirate methods is independent of the used
coordinate system or partitioning. However, for q > 1 this is only the case if the linear
system is decoupled. Otherwise the stability does not only depend on the eigenvalues
but also on the eigenvectors of the matrix A.
The dynamics of higher order multistep methods need an adaption of (5.31). Assume
that the compound step uses a BDF method of order K, while the refinement is done
with a BDF method of order k. We introduce the following vectors

zn :=

 zn
...

zn−K+1

 ∈ RK, yn :=

 yn

...
yn−k+1

 ∈ Rk. (5.32)

Then the dynamics of a multirate linear multistep method obey the following multi-
dimensional recurrence relation(

zn

yn

)
=

(
S R
T N

)
︸ ︷︷ ︸

M

(
zn−1

yn−1

)
, (5.33)

where M ∈ R(K+k)×(K+k) is a companion matrix. The multistep multirate method is sta-
ble if yn and zn tend to zero for n → ∞. Again this is the case if ρ(M) < 1.
Thus in both cases the stability of multirate schemes can be determined from ρ(M)
where M ∈ R(K+k)×(K+k). The schemes applied to (5.30) are A-stable if ρ(M) < 1

for all H,q > 0 and stable matrices A [50]. Because of simplicity, we start with the sta-
bility of the first order Euler Backward multirate method. Finally we also consider BDF
multirate methods of higher order.

5.6 Stability analysis of Euler Backward multirate algo-
rithm

We will now consider more particularly the stability of the Slow-Fast and Compound-
Fast versions of the Euler Backward multirate algorithm. First we will show that the
dynamics can really be described by the recurrence relation in (5.31). Both zeroth and
first order interpolation of the latent part will be included. We will formulate a theorem
that gives us stability conditions for the matrix A. Since these conditions are rather com-
plex to interpret, we formulate two other theorems which are based on an asymptotic
analysis for H → 0 or q → ∞.

Lemma 5.6 Consider the Slow-Fast and the Compound-Fast versions of the Euler Backward
multirate scheme. Then {zn} and {yn} are solutions of the following recurrence relation(

zn
yn

)
=

(
σ ρ

τ ν

)
︸ ︷︷ ︸

M

(
zn−1

yn−1

)
, (5.34)
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where, for the Slow-Fast version,

ρ = a21H
1−a22H , σ = 1

1−a22H (5.35)

and, for the Compound-Fast version,

ρ = a21H
1−(a11+a22)H+(a11a22−a12a21)H2 , σ = 1−a11H

1−(a11+a22)H+(a11a22−a12a21)H2 .

(5.36)
For both versions, if zeroth order interpolation is used we have

ν = γq +
∑q−1

l=0 γ
lδρ, τ =

∑q−1
l=0 γ

lδσ (5.37)

and for first order interpolation we have

ν = γq +
∑q−1

l=0 γ
lρδ(1− l

q ), τ =
∑q−1

l=0 γ
lδ( l

q (1− σ) + σ), (5.38)

where
γ = 1

1−a11h , δ = a12h
1−a11h . (5.39)

Proof: In both the Slow-Fast and the Compound-Fast methods the latent variable is
integrated first. Using zeroth order extrapolation of yn−1 for the Slow-Fast method we
obtain the relation

zn − zn−1

H
= a21yn−1 + a22zn. (5.40)

From (5.40) it indeed follows that

zn = ρyn−1 + σzn−1, (5.41)

where ρ, σ are given in (5.35). For the Compound-Fast method, we get a recurrence
relation for {yn} and {zn}: { yn−yn−1

H = a11yn + a12zn,
zn−zn−1

H = a21yn + a22zn.
(5.42)

The solution zn satisfies again (5.41) with different values for ρ and σ in (5.36).
For both methods zn−1,j is estimated for j ∈ {1, . . . , q − 1} employing zn−1 and zn as
follows:

Zeroth order interpolation: ẑn−1,j = zn,

First order interpolation: ẑn−1,j = zn−1 + j
q (zn − zn−1) = (1− j

q )zn−1 + j
qzn.

Finally, the active part is integrated on the time interval [Tn−1, Tn] with q steps h:

yn−1,j − yn−1,j−1

h
= a11yn−1,j + a12ẑn−1,j. (5.43)

The recurrence relation (5.43) is equivalent to

yn−1,j =
1
h

1
h − a11

yn−1,j−1 +
a12

1
h − a11

ẑn−1,j = γyn−1,j−1 + δẑn−1,j,
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where γ = 1
1−a11h and δ = a12h

1−a11h . If zeroth order interpolation is used we have for
j ∈ {1, . . . , q}

yn−1,j = γyn−1,j−1 + δzn
= γjyn−1,0 +

∑j−1
k=0 γ

j−1−kδzn.
(5.44)

If first order interpolation is used we have for j ∈ {1, . . . , q}

yn−1,j = γyn−1,j−1 + δ(1− j
q )zn−1 + δ j

qzn

= γjyn−1,0 +
∑j−1

k=0 γ
j−1−k

(
δ(1− k+1

q )zn−1 + δk+1
q zn

)
.

(5.45)

Inserting (5.41) into (5.44) for j = q results in

yn = yn−1,q = γqyn−1,0 +
∑q−1

k=0 γ
q−1−kδ(ρyn−1,0 + σzn−1)

= νyn−1,0 + τzn−1 = νyn−1 + τzn−1,
(5.46)

where ν, τ are given in (5.37). Similarly, inserting (5.41) into (5.45) for j = q results in

yn = yn−1,q = γqyn−1,0 +
(∑q−1

k=0 γ
q−1−kδ(1− k+1

q )
)
zn−1+(∑q−1

k=0 γ
q−1−kδk+1

q

)
(ρyn−1,0 + σzn−1)

= νyn−1,0 + τzn−1 = νyn−1 + τzn−1,

(5.47)

where ν, τ are given in (5.38). From (5.41), (5.46) and (5.47) it indeed follows that
{yn}, {zn} satisfy the recurrence relation in (5.34). �

Before we formulate the stability conditions for (5.34) we need the following Lemma.

Lemma 5.7 Letφ(λ) = det(M−λI) = λ2−tr(M)λ+det(M) be the characteristic polynomial
of M, where M ∈ R2×2. One can easily show that

ρ(M) < 1 ⇔
 φ(−1) = 1+ tr(M) + det(M) > 0,

φ(0) = det(M) < 1,
φ(1) = 1− tr(M) + det(M) > 0.

(5.48)

Proof: We are looking for conditions for the coefficients of φ(λ) such that

φ(λ) = 0 ⇒ |λ| < 1. (5.49)

In [17, 21] this Lemma is proved by use of the Routh-Hurwitz criterion. We will give
here an alternative proof without this criterion.
Assume that there exists a root r with |r| ≥ 1 such that φ(r) = 0. If r ∈ R there exists
another root s ∈ R such that φ(λ) = (λ − r)(λ − s). Because of the conditions we have
the properties (1 − r)(1 − s) > 0, rs < 1 and (1 + r)(1 + s) > 0. It is not allowed that
r = 1 nor r = −1. If r > 1 the first condition implies that also s > 1, which is impossible
if rs < 1. If r < −1 the third condition implies that also s < −1, which is also impossible
if rs < 1. Thus it follows that if r, s ∈ R it indeed follows that r, s ∈ (−1, 1). If r 6∈ R
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we can write φ(λ) = (λ − r)(λ − r̄), where r̄ is the complex conjugate of r ∈ C. Then
φ(0) = rr̄ = |r|2 < 1. Thus we indeed proved that the three stability conditions (5.48)
indeed imply that |r| < 1. �

Consider the recurrence relation in (5.34) which describes the dynamical behaviour of
the Slow-Fast and Compound-Fast versions of the Euler Backward multirate scheme for
the stable test equation (5.30). Lemma 5.7 enables us to derive necessary and sufficient
stablity conditions for these multirate methods.

Theorem 5.8 Both the SF and CF versions of the Euler Backward multirate scheme using zeroth
order interpolation are stable for all H,q if

(1+ σ)(1+ γq) + ρδ
∑q−1

l=0 γ
l > 0,

1− σγq > 0,

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l > 0,

(5.50)

and the schemes using first order interpolation are stable for all H,q if

(1+ σ)(1+ γq) − ρδ
∑q−1

l=0 γ
l(2l

q − 1) > 0,
ρδ
q

∑q−1
l=0 γ

ll− σγq + 1 > 0,

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l > 0.

(5.51)

Proof: The methods are stable if ρ(M) < 1 for all H,q > 0 and stable matrices A. Since
M ∈ R2×2 Lemma 5.7 gives us

ρ(M) < 1 ⇔
 φ(−1) = 1+ tr(M) + det(M) > 0,

φ(0) = det(M) < 1,
φ(1) = 1− tr(M) + det(M) > 0.

(5.52)

Using the properties tr(M) = σ+ν and det(M) = σν−ρτ, we get the following stability
conditions for the elements of M

1+ σ+ ν+ σν− ρτ > 0,

1− σν+ ρτ > 0,

1− σ− ν+ σν− ρτ > 0.

(5.53)

After substituting the expressions for ν and τ in (5.37) and (5.38) we obtain the three
stability conditions in (5.50) and (5.51) respectively. �

Note that we can write the stability conditions in (5.53) in the following form (1+ σ)(1+ ν) > ρτ,

σν− 1 < ρτ,

(1− σ)(1− ν) > ρτ.

Since the stability conditions (5.50) and (5.51) are rather complex, we will derive more
compact stability conditions by means of an asymptotic analysis. First we will prove
that the multirate schemes studied are always conditionally stable. Second we also will
give sufficient conditions for q → ∞ such that the methods are stable for all H.
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Theorem 5.9 Both the Slow-Fast and Compound-Fast versions of the Euler Backward multi-
rate schemes using zeroth or first order interpolation applied to the stable test equation (5.30) are
always conditionally stable.

Proof: The multirate methods are conditionally stable if the stability conditions in (5.50)
or (5.51) only become valid for H → 0. Therefore we will derive asymptotic approxima-
tions of these conditions. It easily follows that σ = 1 + a22H +O(H2), γ = 1 + a11

q H +

O(H2), γq = 1 + a11H + O(H2) and ρδ = a12a21

q H2 + O(H3). Using these approxima-
tions, we can derive that (1+σ)(1+γq) = 4+O(H), 1−σγq = −(a11 +a22)H+O(H2),
(1 − σ)(1 − γq) = a11a22H

2 + O(H3), ρδ
∑q−1

l=0 γ
l(2l

q − 1) = O(H2) and ρδ
∑q−1

l=0 γ
l =

a12a21H
2 +O(H3). In this way we obtain from (5.50)

(1+ σ)(1+ γq) + ρδ
∑q−1

l=0 γ
l = 4+O(H),

1− σγq = −(a11 + a22)H+O(H2),

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l = (a11a22 − a12a21)H2 +O(H3).

(5.54)

and from (5.51)

(1+ σ)(1+ γq) − ρδ
∑q−1

l=0 γ
l(2l

q − 1) = 4+O(H),
ρδ
q

∑q−1
l=0 γ

ll− σγq + 1 = −(a11 + a22)H+O(H2),

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l = (a11a22 − a12a21)H2 +O(H3).

(5.55)

After inserting these asymptotic expressions into (5.50) and (5.51), we obtain the follow-
ing asymptotic stability conditions for (5.34), which coincide with the ones for (5.30)

tr(A) = a11 + a22 < 0,

det(A) = a11a22 − a12a21 > 0.
(5.56)

Thus indeed both the Slow-Fast and Compound-Fast multirate methods using either
zeroth or first order interpolation are stable for H → 0 (conditionally stable) when A is
a stable matrix. �

Now we will prove a theorem which gives sufficient stability conditions such that both
methods are conditionally stable for q → ∞. In the proof we need the following Lemma,
which is given below without proof.

Lemma 5.10 Consider the following rational function P : R+ → R with

∀H>0P(H) =
A− BH

A− CH−DH2

and A,B,C,D ∈ R. If A > 0,C < 0,D < 0, |B| < |C|, this rational function P satisfies

∀H>0|P(H)| < 1.

In Theorem 5.11 we will show that if the subsystems are sufficiently decoupled and the
multirate factor q → ∞, both the active and the slow parts of the system are stable and
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solvable for the Slow-Fast version, while only the active part of the system is stable and
solvable for the Compound-Fast version. The first condition is very natural, because
strongly coupled subsystems will show the same temporally dynamical activity, which
makes multirate not possible. In subsection 5.4 we showed that the active and latent
parts are not always stable and solvable for a general partitioning.

Theorem 5.11 Consider the Euler Backward Slow-Fast and Compound-Fast multirate schemes
using zeroth or first order interpolation applied to the stability test equation (5.30). If a11 < 0,

a22 < 0,

|a12a21| < |a11a22|,

(5.57)

the Slow-Fast version is unconditionally stable for q → ∞. If{
a11 < 0,

−a11a22 − 2a2
11 < a12a21 < a11a22,

(5.58)

the Compound-Fast version is unconditionally stable for q → ∞.

Note that the Compound-Fast method is more stable than the Slow-Fast method, be-
cause it does not need that a22 < 0 and −a11a22 − 2a2

11 < a12a21 < a11a22 is a weaker
condition than |a12a21| < |a11a22|. Proof: First we prove that a11 < 0 is necessary for
both methods. If the multirate factor q → ∞, it is necessary that |γ| < 1 in order to have
γq → 0. This means that the Euler Backward method is stable for the active part, which
is the case if a11 < 0.
Taking the limit q → ∞, it can be shown that ρδ

∑q−1
l=0 γ

l → ρδ
∑∞

l=0 γ
l = ρδ

1−γ and

ρδ
∑q−1

l=0 γ
l l

q → 0. Thus it follows that the stability conditions in (5.50) have the same
asymptotic behaviour for q → ∞

(1+ σ)(1+ γq) + ρδ
∑q−1

l=0 γ
l → 1+ σ+ ρδ 1

1−γ ,

1− σγq → 1,

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l → 1− σ− ρδ 1

1−γ .

(5.59)

Similarly for (5.51) when q → ∞
(1+ σ)(1+ γq) − ρδ

∑q−1
l=0 γ

l(2l
q − 1) → 1+ σ+ ρδ 1

1−γ ,
ρδ
q

∑q−1
l=0 γ

ll− σγq + 1 → 1,

(1− σ)(1− γq) − ρδ
∑q−1

l=0 γ
l → 1− σ− ρδ 1

1−γ .

(5.60)

This means that for q → ∞ we have the following unconditional stability conditions{
1+ σ+ ρδ 1

1−γ > 0,

1− σ− ρδ 1
1−γ > 0.

⇔ |
ρδ

1− γ
+ σ| < 1. (5.61)

Because of the definition of γ, δ in (5.39) it follows that δ
1−γ = −a12

a11
, yielding

| −
a12

a11
ρ+ σ| < 1. (5.62)
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Using (5.35) for the SF method, condition (5.62) is equivalent to

∀H>0|PSF(H)| = | −
a12

a11
ρ+ σ| =

|1− a12a21

a11
H|

|1− a22H|
< 1.

Using Lemma 5.10 this gives the stability conditions{
a22 < 0,

|a12a21

a11
| < |a22|.

The second condition is equivalent to |a12a21| < |a11a22| indeed. Thus we have shown
that the Euler Backward Slow-Fast multirate method using zeroth or first order interpo-
lation is indeed unconditionally stable for q → ∞ if the conditions (5.57) hold.
Using (5.36) for the CF method, condition (5.62) is equivalent to

∀H>0|PCF(H)| = | −
a12

a11
ρ+ σ| =

|1− (a12a21

a11
+ a11)H|

|1− (a11 + a22)H+ (a11a22 − a12a21)H2|
< 1.

Again Lemma 5.10 gives us the following sufficient stability conditions
a11 + a22 < 0,

a11a22 − a12a21 > 0,

|a12a21

a11
+ a11| < |a11 + a22|.

The first two conditions are automatically satisfied for a stable test equation. Because
a11 + a22 < 0, the third condition is equivalent to

a11 + a22 <
a12a21

a11
+ a11 < −a11 − a22. (5.63)

From the left inequality in (5.63) we can derive

1

a11
(a11a22 − a12a21) < 0. (5.64)

The other inequality in (5.63) gives

a12a21 > −a11a22 − 2a2
11. (5.65)

Using a11 < 0 and combining the inequalities (5.64) and (5.65) gives us

− a11a22 − 2a2
11 < a12a21 < a11a22. (5.66)

Thus we have shown that the Euler Backward Compound-Fast multirate method using
zeroth or first order interpolation is indeed unconditionally stable for q → ∞ if the con-
ditions (5.58) hold. �

We have derived simplified sufficient stability conditions for the matrix A of the test
equation (5.30) such that both Euler Backward multirate schemes are stable. For the
asymptotic analysis forH → 0 or q → ∞ it does not matter whether zeroth or first order
interpolation is used.
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5.7 Stability analysis of multistep BDF multirate algorithms

Since BDF methods of higher order are multistep methods, the previous analysis needs
to be adapted to apply in this case. This section therefore is devoted in particular to the
stability of the BDF multistep scheme for the Slow-Fast and Compound-Fast multirate
versions. First we will show that the dynamics really can be described by the recurrence
relation in (5.33). We consider only one type of interpolation of the latent part and do
the same stability analysis as in the previous section.
First we have the following definitions.

Definition 5.12 Define the function b : N → RK

bj = V−T e(K,
j

q
− 1), (5.67)

where e : N× R → Rs and V ∈ RK×K are given by

e(s,ω) :=
[
1,ω, . . . ,ωs−1

]T
(5.68)

and

vij =

{
1 i = j = 1,

(1− i)j−1 otherwise. (5.69)

Consider the solutions zn, yn of the Slow-Fast and the Compound-Fast versions of the
BDF multirate scheme, both with integration orders (K, k). Let zn,yn be defined as

zn :=

 zn
...

zn−K+1

 ∈ RK, yn :=

 yn

...
yn−k+1

 ∈ Rk. (5.70)

Assume that, for the Slow-Fast version, R ∈ RK×k,S ∈ RK×K are given by

R := ρ̃


σ̃ 0 . . . 0

0 0
...

. . .
0 0

 , S :=


−σ̃ρ1

ρ0
. . . −σ̃ρK

ρ0

1 0

. . .
...

1 0

 ,
ρ̃ = a21H

ρ0
, σ̃ = ρ0

ρ0−a22H

(5.71)

and, for the Compound-Fast version,

R := ρ̃


−σ̃ρ1

ρ0
. . . −σ̃ρK

ρ0

0 . . . 0
...

...
0 . . . 0

 , S :=


−σ̃ρ1

ρ0
. . . −σ̃ρK

ρ0

1 0

. . .
...

1 0

 ,
ρ̃ = a21H

ρ0−a11H ,

σ̃ =
ρ0(ρ0−a11H)

ρ2
0−ρ0(a11+a22)H+(a11a22−a12a21)H2

(5.72)
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and that N ∈ Rk×k,T ∈ Rk×K are given by

N := Gq +
∑q−1

l=0 GldbT
q−lR, T :=

∑q−1
l=0 GldbT

q−lS, (5.73)

where G ∈ Rk×k and d ∈ Rk are defined by

G :=


−γ̃ ρ̄1

ρ̄0
. . . −γ̃ ρ̄k

ρ̄0

1 0

. . .
...

1 0

 , d := δ̃


1

0
...
0

 ,
γ̃ = ρ̄0

ρ̄0−a11h ,

δ̃ = a12h
ρ̄0−a11h .

(5.74)

Lemma 5.13 The sequences {zn} and {yn} are solutions of the following recurrence relation(
zn

yn

)
=

(
S R
T N

)
︸ ︷︷ ︸

M

(
zn−1

yn−1

)
. (5.75)

Proof: In both the Slow-Fast and the Compound-Fast method the latent variable is in-
tegrated first. Using zeroth order extrapolation of yn−1 for the Slow-Fast method we
obtain the system

ρ0zn + . . .+ ρKzn−K

H
= a21yn−1 + a22zn. (5.76)

Since K > 1 we see that zn also depends on previous values of {zn}. From (5.76), it
follows that zn satisfies the following recurrence relation

zn = Ryn−1 + Szn−1, (5.77)

where R,S are given in (5.71). For the Compound-Fast method, we get a recurrence
relation for {yn} and {zn}:{ ρ0yn+...+ρKyn−K

H = a11yn + a12zn,
ρ0zn+...+ρKzn−K

H = a21yn + a22zn.
(5.78)

Since {zn} satisfies

zn =
ρ0(ρ0−Ha21)

(ρ0−Ha22)(ρ0−Ha11)−a12a21H2

(
−ρ1

ρ0
zn−1 − . . .− ρK

ρ0
zn−K

)
+ ρ0Ha21

(ρ0−Ha22)(ρ0−Ha11)−a12a21H2

(
−ρ1

ρ0
yn−1 − . . .− ρK

ρ0
yn−K

)
,

the solution zn satisfies again (5.77) with different values for R,S in (5.72).
The active part is integrated on the time interval [Tn−1, Tn] with q steps h:

ρ̄0yn−1,j + . . .+ ρ̄kyn−1,j−k

h
= a11yn−1,j + a12ẑn−1,j. (5.79)

The recurrence relation (5.79) is equivalent to

yn−1,j =
1

ρ̄0 − a11h
(−ρ̄1yn−1,j−1 − . . .− ρ̄kyn−1,j−k + a12hẑn−1,j). (5.80)
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For both methods zn−1,j is estimated for j ∈ {1, . . . , q − 1} employing zn−k, . . . , zn. For
the remainder of this proof we first need the following Lemma 5.14.

Lemma 5.14 The interpolated value ẑn−1,j can be retrieved from the coarse latent vector zn by
ẑn−1,j = bT

j zn, where bj is given in (5.67).

Proof: We can describe the numerical solution for z at the coarse grid by a truncated
Taylor expansion around Tn

zn(t) =

K∑
i=0

z̄ni+1

(
t− Tn

H

)i

.

The vector z̄n ∈ RK is the Nordsieck vector of length K:

z̄n :=

(
zn(Tn), H

d

dt
zn(Tn), . . . ,

HK−1

(K− 1)!

dK−1

dtK−1
zn(Tn)

)T

.

Then we have

ẑn−1,j = zn(tn−1,j) =

K∑
i=0

z̄ni+1

(
tn−1,j − Tn

H

)i

= e(K,
tn−1,j − Tn

H
)T · z̄n.

In section 4.3 it is shown that the Nordsieck vector z̄n ∈ RK and the vector zn ∈ RK are
related by

Vz̄n = zn, (5.81)

where V is the Vandermonde matrix defined in (5.69). Thus

ẑn−1,j = e(K,
tn−1,j − Tn

H
)T V−1zn = e(K,

j

q
− 1)T V−1zn,

since Tn = tn−1,q and H = qh. Thus ẑn−1,j = bT
j zn, where bj is given in (5.67). �

Now we continue with the second part of the proof of Lemma 5.13. For the refinement
phase we introduce the following vector ∈ Rk

yn−1,j :=

 yn−1,j

...
yn−1,j−k+1

 . (5.82)

In vector notation this can be written as

yn−1,j = Gyn−1,j−1 + dẑn−1,j, (5.83)

where G,d are given in (5.74). Hence for j ∈ {1, . . . , q} we have

yn−1,j = Gyn−1,j−1 + dbT
j zn

= Gjyn−1,0 +
∑j−1

k=0 Gj−1−kdbT
k+1zn.

