

A proof theory for a sequential version of POOL

Citation for published version (APA):
America, P. H. M., & Boer, de, F. S. (1990). A proof theory for a sequential version of POOL. (Computing
science notes; Vol. 9012). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/3830af24-60bc-4c6b-b65e-45463ab094c1

A proof theory for a sequential
version of POOL

by

Pierre America Frank S. de Boer

90/12

October • 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 ME EINDHOVEN
The Netherlands
All rights reserved
Editors: prof.dr.M.Rem

prof.dr.K.M. van Hee

A proof theory for a sequential version of POOL

Pierre America and Frank de Boer

1

Contents

1 Introduction

2 The language SPOOL

An informal introduction 2.1

2.2 The syntax

3 Semantics

Domain definitions

The semantic functions.

3.1

3.2

3.3 Remarks on the semantics

4 The assertion language and its semantics

4.1

4.2

The assertion language

Semantics of assertions and correctness formulae

5 The proof system

5.1

5.2

5.3

Simple assignments

Creating new objects

Sending messages . .

5.4 Other axioms and rules

6 Completeness

Introduction.

..........................

6.1

6.2 The strongest postcondition

Doc. No.

2

4

4

5

10

10

13

19

23

23

25

30

30

35

43

51

54

54

61

6.3

6.4

6.5

6.6

Freezing the initial state

Invariance

Most general correctness formulae

The context switch

7 Conclusions

References

A A generalisation of the rule (MR)

B Expressibility

B.1 Coding mappings

B.2 Arithmetizing Truth

B.3 Expressing the coding relationship

B.4 Expressing the strongest postcodition

C A closure property of the semantics

Doc. No.

64

68

71

81

90

91

92

95

95

96

100

101

104

2

1 Introduction

This document explores the possibilities of giving a Hoare-style proof system for a
language, called SPOOL, which is a sequential version of the language POOL [1].
SPOOL is an object-oriented language, just like POOL, but it is sequential, so that
we do not have to deal with the specific problems connected with parallelism (it turns
out that the other problems are already difficult enough).

The main aspect of SPOOL that is dealt with is the problem of how to reason about
pointer structures. In SPOOL, objects can be created at arbitrary points in a pro
gram, references to them can be stored in variables and passed around as parameters
in messages. This implies that complicated and dynamically evolving structures of
references between objects can occur. We want to reason about these structures on
an abstraction level that is at least as high as that of the progromming language. In
more detail, this means the following:

• The only operations on "pointers" (references to objects) are

- testing for equality

- dereferencing (looking at the value of an instance variable of the referenced
object)

• In a given state of the system, it is only possible to mention the objects that
exist in that state. Objects that do not (yet) exist never playa role.

Strictly speaking, direct dereferencing is not even allowed in the programming lan
guage, because each object only has access to its own instance variables. However, for
the time being we allow it in the assertion language. Otherwise, even more advanced
techniques would be necessary to reason about the correctness of a program.

The above restrictions have quite severe consequences for the proof system. The
limited set of operations on pointers implies that first-order logic is too weak to
express some interesting properties of pointer structures (for example, the fact that it
is possible to go from w to z by following a finite number of x-links). It is surely too
weak to apply the standard techniques in proofs of completeness of a proof system,
where arbitrarily long computation sequences are coded into a finite set of variables.

Therefore we have to extend our assertion language to make it more expressive. We
considered two approaches:

• Using recursively defined predicates, by which the above "interesting" properties
of pointer structures can be expressed quite easily. This aproach is worked out
in [2].

Doc. No.

3

• Allowing the assertion language to reason about finite sequences of objects. In
this way the above properties can also be expressed (but not quite so elegantly).
This approach is studied in this report.

In section 2 we shall present the syntax of this language SPOOL. Then, in section 3
we shall give a denotational semantics for it. In section 4 we introduce an assertion
language, using quantification over finite sequences of objects, in which properties
of states in a computation can be formulated, and we formally define its semantics.
After that, in section 5, we present a Hoare-style proof system for SPOOL using
this assertion language. This proof system is proved to be sound with respect to
the denotational semantics. In section 6 we prove the completeness of the system.
Finally, in section 7, some conclusions are drawn from the present work.

Doc. No.

4

2 The language SPOOL

2.1 An informal introduction

The shortest description of the language SPOOL would be that it results from omit
ting the body of each class in POOL-T [1]. The most important consequence ofthis is
that the parallelism, present in POOL-T, disappears. But let us try to give a short,
independent description of SPOOL.