(5.84)
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Since the coarse and fine time-grids are synchronised, we can insert (5.77) into (5.84) for
j = q, resulting in

yn = yn−1,q = Gqyn−1,0 +
∑q−1

k=0 Gq−1−kdbT
k+1(Ryn−1 + Szn−1)

= Nyn−1 + Tzn−1,
(5.85)

where N,T are given in (5.73). From (5.77) it indeed follows that {yn}, {zn} satisfy the
recurrence relation in (5.75). This completes the proof of Lemma 5.13. �

Since the matrix M ∈ R(K+k)×(K+k) in (5.75) is a higher dimensional matrix if max{K, k} >

1, the stability conditions in (5.52) do not hold. One possible approach is to derive more
accurate stability conditions using the Routh-Hurwitz criterion. This becomes very te-
dious for higher order and therefore we analyze the following two-dimensional recur-
rence relation for {z̃n} and {ỹn} instead(

z̃n
ỹn

)
= M̂

(
z̃n−1

ỹn−1

)
. (5.86)

Here M̂ ∈ R2×2 is properly chosen such that ρ(M) < ρ(M̂). We introduce the following
matrices

P =
1

ρ̃
S−1R, X =

1

δ̃

q−1∑
l=0

GldbT
q−l, Y = Gq. (5.87)

Since S,Y are diagonalisable, there exist V, V̄, Λ, Λ̄ such that S = VΛV−1,Y = V̄Λ̄V̄−1;
Λ, Λ̄ diagonal. Furthermore we define a number L > 0with

L := max{cond(V), cond(V̄)}. (5.88)

Next we define the two-dimensional matrix M̂ by

M̂ :=

[
ρ(S) L|ρ̃|ρ(S)‖P‖

L|δ̃|ρ(S)‖X‖ ρ(Y) + L2|ρ̃δ̃|‖P‖‖X‖ρ(S)

]
. (5.89)

We will show that this two-dimensional matrix can be used to get simpler stability con-
ditions for (5.75).

Lemma 5.15 Consider the matrices M ∈ R(K+k)×(K+k) in (5.75) and M̂ ∈ R2×2 in (5.89).
Then for the spectral radii of M and M̂ we have the relation

ρ(M) ≤ ρ(M̂). (5.90)

Proof: Let P,X,Y be the matrices as defined in (5.87). The following relations between
the block matrices of M exist

R = ρ̃SP, N = Y + δ̃XR, T = δ̃XS.

Thus the companion matrix M can be nicely factorised, using a factorisation that is
popular when dealing with indefinite matrices

M =

[
S R
T N

]
=

[
I
δ̃X I

]
·
[

S
Y

]
·
[

I ρ̃P
I

]
.
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After performing the transformation

M̃ =

[
V−1

V̄−1

]
M
[

V
V̄

]
=

[
I

δ̃V̄−1XV I

]
·
[
Λ

Λ̄

]
·
[

I ρ̃V−1PV̄
I

]
=

[
Λ ρ̃ΛV−1PV̄

δ̃V̄−1XVΛ Λ̄+ ρ̃δ̃V−1V̄−1XVΛPV̄

]
,

(5.91)

it can be seen that ρ(M) = ρ(M̃) and ρ(Λ) = ρ(S), ρ(Λ̄) = ρ(Y). We are now able to
obtain a beautiful key estimate which allows to compare the norm of the n-th power of
the (K+k)× (K+k)-matrix M̃ to the norm of the n-th power of the 2× 2matrix M̂. The
matrix M̂ contains the essential data in condensed form.

‖M̃n‖ ≤ ‖M̂
n‖. (5.92)

This key estimate implies that for all n ‖M̃n‖ 1
n ≤ ‖M̂

n‖ 1
n . Using the properties

lim
n→∞ ‖M̃n‖ 1

n = ρ(M̃), lim
n→∞ ‖M̂

n‖ 1
n = ρ(M̂) (5.93)

yields ρ(M̃) ≤ ρ(M̂). Because M, M̃ are similar we get the required identity. �

Now we are able to prove the following theorem, which gives necessary and sufficient
stability conditions for the studied Slow-Fast and Compound-Fast versions of the BDF
multirate schemes applied to the stable test equation (5.30). In contrast to Theorem 5.8
the found results are also valid if the integration orders K and k for the coarse and fine
time-grids are larger than one.

Theorem 5.16 Consider the recurrence relation in (5.75) which describes the dynamical be-
haviour of the Slow-Fast and Compound-Fast versions of the BDF multirate schemes for the
stable test equation (5.30). Then the schemes are stable for all H,q if

(1+ ρ(S))(1+ ρ(Gq)) > −L2|ρ̃δ̃|‖P‖‖X‖,
ρ(S)ρ(Gq) < 1+ L2|ρ̃δ̃|‖P‖‖X‖,

(1− ρ(S))(1− ρ(Gq)) > L2|ρ̃δ̃|‖P‖‖X‖.
(5.94)

Proof: The methods are stable if ρ(M) < 1 for all H,q > 0 and stable matrices A. In
Lemma 5.15 it is shown that ρ(M̂) < 1 ⇒ ρ(M) < 1, where M̂ ∈ R2×2 is given in (5.89).
Because M̂ is a real two-dimensional matrix, the stability conditions in Lemma 5.7 can
be used. It simply follows that

ρ(M̂) < 1 ⇔


1 + tr(M̂) + det(M̂) > 0,

det(M̂) < 1,

1 − tr(M̂) + det(M̂) > 0.

⇔


1 + ρ(S) + ρ(Y) + L2|ρ̃δ̃|‖P‖‖X‖ + ρ(S)ρ(Y) > 0,

ρ(S)ρ(Y) < 1,

1 − ρ(S) − ρ(Y) − L2|ρ̃δ̃|‖P‖‖X‖ + ρ(S)ρ(Y) > 0.

⇔


(1 + ρ(S))(1 + ρ(Y)) > −L2|ρ̃δ̃|‖P‖‖X‖,
ρ(S)ρ(Y) < 1 + L2|ρ̃δ̃|‖P‖‖X‖,

(1 − ρ(S))(1 − ρ(Y)) > L2|ρ̃δ̃|‖P‖‖X‖.

(5.95)



5.7 Stability analysis of multistep BDF multirate algorithms 67

After substituting the expressions in (5.87) for P,X,Y we obtain the sufficient stability
conditions for (5.94). The remainder of the theorem follows immediately. �

Using (5.87) the stability conditions in (5.94) can be expanded as

(1+ ρ(S))(1+ ρ(Gq)) > −L2|ρ̃δ̃|‖S−1R‖‖
∑q−1

l=0 GldbT
q−l‖,

ρ(S)ρ(Gq) < 1+ L2|ρ̃δ̃|‖S−1R‖‖
∑q−1

l=0 GldbT
q−l‖,

(1− ρ(S))(1− ρ(Gq)) > L2|ρ̃δ̃|‖S−1R‖‖
∑q−1

l=0 GldbT
q−l‖.

(5.96)

Note that the stability conditions for the multistep case are very similar to the conditions
for the onestep case in (5.51). The first inequality in (5.94) is always satisfied. Thus we
have the following sufficient stability conditions{

ρ(S)ρ(Gq) < 1,

|ρ̃δ̃|‖P‖‖X‖ < 1
L2 (1− ρ(S))(1− ρ(Gq)).

(5.97)

The following Lemma enables us to express the conditions for ρ(S), ρ(Gq) in terms of
σ̃, γ̃.

Lemma 5.17 For both companion matrices S,G of order p ∈ {1, . . . , 6} there exist µp, νp ∈
[0, 1] with µp + νp = 1, such that for σ̃, γ̃ ∈ [0, 1]

ρ(S) ≤ µp + νpσ̃, ρ(G) ≤ µp + νpγ̃. (5.98)

Proof: Both matrices G (5.74) and S (5.71),(5.72) are companion matrices of the following
structure:

S =


−σ̃ρ1

ρ0
. . . −σ̃ρK

ρ0

1 0

. . .
...

1 0

 , G =


−γ̃ ρ̄1

ρ̄0
. . . −γ̃ ρ̄k

ρ̄0

1 0

. . .
...

1 0

 .
Since ρi = ρ̄i if K = k, we can write S = C(σ̃, K) and G = C(γ̃, k), where {C(x, p) : x ∈
[0, 1], p ∈ {1, . . . , 6}} is a general family of companion matrices. Because S = G if K = k

and σ̃ = γ̃, it is sufficient to prove

ρ(C(x, p)) ≤ µp + νpx.

Figure 5.7 shows the relationship between ρ(C(x, p)) and µp + νpx for p ∈ {1, . . . , 6} for
the following values of µp, νp

p 1 2 3 4 5 6

ρ0 1 3/2 11/6 25/12 137/60 49/20

µp 0 0.1 0.23 0.41 0.65 0.88

νp 1 0.9 0.77 0.59 0.35 0.12

It is clear that for all x ∈ [0, 1] ρ(C(x, p)) ≤ µp + νpx. Because S = C(σ̃, K) and G =
C(γ̃, k) this also proves (5.98).



68 BDF multirate time-integration for DAEs

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=1

σ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=2

σ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=3

σ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=4

σ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=5

σ

ρ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
K=6

σ

ρ

Figure 5.7: The relationship between ρ(C(x, p)) and µp + νpx.

�

Note that these bounds are true only if σ̃, γ̃ ≥ 0 and less than 1. Using these bounds
p = K for ρ(S) and p = k for ρ(Gq), the first stability condition in (5.97) is always
satisfied if

(µK + νKσ̃)(µk + νkγ̃) < 1.

Because µK + νK = µk + νk = 1, we obtain therefore the following sufficient stability
conditions 

(1+ νK(σ̃− 1))(1+ νk(γ̃− 1))q < 1,

|ρ̃δ̃|‖P‖‖X‖ < 1
L2νK(1− σ̃)(1− (1+ νk(γ̃− 1))q),

σ̃ ≥ 0,
γ̃ ≥ 0.

(5.99)

In the previous section we derived more compact stability conditions from (5.51) by
means of an asymptotic analysis. This idea will be generalised for the BDF multirate
methods of higher order. Since also the stability conditions (5.94) are very complex, we
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will derive more compact stability conditions based on an asymptotic analysis. Firstly,
we will prove that the studied multirate schemes are always conditionally stable. Sec-
ondly, we also will give sufficient conditions for q → ∞ such that the methods are stable
for all H.
In this section we will investigate the conditions for conditional stability which can be
retrieved by an asymptotic analysis for H → 0.

Theorem 5.18 (Sufficient stability conditions for H → 0) If
A is stable,

a11 < 0,

a22 < 0,

|a21a12| < C|a11a22|,

(5.100)

where C := qνKνk

L2‖P‖‖X‖
, the Slow-Fast and Compound-Fast versions of the BDF multirate

schemes applied to the stable test equation (5.30) are conditionally stable for H → 0.

Proof: Since A is a stable matrix, we have

tr(A) = a11 + a22 < 0,

det(A) = a11a22 − a12a21 > 0.
(5.101)

For H → 0we have the following asymptotic expansions in H

σ̃
.
= 1+ a22

ρ0
H, 1+ νK(σ̃− 1)

.
= 1+ νK

a22

ρ0
H,

γ̃
.
= 1+ a11

qρ̄0
H, (1+ νk(γ̃− 1))q .

= 1+ νk
a11

ρ̄0
H,

ρ̃δ̃
.
= a21a12

ρ0ρ̄0
Hh, (1− (1+ νk(γ̃− 1))q)

.
= −νk

a11

ρ̄0
H.

For H → 0 σ̃, γ̃ are positive numbers. Since ‖P‖ = ‖P0‖ and ‖X‖ .= ‖
∑q−1

l=0 Gl
0e1bT

q−l‖,
where e1 = [1, 0, . . . , 1] ∈ Rk, we get the following asymptotic stability conditions,
instead of (5.99), {

1+ νK
a22

ρ0
H+ νk

a11

ρ̄0
H < 1,

|a21a12|
ρ0ρ̄0

Hh‖P‖‖X‖ < 1
L2νK

a22

ρ0
Hνk

a11

ρ̄0
H,

(5.102)

yielding first order conditions{
νK

a22

ρ0
H+ νk

a11

ρ̄0
H < 0,

|a21a12| 1
q‖P‖‖X‖ < 1

L2νKνka11a22.
(5.103)

If K = k, such that νK

ρ0
= νk

ρ̄0
, the first stability condition in (5.103) is always satisfied for

a stable A. This first condition is also satisfied for a stable A if a11 < 0 and k ≤ K, such
that νk

ρ̄0
≥ νK

ρ0
, or if a22 < 0 and k ≥ K, such that νk

ρ̄0
≤ νK

ρ0
.

The second stability condition in (5.103) is satisfied if

|a21a12| < Ca11a22, C =
qνKνk

L2‖P‖‖X‖
. (5.104)
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Because of a11, a22 ≤ 0 in (5.100) it follows that a11a22 ≥ 0. In this case the condition
(5.104) is indeed equivalent to

|a21a12| < C|a11a22|,

where C is unchanged. �

In this part we investigate the stability for q → ∞ and H > 0. It appears that the
stability conditions in (5.97) can be simplified by using the limit values X,R. We use the
notation ei for the i-th unit basis vector and e = [1, . . . , 1] for the vector consisting of
ones.

Lemma 5.19 For q → ∞ we have

X → (I − G)−1e1eT
1 =

1

γ̃− 1
eeT

1 ,

and
R = ρ̃SP,

where P is eKwT , with wT = ρ0

ρK
eT
1 for the Slow-Fast method and wT = [ ρ1

ρK
, . . . , ρK

ρK
] for the

Compound-Fast method.

Proof: For q → ∞ we have that

X =
1

δ̃

q−1∑
l=0

GldbT
q−l → ∞∑

l=0

Gle1eT
1 = (I − G)−1e1eT

1 .

It can be derived that

(I − G)−1e1eT
1 =

1

1+ γ̃( ρ̄1

ρ̄0
+ . . .+ ρ̄K

ρ̄0
)

=
1

1− γ̃
,

because of the consistency condition ρ̄0 + . . . + ρ̄K = 0. The other property follows di-
rectly from the definition of P in (5.87). �

Before we state the stability theorem 5.21 we need the following Lemma.

Lemma 5.20 For both companion matrices S,G of order p ∈ {1, . . . , 6} we have

0 < σ̃ < 1 ⇒ ρ(S) < 1, 0 < γ̃ < 1 ⇒ ρ(G) < 1, 0 < γ̃q < 1 ⇒ ρ(Gq) < 1.

Proof: The matrix S has the characteristic equation

λp +
σ̃

ρ0
(ρ1λ

p−1 + . . .+ ρp) = 0,

which is equivalent to
ρ0

σ̃
λp + ρ1λ

p−1 + . . .+ ρp = 0.
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The BDF-p method for the test equation ẏ = λy gives us the characteristic polynomial

(ρ0 − hλ)λp + ρ1λ
p−1 + . . .+ ρp = 0.

It is well-known that for hλ ∈ R− the numerical solution will be stable up to order p = 6.
It follows that ρ(S) < 1 if

ρ0

σ̃
> ρ0,

being equivalent to
0 < σ̃ < 1 ⇒ ρ(S) < 1.

Since G = S if K = k and σ̃ = γ̃, it immediately follows that

0 < γ̃ < 1 ⇒ ρ(G) < 1.

Because 0 < γ̃ < 1 ⇔ 0 < γ̃q < 1 and ρ(G) < 1 ⇔ ρ(Gq) < 1, we also have

0 < γ̃q < 1 ⇒ ρ(Gq) < 1.

�

Now we are able to derive sufficient stability conditions such that the studied BDF mul-
tirate algorithms are stable for q → ∞. It turns out that if both subsystems are suffi-
ciently decoupled and the active and slow parts of the system are stable and solvable,
both the SF and CF versions are stable.

Theorem 5.21 (Sufficient stability conditions for q → ∞) If
A is stable,

a11 < 0,

a22 < 0,

|a21a12| < D|a11a22|,

(5.105)

where D := νK

L2‖P‖
(
1 − a22

ρ0
Hmax

)−1, then the Slow-Fast BDF multirate schemes applied to
the stable test equation (5.30) are unconditionally stable for q → ∞. If (5.105) hold, where
D := νK

L2‖P‖
(
1 −

(a11+a22)
ρ0

Hmax +
(a11a22−a12a21)

ρ2
0

H2
max
)−1, then the Compound-Fast BDF

multirate schemes applied to the stable test equation (5.30) are unconditionally stable for q →∞.

Proof: The stability conditions in (5.97) are only satisfied for q → ∞ if ρ(G) < 1, such
that ρ(Gq) → 0. Then we get the stability conditions{

ρ(G) < 1,

ρ(S) + L2|ρ̃δ̃| ‖P‖ ‖X‖ < 1.

Using the Lemma 5.17 and 5.20 it is possible to derive the sufficient stability conditions
for γ̃ = ρ̄0

ρ̄0−a11h 
γ̃ ∈ [0, 1],

µK + νKσ̃+ L2|ρ̃δ̃| ‖P‖ ‖X‖ < 1,

σ̃ > 0.
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The first condition is fulfilled indeed if a11 < 0. Because of Lemma 5.19 we know
that ‖X‖ → 1

|γ̃−1| ‖eeT
1‖ = 1

|γ̃−1| , where we use ‖eeT
1‖ = 1. Then the second stability

condition is satisfied if

µK + νKσ̃+ L2‖P‖ |ρ̃δ̃|

|γ̃− 1|
< 1.

Since δ̃
γ̃−1 = −a12

a11
, we get

µK + νKσ̃+ L2‖P‖ |ρ̃|
|a12|

|a11|
< 1. (5.106)

For the Slow-Fast method this implies

µK + νK
ρ0

ρ0 − a22H
+ L2‖P‖ |a21|

1

ρ0
H

|a12|

|a11|
< 1,

or

L2‖P‖ |a21|
1

ρ0
H

|a12|

|a11|
< 1− µK − νK

ρ0

ρ0 − a22H
.

Using µK = 1− νK, we derive

L2‖P‖ |a21|
1

ρ0
H

|a12|

|a11|
< νK − νK

ρ0

ρ0 − a22H

or

L2‖P‖ |a21|H
|a12|

|a11|
< −

νKa22H

1− a22

ρ0
H
.

Thus we obtain the following sufficient stability condition, where we insertD = νK

L2‖P‖
(
1−

a22

ρ0
Hmax

)−1

|a21||a12| < −D|a11|a22. (5.107)

Since a22 < 0we derive the sufficient condition

|a21a12| < D|a22||a11|.

Because a22 < 0 we see that σ̃ > 0. Thus the Slow-Fast multirate method is indeed
stable for q → ∞ if the stability conditions (5.105) are satisfied.
For the Compound-Fast method we obtain for (5.106)

µK + νK
ρ0(ρ0 − a11H)

ρ2
0 − ρ0(a11 + a22)H+ (a11a22 − a12a21)H2

+ L2‖P‖ |
a21H

ρ0 − a11H
|
|a12|

|a11|
< 1

or

L2‖P‖ |
a21H

ρ0 − a11H
|
|a12|

|a11|
< 1− µK − νK

ρ0(ρ0 − a11H)

ρ2
0 − ρ0(a11 + a22)H+ (a11a22 − a12a21)H2

.

Because a11 < 0we can use the estimate | a21H
ρ0−a11H | ≤ |a21

ρ0
|H. Using also µK = 1− νK, it

is sufficient to prove that

L2‖P‖ |a21| 1
ρ0
H

|a12|
|a11| < νK − νK

ρ0(ρ0−a11H)

ρ2
0−ρ0(a11+a22)H+(a11a22−a12a21)H2

= −
νK(ρ0a22H−det(A)H2)

ρ2
0−ρ0(a11+a22)H+(a11a22−a12a21)H2 .



5.7 Stability analysis of multistep BDF multirate algorithms 73

Multiplication by |a11|ρ0

H gives us

L2‖P‖ |a21a12| < −
νK|a11|a22(ρ2

0 − ρ0
det(A)

a22
H)

ρ2
0 − ρ0(a11 + a22)H+ (a11a22 − a12a21)H2

.

Since tr(A) = a11 +a22 < 0 and det(A) = a11a22 −a12a21 > 0, we obtain the sufficient
stability condition, where we insertD = νK

L2‖P‖
(
1−

(a11+a22)
ρ0

Hmax+
(a11a22−a12a21)

ρ2
0

H2
max
)−1.

|a21a12| < −D|a11|a22(1−
H

ρ0a22
det(A)).

If a22 < 0 and det(A) > 0 it is immediately clear that

− a22(1−
det(A)

ρ0a22
H) = |a22|(1−

det(A)

ρ0a22
H) > |a22|. (5.108)

Thus the BDF Compound-Fast multirate method is stable for q → ∞ indeed if the stabil-

ity conditions in (5.105) hold because then D|a11a22| < −D|a11|a22(1−
det(A)
ρ0a22

H). Since
a22 < 0 it immediately follows that σ̃ > 0 is always satisfied. Thus also the Compound-
Fast multirate method is stable for q → ∞ if the stability conditions in (5.105) are satis-
fied. �

Because of the restriction ρ(G) < 1 it appears possible to reduce the stability conditions
in Theorem 5.21.

Lemma 5.22 For q → ∞ the matrix M in (5.75) is stable if

ρ(S(I + ρ̃δ̃PX)) < 1. (5.109)

Proof: For q → ∞ we have

M → (
S R
δ̃XS δ̃XR

)
.

For each eigenpair (λ,

(
x
y

)
) we see

Sx + Ry = λx
δ̃XSx + δ̃XRy = λy.

This implies
λδ̃Xx = δ̃XSx + δ̃X(λx − Sx) = λy.

Thus for each eigenvector with λ 6= 0 we get y = δ̃Xx. Hence we can reduce the eigen-
value problem to

Sx + δ̃RXx = (S + δ̃RX)x = λx.
Clearly the method is stable for q → ∞ if ρ(S + δ̃RX) < 1. Since R = ρ̃SP, this is
equivalent to

ρ(S(I + ρ̃δ̃PX)) < 1.

�
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5.8 Multirate for hierarchical models

Integrated Circuits can be modeled by a hierarchical system of differential-algebraic equa-
tions [31]:

d

dt
[q(t, x)] + j(t, x) =

N∑
i=1

BT
(i)

[
d

dt
[q(i)(t, x(i))] + j(i)(t, x(i))

]
= 0. (5.110)

Clearly this circuit model consists of N coupled subcircuit models. Each local state
vector x(i) (voltages,currents) consists of a terminal (x̂(i)) and an internal (x̌(i)) part:

x(i) = B(i)x =

[
x̂(i)

x̌(i)

]
.

The matrices B(i) ∈ {0, 1}di×d, defined by (5.111), are used to select the proper parts
x̂(i) =

[
B̂(i)

]
x and x̌(i) =

[
B̌(i)

]
x of x(i) from x. This even allows for a hierarchical

structure.

B(i) =

[
B̂(i)

B̌(i)

]
. (5.111)

Similarly, also the functions q(i) (charges,fluxes) and j(i) (currents,voltages) have a sim-
ilar structure:

q(i) = B(i)q =

[
q̂(i)

q̌(i)

]
, j(i) = B(i)j =

[
ĵ
(i)

ǰ
(i)

]
.

We can rewrite (5.110) in a part consisting of the collected equations for the terminal
unknowns (5.112) and a part consisting of the remaining equations for the internal un-
knowns (5.113):

N∑
i=1

B̂
T

(i)

[
d

dt
[q̂(i)(t, x(i))] + ĵ

(i)
(t, x(i))

]
= 0, (5.112)

d

dt
[q̌(i)(t, x(i))] + ǰ

(i)
(t, x(i)) = 0, i = 1, . . . ,N. (5.113)

Each subcircuit model can again be further decomposed in this manner.
For single-rate time integration all equations are discretised simultaneously by the same
time step. If the time constants per subcircuits are quite different, it is attractive to per-
form multirate time integration. Then the fast subcircuits can be integrated indepen-
dently on a fine time-grid. Especially when the fast subcircuits are small in size, the
additional costs for synchronisation and partitioning can be overcome and the overall
multirate procedure becomes much more efficient than the single-rate time integration.
An attractive multirate method is the Compound-Fast version [65, 68], which first in-
tegrates the whole system at the new coarse time gridpoint and after that re-integrates
only the active part at the fine time-grid. We will denote the coarse and fine time grid-
points by {Tn, 0 ≤ n ≤ N} and {tn−1,m, 1 ≤ n ≤ N, 0 ≤ m ≤ qn} with macro-steps
Hn := Tn − Tn−1, and micro-steps hn,m := tn,m − tn,m−1 and multirate factors qn. For
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a partitioning in a latent (slow) and an active (fast) part, x(L) ∈ RdL and x(A) ∈ RdA , we
typically get:

B̂
T

(L)

[
d

dt
[q̂(L)(t, x(L))] + ĵ

(L)
(t, x(L))

]
+ B̂

T

(A)

[
d

dt
[q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
= 0,

d

dt
[q̌(L)(t, x(L))] + ǰ

(L)
(t, x(L)) = 0,

d

dt
[q̌(A)(t, x(A))] + ǰ

(A)
(t, x(A)) = 0.

In contrast to flat models we have the property that dL + dA ≥ d because there can be
shared terminal variables.
A first approach is to integrate only the internal part of the active subcircuit at the fine
time-grid. Then we get the following active circuit model for x̌(A)

d

dt
[q̌(A)(t, x(A))] + ǰ

(A)
(t, x(A)) = 0, x(A) =

[
x̂(A)

x̌(A)

]
. (5.114)

In practise x̂(A) will also behave latently, and in this case it is preferable to use volt-
age interpolation of the terminal voltages x̂(A). From the hierarchical linear solver in
Pstar [13] we know that (5.114) is solvable for x̌(A). However, stability is now not auto-
matically preserved from the original model. Furthermore the DAE-index can be larger
than one, which typically leads to sawtooth-like shapes of x̌(A).
A second approach is to integrate the complete active subcircuit (i.e. using q(A) rather
than q̌(A), etc) at the fine time-grid. Then we get the following active circuit model for
x(A)

d

dt
[q(A)(t, x(A))] + j(A)(t, x(A)) = −B̂(A)B̂

T

(L)

[
d

dt
[q̂(L)(t, x(L))] + ĵ

(L)
(t, x(L))

]
. (5.115)

This leads to a more stable situation including the conservation of Kirchhoff’s Current
Law at the terminals and preservation of the DAE-index. In this case it is preferable to
interpolate the terminal currents

iL→A = −B̂(A)B̂
T

(L)

[
d

dt
[q̂(L)(t, x(L))] + ĵ

(L)
(t, x(L))

]
. (5.116)

This can be done by adding iL→A as unknown or by calculating it explicitly. Direct in-
terpolation of the terminal slow voltages x(L) is not attractive because iL→A could also
depend on slow internals x̌(L). In Pstar for each subcircuit the corresponding terminal

current d
dt [q̂(i)(t, x(i))] + ĵ

(i)
(t, x(i)) is stored. Then the vector iL→A can be constructed

for each multirate-partitioning. When model (5.115) is integrated, the equations are dis-
cretised and solved by an iterative Newton method. Each Newton iteration a linear
algebraic system of size dF has to be solved. Note that then the right-hand-sides consist
not only of a sampled iL→A but also on the previous solutions of the active state (time
history).
Interpolation of the currents iL→A causes solvability problems for the active part if the
active subcircuits are not grounded (so one may have to ground the most latent coupled
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terminal unknown). Stability and the differential index are only preserved if all subcir-
cuits are stable DAEs of index one. In general this property can not be assumed for a
circuit simulator.
It is well-known that the ungrounded circuit model (5.110) does not have a unique solu-
tion. Usually one nodal voltage therefore is set to zero while the corresponding equation
is skipped. If the active part is not directly coupled to the ground, but only via slowly
time-varying terminal unknowns, we could of course add these terminal unknowns to
the active part, but then we would like to find another solution.
We know that each circuit and subcircuit is of the type

d

dt
[q(i)(t, x(i))] + j(i)(t, x(i)) = 0.

Here x(i) =

[
x̂(i)

x̌(i)

]
consists of terminal unknowns x̂(i) and internal unknowns x̌(i).

For the root circuit the only terminal unknown is the voltage of the ground-node, which
is given. All other unknowns are considered to be internal at the circuit level. For a
proper circuit this automatically means that these internals are uniquely solvable. If we
consider a subcircuit with the same structure the state vector again consists of a terminal
and an internal part. If the terminal unknowns are given then the internal unknowns
can always be computed. The major problem of interpolation of the currents is that
also the terminal part of x(A) is treated as an unknown. Although we can assume that
x̌(A) can be found for given x̂(A), it is not clear whether we can find x(A) for a given
iT . It appears necessary to select one element of x̂(A) which has to be grounded to the
corresponding slow unknowns. This means that for an ungrounded fast subcircuit, one
terminal unknown has to be grounded to the coarse grid solution. Of course this is only
possible if that unknown varies slowly in time. Thus if x̂(A) contains at least one latent
unknown (voltage), e.g. with a constant value, this unknown can be approximated by
interpolation. In electrical terms this means that such an unknown is connected to a
grounded voltage source.
There are also subcircuits which do not have a unique solution if one terminal variable
is grounded. Typically these subcircuits are reducible, which means that they consist of
two unconnected parts. If the parts are really unconnected, this is easy to check from
the topology matrix. For normal circuit models its rank is equal to d − 1. If the rank
is equal to d − k, it can be proved that the subcircuit consists of k unconnected parts.
Unfortunately, also irreducible models can be reducible in a numerical sense, e.g. if two
parts are connected by an electrical element with a huge impedance. It is even possible
that the reducibility varies with time if a connecting transistor behaves like a switch.

5.9 Implicit interpolation techniques

In [67] it is shown that the Compound-Fast algorithm can have solvability problems
with dynamical partitioning. The major problem is that the active subcircuit does not
automatically preserve all dynamical properties of the complete model, like solvability,
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stability and irreducibility. Also the differential-index can be higher than one if the com-
plete model has DAE-index one. Irreducibility means that all variables of the model are
connected. Note that in a numerical sense it can be even worse.
An alternative could be a modified BDF multirate algorithm with implicit interpolation.
Such a method may solve this problem and may also reduce the average number of
Newton iterations per compound step. For this we will develop a proper description of
implicit current interpolation which is necessary for this method.
We saw that both voltage and current interpolation can still have problems with solv-
ability, stability or the differential index. These problems can be avoided by an alter-
native approach, where x̂(A) or iL→A are approximated by an implicit interpolation
formula. Because of the datastructure organised by the hierarchically connected sub-
circuits it seems more attractive to consider the second case with current interpolation.
Because of a blockwise treatment of subcircuits the contribution to the current equations
at the parent subcircuit level are just terminal currents. In (5.116) we already introduced
the terminal current iL→A from latent-to-active. We also introduce the terminal current
iA→L from active-to-latent. Then one can also write the hierarchical circuit model of
(5.115) like

d
dt [q(L)(t, x(L))] + j(L)(t, x(L)) = iA→L, i

iA→L = −B̂(L)B̂
T

(A)

[
d
dt [q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
, ii

iL→A = −B̂(A)B̂
T

(L)

[
d
dt [q̂(L)(t, x(L))] + ĵ

(L)
(t, x(L))

]
, iii

d
dt [q(A)(t, x(A))] + j(A)(t, x(A)) = iL→A. iv

(5.117)

Here iA→L and iL→A are the terminal currents that couple both subcircuits. If the vector
iL→A is given it is possible to perform the refinement for x(A). For the Slow-Fast multi-
rate method iL→A is approximated at the coarse time-grid, based on x(L). However, it is
also possible to approximate iL→A by a different approach.
Note that iL→A and iA→L are related by the Kirchhoff’s Current Law

B̂
T

(L)iA→L + B̂
T

(A)iL→A = 0.

Let us discretise (5.117i) by Euler Backward with step Hn = tn−1,m − tn−1,0, where
tn−1,0 = Tn−1

q(L)(tn−1,m, x
(L)
n−1,m)−q(L)(tn−1,0, x

(L)
n−1,0)+Hmj(L)(tn−1,m, x

(L)
n−1,m) = iA→L(tn−1,m).

(5.118)
In this section we assume that just one Newton step is needed to correct the prediction
x̂(L)

n−1,m, which is acceptable if x(L) behaves latently. Thus

J(L)
n−1,m

(
x(L)

n−1,m − x̂(L)
n−1,m

)
= iA→L(tn−1,m) − f(L)

n−1,m,

where J(L)
n−1,m = C(L)(tn−1,m, x̂

(L)
n−1,m)−C(L)(tn−1,0, x

(L)
n−1,0)+HmG(L)(tn−1,m, x̂

(L)
n−1,m)

and fn−1,m = q(L)(tn−1,m, x̂
(L)
n−1,m) − q(L)(tn−1,0, x

(L)
n−1,0) + Hmj(L)(tn−1,m, x̂

(L)
n−1,m).

Hence
x(L)

n−1,m = x̂(L)
n−1,m + J−1

n−1,m

(
iA→L(tn−1,m) − fn−1,m

)
.
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We do not want to compute J−1
n−1,mfn−1,m for all m, so we use linear interpolation of

J−1
n−1,0fn−1,0 = J−1

n−1,0f(x(L)
n−1,0) and J−1

n,0fn,0 = J−1
n,0f(x(L)

n,0). Thus we obtain

J−1
n−1,mfn−1,m := λmJ−1

n−1,0fn−1,0 + µmJ−1
n,0fn,0.

Here λm = 1− m
q and µm = 1−λm = m

q . Since form = 0we have that x(L)
n−1,m = x̂(L)

n−1,0

solves (5.118), we have that fn−1,0 = 0. After interpolating the operator J−1 applied to
iA→L(tn−1,m), we obtain the following approximation of x(L)

n−1,m:

x(L)
n−1,m ≈ x̂(L)

n−1,m + (λmJ−1
n−1,0 + µmJ−1

n,0)iA→L(tn−1,m) − µmJ−1
n,0fn,0

≈ a(tn−1,m) + A(tn−1,m)iA→L(tn−1,m),
(5.119)

where a(tn−1,m) = x̂(L)
n−1,m − µmJ−1

n,0fn,0 and A(tn−1,m) = λmJ−1
n−1,0 + µmJ−1

n,0. Instead
of solving the complete system (5.117), we can solve the following reduced system for
iA→L, iL→A, x(A)

iA→L = −B̂(L)B̂
T

(A)

[
d
dt [q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
,

iL→A = −B̂(A)B̂
T

(L)

[
d
dt [q̂(L)(t, a(t) + A(t)iA→L)] + ĵ

(L)
(t, a(t) + A(t)iA→L)

]
,

d
dt [q(A)(t, x(A))] + j(A)(t, x(A)) = iL→A.

(5.120)
We can then compute x(L) by evaluating formula (5.119). Thus we get a multirate
method of Fastest First type instead of Slowest First type. In contrast to the Compound-
Fast multirate method we do not need a compound step now to predict iL→A. However
the stability properties of this new method are not yet clear. Section 5.5 only considers
the stability analysis for the Slow-Fast and Compound-Fast versions of the BDF multi-
rate algorithm.
Similarly, iL→A satisfies

iL→A(tn−1,m) = −B̂(A)B̂
T

(L)

[
d
dt [q̂(L)(tn−1,m, x

(L)
n−1,m)] + ĵ

(L)
(tn−1,m, x

(L)
n−1,m)

]
= −P̂

[
d
dt [q(L)(tn−1,m, x

(L)
n−1,m)] + j(L)(tn−1,m, x

(L)
n−1,m)

]
,

where P̂ = B̂(A)B̂
T

(L)

[
B̂(L) O

]
. In a similar way as for x(L) in (5.119) we can derive the

following feedback law for iL→A:

iL→A(t) ≈ b(t) + B(t)x(L)(t). (5.121)

If we insert the formula for x(L)(t) in (5.119) we can derive c(t) and C such that

iL→A(t) ≈ c(t) + CiA→L(t).

Now we can reduce the system (5.117) even further to the following system for iA→L, x(A):{
iA→L = −B̂(L)B̂

T

(A)

[
d
dt [q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
,

d
dt [q(A)(t, x(A))] + j(A)(t, x(A)) = c(t) + CiA→L.

(5.122)
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Note that we can eliminate iA→L, which results in the following system for x(A)

d

dt
[q(A)(t, x(A))] + j(A)(t, x(A)) = c(t) − CB̂(L)B̂

T

(A)

[
d

dt
[q̂(A)(t, x(A))] + ĵ

(A)
(t, x(A))

]
.

(5.123)
From its structure it can be seen that only the terminal active equations that are di-
rectly coupled to the latent part are modified. In fact they are multiplied by a linear
transformation. This linear transformation is such that the dynamical behaviour of the
original system has been preserved. Again, the vector-valued function c(t) is again an
interpolation-based current source.
In a similar way as for iL→A we can derive the formula

iA→L(t) ≈ f(t) + F(t)x(A)(t). (5.124)

Combining all three formulae (5.119), (5.121) and (5.124) enables us to express iL→A

directly in terms of x(A):
iL→A(t) = g(t) + Gx(A)(t).

Then we get the following system for x(A):{
d
dt [q(A)(t, x(A))] + j(A)(t, x(A)) = g(t) + G‘x(A). (5.125)

Thus there are three interpolation variants from which the first one is the most accurate
and the last one the easiest one to implement. All variants assume that the large slowest
part is independently solvable, which is reasonable. Variant I also needs to evaluate all
terminal equations for the slow models and solves all terminal currents, which leads
to a second order system and can be expensive. But it can also be applied for fast ter-
minal currents iL→A, iA→L. Variant II only needs to evaluate active elements but it still
needs iA→L as additional unknown. Therefore it still can be applied for active iA→L.
Furthermore it is useful if the active subcircuit is irreducible. Variant III really reduces
to a system for only the active part. It is only allowed if all terminal currents iL→A, iA→L

behave slowly.
For the third variant it is clear that iL→A is replaced by a combination of current sources
and resistors. In fact this is model reduction of the large latent part. This improves the
dynamical properties of the active circuit model. Hopefully now the solvability, stabil-
ity and index should be preserved. Another important advantage is that it makes the
compound step unnecessary. We only had to invert the Jacobian matrix of the slow part
once. This means that the number of Newton iterations will be reduced.
From the previous variants the second variant is in particular very attractive. It allows
a reducible active part with fast terminal currents. Furthermore, even problems with
solvability and stability could be solved. Nevertheless it is less expensive than the first
variant which has to evaluate all submodels connected to the terminal part.
For an implementation of interpolation variant II we have to do the following steps.
First we compute c(t) by an integration of the slow part by a large step, where iA→L = 0.
The columns of the matrix C can be computed simultaneously based on iA→L = ei by
re-use of the same LU factorisation of J. Next, the refinement is performed for the mod-
ified active system. Each refinement step the errors of x(A) and iA→L are monitored.
Note that the error of iA→L determines the extrapolation error of the slow part. If the
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estimated error becomes too large, because of sudden wake-ups, we immediately can
stop. At the end of the refinement, the slow variables x(L), iL→A are updated using the
implicit formulae. Note that this formula can also be used if the refinement was stopped
earlier. Clearly sudden wake-ups are very well detected now. We are also able now to
estimate the error of the latent part. If it is acceptable small, we can repartition and
go to the next step. Otherwise, we could do another Newton iteration or reduce the
compound step.



Chapter 6

Adaptive multirate stepsize
control and partitioning

6.1 Analysis of the local discretisation error

The accuracy of a multirate method can be controlled by the stepsizes of the compound
step and the refinement phase. In this section we will show how Hn and hn−1,m can be
controlled such that the local error is smaller than a given tolerance level. We will also
analyse how the local discretisation errors at the coarse and fine grid asymptotically
behave. Finally an error model is constructed which is used to develop stepsize con-
trollers for the coarse and fine time-grids. We generalise some techniques in [49, 51] to
our multirate case [68]. The local discretisation error dn is defined as the residual of the
scheme at the coarse time-grid after inserting the exact solution. It still has the familiar
behaviour dn = O(HK+1

n ). In practice the local discretisation errors are not known and
should be estimated up to a sufficient accuracy. The local discretisation error dn can
be estimated by d̂

n
using the Nordsieck representation of the predictor and corrector

polynomial of q (at t = [Tn−1, Tn]):

d̂
n

:=
−Hn

Tn − Tn−K−1

[
q̄n

1 − p̄n
1

]
. (6.1)

Now
r̂nC := ‖BLd̂

n
‖+ τ‖BAd̂

n
‖ (6.2)

is the used weighted error norm for the coarse grid, which must satisfy r̂nC < TOLC.
Here τ ≥ 0 is a small non-negative relaxation number which must improve the conver-
gence of the compound step. The optimal value is not known yet, but in our experi-
ments even τ = 0worked satisfactorily.
For multirate methods we also need to consider the local discretisation error dn,m at the
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fine time-grid. At the fine time-grid the DAE has been perturbed by the interpolated la-
tent variables at the interface between latent and active areas. The local discretisation
error at the fine time-grid equals there

dn,m = ρ̄n−1,m
0 qA(tn−1,m, xA(.), xL(.)) + hn−1,mjA(tn−1,m, xA(.), xL(.)) + bn−1,m

,

where bn−1,m contains the time history from the multistep method

bn−1,m = ρ̄n−1,m
1 qA(tn−1,m−1, xA(.), xL(.)) + . . .+ ρ̄n−1,m

k qA(tn−1,m−k, xA(.), xL(.)).

We also consider the perturbed local discretisation error d̃
n,m

, which is the residual of
the refinement scheme with fixed interpolated slow part after inserting the exact active
solution. Clearly, d̃

n,m
satisfies

d̃
n,m

= ρ̄n−1,m
0 qA(tn−1,m, xA(.), x̂n−1,m

L )+hn−1,mjA(tn−1,m, xA(.), x̂n−1,m
L )+b̃

n−1,m
,

where
b̃

n−1,m
= ρ̄n−1,m

1 qA(tn−1,m−1, xA(.), x̂n−1,m−1
L ) + . . .

+ ρ̄n−1,m
k qA(tn−1,m−k, xA(.), x̂n−1,m−k

L ).

The perturbed local discretisation error BAd̃
n−1,m

behaves asO(hk+1
n−1,m) and can be es-

timated in a similar way as dn from the perturbed Nordsieck matrices of the refinement
phase.

BA
^̃dn,m :=

−hn−1,m

tn−1,m − tn−1,m−k−1
BA

[
q̄n−1,m

1 − p̄n−1,m
1

]
. (6.3)

The norm of ‖BA
^̃dn,m‖ will be denoted by

^̃rn−1,m
A := ‖BA

^̃dn,m‖. (6.4)

For single-rate methods the accuracy can completely be controlled by controlling the
local discretisation errors. This is no longer the case for multirate methods, where also
the interpolation errors play an important role. Let x̂L(t) be the interpolation-based func-
tion which is exact at the coarse or fine time-grid. Then the interpolation errors rn and
rn−1,m are defined as the maximum errors of x̂L(t) between the time-points of the coarse
and fine time-grids on the interval [Tn−1, Tn] and [tn−1,m−1, tn−1,m], respectively. If
the interpolation order is equal to the integration order, they again have the familiar
behaviour rn = O(HK+1

n ), rn−1,m = O(hk+1
n−1,m).

Lemma 6.1 For the interpolation errors rn, rn−1,m we have

‖rn‖ ≤ ‖r̂n‖, ‖rn−1,m‖ ≤ ‖r̂n−1,m‖, (6.5)

where

r̂n :=
1

4

−Hn

Tn − Tn−K−1
(x̄n

1 − ȳn
1 ), r̂n−1,m :=

1

4

−hn−1,m

tn−1,m − tn−1,m−k−1
(x̄n−1,m

1 − ȳn−1,m
1 ).

(6.6)
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Proof: Let x(t) be the exact solution and x̂ a polynomial of degree K that interpolates x
at the previous K + 1 time-points {Tn−K, . . . , Tn}. At the coarse time-grid we have the
following asymptotic behaviour

x(t) − x̂(t) = (t− Tn−K) · · · (t− Tn−1)(t− Tn)
x(K+1)(τ)

(K+1)! , τ ∈ (Tn−K, Tn)

= (t− Tn−K) · · · (t− Tn−1)(t− Tn)
x(K+1)(Tn)

(K+1)! +O(HK+2
n ).

(6.7)

We easily derive the upper bound maxt∈[Tn−1,Tn] ‖x(t) − x̂(t)‖ for all t ∈ [Tn−1, Tn],
which satisfies up to O(HK+2

n )

max
t∈[Tn−1,Tn]

‖x(t) − x̂(t)‖ ≤
∏K

j=2(Tn − Tn−j) maxt∈[Tn−1,Tn] |(t − Tn−1)(t − Tn)| ‖x(K+1)(Tn)
(K+1)!

‖

= 1
4

∏K
j=2(Tn − Tn−j)(Tn − Tn−1)2‖x(K+1)(Tn)

(K+1)!
‖

= ‖1
4
H2

n(Hn−1 + Hn) · · · (Hn−K+1 + · · · + Hn)x(K+1)(Tn)
(K+1)!

‖.
(6.8)

Consider ȳ(t) which interpolates x̂ (and x) at the previousK+1 time-points {Tn−K−1, . . . , Tn−1}.
Thus we have

x̂(t) − ŷ(t) = (t− Tn−K−1) · · · (t− Tn−1)
x(K+1)(Tn)

(K+ 1)!
+O(HK+2

n ).

In particular we obtain

x̄n
1 − ȳn

1 = x̂(Tn) − ŷ(Tn) = (Tn − Tn−K−1) · · · (Tn − Tn−1)
x(K+1)(Tn)

(K+1)! +O(HK+2
n )

= (Hn−K + · · ·+Hn) · · · (Hn−1 +Hn)Hn
x(K+1)(Tn)

(K+1)! +O(HK+2
n ).

Because

‖1

4
H

2
n(Hn−1+Hn) · · · (Hn−K+1+· · ·+Hn)

x(K+1)(Tn)

(K + 1)!
‖ =

Hn

4(Tn − Tn−K−1)
‖x̄n

1 −ȳn
1 ‖+O(HK+2

n ),

it follows that

max
t∈[Tn−1,Tn]

‖x(t) − x̂(t)‖ ≤ Hn

4(Tn − Tn−K−1)
‖x̄n

1 − ȳn
1 ‖. (6.9)

Now it follows indeed that ‖rn‖ ≤ ‖r̂n‖ if r̂n = 1
4

−Hn

Tn−Tn−K−1
(x̄n

1 − ȳn
1 ). At the fine

time-grid we can prove in a similar way that also ‖rn−1,m‖ ≤ ‖r̂n−1,m‖, where r̂n−1,m

is given in (6.6). �

Before we state the following theorem, we introduce the notion of the coupling matrix.

Definition 6.2 The coupling matrix Kn−1,m ∈ RdA×dL is defined by

Kn−1,m := BA
d

dt
[C(tn−1,m, x(tn−1,m))] BT

L + BAG(tn−1,m, x(tn−1,m))BT
L , (6.10)

where C(t, x) =
∂q
∂x (t, x) and G(t, x) =

∂j
∂x (t, x).
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This coupling matrix will turn out to be essential for the error analysis.

Theorem 6.3 The active part of dn−1,m satisfies

‖BAdn−1,m‖ ≤ ‖BAd̃
n−1,m‖+ hn−1,m‖Kn−1,m‖‖BLrn−1,m‖. (6.11)

Proof: From now on we use the abbreviations t = tn−1,m, h = hn−1,m, ρ̄0 = ρ̄n−1,m
0 , b̃ =

b̃n−1,m,b = bn−1,m. For the error difference ∆dn−1,m = dn−1,m − d̃
n−1,m

we have

‖∆dn−1,m‖ = ‖ρ̄0(qA(t, xA(t), xL(t)) − qA(t, xA(t), x̂n−1,m
L ))

+ h(jA(t, xA(t), xL(t)) − jA(t, xA(t), x̂n−1,m
L )) + b − b̃‖

≤ ‖ρ̄0
∂q

A

∂xL
+ h

∂j
A

∂xL
+ ∂bA

∂xL
‖ max0≤j≤K ‖x̂n−1,m−j

L − xL(tn−1,m−j)‖.
(6.12)

Here we assumed that

‖b̃ − b‖ ≤ ‖ ∂b
∂xL

‖ max
0≤j≤K

‖x̂n−1,m−j
L − xL(tn−1,m−j))‖. (6.13)

Note that Kn−1,m satisfies

Kn−1,m =
ρ̄0

h

∂qA

∂xL
(t, xA(t), xL(t))+

∂jA
∂xL

(t, xA(t), xL(t))+
1

h

∂bA

∂xL
(t, xA(t), xL(t))+O(Hn).

(6.14)
Because of Lemma 6.1 we get

‖∆dn−1,m‖ ≤ h‖Kn−1,m‖‖BLrn−1,m‖+ h.o.t.. (6.15)

Since BAdn−1,m = BAd̃
n−1,m

+ ∆dn−1,m it immediately follows from (6.15) that (6.11)
is fulfilled if higher order terms are neglected. �

Theorem 6.3 states that the interpolation error because of the interface equals ‖Kn−1,m‖‖BLrn−1,m‖.
An estimated upper bound at the coarse time-grid is given by

r̂nI := ‖K̂n‖‖BLr̂n‖. (6.16)

Here the coupling matrix K can be discretised at the coarse time-grid as follows

Kn−1,m
.
=

1

Hn
BA

[
C(Tn, xn) − C(Tn−1, xn−1)

]
BT

L + BAG(Tn, xn)BT
L =: K̂n. (6.17)

Now ‖BAdn−1,m‖ can be bounded by

r̂n−1,m
A := ^̃rn−1,m

A + hn−1,mr̂
n
I , (6.18)

where ^̃rn−1,m
A is an upperbound of ‖BAd̃

n−1,m‖.
It is also possible to work with other error definitions than the local discretisation error,
like the local scaled error or the interpolation error. For all types we have r̂nC = O(HK+1

n )
and ^̃rn−1,m

A = O(hk+1
n−1,m) can be estimated and controlled by the already existing error
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Table 6.1: Multirate error estimates for several types of error estimation.
r̂ LDE scaled LDE
r̂nC ‖BLd̂

n
‖+ τ‖BAd̂

n
‖ ‖BLên‖+ τ‖BAên‖

r̂nI ‖K̂n‖‖BLr̂n‖ ‖[BAJnBT
A]−1K̂n‖‖BLr̂n‖

^̃rn−1,m
A ‖BA

^̃dn−1,m‖ ‖BA^̃en−1,m‖

control mechanism of the normal transient simulation. However, for the interpolation
error r̂nI we have to analyse the equation (6.11) more profoundly. Recall that the local
discretisation error satisfies

‖BAdn−1,m‖ ≤ ‖BAd̃
n−1,m‖+ hn−1,m‖Kn−1,m‖‖BLrn−1,m‖.

Introducing
BAẽn−1,m := [BAJn−1,mBT

A]−1BAd̃
n−1,m

(6.19)

it is easy to prove that

‖BAen−1,m‖ ≤ ‖BAẽn−1,m‖+ hn−1,m‖[BAJn−1,mBT
A]−1Kn−1,m‖‖BLrn−1,m‖.

(6.20)
Because of the hierarchical structure of circuit models the original circuit is always solv-
able, which implies that Jn is invertible. Here we assume that BAJn−1,mBT

A is an invert-
ible matrix that can be approximated by BAJnBT

A, which is only the case if the active
part is a solvable system. If J is symmetric positive definite this is always the case of
course. Conditions for this property have been given in section 5.4. Table 6.1 shows the
error estimates for the investigated error types.

6.2 Adaptive stepsize and order control

Adaptive stepsize control ofHn and hn,m can be used to keep r̂nI = O(HK+1
n ) (6.16) and

^̃rn−1,m
A = O(hk+1

n−1,m) (6.4) close to θTOLI and θ ˜TOLA respectively, where 0 < θ < 1 is
a safety factor. The models of these error estimates can be found in (6.16) and (6.4), respec-
tively.
The local discretisation error of a Compound-Fast multirate method for a fixed parti-
tioning can be controlled by independent control of the compound step and the refine-
ment phase. The purpose of the control is that both the slow and fast errors rnL and
rn−1,m
A respectively are always smaller than a given tolerance level TOL. For the latent

part we just have
rnL = ‖BLdn‖ = O(HK+1

n ),

where dn is the vector of local discretisation errors per element at Tn and ‖.‖ = ‖.‖∞.
In [68] it has been shown that the active local error at tn−1,m can be bounded by

rn−1,m
A = ‖BAdn−1,m‖ ≤ ‖BAd̃

n−1,m‖+ hn−1,m‖BAKn−1,mBT
L‖‖BLrn−1,m‖. (6.21)
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Here BAd̃
n−1,m

is the usual local discretisation error of the active part (i.e. under the
assumption of no interpolation errors). The following term comprises the error due
to interpolation. The vector BLrn−1,m is the interpolation error of the slow part and
BAKn−1,mBT

L the coupling matrix, where

Kn−1,m =
d

dt
[C(tn−1,m, x(tn−1,m))] + G(tn−1,m, x(tn−1,m)),

which involves the solution also at the latent part. Thus the interpolation error at
the interface, hn−1,m‖BAKn−1,mBT

L‖‖BLrn−1,m‖, cannot be controlled by hn−1,m com-
pletely. Therefore we approximate it at the coarse time-grid as follows

hn−1,m‖BAKn−1,mBT
L‖‖BLrn−1,m‖ ≈ hmax‖BAKnBT

L‖‖BLrn‖,

which only depends on Hn. If

rnI := hmax‖BAKnBT
L‖‖BLrn‖ ≤ wTOL, (6.22)

r̃n−1,m
A := ‖BAd̃

n−1,m‖ ≤ (1−w)TOL, (6.23)

it immediately follows from (6.21) that rn−1,m
A ≤TOL. Section 6.3 will show how w ∈

(0, 1) can be optimized [68] with respect to the default value 0.5. Then we get the fol-
lowing conditions for H,h for the Compound-Fast method

rnC := max{rnL ,
1

w
rnI } ≤ TOL, (6.24)

rn−1,m
R :=

1

1−w
r̃n−1,m
A ≤ TOL. (6.25)

For hierarchical circuit models with current interpolation it is not necessary to compute
the coupling matrix Kn because the terminal currents for each subcircuit can be explic-
itly stored in Nordsieck arrays. Then we can write

rnI = hmax‖B̃(A)B̃T
(L)‖‖BLrn‖. (6.26)

In Pstar we have d̂
n

and r̂n are estimated by the interpolation errors at the coarse time-
grid of the voltages and terminal currents, respectively. Hence estimates (indicated by
the hats) are available.
For the Slow-Fast method, without compound step, we get a different model for rnL
because of the extrapolation errors. Then we need the extended model:

rnL ≈ ‖BLd̃
n‖+Hmax‖BLKn−1,mBT

A‖‖BArn−1,m‖.

Here BLd̃
n

is the local discretisation error of the latent part under the assumption that
there are no extrapolation errors. Furthermore Hmax‖BLKn−1,mBT

A‖‖BArn−1,m‖ only
depends on hn−1,m and can be controlled in the previous refinement phase. In a similar
way, if

rn−1,m
I := Hmax‖BLKn−1,mBT

A‖‖BArn−1,m‖ ≤ wTOL, (6.27)

r̃nL := ‖BLd̃
n‖ ≤ (1−w)TOL, (6.28)
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we get rnL ≤TOL. Now the term Hmax‖BLKn−1,mBT
A‖‖BArn−1,m‖‖ can be controlled

by hn−1,m completely during the previous refinement. For this method we get the
following conditions for Hn, hn−1,m

rnC := max{
1

1−w
r̃nL ,

1

w
rnI } ≤ TOL, (6.29)

rn−1,m
R := max{

1

w
rn−1,m
I ,

1

1−w
r̃n−1,m
A } ≤ TOL. (6.30)

Clearly, for both the Compound-Fast and Slow-Fast multirate methods, it is possible
to control the local errors by independent control of rnC = O(HK+1

n ) and rn−1,m
R =

O(hk+1
n−1,m) as shown in the previous section. The stepsizes Hn+1, hn,1 could e.g. be

computed by elementary multirate stepsize controllers like

Hn+1 =

(
θTOL
r̂nC

) 1
K+1

Hn, (6.31)

hn−1,m+1 =

(
θTOL
r̂n−1,m
R

) 1
k+1

hn−1,m. (6.32)

Here, θ ∈ (0, 1) is a safety factor which reduces the number of rejected timesteps. The
steps are used to track both r̂nC and r̂n−1,m

R close to θTOL.
Because the last fine step hn−1,q is clipped for synchronisation reasons, the error es-
timate ^̃rn−1,q

A can become very small. Therefore at the synchronisation time-point Tn

hn,1 is chosen as the unclipped hn−1,q which depends on r̂n−1,q−1.

6.3 Optimal value for the balance number

It appears that the balance numberw in (6.22) can be chosen in an optimal way. Theorem
6.5 shows how the optimal balance number wopt ∈ (0, 1). To prove that we need the
following Lemma.

Lemma 6.4 Let f ∈ C∞((0, 1),R+) such that

∀x ∈ (0, 1) f(x) = A (1− x)− 1
r + B x− 1

s ,

where A,B ∈ R+ and r, s ∈ N. Then

∀x ∈ (0, 1) f(x) ≥ f(x∗),

where x∗ ∈ (0, 1) is the unique solution of

A s x
1+ 1

s
∗ = B r (1− x∗)

1+ 1
r .

If r = s one explicitly has

x∗ =
1

1+
(

A
B

) r
1+r

∈ (0, 1),
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such that

∀x ∈ (0, 1) f(x) ≥ A

(
1+

(
A

B

) −r
1+r

) 1
r

+ B

(
1+

(
A

B

) r
1+r

) 1
r

. (6.33)

Proof: Because f ∈ C∞((0, 1),R+) and is unbounded for x ∈ {0, 1}, f has at least one
minimum x∗ ∈ (0, 1) that satisfies f ′(x∗) = 0. It can be proved that this minimum is
unique. Because

f ′(x) =
A s x1+ 1

s − B r (1− x)1+ 1
r

r s x1+ 1
s (1− x)1+ 1

r

,

we get the following equation for x∗:

A s x
1+ 1

s
∗ = B r(1− x∗)

1+ 1
r .

If r = s it is easily derived that

x∗

1− x∗
=

(
B

A

) r
r+1

, or x∗ =

(
B
A

) r
r+1

1+
(

B
A

) r
r+1

=
1

1+
(

A
B

) r
r+1

.

Then indeed (6.33) follows immediately. �

In each multirate step we need the computational workload

Wmult = WR
T

h
+WC

T

H
, (6.34)

where WC,WR are the computational work per timestep for the compound phase and
the refinement phase respectively. This definition will also be used in the efficiency
analysis in section 6.4. Because of (6.23) and (6.22) we have for w < wmax

h =

(
(1−w)θTOLA

^̃φA

) 1
k+1

= DR(1−w)
−1

k+1 , H =

(
w θTOLA

hmaxφ̂I

) 1
K+1

= DCw
−1

K+1 ,

(6.35)
where

DR =

(
θTOLA

^̃φA

) 1
k+1

, DC =

(
θTOLA

hmaxφ̂I

) 1
K+1

. (6.36)

Theorem 6.5 Let wmax be defined by

wmax :=
TOLC

TOLA

hmaxr̂
n
I

r̂nC
(6.37)

and assume that w∗ ∈ (0, 1) solves

G(K+ 1)w
1+ 1

K+1
∗ = (k+ 1)(1−w∗)

1+ 1
k+1 , (6.38)
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where G := WR

WC

DC

DR
and DR, DC are given in (6.36). Then the optimal value for w ∈ (0, 1)

equals

wopt = min{wmax, w∗}. (6.39)

Proof: There exists a number wmax such that for w ≤ wmax the first constraint (6.22)
becomes dominant. This means that w always must be smaller than wmax because oth-
erwise the tolerance level ˜TOLA = (1 −w)TOLA for the refinement becomes too small.
This value wmax can be determined by the property

TOLC

r̂nC
=
wmaxTOLA

hmaxr̂
n
I

,

which indeed implies (6.37).
If w ≤ wmax the computational workloadWmult = Wmult(w) in (6.34) satisfies

Wmult(w) =
WR

DR
T(1−w)

−1
k+1 +

WC

DC
Tw

−1
K+1 , (6.40)

where DR, DC are given in (6.36). Clearly, Wmult is unbounded for w = 0 or w = 1,
which implies that w ∈ (0, 1). We apply Lemma 6.4 to (6.40) in order to find the op-
timal balance number w∗. Thus it follows for Wmult, where A = WR

DR
, B = WC

DC
and

r = k + 1, s = K + 1 that in (0,wmax) the optimal value w∗ indeed solves (6.38) with
G = WR

WC

DC

DR
. �

If K = kwe can compute the analytical solution of (6.38), which is equal to

w∗ =
1

1+G
K+1
K+2

∈ (0, 1), (6.41)

with G = WR

WC

DC

DR
. From this expression we can conclude that the optimal value w∗ be-

comes very small ifG� 1. This is the case if the multirate factor q� 1 and ^̃rA � hmaxr̂I
which is satisfied if the active part behaves much faster and is nearly decoupled. Note
that an upper bound for H disturbs this optimality because then the steps do not satisfy
(6.35). If H has to be limited it is always better to decrease w such that the limited H
exactly fits for our case. Then the refinement can be done with larger steps.
It is important that w ≤ wmax because for w > wmax the compound step H is deter-
mined by determined by TOLC

r̂n
C

and stays constant, while the small refinement steps h

are determined by ˜TOLA = (1−w)TOLA and become smaller. For K = k andw ≤ wmax
the optimized workload equals

Wmult(w∗) = WC

DC
T
(
w

−1
k+1
∗ +G(1−w∗)

−1
k+1

)
= WC

DC
T

((
1

1+G
k+1
k+2

) −1
k+1

+G

(
1− 1

1+G
k+1
k+2

) −1
k+1

)
.

(6.42)
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Then we get the gain with respect to e.g. w = 0.5

Wmult(w∗)
Wmult(0.5) =

(
1

1+G
k+1
k+2

) −1
k+1

+G

(
1− 1

1+G
k+1
k+2

) −1
k+1

2
1

k+1 (1+G)

=

1
G

(
1

1+G
k+1
k+2

) −1
k+1

+

(
1− 1

1+G
k+1
k+2

) −1
k+1

2
1

k+1 ( 1
G +1)

.

This implies that for G → ∞ we have

Wmult(w∗)

Wmult(0.5)
→ 2

−1
k+1 .

Thus for very large G and k = 1 the optimized workload needs about 70% of the work-
load for w = 0.5.

6.4 Adaptive partitioning control

In the previous sections we described how the local error can be controlled by indepen-
dent control of Hn, hn−1,m for a fixed partitioning. But for e.g. digital circuits (with
dynamically changing activities) it is impractical to apply multirate with a static par-
titioning. Then dynamical partitioning techniques [19, 46, 60, 67] are needed which are
able to follow the moving active part. This means that the partitionings should be up-
dated during the multirate time integration. Because repartitionings are not cheap, one
will not allow to change the partition during the refinement. Thus repartitionings only
can occur just after the compound step or just after the refinement phase. By keeping
the old partitioning for an acceptable speed-up factor for some time, the number of
repartitionings is reduced. There exist the following three alternatives.

A The partitioning is modified just after the compound step such that the compound
step can be accepted.

B The partitioning is controlled simultaneously with the stepsizes just after the refine-
ment phase. Here the available estimates of the errors per element are used.

C First a single-rate step is done and then its discretisation error vector is used to repar-
tition.

Methods B and C are better suited for the stepsize control and the relaxation of the
Newton process, because the active part of the coarse error vector in method A is not
accurate. Nevertheless, method A is better able to detect sudden wake-ups of latent
variables. Note that method A is applied with the restriction that only latent elements
can be transfered to the refinement part, while method B is always applied at the end of
a multirate-step.
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Dynamical partitioning has some consequences for the existing multirate algorithm.
Firstly, there is the storage problem. Now, theoretically, each node may have its own
time-points, theoretically. Because the lengths of these time-grids will differ for each
unit, it is impossible to store the solutions and time-grids in a normal array. Further-
more, for multistep methods there is the initialisation problem for the waked up fast
nodes that were slow during the previous compound step. Restarting with onestep
methods, like Euler Backward, can reduce the gained efficiency. We use the previous
coarse-grid polynomial also as a predictor polynomial for the new refinement phase us-
ing upgraded results. For real-world applications it might be necessary to take care of
the already existing structure, e.g. a hierarchical structure for circuit models. Instead of
element-wise partitioning the submodels are treated like connected blocks that can be
active or latent as a block.

6.5 Local efficiency analysis of multirate methods

In this subsection we will analyze the local efficiency of a multirate method during one
multirate-step [Tn, Tn+1]. Although we introduced the Compound-Fast BDF algorithm,
this analysis is valid for a much larger family of multirate methods. Let WC,WR be the
computational work per multirate step for the compound phase and the refinement phase
and define the workload ratio by E = WR

WC
. LetWS be the computational work per single-rate

step for the standard single-rate version, that satisfies WS

WC
= F ≈ 1. If H and h are the

compound step and refinement step and q = H
h the multirate factor, then a multirate

method on [Tn, Tn+1] will need the computational workload

Wmult = WRq+WC = WC(Eq+ 1), (6.43)

while a single-rate method with step hs would need Wsing = WS
H
hs

. Thus we have the
following speed-up factor for the multirate method

S =
Wsing

Wmult
=

WS
H
hs

WC(Eq+ 1)
= F

h

hs

1
1
q + E

≈ h

hs

1
1
q + E

. (6.44)

Here q is the multirate factor, that is large if the dynamics of the refined part are more ac-
tive than the other slow part. The ratio E is determined by the partitioning and describes
the relative costs of a refinement step that depends on the size dA of the refinement part.
Assuming fixed h, hs, we observe that S → F

E
h
hs

for q → ∞ and S → Fq h
hs

for E → 0.
Clearly, we get a large speed-up factor if q is large and E is small. Only if S > 1 it could
be attractive to use for instance the multirate version of a certain integration scheme.
The workload ratio E typically depends on the (variable) relative size dA/d of the re-
finement. We use the approximate model

Ê = E0 + (1− E0)

(
dA

d

)α

, (6.45)

where E0 is a constant part corresponding to the overhead costs of a multirate method.
In practice we will assume that E0 ≈ 0.1. The variable part depends on α ∈ (1, 2). By
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default we use α = 2. Note that it is also possible to model E by a parameterised rational
function of dA and d, where the parameters can be identified by using experimental
data. For hierarchical partitioning it can be necessary to use a weighted formula that
takes care of the individual sizes of the subcircuits.
The multirate factor q can be estimated by the ratio

q̂n+1 =
Hn+1

hn,1
. (6.46)

HereHn+1, hn,1 are the proposed stepsizes for the compound step and refinement step,
respectively. Section 6.1 shows how these stepsizes are computed, e.g. by the elemen-
tary stepsize controllers (6.31),(6.32). Because we used hn,1 = hn−1,q without clipping,
we get

q̂n+1 =
Hn+1

hn−1,q
=

(
θTOL
r̂nC

) 1
K+1

(
r̂
n−1,q−1
R

θTOL

) 1
k+1

Hn

hn−1,q−1
.. (6.47)

For the Compound-Fast method the error estimates r̂C, and r̂R are defined as

r̂nC = max{r̂nL ,
1

w
r̂nI } = max{‖BLd̂

n
‖, 1
w
hmax‖BAK̂nBT

L‖‖BLr̂n‖}, (6.48)

r̂n−1,m
R =

1

1−w
^̃rn−1,m
A =

1

1−w
‖BA

^̃dn−1,m‖. (6.49)

Clearly they strongly depend on the partitioning. The previous steps Hn, hn−1,q−1 are
considered to be independent of BA,BL. This is the case for adaptive partition control,
where the partitionings at the previous steps are given and only the partitioning for
the new multirate step is optimised. The procedure (6.47)-(6.49) directly computes the
multirate factor q̂ for the current partitioning (and with estimates of H and h as well).
Because the partitioning is determined by BA,BL, this formula for q̂n+1 enables us to
express the expected speed-up factor Ŝn+1 = 1

Ên+1+ 1
q̂n+1

in terms of the partitioning.

For K = kwe can use the following formula for q̂

q̂n+1 =

(
r̂
n−1,q−1
R

r̂nC

) 1
K+1

Hn

hn−1,q−1
. (6.50)

In section 4.6 it is shown how digital linear control theory can be used to develop higher
order stepsize controllers that deliver smoother stepsize sequences. Exploiting this here
implies that the multirate factor also depends on previous values of the error estimates.
This also improves the smoothness of the partitioning sequence. A drawback of higher
order stepsize controllers is that they are difficult to apply combined with variable or-
der. In fact they should only be used if the order remains constant during a long time
interval. But even then the stepsize controller depends on the current used order.
In (6.47) we showed how we can express the multirate factor in terms of the partition-
ing. The major problem is that the error vectors d̂

n
, r̂n and the coupling matrix K̂n are

only accurate for the current latent part and that the error vector ^̃dn−1,m only exists for
the current active part. Indeed, we assumed that the corresponding state elements have
converged in the Newton method, which is not true for the active elements (i.e. without
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relaxed error control).
To solve this problem we need to construct approximations that are valid for all ele-
ments. Using the Nordsieck polynomial technique (Section 4.3), we know that error
vectors are estimated by the difference between the corrected and predicted solution.
The error corresponds to the performed step, so it depends on the current stepsize H
or h and order K or k. If we rescale and resize the predictor polynomial we can use
its prediction to estimate the local error for other steps or order. Here we can use the
transformation matrices that are defined in [68].
We can easily obtain the scaled and resized corrector polynomial. This polynomial is
necessary for slow elements that become active. Now we should transform both the
current predictor and corrector polynomials to get a proper error estimate and a good
initial Nordsieck array. Then we can use the rescaled and transformed vectors to get an
error estimate for the case that different step and order would have been used. Note
that the method works well for different steps, but for higher order the error estimate
will in fact be equal to the current estimate. We can use the same trick to rescale the fine
error vector ^̃dn−1,m to the coarse grid. This even goes better, because K ≤ k. Also note
that we only should rescale and resize the elements that we are investigating. Rescaling
and resizing the previous error vectors allows us to use the proposed formula for q̂. With
respect to the coupling matrix we should evaluate the Jacobian matrices in the state that
is corrected by the refinement. We will assume that the coupling matrix behaves slowly
and is properly approximated at the coarse time-grid. Note that for LTI systems the
coupling matrix is even constant.

6.6 Partitioning algorithms

Although the multirate step h can be smaller than the single-rate step hs such that the
accuracy is maintained, we assume that

F
h

hs
≈ 1 is independent of the partitioning. (6.51)

Thus the partitioning is optimal if Ŝ = 1
1
q +E

achieves its maximal value. Let the index

sets of the active and latent parts be indA, indL of lengths dA, dL such that d = dA +dL.
Then both q and E are functions of indA, indL. Thus the optimal partitioning at [Tn, Tn+1]
satisfies:

max
indA,indL

Ŝn+1 = max
indA,indL

1
1

q̂n+1
+ Ên+1

. (6.52)

Here formulae (6.45) and (6.47) are used to compute the estimates Ên+1 and q̂n+1, re-
spectively. This optimisation problem is solved after each multirate-step. The exact
solution of optimisation problem (6.52) is a discrete 0-1 optimisation problem with a
complexity growing very fast because there are 2d possible partitionings.
The previous section showed how the partitioning can be adaptively controlled by op-
timizing Ŝ after each multirate-step. This approach works well for a very small d, but
already for d = 15 parts there are 215 = 32768 possible partitionings. Considering all
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these combinations would be too expensive. In the following sections we propose some
algorithms that find a reasonable approximation of the optimal partitioning in an ac-
ceptable time.
Instead of optimizing the speed-up factor Ŝ in the most general way it is also possible to
optimize Ŝ under the restriction that dA is fixed. This is simpler because it is equivalent
to optimizing q̂ because now the workload ratio Ê (eq. 6.45) is constant. Since for the
Compound-Fast version also the micro step hn−1,q is independent of the partitioning,
it is even sufficient to maximise the macro step Hn+1. Remember that Hn+1 in (6.31)
depends on the new partitioning, because of

r̂nC = max{‖BLd̂
n
‖, 1
w
hmax‖BAK̂nBT

L‖‖BLr̂n‖}.

We assume that the vectors d̂
n
, r̂n and matrix K̂n are valid for all elements by use of

proper rescaling and resizing of the fine Nordsieck arrays.
We define a sequence of those semi-optimal partitionings for fixed dA = x, where x ∈
{1, . . . , d}. Then the real optimal partitioning for optimal x can be selected from all semi-
optimal partitionings. We also use this sequence in order to find the semi-optimal par-
titionings recursively for increasing the value of x. If we compute the semi-optimal
partitioning for all xwe are able to compute the exact solution as will be described next.
Note that under the restriction dA = x there are still

(
d
x

)
possible partitionings. Indeed

d∑
x=0

(
d

x

)
= 2d.

The semi-optimal partitioning for dA = x can be found from the semi-optimal partition-
ing for dA = x − 1 by considering all possible transitions. If L fast elements from a set
with dA = x − 1 are moved to the slow part, it follows that L + 1 slow elements have
to be moved to the fast part in order to get a new set with dA = x. Note that L is the
number of interchanges, that is bounded by Lmax = min{x, d − x}. The total number of
transitions with l interchanges sums up to

AL =

L∑
l=0

(
x

l

)(
d− x

l+ 1

)
.

Then the new partitioning can be found by maximizing the difference ∆Ŝ for all AL

transitions. If we take L = Lmax it can be proven indeed that

Lmax∑
l=0

(
x

l

)(
d− x

l+ 1

)
=

(
d

x+ 1

)
.

This means that then all possible partitionings for dA = x + 1 are considered. Thus
taking L = min{x, d− x} leads to the optimal partitioning for each x. But computing the
partitioning sequence in this manner still considers all 2d possible partitionings, which is
too expensive.
Therefore we make the following assumption:
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Assumption 6.6 A semi-optimal partitioning with dA = x can be found from a semi-optimal
partitioning with dA = x− 1 by at most L∗ ∈ N interchanges.

The case L∗ = 0 is a very special case because then the partitioning sequence is assumed
to be nicely ordered. If an element is refined for dA = x it remains in the refinement
for all higher values of x. Furthermore, it allows cheap partitioning algorithms because
A0 = d− x. If interchanges sometimes occur one could take L∗ = 1 that already investi-
gates A1 = d− x+ x

(
d−x

2

)
possible transitions.

The proposed assumption allows us to compute the partitioning sequence much faster.
In this manner it is possible to compute the semi-optimal partitioning for all x ∈ {0, . . . , d}.
Next we could find the global optimum by comparing all these found partitionings.
Clearly, this approach is still expensive for large values of d. We could compute the
semi-optimal partitioning only for 0 ≤ x ≤ xmax � d or by using local search. This
algorithm will only give the optimal partitioning if the assumption was correct. Other-
wise the accuracy can be improved by constructing two partitioning sequences for both
increasing and decreasing x. For each x the partitioning with maximal Ŝ is selected.
With local search one starts with an initial value dA = x0 and computes the semi-
optimal partitionings for dA = x0 ± 1. This initial value x0 could e.g. be equal to
0.1d. Then x1 is equal to the size of the considered partitioning with maximal Ŝ. This
procedure is repeated iteratively until a local maximum xopt has been found. Although
this algorithm does not always find the global maximum, it is much cheaper because it
does not need to consider all possible values for x.
Let us consider the four partitioning algorithms below. All four algorithms are only
based on the local error vector for all elements, and neglect the interpolation errors.
Note that rescaling and resizing are required to get accurate values for all elements of d̂.
By (6.31) it is also possible to compute a similar vector Ĥ. From the previous section we
know that the semi-optimal partitioning sequence is nicely ordered if the interpolation
errors are completely neglected. Thus the elements can be sorted corresponding to the
corresponding local error. As shown before in (6.47) we can express the new multirate
factor q̂ in terms of d̂. Then the optimal partitioning can be found by optimizing Ŝ(x).

I Algorithm I really searches this maximum of Ŝ(x) by local search. Each iteration it
selects the most active latent element and the most latent active element. Then all
four possible transitions of these two found elements are compared with respect to
their corresponding estimated speed-up factors and the optimal transition is per-
formed. Iteratively the transition with maximum estimated speed-up factor is per-
formed until convergence. This algorithm needs an initial partitioning to start with.
It could be the previous partitioning, a partitioning computed by another algorithm
or it is given by the user. Note that the allowed interchange of elements are in fact
not necessary for an ordered partitioning.

II Algorithm II flags unknowns as active when the estimated local error satisfies

d̂i > εrel‖d̂‖max, (6.53)

where εrel < 1. An alternative is to compute the needed stepsizes per unknown
from the local error vector d̂ and store them in a vector Ĥ. Then we get an equivalent
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condition
Ĥi < µrel min{Ĥi}, (6.54)

where µrel > 1.

III Algorithm III considers the absolute criterion

d̂i > εabs, (6.55)

where εabs <TOL or
Ĥi < µabs, (6.56)

where µabs <TOL. The tolerance level TOL is given by the user such that the local
error satisfies ‖d̂‖max ≤TOL or min{Ĥi} ≥TOL.

IV Algorithm IV detects the largest gap between the elements of the vectors d̂ or Ĥ.
Then this gap is used to separate the system in a fast and a slow part. So x is taken
at the location of the largest gap between the individual error elements or timesteps.
But finding this largest gap is not less difficult than finding the optimum of Ŝ(x).

For algorithms II and III the values of εabs or εrel still can be chosen. The optimal values
depend on the properties of the vector d̂ or Ĥ. Neglecting the interpolation errors we
have approximately

q̂n+1 ≈ µrel. (6.57)

This nice relation does not exist for the tolerance level εrel in general. Only if K = k we
have

q̂n+1 ≈
Hn

hn−1,q−1
ε

−1
K+1

rel .

These properties motivate to use relative tolerance levels (Algorithm II) instead of ab-
solute tolerance levels (Algorithm III). Also in practice Algorithm II works better than
Algorithm III. In particular (6.54) is very useful because of the mentioned relationship
with the new multirate factor. For algorithms II to IV it is necessary to add an upper
bound for the size of the refinement, because it was not included in [67]. Let Smin > 1

be the minimum allowed speed-up and q̂ the estimated multirate-factor for the chosen
partitioning. Then we get the following upper bound for the workload ratio Ê (eq. 6.45):

Ê ≤ 1

Smin
−
1

q̂
, (6.58)

that by (6.57) and (6.54) for Algorithm II yields

Ê ≤ 1

Smin
−

1

µrel
.

The Algorithms I-IV still neglect the interpolation errors. Hence they need some add-
ons that improve the robustness. One could add a safety region of distance γ around the
active part. This means that all nodes which distance to the active part is at most γ are
also refined. This makes it possible to predict sudden wake-ups and reduces the number
of repartitionings. Furthermore one could always refine the nodes that are connected to
sources if they can suddenly become active.
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6.7 Influence of interpolation errors on partitioning se-
quence

The algorithms presented in the previous section are based on Assumption 6.6 with
L∗ = 0. In this case the partitioning sequence is assumed to be nicely ordered without
exchanges. Hence, if the partitioning for dA = x−1 is given and we are going to look for
a partitioning with dA = x, we only have to consider transitions from latent to active.
If the partitioning for dA = x is given and we are going to look for a partitioning with
dA = x − 1 (or smaller) we only have to consider transitions from active to latent. If
we neglect the interpolation errors, this assumption is valid because then the multirate
factor only depends on

r̂nC = ‖BLd̂
n
‖.

Indeed, then the elements can be sorted based on d̂
n

, such that the semi-optimal parti-
tioning for dA = x simply consists of the first x sorted elements.
Nevertheless, including the interpolation errors is preferable because it can lead to bet-
ter partitionings. Although then the assumption that L∗ = 0 is not longer true, we can
still use it in the partitioning. This implies that for a given semi-optimal partitioning
with dA = x − 1 the error r̂nC only can be reduced by making the dominant element
active. If the discretisation part ‖BLd̂

n
‖ was larger, we simply refine the element(s)

corresponding to the largest error. If the interpolation part 1
whmax‖BAK̂nBT

L‖‖BLr̂n‖
was larger, we have to consider the latent element(s) corresponding to the column of
BAK̂nBT

L with maximal norm and the latent element corresponding to the largest el-
ement with the largest contribution to BLr̂n. Because one transition was sufficient to
reach the semi-optimal partitioning for dA = x we take one with the best option. This
assumption L∗ = 0 is not fulfilled by the optimal partitionings in general. But using
it implies that the partitioning sequence will be much smoother than the optimal par-
titioning sequence. From a computational point of view this is nice, because it saves
repartitioning costs.
If Assumption 6.6 is valid for L∗ = 1 an optimal partitioning under the restriction that
dA = x can be found by at most one element exchange from the previous partitioning
with dA = x− 1. Then we have to consider for all active elements the effect of replacing
them by two latent variables. Note that for a fixed active element we can simply take
the two most strongly coupled latent elements. Looking at only the most active element
is not sufficient because it is possible that only this element is strongly coupled. Never-
theless the costs are not high because of the low number of variables connected to the
interface. Instead of an one-dimensional array we get a two-dimensional array. Also if
L∗ = 1 the partitioning costs are still of polynomial complexity.

Example 6.7 In this example we will compare the previous presented partitioning al-
gorithms for the following example

d̂
n

= r̂n =


0.1

0.0001

−0.1
0.02

 , d̂n−1,q−1
=


0.01

0.0001

−0.01
0.02

 , K̂n =


1 1

−1 2 0.1

20 1 0.001

0.001 1

 ,
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K = k = 1,

Hn = 0.01, hn−1,q−1 = 0.001, hmax = 0.01,

w = 1
2 , θTOL = 10−3.

Thus we already got proper error estimates for all elements by use of resizing and rescal-
ing. We will compare the partitionings obtained by the several presented partitioning
algorithms.

From d̂
n−1,q−1

we can e.g. compute that

ĥn,1 =

(
θTOL
0.01

) 1
2

hn−1,q−1 = 3.2 · 10−4.

The new compound step depends on the partitioning. Because of the assumptions, we
can sort it based on d̂

n
.

Ĥn+1

(
θTOL
‖BLdn‖

) 1
2

Hn = 3.2 · 10−4.

indA Ĥn+1 q̂n+1

{1} 10−3 3.1

{1, 3} 2.2 · 10−3 6.9

{1, 3, 4} 0.032 100

{1, 2, 3, 4} Hmax 3125Hmax

Note that the last partitioning is in fact equivalent to single-rate. Thus the largest gap
for Ĥ is between {1, 3} and {1, 3, 4}.
We saw that the relative tolerance µrel is in fact the maximum allowed speed-up factor.
Thus for µrel = 10we refine all elements that have relative stepsizes smaller than 10

Ĥi < 10min{Ĥi},

Hence, Algorithm II, using the relative tolerance level, indicates that the active set must
be {1, 3}.
For Algorithm I using local optimisation without interpolation errors we add the cor-
responding workload ratio to the table (column 4). We take the simple model Ê =
0.05 + 0.95dA

d . Furthermore we add the estimates of the speed-up factor as well (col-
umn 5).

indA Ĥn+1 q̂n+1 Ên+1 Ŝn+1

{1} 10−3 3.1 0.29 1.63

{1, 3} 2.2 · 10−3 6.9 0.53 1.48

{1, 3, 4} 0.032 100 0.76 1.3

{1, 2, 3, 4} Hmax 3125Hmax 1 1

This criterion indicates that {1} is the best option now. For larger active parts, the costs
per refinement step become too large.
The previous results only apply if we neglect the interpolation errors. If we include the
interpolation errors there are in general much more possible partitionings. The values



6.8 Dynamical partitioning techniques 99

of Ŝ are now different because H is now also used to control the interpolation errors.

indA ‖BLdn‖ ‖BAKnBT
L‖ r̂nC Ĥn+1 q̂n+1 Ên+1 Ŝn+1

{1} 0.1 1 0.1 10−3 3.1 0.29 1.63

{2} 0.1 1.1 0.1 10−3 3.1 0.29 1.63

{3} 0.1 20.001 0.4 5 · 10−4 1.56 0.29 1.07

{4} 0.1 0.001 0.1 10−3 3.1 0.29 1.63

{1, 2} 0.1 0.1 0.1 10−3 3.1 0.53 1.17

{1, 3} 0.02 20.001 0.4 5 · 10−4 1.56 0.53 0.85

{1, 4} 0.1 1 0.1 10−3 3.1 0.53 1.17

{2, 3} 0.1 1 0.1 10−3 3.1 0.53 1.17

{2, 4} 0.1 1 0.1 10−3 3.1 0.53 1.17

{3, 4} 0.1 0 0.1 10−3 3.1 0.53 1.17

{1, 2, 3} 0.02 0.001 0.02 2.2 · 10−3 6.9 0.76 1.1

{1, 2, 4} 0.1 0.1 0.1 10−3 3.1 0.76 0.93

{1, 3, 4} 0.0001 20 0.4 5 · 10−4 1.56 0.76 0.73

{2, 3, 4} 0.1 1 0.1 10−3 3.1 0.76 0.93

{1, 2, 3, 4} 0 0 0 Hmax qmin 1 1

Including the interpolation error estimates indicates that the optimal active set is equal
to {1}, {2} or {4} (because then Ŝ is maximal). Thus we really get different results because
of the additional interpolation errors. Including the interpolation errors will lead to
better partitionings, but is also more expensive. Therefore we advise to neglect them in
the default case.

6.8 Dynamical partitioning techniques

In the previous section we showed how (6.52) can be used to optimise the partitioning
after each multirate-step. However, it is also possible to determine Ŝn+1 after a single-
rate step. If a multirate partitioning can be found for which Ŝn+1 > 1 it is possible
to switch from single-rate to multirate. On the other hand, if no acceptable partition-
ing can be found after a multirate-step it is possible to switch from multirate to single-
rate. Therefore we need a decision strategy about switching between single-rate and multirate.
Note that the speed-up factor estimate should take care of the integration order of the
single-rate method, which can be larger than one, while the order for the compound
steps is always equal to one.
If some multirate-steps have been done, it can happen that at a certain moment it is
no longer possible to find a partitioning for which Ŝ is acceptable large. Then it can
be attractive to switch from multirate to single-rate mode. Because we know that the
optimal order is determined by the active part, it is natural to use the integration order
k of the refinement also for the new single-rate steps. Furthermore we compute the new
single-rate step by

hn+1 = hn,1 =

(
θTOL
r̂
n−1,q
R

) 1
k+1

hn−1,q, (6.59)
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that is only based on the error of the previous active part.
If K < k it is necessary to rescale the Nordsieck array for the slow part to the uniform
single-rate format. Typically the higher order derivatives will be approximated by zero,
which is a reasonable assumption for latent variables. For the single-rate BDF scheme
this means that previous latent variables are approximated by interpolation.
After some single-rate-steps it can be an interesting option to reconsider whether mul-
tirate can be an efficient alternative. Therefore, it is necessary to estimate Ŝn+1 for a
possible new multirate step. If the multirate factor is estimated after a single-rate step,
model (6.45) is still valid but we can not use formula (6.47). Indeed then both Hn+1 and
hn,1 are predicted based on the same previous error r̂n and step hn. Although we could
also use the same order for the compound step, this is not always optimal because of
the much larger steps. We even assume that K = 1 is always fixed. Despite of K < k

and r̂n = O(hk+1
n ) we will use it also to compute the new compound step. Thus we

typically get

q̂n+1 =
Hn+1

hn,1
=

(
θTOL
r̂nC

) 1
K+1

(
r̂nR
θTOL

) 1
k+1

. (6.60)

Here we use for the BDF Compound-Fast multirate method the same formula for rnC as
in (6.24) but use the single-rate version of rn−1,m

R in (6.25), resulting in

r̂nC = max{‖BLdn‖, hmax‖BAKnBT
L‖‖BLrn‖}, (6.61)

r̂nR =
1

1−w
‖BAdn‖. (6.62)

Partitioning control is only allowed after the refinement if for all elements there are ac-
cepted error estimates. Between the compound step and the refinement phase, we do
not really control the partitioning. Nevertheless, we still allow small adjustments of
the refinement such that we can accept the already performed compound step. Because
a compound step is an expensive task, such a flexibility in the multirate algorithm is
very important for circuit models. In particular for circuit models where elements can
suddenly wake up. Then we need a rejection strategy to choose between rejecting the
performed compound step or moving some parts to the refinement.
Consider a partitioning with dA active and dL latent elements. Assume that for a per-
formed compound step x latent elements were rejected. If we reject the complete com-
pound step, we have to pay and additionally cost WC(d). But if we move these x ele-
ments to the active part, we obtain additional cost qWR(dA + x) − qWR(dA) during the
refinement phase. The second choice is more efficient if

R = q
WR(dA + x) −WR(dA)

WC(d)
< 1.

Assume thatWR(dA) = dα
A amdWC(d) = dα, then

R(x) = q
(dA + x)α − dα

A

dα
. (6.63)

Hence, for general α, when

x < dA

[(
1+

1

q
(
d

dA
)α

) 1
α

− 1

]
, (6.64)
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it is cheaper to accept the current compound step and to move these x elements to the
active set. For α = 1we get the simple expression

R = q
x

d
,

and
x <

d

q
. (6.65)

Clearly, if the multirate factor q is rather small it follows that also compound steps
with a relatively large number of rejected elements still should be accepted. Here the
multirate factor q can be estimated by the number of refinement steps in the previous
multirate-step.

6.9 Further extensions

In (6.45) we proposed a rather simple model for the workload ratio E = WR

WC
, where

WC,WR are the computational work per timestep for the compound phase and the re-
finement phase. It is based on the assumption that it only depends on the relative size
of the active part like

E = E0 + (1− E0)

(
dA

d

)α

.

In fact this model is based on the assumption that the used integration scheme needs
about the same number of Newton iterations for both the active and the latent parts.
Thus r ≈ R, where r, R are the average number of Newton iterations per refinement or
compound step. But if this assumption is not fulfilled, we could better use a different
model for E, e.g.

E = E0 + (1− E0)q

(
dA

d

)α

. (6.66)

This model assumes that R
r scales like Cq where q is the multirate factor. This model

predicts a relatively large number of compound steps for large multirate factors, which
is reasonable for strongly coupled systems. However, using model (6.66) instead of
(6.45) in the partitioning algorithms appears to be more complicated. The problem is
that now for a fixed Ê (dA = x) optimizing Ŝ is no longer equivalent to maximizing q̂.
For the new model there exists for each x a finite optimal value for q̂ = q̂(x).
Another extension deals with the fact that all elements do not need the same evaluation
costs. For circuit models it is well-known that e.g. elements of (transistor) device mod-
els need a very large evaluation time per element (that increased with a factor≤ 10 over
the last 10 years due to the more accurate modeling that is needed with the ongoing
decrease of device sizes and the increase of frequencies at which circuits have to oper-
ate). Then it can be useful to consider also the relative number of expensive elements in
the active part. Let e ≤ d be the total of expensive elements and eA the number of fine
expensive elements. Then we typically get

E = E0 + E1

(
dA

d

)α

+ E2

(eA

e

)β

.
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Again we have the relationship E0 + E1 + E2 = 1, while α,β depend on the application.
Sometimes it can happen that it is more attractive to split the system in more than two
subsystems with different levels of activity, e.g. to reduce also the linear algebra. Un-
fortunately the previous presented algorithms do not work here directly because the
model (6.44) is not valid now. Furthermore they are based on an one-dimensional op-
timisation of Ŝ(x), where Ŝ(x) is the optimal speed-up with dA = x. Now we need a
multi-dimensional optimisation problem of Ŝ(x1, . . . , xN−1), where Ŝ(x) is the optimal
speed-up factor with d(1) = x1, . . . , d(N−1) = xN−1. Considering all possible values for
x1, . . . , xN−1 is no longer feasible, but we still can use local search.
An alternative is to apply multirate in a recursive way [53, 54]. Thus also in the refine-
ment the active part can be solved by a multirate method. A benefit is that we can reuse
a larger part of the presented partitioning algorithms. For each parent partition level we
can use a previous presented partitioning algorithm to split the system in a slow and
active part. The only difference is that now the active part again can be splitted in mod-
erate and very active parts, etc. Note that model (6.44) for Ŝ is still valid but we get a
different model for q̂ or Ê.



Chapter 7

Model order reduction (MOR)

7.1 Introduction

In the two previous Chapters we showed how the redundancy of a numerical model can
be reduced by using multirate schemes. However, it is also possible to reduce a redun-
dant continuous DAE model directly by model order reduction (MOR). Mathematical
model order reduction (MOR) aims at replacing the original circuit model by a system of
much smaller dimension, which can then be solved by suitable DAE solvers within ac-
ceptable time. The idea is to preserve the behaviour at the output terminals or nodes.
This is usually tested by studying the response to signals with increasing frequencies.
To do this we assume that the original model has the following differential-algebraic
structure {

d
dt [q(t, x)] + j(t, x) + Bu = 0, x(0) = x0,

y − h(x) = 0. (7.1)

For circuit models the current and voltage sources are considered as input signals, of
which the contributions can be modeled by Bu. In chapter 2 these contributions were
added to the function j(t, x).
At present, only for linear time-invariant systems MOR techniques are developed well
enough and understood properly to be employed [1]. Hence we either linearise the sys-
tem or decouple it into nonlinear and linear subcircuits (interconnect macromodeling
or parasitic subcircuits [14]) and apply MOR to the linear part. The nonlinear MOR
techniques are less developed and less understood than the linear ones. In this chap-
ter we present the application of two most promising nonlinear reduction methods on
an academic diode chain model. These are the Trajectory PieceWise Linear approach
(TPWL) [41, 42] and the Proper Orthogonal Decomposition (POD) [2], the last one sup-
ported by the newly developed so called Missing Point Estimation (MPE) technique [3].
Model Order Reduction of nonlinear circuits is a hot topic nowadays. One likes to find
a reduced model that describes the relationship between the input and output based on
the original model. But one of the main drawbacks is the high cost of the model evalu-
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ations. This chapter therefore proposes a completely new method that generates much
more efficient methods.

7.2 Model order reduction of LTI systems

Consider the Linear time-invariant (LTI) system{
ẋ = Ax + Bu
y − Cx = 0 , (7.2)

where x ∈ Rd is the state vector, u ∈ Rp and y ∈ Rq are the input and output func-
tions, while A,B,C are constant system matrices. The controllability function Lc and
observability function L0 are defined by

Lc(x0) := min{
1

2

∫0

−∞ ‖u(t)‖2dt : u ∈ L2(−∞, 0), x(−∞) = 0, x(0) = x0}, (7.3)

Lo(x0) :=
1

2

∫∞
0

‖y(t)‖2dt, x(0) = x0,∀τ∈[0,∞)u(τ) = 0. (7.4)

These functions describe the minimum amount of control energy necessary to reach
state x0 at t = 0 and the total output energy generated by x0 for t ≥ 0. We have

Lc(x0) =
1

2
xT

0 W−1x0, Lo(x0) =
1

2
xT

0 Mx0, (7.5)

where W = WT and M = MT are the controllability and observability Gramians, that are
defined by

W :=

∫∞
0

eAtBBTe(AT
t)dt, M :=

∫∞
0

e(AT
t)CT CeAtdt. (7.6)

For a proof see e.g. [1]. If the matrix A is stable, such that the system (7.2) is asymptoti-
cally stable, the Gramians W,M can be solved from the following Lyapunov equations.

AW + WAT = −BBT , (7.7)
AT M + MA = −CT C. (7.8)

Consider the linear time-invariant transformation x = Tz, such that the transformed
system obeys {

ż = T−1ATz + T−1Bu,
y = CTz.

(7.9)

This transformation T is called a balancing transformation if the Gramians of the trans-
formed system are simultaneously equal to the diagonal matrix Σ: W = TΣTT ,M =

T−TΣT−1. Then we get the following set of equations for T and Σ

T−1ATΣ+ ΣTT AT T−T = −T−1BBT T−T , (7.10)
TT AT T−TΣ+ ΣT−1AT = −TT CT CT, (7.11)
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that is equivalent to

A TΣTT︸ ︷︷ ︸
W

+ TΣTT︸ ︷︷ ︸
W

AT = −BBT , (7.12)

AT T−TΣT−1︸ ︷︷ ︸
M

+ T−TΣT−1︸ ︷︷ ︸
M

A = −CT C. (7.13)

In practice one performs the following steps to get a reduced model of (7.2):

• Solve the Lyapunov equations for the symmetric positive definite Gramians W,M:

AW + WAT = −BBT , (7.14)
AT M + MA = −CT C. (7.15)

This is an expensive operation, that usually requires O(d3) operations and for
sparse approximations requires O(d2 logd) operations [8].

• Compute the Choleski factorisations

W = LwLT
w, M = LmLT

m,

where Lw,Lm are lower triangular matrices.

• Compute the singular value decomposition

LT
wLm = UΣVT .

• Compute the balanced matrix

T = LwUΣ− 1
2 .

• Define the truncated matrix Tr = [t1 · · · tr], where r is chosen based on size of the
singular values.

The approach described above is the basis for Truncated Balanced Realisation (TBR)
methods. The Choleski factorisations are done to get rid of numerical instabilities, cf [1].
The transfer function of system (7.2) is a rational matrix-valued function defined by

H(s) = C(sI − A)−1B. (7.16)

It describes the relationship between the input and output signals u(s),y(s) in the Laplace
domain by

y(s) = H(s)u(s). (7.17)

Krylov subspace methods create a Krylov subspace in order to estimate the moments of
this transfer function. We know that most Krylov subspace methods match the mo-
ments of an expansion of the transfer function around a certain frequency s0. Thus the
transfer function is locally very well estimated by Krylov methods. TBR computes a
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basis for which the global error can be bounded. However, this bound is not sharp be-
cause there is a slight difference between the real global error and the error using the
Gramians. There exists a general theory that deals with this problem: interpolation of
the transfer function. The method ”Poor Man’s TBR” approximates the TBR solution
by using rational Krylov, that employ a multipoint expansion of the transfer function
H(s) [38]. Consider the controllability and observability Gramians in (7.6). Using Par-
seval’s theorem, it can be shown that W,M are also equal to

W =

∫∞
−∞(iωI − A)−1BBT (iωI − A)−∗dω, (7.18)

M =

∫∞
−∞(iωI − A)−∗CT C(iωI − A)−1dω. (7.19)

Poor Man’s TBR computes these integrals numerically at the interesting frequency in-
terval f = ω

2π ∈ [F, F].

Now consider the DAE LTI system{
Eẋ = Ax + Bu

y = Cx (7.20)

where x ∈ Rd is the state vector, u ∈ Rp and y ∈ Rq are the input and output functions,
while E,A,B,C are the system matrices. We note that E = I in the previous case but
now it can even be a singular matrix. Therefore the classical approach is not applicable
here. In [55] it is shown how TBR can be extended to DAE systems. Using the Kronecker
decomposition it is possible to rewrite the LTI system (7.20){

ż1 = Ã1z1 + B̃1u,
y1 − C̃1z1 = 0, (7.21){

Nż2 = Ã2z2 + B̃2u,
y2 − C̃2z2 = 0, (7.22)

y = y1 + y2, (7.23)

where N is a nilpotent matrix. Thus the output y is written as the sum of the outputs
of two independent systems that are both driven by the same input u. The first sub-
system (7.21) is called proper and the second subsystem (7.22) improper. We will use this
decomposition for TBR. Because the first system is an ODE, we can there apply TBR to
balance the input-output map u → y1. For the second part we have to apply a new type
of balancing, where the nilpotency of N is used such that also the input-output map
u → y2 is balanced. Then also the input-output map u → y is automatically balanced
and can be approximated by truncating both systems. It is not always necessary to per-
form the Kronecker decomposition, that can be numerically unstable. In [55] the Schur
decomposition is used that is numerically stable. Then an additional Sylvester equation
has to be solved that decouples the proper and improper parts. The output of an LTI
DAE system (7.23) consists of the outputs of two independent system. The first part is
just the output of a normal LTI ODE system of the following type{

ż1 = Ã1z1 + B̃1u,
y1 − C̃1z1 = 0. (7.24)
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This system can be reduced by the MOR techniques for ODE systems as has been de-
scribed in the beginning of this section, using A = Ã1,B = B̃1,C = C̃1. The second part
is the output of a system of the following type{

Nż2 = z2 + B̃2u,
y2 − C̃2z2 = 0. , (7.25)

where N is a nilpotent matrix. This means that the solution can be given as

z2 =

(
N
d

dt
− I
)−1

B̃2u =

(
N
d

dt
− I
)−1

B̃2u.

By using a Neumann series this results in

z2 =

(
N
d

dt
− I
)−1

B̃2u = −

(
I + N

d

dt
+ . . .

)
B̃2u.

If N has nilpotency index k, we have

z2 = −
(

B̂2u + NB̂2u(1) + . . .+ Nk−1B̂2u(k−1)
)
.

Thus z2 depends statically on the input u and its higher order derivatives in contrast to
the normal ODE for y2 in (7.24). The initial condition has to satisfy

z2(0) = −
(

B̂2u(0) + NB̂2u(1)(0) + . . .+ Nk−1B̂2u(k−1)(0)
)
.

For the output y2 we get then

y2 = −C̃2B̂2

(
u + Nu(1) + . . .+ Nk−1u(k−1)

)
.

We can rewrite this as

y2 = Ĉ2,0u + Ĉ2,1u(1) + . . .+ Ĉ2,k−1u(1)u(k−1). (7.26)

It can be proven that in this case improper Gramians occur, that also have to be balanced
in addition to the proper Gramians. Briefly one has to do the following steps to deal
with z2 and y2:

• Solve the Lyapunov equations of the improper type for the additional symmetric
Gramians Ŵ, M̂, using A = Ã2,B = B̃2,C = C̃2

Ŵ − NŴNT = BBT , (7.27)
M̂ − NT M̂N = CT C. (7.28)

These equations are completely different from the normal continuous Lyapunov
equations for a proper dynamical system because of the type of equation (7.26) for
y2.
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• Compute the Choleski factorisations

Ŵ = L̂wL̂
T

w, M̂ = L̂mL̂
T

m,

where Lw,Lm are lower triangular matrices.

• Compute also the singular value decomposition (balancing for the improper part)

L̂
T

wL̂m = ÛΣ̂V̂
T
.

• Compute the balanced matrix

T = LwUΣ− 1
2 .

This method is called the Generalised Square Root (GSR) method [55].

• Define the truncated matrix Tr = [t1 · · · tr] based on the singular values.

Thus we see that TBR applied to the improper subsystem works roughly the same. The
only difference is that we have to solve the discrete Lyapunov equations instead of the
previous continuous ones.

7.3 Nonlinear model order reduction

For nonlinear systems as (7.1) it is no longer possible to apply the MOR techniques de-
scribed in the previous section. Then we try to exploit the (piecewise) linear structure
as well as possible. The reduced model can be constructed for a benchmark simulation,
such that it is accurate if the solution is in the neighbourhood of the benchmark solution.
The nonlinear model can also be approximated by a piecewise linear model around a
certain benchmark solution. Finally the Gramians can be estimated based on empirical
data. For nonlinear systems there also exists a generalised theory, but unfortunately,
this theory is not directly applicable yet.
A promising approach expresses the Gramians in terms of the correlations of the states
and outputs. For LTI systems it can be proven that these empirical Gramians are com-
pletely equivalent to the normal Gramians. However, for nonlinear systems this is no
longer true. Then one may collect a number of snapshots of the states and outputs to
construct ”empirical” Gramians. The model is constructed by TBR based on these em-
pirical Gramians. At the end Galerkin projection is used to reduce the nonlinear model.
On the one hand this Empirical Balanced Truncation is a very powerful method because
it really approximates the relationship between the input and output and neglects all
other phenomenons. On the other hand, the major drawback is that the reduced model
still needs evaluations of the original model and is not sparse.
A third very promising approach is based on parameter extraction. One constructs
a family of models [12] with preferable properties, like sparse, diagonal, decoupled,
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cheap to evaluate, etc. It is important that this family still contains a number of un-
known parameters that can be optimised. This optimisation is done based on a given
input and output. Note that this approach also works for a set of values for the input
and state (one-sided reduction). In each case, at the end we get an optimal model in
the considered class that describes the wanted relationship very well. Its robustness is
tested on an independent test set. This technique appears to be very similar to the the-
ory of neural networks. The neural network is the parameterised model that describes
the relationship between the input, output and parameters. In neural network theory,
the parameters are called neurons, while the set of values of the input and output for
which the model is constructed is called the training set. The drawback of this method
is that it is expensive because it needs an optimisation with respect to the parameters.
For advanced neural network models this is far from trivial [10, 34, 35]. But in many
cases, the accuracy will be very good while the model also can have nice properties that
makes it easy to use in practice.
Finally, it is possible to combine model order reduction with multirate time-integration,
as is described in Section 5.9. Then the latent part of a multirate partition is not only
solved at a coarse time-grid but also replaced by a reduced model.

7.4 Trajectory Piecewise Linear Model Order Reduction

The idea behind the Trajectory Piecewise Linear (TPWL) method is to linearise (7.1) several
times along a given trajectory x̃(t) (corresponding to some typical input ũ(t)). Define
y(t) = x(t) − x̃(t) and v(t) = u(t) − ũ(t). Linearising the nonlinear equation (7.1) gives
us

d

dt
q(t, x̃) + j(t, x̃) + Bũ +

d

dt
[C(t, x̃)y] + G(t, x̃)y + Bv = 0.

Because the trajectory x̃(t) satisfies

d

dt
q(t, x̃) + j(t, x̃) + Bũ = 0,

we obtain the following time-varying linear system for y(t)

d

dt
[C(t, x̃(t))y(t)] + G(t, x̃(t))y(t) + Bv(t) = 0. (7.29)

The main idea of TPWL is to approximate the time-varying Jacobian matrices C(t, x̃(t)),G(t, x̃(t))
by a weighted combination of piecewise constant matrices. Then a (finite) sequence of
linearised local systems is used to create a globally reduced subspace. The final TPWL
model is constructed as a weighted sum of all locally linearised reduced systems. The
disadvantage of standard linearisation methods is that they only deliver good results
in the neighbourhood of the chosen linearisation tuple (LT) (ti, x(ti)). To overcome this
several linearised models are created in TPWL. The procedure for selection of LTs can
be described by the following steps:

1. Set an absolute accuracy factor ε > 0, set i = 1.
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Figure 7.1: The Linearisation Tuples of this TPWL model are derived from the trajec-
tory A. Because solutions B and C are in the neighbourhood of the surrounding balls,
they can be efficiently simulated using a TPWL model. But this is not the case for the
solutions D and E.

2. Linearise the system around the i-th LT (ti, x̃i). This implies:

Ciẏ + Giy + Biv(t) = 0, (7.30)

with Ci = ∂
∂xq(t, x̃)

∣∣
ti,x̃i

and Gi = ∂
∂xj(t, x̃)

∣∣
ti,x̃i

, where x̃i stays for x̃(ti). Save
Ci, Gi and Bi.

3. Reduce the linearised system to dimension r � d by an appropriate linear MOR
method, like ”Poor Man’s TBR” [38] or by Krylov-subspace methods [36]. This
implies

Cr
i ż + Gr

iz + Br
iu(t) = 0, (7.31)

where Cr
i = VT

i CiV, Gr
i = VT

i GiVi, Br
i = VT

i B with Vi ∈ Rd×ri , z ∈ Rri and
y ≈ Viz. Save the local projection matrix Vi.

4. Integrate both the reduced system (7.31) and the original system (7.1) choosing

the same time-steps tk. When ||Viz(tk)||

||x̃(tk)||
> ε choose (tk, x̃(tk)) as (i+ 1)-th LT . Set

i = i+ 1. Go to step 2.

Steps 2 to 4 are repeated until the end of the given trajectory. In this way, a finite num-
ber of locally reduced subspaces with bases V1, ...,Vs are created corresponding to the
LTs {(t1, x(t1), . . . , (ts, x(ts)}. All locally reduced subspaces are merged into a globally
reduced subspace and each locally linearised system (7.30) is now projected onto this
global subspace. The procedure can be described by the following steps:
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1. Define Ṽ = [V1, . . . ,Vs] ∈ Rd×(r1+...+rs).

2. Calculate the SVD of Ṽ: Ṽ = UΣWT with U = [u1, . . . ,ud] ∈ Rd×d,Σ ∈ Rd×r̄s and
W ∈ Rr̄s×r̄s, where r̄ = (r1 + . . .+ rs)/s.

3. Define the new global projection matrix V ∈ Rd×r as [u1, . . . ,ur].

4. Project each local linearised system (7.30) onto V.

All locally reduced linearised reduced systems are combined in a weighted sum to build
the global TPWL model

s∑
i=1

wi(z)
[
VT CiVż + VT GiVz +wiVT Biv(t)

]
= 0. (7.32)

Because of the construction of the global projection matrix V it is approximately true
that R(Vi) ⊂ R(V) for i = 1, . . . , s. A weight wi determines the influence of the i-th
local system to the global system. The weights can be chosen by making them distance
depending, which means that wi is chosen large if the solution z of (7.31) is close to the
i-th LT, else the weight should be small. For more details on how to choose weights,
see [69].

7.5 Reduced DAE models by Galerkin projection

For each t let the state x(t) ∈ Rd belong to a separable Hilbert space X , equiped with
the Euclidian inner product space. Then for all t the state x can be expanded in an
orthonormal basis V =

(
v1 . . . vd

)
x(t) =

∑
i∈I
zi(t)vi. (7.33)

The orthonormal basis is derived from various criteria based on the approximation qual-
ity of the original state x by its truncated expansion xr as defined in (7.34)

x(t) ≈ xr(t) =

r∑
i=1

zi(t)vi. (7.34)

The order r of the truncated expansion is lower than the order d of the original expan-
sion. Different reduction methods yield different basis.
The reduced order model is the model that describes the dynamics of the basis coeffi-
cients or the reduced state z = {a1, . . . , ar}. In many methods the reduced order model
is derived by replacing the original state x by its truncated expansion xr and projecting
the original equations onto the truncated basis

Vr =
(
v1 . . . vr

)
.
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This projection scheme is known as the Galerkin projection scheme. The resulting reduced
order model defines the evolutions of the reduced state

z(t) = {z1(t), . . . , zr(t)}.

Suppose the original model is a DAE model defined in (7.1). Substituting the original
state x by its truncated state xr as defined in (7.34) yields

d

dt
q(t,Vrz) + j(t,Vrz) = 0. (7.35)

Galerkin projection of (7.35) onto the truncated basis Vr =
(
v1 · · · vr

)
results in the

reduced DAE model:

d

dt
VT

r q(t,Vrz) + VT
r j(t,Vrz) = 0, z ∈ Rr. (7.36)

The original nonlinear d-dimensional DAE model is reduced to a nonlinear r-dimensional
DAE reduced order model by means of the Galerkin projection. Unfortunately, the re-
sulting reduced order model (7.36) for z ∈ Rr is not always solvable for any arbitrary
truncation degree r.

7.6 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD), also known as the Principal Component Analy-
sis (PCA) and the Karhunen-Loéve expansion, is a special Galerkin projection method. The
POD basis Vr =

(
v1 . . . vr

)
is an orthonormal basis and derived from the collected

state evolutions (snapshots)

X =
(
x(t1) . . . x(tN)

)
.

The POD method is particularly popular for systems governed by nonlinear partial dif-
ferential equations describing computational fluid dynamics. Analytical solutions do
not exist for such systems and the collected data may serve as the only adequate descrip-
tion of the system dynamics. The POD basis is found by minimising the time-averaged
approximation error given in (7.37)

av (‖ x(tk) − xn(tk) ‖2) . (7.37)

The averaging operator av(·) is defined as:

av(f) :=
1

N

N∑
k=1

f(tk). (7.38)

Solving the minimisation problem of (7.37) is equivalent to computing the eigenvalue
decomposition of 1

NXXT [27]. Because 1
NXXT is a symmetric positive definite matrix
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there exists an orthogonal matrix Vr ∈ Rd×r and a positive real diagonal matrix Λr ∈
Rr×r such that

1

N
XXT Vr = VrΛr. (7.39)

The term 1
NXXT equals the state covariance matrix. The POD basis is a subset of the

eigenvectors of this covariance matrix and is stored by the matrix Vr. The most impor-
tant POD basis function is the eigenvector corresponding to the first eigenvalue. The
truncation degree is determined from the eigenvalue distribution inΛr = diag(λ1, . . . , λr).
Based on the commonly adopted ad-hoc criterion, the truncation degree r should at least
capture 99% of the total energy. The fraction of the total energy is defined as

Pr =

∑r
i=1 λi∑d
i=1 λi

The POD basis minimises, in Least Squares sense, (7.37) over all possible bases. Error
estimates for the solutions obtained from the reduced model are available in [23]. For
circuit models the snapshots can be collected e.g. from a transient simulation with fixed
parameters and sources. The reduced model can also be used to approximate the model
for different parameters or sources as long as the solution still approximately lies in the
projected space. For circuit models with a lot of redundancy the reduced model can
have a much smaller dimension. Unfortunately, direct application of POD to circuit
models does not work well in practice. Firstly, for Differential Algebraic Equations the
Galerkin projection scheme may yield an unsolvable reduced order model. Secondly,
the computational effort required to solve the reduced order model and the original
model is about the same in nonlinear cases. This is due to the fact that the evaluation
costs of the reduced model (7.36) are not reduced at all because Vr will be a dense matrix
in general. For linear time-invariant DAEs of the type

Cẋ + Gx = s (7.40)

the solvability depends on the matrix pencil λC+G. If the set of generalised eigenvalues
{λ ∈ C : det(λC + G) = 0} is a finite set, it follows that (7.40) has a unique solution.
Because the solvability of a nonlinear DAE is hard to analyse, we restrict ourselves to
the solvability of the discretised model. We assume that the numerical scheme solves
the following nonlinear equation at every time step ti

λiq(ti, xi) + j(ti, xi) = ri, (7.41)

where xi is the numerical approximation of x(ti) and ri is a known vector that may
include the values of the state x at previous time step(s). The coefficient λi depends
on the discretisation method used and stepsize control. Note that all Linear Multistep
Methods have this property. The solvability condition of the nonlinear numerical model
(7.41) depends on the implemented numerical method. Here we employ the Newton
method. At every time step, the nonlinear equation (7.42) is solved iteratively for every
time step.

f(xi) = λiq(ti, xi) + j(ti, xi) − ri = 0. (7.42)

Let xl denote the value of xi at l-th iteration step and J(xl) = λiC(ti, xl
i) + G(ti, xl

i) be
the Jacobian matrix of the nonlinear function f. In each iteration (7.43) is solved until
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convergence criteria are met

J(xl)(xl+1 − xl) = −f(xl). (7.43)

Clearly, if the Jacobian matrix J(xl) is invertible for all iteration steps, the nonlinear
equation (7.41) is solvable for the time step ti. For the reduced order model, derived
by the Galerkin projection method, the reduced Jacobian matrix is Jr(zl) = VT

r J(xl
r)Vr

where xr = Vrzr. Since the matrix Vr is generally a rectangular matrix, the reduced
Jacobian matrix is not equivalent to a similarity transformation of J(xl

r). Consequently,
det(J(xl

r)) 6= det(Jr(z
l)). Thus, Jr(z

l) may not be invertible even though J(xl
r) is in-

vertible. We note that this phenomenon is typical for DAEs. For ODEs C = I and
Jr(z

l) = VT
r (I + G(ti, xl

i))Vr = I + VT
r G(ti, xl

i)Vr is always invertible.

Example 7.1 Consider problem (7.40), where

C = G =

(
0 1

1 0

)
.

If we take the basis

V =

(
1

0

)
,

the application of a Galerkin projection as in (7.36) leads to the following unsolvable
reduced DAE:

0ż + 0z = s1.

This basis V can be obtained by POD by choosing proper input functions.

To preserve the solvability of the numerical model, the reduced Jacobian matrix Jr(z
l)

must be defined differently. Instead of the Galerkin projection (7.36) we consider the
DAE (7.35) itself. Discretising this continuous problem leads for each Newton iteration
to the linear system

J(xl)(Vrzl+1 − Vrzl) = −f(Vrzl), (7.44)

that can be abbreviated to
MVrzl+1 = b. (7.45)

Of course this linear algebraic system may not be solvable if Vr is not invertible. How-
ever, because Vr is a matrix with full column rank r, it is still possible to solve the least
square problem

min ‖ MVrzl+1 − b ‖2 . (7.46)

Solving the least square problem (7.46) is equivalent to solving (7.47)

VT
r MT MVr︸ ︷︷ ︸

Mr

zl+1 = VT
r MT b. (7.47)

This linear system can be efficiently solved by a QR factorisation of MVr. The model
(7.47) is a low dimensional model, the dimension of mass matrix Mr is equal to the
dimension of the reduced state z. If M is invertible, the invertibility is automatically
preserved in the least-square reduced order model (7.47) since Mr is a symmetric posi-
tive definite matrix and therefore invertible.
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7.7 The Missing Point Estimation (MPE)

For linear time-invariant systems the current MOR techniques are able to reduce sys-
tems of very large sizes by means of Krylov-space methods. For moderate sizes also
control-theory methods, like TBR, can be applied which have some superior properties
(also error estimates available) [1]. For nonlinear systems, there are attempts to gener-
alise the linear theory, but with little success for large dimensions [47]. Other methods
are based on a known trajectory, like Trajectory PieceWise Linear, Proper Orthogonal
Decomposition (POD) and Empirical Balanced Truncation (EBT) [2,41,69]. The two last
methods have in common that a matrix V is computed which range contains the dom-
inant part of the solution x. Let the given model be a differential-algebraic equation
(DAE) of the type

d

dt
q(t, x) + j(t, x) = 0. (7.48)

Then the reduced model is constructed by use of Galerkin projection:

d

dt
VT q(t,Vz) + VT j(t,Vz) = 0. (7.49)

The original state can be obtained by x = Vz. Thus indeed it is assumed that x ∈ R(V).
If x ∈ Rd and V ∈ Rd×r where r � d it is clear that the reduced model (7.49) is of
much smaller size than the original model (7.48). For LTI systems with q(t, x) = Cx
and j(t, x) = Gx − s(t) it is really possible to reduce the simulation time for small r. In
particular if the reduced model is diagonalised, we certainly get a model that is very
cheap to solve. For the general case it is much worse because then the evaluation costs
are not reduced at all. But if the linear algebra part is dominant, we still can expect
any speed-up. Despite the resulting low dimensional model, the computational effort
required to solve the reduced order model and the original model is relatively the same
in nonlinear cases. It may even occur that the original model is cheaper to evaluate than
the reduced order model. The low dimensionality is obtained by means of projection,
either by the Galerkin projection method or the least square method. In the projection
schemes, the original numerical model must be projected onto the projection space. It
implies that the original model must be re-evaluated when the original numerical model
is time-varying, which is the general case for nonlinear systems. A consequence is that
the evaluation costs for the reduced model are not reduced at all.
Missing Point Estimation (MPE) is a well-known technique that modifies the matrix V
such that only a part of the equations of the original model have to be evaluated. This
makes POD applicable for model order reduction of nonlinear DAEs. For POD each
Newton iteration the Jacobian matrix J = J(xl) and the right-hand-side f = f(xl) of
the large-dimensional original DAE (7.48) have to be evaluated. The Missing Point Es-
timation (MPE) was proposed in [2] as a method to reduce the computational cost of
reduced order, nonlinear, time-varying model. The method is inspired by the Gappy-
POD approach that was introduced by Everson and Sirovich in [11]. Provided that the
original, high-dimensional state x ∈ Rd can be approximated closely by r POD basis
functions, where r � d, it follows that the POD coefficients z can also be estimated
from the knowledge of r � d state variables or data points only [27]. Suppose that
the POD coefficients are estimated from g < d state variables. Let P ∈ {0, 1}g×d be a
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selection matrix of full rank, where g� d, and define the restricted basis Ṽr as

Ṽr = PVr. (7.50)

Note that it always holds that PPT = Ig. Corresponding to the restricted basis Ṽr,
introduce the restricted state x̃ ∈ Rg that is defined as

x̃ = Px (7.51)

Accordingly, the restricted state x̃r can be approximated by the expansion of the re-
stricted basis Ṽr

x̃ ≈ x̃n = Ṽrzr

The paper [11] showed that the coefficients zr for a given restricted state x̃ and restricted
basis Ṽ can be estimated by minimising (7.52).

‖ x̃ − Ṽrz̃r ‖2 (7.52)

The coefficients z̃r are the POD coefficients estimated from the knowledge of the re-
stricted state x̃. This idea is then extended for dynamical systems in [2]. This extended
approach is referred to as the Missing Point Estimation (MPE) method. In MPE, the
model of the original state x is given. The dynamics of the restricted state x̃ is also
given. Note that in the Gappy-POD approach, the restricted state x̃ is exact, while here
we only consider the dynamical model of the restricted state. Recall that in order to
solve the original model, we solve the following equation at every iteration step l

J(xl)(xl+1 − xl) = −f(xl), (7.53)

In MPE, we only solve a part of (7.53). Similar to the formulation of the restricted basis
and the restricted state, we multiply both sides of (7.53) by the selection matrix P ∈
Rg×d.

PJ(xl)(xl+1 − xl) = −Pf(xl). (7.54)

Note that in the MPE case, we only need the evaluations of the restricted Jacobian matrix
PJ and forcing term Pf. As before in (7.44), the model (7.54) can be rewritten into

PMVzl+1 = Pb. (7.55)

Introduce Pnb = {0, 1}gnb×d as another selection matrix. The selection matrix Pnb is
introduced in order to include the state variables that contribute to the dynamics of the
restricted state x̃ but do not belong to the restricted state x̃. Hence, let

x̃nb = Pnbx̃ = {x̃, x̃c},

where x̃c are the variables that contribute to the dynamics of x̃, G ≤ dim x̃nb ≤ d. Let

M̃ = PM, b̃ = Pb, Ṽnb
r = PnbV (7.56)

Solving (7.55) as a least squares problem and rewriting the appropriate terms based on
the redefinitions in (7.56) lead to the following MPE reduced order model

Ṽ>
rnbM̃>M̃Ṽnb

n︸ ︷︷ ︸
Mr

z̃l+1 = Ṽ>
rnbM̃>b̃. (7.57)
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Upon obtaining the estimated POD coefficients ã from (7.57), the complete state x can
be approximated using the complete POD basis Vr as x̂ presented in (7.58)

x ≈ x̂ = Vrz̃. (7.58)

The model (7.57) is solvable if Mr is invertible. The condition will imply that M̃ = PM
should be full rank. It is difficult to verify this requirement as M̃ will change when
the operating condition changes. Ideally, a new set of state variables should be chosen
whenever the operating condition changes. This problem is simplified by assuming that
the selected state variables x̃ will still be representative for the operating region we are
interested in. Instead of imposing the rank condition on M̃, we impose the condition
of full row rank on Ṽnb

r . It means that the selected state x̃ should comprise of state
variables whose dynamics are independent of each other. Missing Point Estimation
introduces a new contribution to the error, that is also called the aliasing error. In this
section, we will use the criterion proposed in [5] and [4] on minimising the aliasing error
resulting from using x̃ . This is equivalent to the minimisation of the following norm

‖
(

ṼT
r Ṽr

)−1

− Ir‖, (7.59)

where Ir is an identity matrix and

Ṽ =
(
ṽ1 . . . ṽr

)
= PVr.

Note that (7.59) tries to retain as much as possible of the orthogonality of Ṽr. The loss is
due to the selection process. Thus we get the following optimisation problem

find P

such that ‖
(

VT
r PT PVr

)−1

− Ir‖ < TOL,

subject to PPT = I.
P ∈ {0, 1}g×d.

(7.60)

There exist various methods to solve this optimisation problem (7.60). With regard to
the reduction of overall computational complexities, preference will be generally given
to non-combinatorial methods. We will use the iterative version of the greedy algorithm
[74]. Note that the constraint ensures that the matrix

(
VT

r PT PVr

)
is well conditioned.

Therefore, it is bounded to above by

cond(VT
r PT PVr) < TOL.

We saw that the found orthogonal matrix V by POD was not really optimal to get a
reduced model with a low-to-moderate complexity to evaluate. Therefore methods like
Missing Point Estimation are necessary to make POD attractive for model reduction of
non-linear problems. Note that for POD we compute the following eigendecomposition:

1

N
XXT = UΣ2UT ,



118 Model order reduction (MOR)

where U is orthogonal and Σ is diagonally positive real. For Missing Point Estimation
we assumed that PT V̄ = PT PV is a good approximation of V itself, where P ∈ Rg×d, V̄ ∈
Rg×r. Thus

1

N
XXT ≈ PT V̄Σ2V̄T P.

Clearly this approximation is only valid if the most unselected elements of XXT equal
zero.

7.8 Interpolation of function snapshots

A new alternative compared to MPE is to create an approximate model by using inter-
polation of function snapshots along a given trajectory. Define

q̄ = Pq, j̄ = Pj, x̄ = Px,

where P ∈ {0, 1}g×d is a selection matrix with PPT = Ig. Now we assume that

q ≈ Vqq̄, j ≈ Vj j̄, x ≈ Vxx̄.

Thus we assume that the elements of x̄, q̄, j̄ form a basis for all elements of x,q, j. This is a
very reasonable assumption for models with much redundancy. Consider the collected
”snapshots” at the time points ti of q, j and x

Q = [q(t1, x(t1)) . . .q(ts, x(ts))] ∈ Rn×s,

J = [j(t1, x(t1)) . . . j(ts, x(ts))] ∈ Rn×s,

X = [x(t1) . . . x(ts)] ∈ Rn×s.

(7.61)

For a fixed selection matrix P it is not optimal to compute the singular value decompo-
sition of these matrices Q, J,X. Define the matrices with restricted snapshote

Q̄ = PQ ∈ Rg×s, J̄ = PJ ∈ Rg×s, X̄ = PX ∈ Rg×s.

We want to approximate Q, J,X by

Q̂ = VqQ̄, Ĵ = VjJ̄, X̂ = VxX̄.

The still unknown matrices Vq,Vj,Vx ∈ Rd×g should minimise the residuals of the
following equations

Q̂ = VqQ̄ = Q, Ĵ = VjJ̄ = J, X̂ = VxX̄ = X.

Because these equations are overdetermined for g < d we have to use least squares.
Note that Vq has to satisfy

Q̄T VT
q = QT

and similarly for Vj and Vx. Thus the least squares solution for VT
q equals

VT
q =

[
Q̄Q̄T

]−1

Q̄QT .
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Hence we get the following three best approximations for Vq,Vj,Vx if P is given
Vq = QQ̄T

[
Q̄Q̄T

]−T

,

Vj = JJ̄T
[
J̄J̄T
]−T

,

Vx = XX̄T
[
X̄X̄T

]−T

.

(7.62)

Finally we get the following approximations of Q, J,X
Q̂ = QQ̄T

[
Q̄Q̄T

]−T

Q̄,

Ĵ = JJ̄T
[
J̄J̄T
]−T

J̄,

X̂ = XX̄T
[
X̄X̄T

]−T

X̄.

(7.63)

It follows from (7.63) that

X̂X̂
T

= XX̄T
[
X̄X̄T

]−T

X̄X̄T
[
X̄X̄T

]−1

X̄XT = XX̄T
[
X̄X̄T

]−T

X̄XT , etc.

In general Q̂, Ĵ, X̂ will preserve the structure of the original model, like sparsity, much
better than the matrices obtained by a singular value decomposition. Now we replace
the original model (7.48) of size n by the following reduced model of size g:

d

dt
VT

xVqq̄(t,Vxx̄) + VT
xVj j̄(t,Vxx̄) = 0, x̄ ∈ Rg. (7.64)

The projection matrices Vx,Vq,Vj ∈ Rd×g are defined in (7.62). Note that for this
approach all elements of x̄ still have their original interpretation. It is even possible
to generalise this approach by using different selection matrices Pq ∈ {0, 1}gq×d,Pj ∈
{0, 1}gj×d,Px ∈ {0, 1}gx×d for q, j and x. To get a solvable system it is required that gx ≤
min{gq, gj}. This approach replaces the original functions q, j by Vqq̄,Vj j̄ and makes
Missing Point Estimation not necessary. Indeed the evaluation costs of VT

xVqq̄(t,Vxx̄) =

VT
xVqPq(t,VxPx) is about similar as for MPE with V̂

T
q(t, Ṽx̄) = V̄T Pq(t,PT V̄x̄). In

both cases only a part of the equations has to be evaluated. The difference is that with
MPE for each equation only a part of the unknowns is used. Furthermore, the Jaco-
bian matrix evaluations of MPE are cheaper than for this method. For MPE we had
V̂

T
C(t, Ṽx̄)Ṽ = V̄T PC(t,PT V̄x̄)PT V̄, that only evaluates a submatrix of C of size g× g.

For the new proposed method we need to evaluate VT
xVqC̄(t,Vxx̄)Vx = VT

xVqPC(t,VxPx)VxP.
Now a submatrix of C of size g×n has to be evaluated. But in practice the matrices C,G
are often sparse such that this is not a very large problem. For systems with dense Jaco-
bian matrices we should use a different approximation of x. Instead of x ≈ VxPxx we
should look at

x ≈ PT
xWxx,

where Wx ∈ Rgx×d. For a given snapshot matrix X ∈ Rd×s we get the following equa-
tion for Wx

PT
xWxX = X.
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This is again an overdetermined system that can be approximated by

PxPT
xWxX = PxX.

Because PxPT
x = Ig and X is invertible it follows that

Wx = Px

is a selection matrix. Now we get the system

d

dt
PT

xVqq̄(t,Pxx̄) + PT
xVj j̄(t,Pxx̄) = 0, x̄ ∈ Rg. (7.65)

Indeed the Jacobian matrices of this reduced system are cheap to evaluate because the
evaluation of PT

xVqC̄(t,Pxx̄)Px only needs a submatrix of C of size g× g. The previous
method computes two different matrices Vq,Vj that span the function values of q and
j. In each timestep a nonlinear system has to be solved of the type:

αnq(xn) + hnj(xn) = rn.

An interesting alternative is to construct a matrix Vqj ∈ Rn×(gq+gj) that spans the
dominant part of the range of both matrices. Then we get the following reduced model

d

dt
Wq̄(t,Vxx̄) + Wj̄(t,Vxx̄) = 0, x̄ ∈ Rgx , (7.66)

where W = VT
xVqj ∈ Rgx×(gq+gj). If also gx = gq + gj it follows that W is invertible.

Then we get the following equivalent system:

d

dt
q̄(t,Vxx̄) + j̄(t,Vxx̄) = 0, x̄ ∈ Rgq+gj . (7.67)

Although this model is not of optimal size, we do not need the additional matrix mul-
tiplication with W, which makes it cheaper to evaluate. Note that this approach also
works well to detect the active part for a multirate-partition. A second alternative is to
use POD with Vx = V ∈ Rd×r by use of a singular value decomposition of X. Then we
get a reduced model of size r instead of g.

d

dt
VT Vqq̄(t,Vx̄) + VT Vj j̄(t,Vx̄) = 0, x̄ ∈ Rr.

To get a solvable system it is always required that r ≤ g. The advantage of this approach
is that in general r � g, but a possible disadvantage is that now the elements of x̄
have lost their original interpretation. Also here it is possible to use different selection
matrices Pq,Pj provided that r ≤ min{gq, gj}. For systems with dense Jacobian matrices
it again is possible to approximate V by use of Missing Point Estimation. Finally we can
combine all approaches with the LS-Galerkin MOR method. Galerkin projection can
have the drawback that it leads to unsolvable reduced models. This problem might in
particular occur for differential-algebraic systems. An alternative could be to consider
instead the following overdetermined system for x̄:

d

dt
Vqq̄(t,Vxx̄) + Vj j̄(t,Vxx̄) = 0. (7.68)
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For each Newton iteration we get the overdetermined linear system[
λnVqC̄n,k + VjḠn,k

]︸ ︷︷ ︸
Mn,k

Vx∆xn,k+1 = −rn,k.

If the rank of this matrix is equal to gx it is possible to use Least Squares, that minimises
the residual. Then we get

VT
xMT

n,kMn,kVx∆xn,k+1 = −VT
xMT

n,krn,k.

Note that

VT
xMT

n,kMn,kVx = VT
x

[
λnC̄T

n,kVT
q + ḠT

n,kVT
j

] [
λnVqC̄n,k + VjḠn,k

]
Vx

and
VT

xMT
n,krn,k = VT

x

[
λnC̄T

n,kVT
q + ḠT

n,kVT
j

]
rn,k.

Thus we can also apply Least Squares only based on evaluations of q̄, j̄, C̄ and Ḡ.
We showed before how the find an optimal approximation of the original matrices
Q, J,X of the form VqPqQ, etc. For a given selection matrix Pq we derived the optimal
choice of Vq. If the sizes gq, gj, gx are fixed, we have to find optimal selection matri-
ces Pq,Pj,Px for which the errors of Q̂, Ĵ, X̂ are minimal. From (7.63) we can derive the
following error bounds

‖Q̂ − Q‖ ≤ ‖Q‖‖QQT PT
q

[
PqQQT PT

q

]−1

Pq − Id‖,

‖Ĵ − J‖ ≤ ‖J‖‖JJT PT
j

[
PjJJT PT

j

]−1

Pj − Id‖,

‖X̂ − X‖ ≤ ‖X‖‖XXT PT
x

[
PxXXT PT

x

]−1

Px − Id‖.

(7.69)

Thus the errors are small if QQT PT
q

[
PqQQT PT

q

]−1

Pq ≈ Id, etc. For gq = qj = gx = n

the optimal choice is Pq = Pj = Px = Id because then

QQT PT
q

[
PqQQT PT

q

]−1

Pq = QQT
[
QQT

]−1

= Id, etc.

To obtain lower computational costs it is necessary to find some suitable selection ma-
trices for which these errors are minimised. Note that for suitable matrices it holds that

PT
q

[
PqQQT PT

q

]−1

Pq ≈
[
QQT

]−1

, etc.

A complication is that for DAEs in general the matrix QQT will be singular. In general it
is a hard problem to find an optimal Pq for fixed gq. We can approximate it by a greedy
method that selects the rows iteratively. Each added row should minimise the errors in
(7.69). To this end, for a fixed g, we are looking for a selection matrix P for which the
upperbound of ‖Q̂ − Q‖ is minimised. Denote A = QQT ≥ 0, then we get the following
discrete optimisation problem:

min
P
‖APT

[
PAAT

]−T

P − I‖ = min
P
‖APT

[
PAPT

]−1

P − I‖. (7.70)

Note that PT
[
PAPT

]−1

P is an approximation of A−1.





Chapter 8

Applications

In order to test the previous theoretical results we apply it to a large number of test
examples both in MATLAB and in Pstar (the in-house analogue circuit simulator pro-
vided by NXP Semiconductors). Section 8.1 contains for several examples the results of
multirate transient simulations compared with single-rate transient simulation. Section
8.2 shows how nonlinear model reduction can be used to reduce the simulation time
of several nonlinear circuit models. We compare all results with respect to the required
CPU time, accuracy and overhead costs.

8.1 Multirate experiments

First we show some typical features of the multirate methods for two academic nonlin-
ear test examples. The last two circuit models are real-world circuit designs that have
been modelled and simulated with the multirate implementation within Pstar. More
information about these numerical experiments can be found in [61, 67].
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Figure 8.1: The inverter chain.
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Consider the circuit model of an inverter chain described in more detail in [7] and of
which the diagram is shown in Fig. 8.1. The inverter chain is a concatenation of 500
inverters in this case and is built from the combination of resistors and capacitors. The
function of an inverter is to invert and smoothen the incoming signal. The output of an
inverter will be a delayed, inverted signal. The time scale of an inverter chain ranges
between 30− 200 nanoseconds due to the high frequency sampling.
The state of the inverter chain model comprises of 500 nodal voltages and some elec-
trical currents. The excitation signal uin for the inverter chain is depicted in Figure 8.2.
The dynamical response of the inverter chain for the first 20 ns is shown in Figure 8.3,

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

timestep [k]

U
op

 [V
]

The excitation signal for the inverter chain

Figure 8.2: The excitation signal uin for the inverter chain

when about 30 nodes are or have been active. The total simulation time is 30 ns. The
remaining simulation data will be used as validation data.
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Figure 8.3: The response of the inverter chain
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If we excite the first unknown voltage V1 with a short pulse, a voltage wave is traveling
through the chain from left to right. This means that on [0, 10] only the first 8 nodes are
activated yet. We applied a BDF Compound-Fast algorithm on [0, 10] with order 1 on the
coarse time-grid and order 2 on the refined time-grid. During the compound phase we
only looked at the error of the latent part, so τ = 0 in (6.2). During the refinement only
the active part, consisting of the 8 activated nodes, is simulated. The tolerance levels
were equal to TOLL = 1, TOLA = 1 and TOLC = TOLL. Because of the latency of the
slow part, the solution can be determined by just 5 compound steps and 93 refinement
steps, while an uniform BDF-method with k = 1 would have used about 93 time-steps.
The solution is shown in Figure 8.4. Indeed only the first eight nodal voltages behave
fast at [0, 10].
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Figure 8.4: Numerical solution of the slow and fast parts for the Inverter chain.

For TOL = 10−2, N = 100 we also did an experiment on [0, 75 ns] by several dynamical
partitioning algorithms described in Section 6.4. Algorithm I is used with the workload
model (6.45) but for different values of α. In all cases at most 4 iterations are performed
during a compound step. Algorithm II is used for different values of εrel. All algorithms
use γ = 3 as overlap value. Table 8.1 shows the results. Note that ni and ki are the
numbers of timesteps and Newton iterations, respectively. Clearly, for each case the
number of refinement steps, nR, is much larger than the number of compound steps,
nC. It is larger than the number of steps for the single-rate version because of error



126 Applications

control reasons. In the column below av(dA

d ) the average relative size of the active part
is shown. The required CPU time also includes the repartitioning time effort.

Method α εrel nC nR kC kR av(dA

d )(%) time (s) S

Single-rate 1340 0 5440 0 0 266

I 2 82 1651 1008 3415 16 87 3.1

I 3
2 94 1663 996 3429 15 86 3.1

II 10−1 166 1953 1313 4034 9 100 2.7

II 10−2 97 2001 1225 4105 16 105 2.5

II 10−3 94 1992 1637 4093 22 133 2.0

Table 8.1: Statistics of single-rate and multirate method using algorithms 1 and 2 of type
A for the inverter chain model.

If we compare the algorithms for lower accuracy TOL = 10−1 it appears that the method
II does not converge in contrast to 1. Also for other experiments it appears that the
method I implies better convergence than II. All methods are able to follow the active
wave front. Figure 8.5 shows the timepoints per element for case I with α = 3

2 . The two
flanks of the traveling wave are easy to observe in the picture.
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Figure 8.5: Timepoints per element for the inverter chain (case 1 with α = 3
2 ).

For small N the speed-up factor is relatively small because of the overhead. But for
large N it is indeed possible to get a large speed-up. This is also the case for increasing
accuracy.
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Figure 8.6: Circuit diagram of a (M,N) Matrix Circuit.

Figure 8.6 shows another test example, which is a scalable circuit consisting of M × N
inverter models Sij. The inverters Sij are connected by linear subcircuits C that can be
used to decouple the dynamics of the neighbouring currents or voltages.

Figure 8.7: Circuit diagrams of the subcircuits S and C.
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The circuit is driven by M voltage sources ei(t) at the left that can have different fre-
quencies. The location of the active part is controlled by the subcircuits of type C and by
the voltage sources e1, . . . , eM. The source e0(t) is set to Vop = 5 V. Furthermore we use
the voltage sources ei = 5

2 (1− cos(ωit)), whereω1 = 100 · 109, and for i > 1,ωi = 109.
We restrict ourselves to the case M = 5,N = 10. The subcircuits of type S are in-
verter models, while the subcircuits of type C are chosen such that the three subcircuits
S11, S12, S13 are active and nearly decoupled from the other subcircuits. They form an
active part because they are activated by the voltage source e1 with higher frequency
than the other voltage sources.
First we do a numerical experiment for R1 = R2 = 104 Ω,C = 10−3 F, L = 10−3 H. For
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Figure 8.8: Numerical solution of the slow and fast parts for the Matrix circuit.

these values the subcircuits of model C behave like filters for the voltages and currents.
We take an Euler Backward multirate simulation on [0, 10−8]s with w = 0.5, τ = 0 and
tolerance levels TOLC =TOLA = 10−1. We also do a normal Euler Backward (single-
rate) simulation with the same tolerance levels. In both cases the timesteps arer au-
tomatically controlled based on the tolerance levels. It turns out that the single-rate
simulation required 2018 timesteps and a computational time of 5491 seconds, while
the multirate simulation just required 71 compound steps, 2810 refinement steps and a
computational time of 422 seconds. Therefore we get a speed-up factor S ≈ 13.
We also carry another experiment, where we compare a BDF2 single-rate method to a
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BDF2 multirate method for TOLC =TOLA = 10−2. We use the balance numbersw = 0.5

and w = 10−4 together with τ = 0. The errors are estimated by comparing the results
to the numerical solution of a single-rate BDF2 simulation using higher tolerance levels
TOLC =TOLA = 10−3. Thus these single-rate simulation results have a much smaller
error and can be considered as a benchmark solution. Table 8.2 and Figure 8.8 illustrate
that the BDF Compound-Fast multirate algorithm is able to produce accurate results in
an efficient way (speed-up S > 10). Table 8.2 also shows that too large values of the
balance number decreases the efficiency.

Table 8.2: Statistics of single-rate and multirate BDF2 methods for the Matrix circuit.

method w nC nR comp. time (s) S
max.
error

single-rate 2937 7330 5.8 · 10−2

multirate 0.5 111 3765 668 11 1.8 · 10−1

multirate 10−4 111 3002 612 12 1.8 · 10−1

Figure 8.9: The high-speed operational transconductance amplifier.
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Figure 8.10: The temperature-independent oscillator.

The implementation of the multirate time integration algorithm in Pstar, allows us to
obtain results for various circuits. We consider two practical examples, coming from
the actual circuit design. The block-diagrams at top-level for the high-speed opera-
tional transconductance amplifier (HSOTA) and the temperature-independent oscilla-
tor (temp.ind.osc.) are shown in Fig 8.9 and 8.10. An operational transconductance
amplifier (OTA) is an operational amplifier (op-amp) of a transconductance type, which
means that the input voltage controls an output current by means of the device transcon-
ductance. This makes the OTA a voltage-controlled current source, which is in con-
trast to the conventional op-amp, which is a voltage-controlled voltage source. The
temperature-independent oscillator consists of a slow block which makes the input volt-
age independent of the temperature. Then the result is used in a ring oscillator to get a
voltage signal of the right frequency. The oscillator block typically has a much higher
activity than the first block.
In the HSOTA and Temp.ind.osc. models there are relatively large bias blocks that prac-
tically have constant dynamics. This allows to use a small number of compound steps
of much larger size. Numerical results are summarised in Table 8.3. Remind that in
Section 6.4 we derived in (6.44) the formula

S ≈ 1
1
q + E

.

The multirate factor q and the work load ratio E. also have been defined in the same
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Section. Clearly, we can only expect a large speed-up factor if q � 1 and 0 < E � 1.
The HSOTA model allows a very large multirate factor q ≈ 207 but has a rather large
work load ratio E ≈ 0.5. Thus the expected speed-up factor equals just S ≈ 1

E+ 1
q

≈ 2.

Because the Temp.ind.osc. model with q ≈ 68 has a smaller workload ratio, E ≈ 0.12,
its estimated speedup factor is indeed larger.
Only if q >> 1 and 0 < E << 1 we can expect a large speed-up factor. For the HSOTA
example the speed-up factor could be increased by using a better partitioning with
smaller E and q.

Table 8.3: Multirate results with static partitioning. Notation: d- number of unknowns,
NC- number of compound steps, NR- number of refinement steps, NS- number of
single-rate steps, dA- number of active unknowns, S- speed-up factor.

Circuit name d NC NR NS q dA/d S

HSOTA 61 68 14092 14068 207 50% 2
Temp.ind.osc. 249 151 10284 7419 68 12% 4.5

Because finding a good partitioning manually can be very difficult, it is better to use a
multirate transient simulation together with dynamical partitioning as is described in
Section 6.4. Table 8.4 shows the results for the the HSOTA and the charge pump. Note
that the HSOTA needs only one repartitioning because the active part is not moving
there, while the charge pump needs about 8 repartitionings. The partition is determined
by algorithm I in Section 6.4, while also the interpolation errors at the interface are
checked to be sufficiently small.

Table 8.4: Multirate results with dynamical partitioning. Notation: d- number of un-
knowns,NC- number of compound steps,NR- number of refinement steps,NS- number
of single-rate steps, dA- number of active unknowns, Rp- number of repartitionings, S-
speed-up factor.

Circuit name d NC NR NS q dA/d Rp S

HSOTA 66 120 13983 13963 117 55% 1 1.6
Temp.ind.osc. 245 172 9408 80 55 11% 8 4.2

8.2 Applications of Model Order Reduction

In this section we will show how POD combined with MPE and TPWL can be used to
reduce nonlinear circuit models. First we will consider the reduced order modeling of
the inverter chain model, which has already been described in the previous section 8.1.
But in contrast to the previous experiments, this time the inverter chain consists of 100
inverters. Because of the additional current unknowns for the two voltage sources, the
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state dimension d equals 102.
Data collected during the first 15 ns are used to derive the POD basis V ∈ Rn×k. For
N = 251 samples the snapshot matrix X ∈ Rd×N reads:

X =
1

N

(
x(t1) . . . x(tN)

)
The POD basis V is found by solving the eigenvalue problem (7.39) in Section 7.6. The
resulting singular value plot is shown in Figure 8.11. It shows that the snapshot data can
be accurately spanned by only the first 20 eigenvectors of the correlation matrix 1

NXXT .
Therefore, we select a POD basis V that comprises the eigenvectors corresponding to
the 20 largest singular values. The POD reduced order model is solved by implement-
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Figure 8.11: The singular value plot corresponding to the POD snapshots

ing the least-square formulation in (7.47). To enhance the computational efficiency the
MPE method described in section 7.7 is applied using k = 20 and g = 29.
Applying this procedure to the inverter chain model yields dim(x̃) = 29. Hence, the
MPE reduced order model can be built from less than 28% of the original equations.
Two comparisons are shown here. First, the reconstruction of the original dynamics by
the POD and the MPE models. The simulation conditions are the same as the condi-
tions when the POD basis is derived. Figure 8.12 shows the plot of the original, POD,
and MPE models. It is clear that the simulation results are very close to each other. Note
that the solution obtained from the reduced model also consists of constant parts equal
to zero, which do not occur in the solution of the original model. They arise because
of the changed steady-state of the reduced model of type (7.36). The maximum of the
average absolute error for the POD model is 0.0019 while the maximum of the average
absolute error for the MPE model is 0.0020. It is obvious that the MPE model can recon-
struct the original dynamics very well despite the fact that the model is built from only
29 equations.
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Figure 8.12: The reconstruction of the original dynamics by POD and MPE models

The reduced order models are validated by comparing the dynamics simulated between
15− 25 ns. Recall that the POD basis is derived from the simulation data between 0− 15
ns. The capability of the reduced models in capturing the unknown dynamics will be
investigated in this case.
Figure 8.13 shows the comparisons. The POD and MPE models can adequately describe
the dynamics of the nodes that are already active during 0 − 15 ns. The models fail to
capture the dynamics of the nodes or state variables that have been inactive during the
first 15 ns. This is understandable as the inactive state variables will be viewed by the
POD basis as zero state variables only and it will be extremely difficult, if not impos-
sible, for both reduced models to simulate the conditions when these nodes become
active. During this time interval, both MPE and POD models have the same maximum
absolute error that occurs on the state variable x23. The maximum absolute error is
3.2152 V. The evaluation costs are decreasing for about 70% when compared to the case
without use of MPE.

We also consider the academic diode chain model shown in Fig. 8.14, described through
the following equations

V1 −Uin(10
9t) = 0,

iE − g(V1, V2) = 0,

g(V1, V2) − g(V2, V3) − CdV2

dt − 1
RV2 = 0,

...
g(VN−1, VN) − g(VN, VN+1) − CdVN

dt − 1
RVN = 0,

g(VN, VN+1) − CdVN+1

dt − 1
RVN+1 = 0,

(8.1)
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Figure 8.13: The validations by POD and MPE models

where the dioded functionality is described by

g(Va, Vb) =

{
(Ise

Va−Vb
VT − 1) if Va − Vb > 0.5

0 otherwise
(8.2)

and

Uin(t) =

 20 if t ≤ 10
170− 15t if 10 < t ≤ 11

5 if t > 11
.

Fig. 8.15 (left) shows the numerical solution (nodal voltage in each node) of the original
model, computed by the Euler Backward method with fixed step sizes of 0.1 ns. At
t = 10−8s the solution behaves very active because of the sudden switch of the input
voltage signal Uin. Such behaviour is very typical for nonlinear IC models. The figure
on the right indicates the redundancy of the model, as most of the eigenvalues of the
correlation matrix 1

nXX
T can be neglected. Figure 8.16 shows the relative errors over

all nodes in the time interval [0, 70 ns], defined as εr =
||Vz−x||

||x|| , for the reduced models
of different orders constructed by TPWL (left) and POD (right). Most of the time the
relative error of TPWL is lower than the chosen error bound ε = 0.025. Furthermore,
for higher order reduced models, a smaller number of LTs is used than for the reduced
models with lower order, as the local systems with higher orders are more accurate. E.g.
for a reduced model of order 100 we have used 42 LTs and for smaller reduced models
60 LTs. The POD models are, as expected, more accurate than TPWL, but much slower
to simulate than the TPWL models (see the corresponding extraction and simulation
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Figure 8.14: The diode chain
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Figure 8.15: Numerical solution of the full-scale nonlinear diode chain model (left) and
the singular values of the snapshot matrix X.

times in Table 8.5). A significant speed up has been achieved by combining the POD
with MPE.

Table 8.5: Comparison of extraction and simulation times in seconds.

Model r
Extr.
time

Sim.
time Model r g

Extr.
time

Sim.
time

Original 302 0 142 POD 10 302 142 168
TPWL 10 290 1.1 POD 25 302 142 182
TPWL 25 285 1.5 POD + MPE 10 32 146 74
TPWL 50 206 2.3 POD + MPE 25 55 151 123

Even combined with MPE, the method POD is still rather expensive because of the
higher evaluation costs of the Jacobian matrices. The method TPWL is faster because
it approximates the nonlinear model by a piecewise linear model. Therefore, the per-
formance of POD can also be improved by keeping the Jacobian matrices constant for
some timesteps. This allows also to reuse the same factorisation, such that also the lin-
ear algebra costs are reduced. Table 8.6 shows a comparison of the simulation times
with respect to normal POD. It turns out that in this case, the modified version of POD
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Figure 8.16: Relative errors over all nodes for the reduced models created by TPWL
(left) and by POD (right).

is nearly three times faster than normal POD. Note that all simulation times in this table
are slightly smaller than in Table 8.5 because we used a more efficient implementation of
the BDF method. Figure 8.17 shows that the accuracy of this modified implementation
of POD has not been decreased.

Table 8.6: Comparison of simulation times in seconds of normal POD and modified
POD (including MPE and modified Newton).

Model r g
Sim.
time

Original 302 80
POD 10 302 87
POD 20 302 102
modified POD 10 32 28
modified POD 20 40 31
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Figure 8.17: Relative errors over all nodes for the reduced models created by the normal
and modified POD implementations.



List of frequently used symbols

i current
v voltage difference
V nodal voltage
t time variable
ω angular frequency of a source function
x(t) state vector of circuit
d dimension of x
q(t, x) charge function
j(t, x) electrical current function
C(t, x)) Jacobian matrix of q(t, x)
G(t, x) Jacobian matrix of j(t, x)
f(t, x) right-hand-side of an ODE
J(t, x) Jacobian matrix of f(t, x)
ν global index of a DAE
µn local index of a DAE around t = tn
tn n-th timepoint of time-grid
hn n-th timestep tn − tn−1 of time-grid
k number of steps of a multistep integration method
p integration order of an integration method
xn numerical approximation of x(t) at tn
δn local discretisation error of a numerical scheme
δ̂n estimate of δn

dn scaled local discretisation error of a numerical scheme
en global error of a numerical scheme
Cp,n error constant of an pth-order integration method at tn
ξn,m dimensionless coefficient that satisfies tn − tn−m = ξn,mhn

r̂n controlled error, often based on the norm of δ̂n

TOL tolerance level for a stepsize controller
θ safety factor
ε reference level θ TOL that is really used by a stepsize controller
y(t) Predictor polynomial for x(t)
p(t) Predictor polynomial for q(t, x(t))
i(t) Predictor polynomial for j(t, x(t))
x(t) Corrector polynomial for x(t)
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q(t) Corrector polynomial for q(t, x(t))
j(t) Corrector polynomial for j(t, x(t))
l(t) Lagrangian basis polynomial
Ȳ Nordsieck matrix corresponding to y(t)
P̄ Nordsieck matrix corresponding to p(t)
X̄ Nordsieck matrix corresponding to x(t)
Q̄ Nordsieck matrix corresponding to q(t)
l Nordsieck vector corresponding to l(t)
xA x for active (fast) part of circuit
xL x for latent (slow) part of circuit
dA dimension of xA

dL dimensions of xL

BA selection operator such that xA = BAx
BL selection operator such that xL = BLx
qA q for active (fast) part of circuit
jA j for active (fast) part of circuit
qL q for latent (slow) part of circuit
jL j for latent (slow) part of circuit
Tn time-point at the coarse time-grid
Hn compound or macro step Hn = Tn − Tn−1

tn,m time-point at the fine time-grid,
hn,m refinement or micro step hn,m = tn,m − tn,m−1

K coupling matrix
w balance number
qn multirate-factor that satisfies

∑qn

m=1 hn,m = Hn

E workload ratio
S speed-up factor
q̂ estimate of q
Ê estimate of E
Ŝ estimate of S
WC computational workload per compoundstep
WR computational workload per refinement step
WS computational workload per single-rate step
V matrix corresponding to reduced basis
z(t) state vector of the reduced model such that x(t) ≈ Vz(t)
r dimension of reduced model
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[52] G. Söderlind. Automatic control and adaptive time-stepping. Numerical Algorithms,
31:281–310, 2002.

[53] M. Striebel. Hierarchical mixed multirating for distributed integration of DAE network
equations in chip design. PhD thesis, Bergische Univ. Wuppertal, Wuppertal, Ger-
many, 2006.

[54] M. Striebel and M.G. Günther. Hierarchical mixed multirating in circuit simulation.
In G. Ciuprina and D. Ioan, editors, Scientific Computing in Electrical Engineering,
pages 221 – 228, Sinaia, Romania, 2007. Springer.

[55] T. Stykel. Gramian-based model reduction for descriptor systems. Mathematics of
Control, Signals and Systems, 16:297–310, 2004.
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the BDF slowest first multirate methods. Int. J. of Computer Mathematics, 84:895–923,
dec 2007.
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Summary

Redundancy Reduction of IC Models by Multirate Time-Integration
and Model Order Reduction

Circuit simulation is an essential step within circuit design. Because of the increasing
complexity of the Integrated Circuits, electronic companies need fast and accurate sim-
ulation software and there is a constant request at the companies to further improve the
simulation software. Development of new, more advanced, transient simulation algo-
rithms is an attractive way to increase the performance of this software. Mathematics is
the basis to analyze the convergence properties.
The objective of this PhD research is to increase the performance of Pstar, the in-house
analog circuit simulator at Philips and now of NXP Semiconductors, while properties
like accuracy and robustness are maintained. In particular the convergence and sta-
bility properties of newly developed multirate time-integration algorithms is studied.
Usually circuit models are large systems of differential-algebraic equations that are de-
rived from Kirchhoff’s conservation laws for currents and voltages and the constitutive
relations for the electronic components. For a transient analysis one traditionally uses
implicit time-integration schemes, like Backward Difference Formulae (BDF). All these
schemes discretise the time on one time-grid. In contrast multirate algorithms use more
than one time-grid and compute the slowly time-varying state elements only at coarsely
distributed time-points, while the fastly time-varying state elements are computed at
finer distributed timepoints. This makes a multirate algorithm potentially much faster
for circuits with large low-frequency parts. There are many types of multirate time-
integration methods that may differ in the order of the slow and fast integration and
the treatment of the interface variables. We used a direct extension of the BDF scheme
combined with Lagrange interpolation of the same order.
The standard theory for multistep methods does not hold anymore for multirate algo-
rithms. Therefore we look at properties like stability and convergence in more detail. It
turns out that the method is stable if the partitioned subsystems are individually stable
and if the coupling is sufficiently weak. The discretisation error for a multirate method
also contains an interpolation error due to the slow unknowns at the interface. This
error component is not needed for ordinary multistep methods. It is possible to control
this error by independent control of the coarse and fine macro and micro time-steps,
respectively. The interpolation error and the coarse discretisation error is controlled by
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the macro stepsize, while the micro stepsize controls the fine discretisation errors for the
fast state part. For multirate it is necessary to partitioning the system into a slow and
a fast part. Therefore a part of the research is spent to the development and analysis
of automatic partitioning algorithms. The underlying problem is a discrete optimisa-
tion problem, that can be handled by greedy-like methods. It is also possible to change
the partitioning dynamically during the simulation, which is useful for moving active
parts. All algorithms are implemented in Matlab; they work satisfactorily when tested
for a variety of circuit models. Furthermore a multirate implementation including error
control and dynamical partitioning is created in the circuit simulator Pstar itself.
Besides multirate time-integration also model order reduction is studied, which trans-
forms the large data models into smaller and simpler models, that still give the proper
accuracy, but that are much cheaper to solve. Because IC models are nonlinear, nonlin-
ear reduction techniques are considered in particular, like POD. In particular we focused
on the problem to reduce the evaluation costs of these reduced models.
A proper use of multirate and model order reduction is able to speed up transient sim-
ulation in general and is significantly faster (more than an order) for redundant circuit
models, while the accuracy and robustness are maintained. Redundancy occurs if the
state elements have many correlations, or if the sampled state signal has correlations in
time.



Samenvatting

Redundantie Reductie van IC Modellen door Multirate Tijd-Integratie
en Model Orde Reductie

Circuit simulatie is een belangrijk element binnen het ontwerpen van Integrated Cir-
cuits. Vanwege de toenemende complexiteit van deze circuits heeft de elektronische
industrie behoefte aan snelle en nauwkeurige simulatie software en is er een constante
vraag naar verdere verbetering ervan. De ontwikkeling van nieuwe geavanceerde tran-
sient simulatie algoritmen is een aantrekkelijke manier om deze software te verbeteren.
Wiskunde is de basis waarmee de convergentie eigenschappen kunnen geanalyseerd
worden.
Het doel van dit PhD onderzoek is om de simulatietijd van Pstar te verkleinen, zon-
der dat eigenschappen als nauwkeurigheid en robuustheid achteruit gaan. Pstar is de
eigen circuit simulator van NXP Semiconductors en wordt ook gebruikt door Philips.
We bestuderen in het bijzonder de convergentie en stabiliteitseigenschappen van nieuw
ontwikkelde multirate tijdsintegratie algoritmen. Gewoonlijk geven circuit modellen
grote stelsels differentiaal-algebraı̈sche vergelijkingen, welke afgeleid worden van de
wetten van Kirchhoff voor de stromen en spanningen en de constitutieve vergelijkingen
voor de elektrische componenten. Voor een transient analyse gebruikt men gewoonlijk
impliciete tijdsintegratie methoden, zoals de Backward Difference Formulae (BDF), die
de tijd discredtiseren op één tijdrooster. In tegenstelling tot deze methoden gebrui-
ken multirate algoritmen meer dan één tijdrooster en worden de langzaam in de tijd
variërende toestandselementen alle op grof verdeelde tijdpunten berekend, terwijl de
snel in de tijd variërende toestandselementen op alle tijddiscretisatiepunten berekend
worden. Dit maakt een multirate algoritme potentieel veel sneller voor circuits met gro-
te laag-frequente delen. Er zijn veel soorten multirate-methoden die verschillen in de
volgorde waarmee de langzame en snelle delen geı̈ntegreerd worden en in de behande-
ling van de variabelen op de randen tussen de verschillende delen. We gebruiken een
directe uitbreiding van de BDF methode gecombineerd met Lagrange interpolatie van
dezelfde orde.
De bestaande theorie voor meerstaps methoden geldt niet meer voor multirate algorit-
men. Daarom analyseren we opnieuw eigenschappen zoals stabiliteit en convergentie.
Het blijkt dat de methode stabiel is als de subsystemen afzonderlijk stabiel zijn en als
de koppeling voldoende klein is. De discretisatiefout van een multirate methode bevat
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ook een interpolatiefout vanwege de koppeling met de rand. Deze foutcomponent komt
niet voor bij gewone meerstaps methoden. Het is mogelijk om deze fout te regelen door
onafhankelije regeling van de macro- en minitijdstappen. De interpolatiefout en de dis-
cretisatiefout op het grove rooster worden bepaald door de macro stapgrootte, terwijl
de micro stapgrootte de discretisatiefout van het snelle deel op het verfijnde tijdrooster
bepaalt. Voor multirate is het nodig om het stelsel te partitioneren in een langzaam en
een snel deel. Daarom is een deel van het onderzoek besteed aan de ontwikkeling en
analyse van automatische partitioneer-algoritmen. Het onderliggende probleem is een
discreet optimalisatieprobleem dat benaderd kan worden met greedy-achtige metho-
den. Het is ook mogelijk om de partitie te veranderen tijdens de simulatie, wat nuttig
is voor zich verplaatstende activiteit. Alle algoritmen zijn geı̈mplementeerd in Matlab;
ze bljken goed te werken voor een aantal geteste circuit modellen. Bovendien is multi-
rate inclusief foutcontrole en dynamische partitionering geı̈mplementeerd in de circuit
simulator Pstar zelf.
Behalve multirate tijdsintegratie wordt model orde reductie bestudeerd. Hierbij wordt
een groot wiskundig model getransformeerd in een klein en eenvoudig model. Zo’n
gereduceerd model moet nog steeds nauwkeurig genoeg zijn, maar veel goedkoper te
simuleren. Omdat IC modellen niet-lineair zijn, worden in het bijzonder niet-lineaire
reductie technieken bestudeerd, zoals POD. Ook beschouwen we het probleem om de
evaluatiekosten van deze gereduceerde modellen te reduceren.
Een goed gebruik van multirate en model orde reductie kan in het algemeen een tran-
sient simulatie versnellen en is (zeker meer dan een orde) sneller voor redundante cir-
cuit modellen, terwijl de nauwkeurigheid en robuustheid worden behouden. Redun-
dantie treedt op als de toestandselementen veel onderlinge correlaties hebben of als de
gediscretiseerde toestand correlaties in de tijd heeft.
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