The most important concept is the concept of an object. This is an entity containing
data and procedures (methods) acting on these data. The data are stored in variables,
which come in two kinds: instance variables, whose lifetime is the same as that of
the object they belong to, and temporary variables, which are local to a method and
last as long as the method is active. Variables can contain references to other objects
in the system (or even the object under consideration itself). The object a variable
refers to (its value) can be changed by an assignment. The value of a variable can
also be nil, which means that it refers to no object at all.

The variables of an object cannot be accessed directly by other objects. The only
way for objects to interact is by sending messages to each other. If an object sends
a message, it specifies the receiver, a method name, and possibly some parameter
objects. Then control is transferred from the sender object to the receiver. This
receiver then executes the specified method, using the parameters in the message.
Note that this method can, of course, access the instance variables of the receiver.
The method returns a result, an object, which is sent back to the sender. Then
control is transferred back to the sender which resumes its activities, possibly using
this result object.

The sender of a message is blocked until the result comes back, that is, it cannot
answer any message while it still has an outstanding message of its own. Therefore,
when an object sends a message to itself (directly or indirectly) this will lead to
abnormal termination of the program. This is an important difference with some
other object-oriented languages, like Smalltalk-80 [6].

Objects are grouped into classes. Objects in one class (the instances of the class)
share the same methods, so in a certain sense they share the same behaviour. New
instances of a given class can be created at any time. There are two standard classes,
In! and Bool, of integers and booleans, respectively. They differ from the other classes
in that their instances already exist at the beginning of the execution of the program
and no new ones can be created. Moreover, some standard operations on these classes
are defined.

A program essentially consists of a number of class definitions, together with a state
ment to be executed by an instance of a specific class. Usually, but not necessarily, this

Doc. No.

5

instance is the only non-standard object that exists at the beginning of the program:
the others still have to be created.

2.2 The syntax

In order to describe the language SPOOL, which is strongly typed, we use typed
versions of all variables, expressions, etc. These types are indicated by subscripts
or superscripts in this language description. Often, when this typing information
is redundant, it is omitted. Of course, for a practical version of the language, a
syntactical variant, in which the type of each variable is indicated by a declamtion, is
easier to use.

Assumption 2.1
We assume the following sets to be given:

• A set C of class names, with typical element c (this means that metavariables
like c, c', c" ... range over elements of the set C. We assume that Int, Bool ¢ C
and define the set C+ = C U {Int, Bool} with typical element d.

• For each c E C and d E C+ we assume a set IVar~ of instance variables of type d
in class c. By this we mean that such a variable may occur in the definition of
class c and that its contents will be an object oftype d. The set IVar~ will have
as a typical element xd"

• For each dEC we assume a set TVar d of tempomry variables of type d, with
typical element Ud.

• We shall let the metavariable n range over elements of Z, the set of whole
numbers.

• For each c E C and do, ... ,dn E C+ (n:::: 0) we assume a set MName~o •.... dn

of method names of class c with result type do and parameter types d" . .. , dn.
The set MName'do •.... dn will have m:l,. dn as a typical element.

Now we can specify the syntax of our language. We start with the expressions:

Definition 2.2
For any c E C and d E C+ we define the set Exp'j of expressions of type d in class c,
with typical element ed' as follows:

Doc. No.

6

eC
d .. - x~

Ud

nild

self if c = d

true I false if d = Bool

n if d = Int
c· C

e1d' = e2dl if d = Bool

ei c + €2
c if d = Int

ei
c < €2

c if d = Bool

The intuitive meaning of these expressions will probably be clear from section 2.1.
Note that in the language we put a dot over the equal sign (=) to distinguish it from
the equality sign we use in the meta-language.

Definition 2.S
The set SExp~ of expressions with possible side effect of type d in class c, with typical
element sd' is defined as follows:

Sd .. - ed
newd if dEC (d oF Int, Bool)

c, co (C C) (> 0) eo co ' md,d1, ... ,dn €ld1 "" ,endn n _

The first kind of side effect expression is a normal expression, which has no actual
side effect, of course. The second kind is the creation of a new object. This new
object will also be the valne of the side effect expression. The third kind of side effect
expression specifies that a message is to be sent to the object that results from eo,
with method name m and with arguments (the objects resulting from) e1, . .. , en.

Definition 2.4
The set StatC of statements in class c, with typical element SC, is defined by:

se .. _ xd f- sd
Ud +- 3d
sd
SI;S2

if eC then Sf [else Si) fi

while eC do SC od

Again, the intnitive meaning of these statements will probably be clear. Note that a
side effect expression s may occur in the place of a statement. This means that s is

Doc. No.

7

evaluated and then its value is discarded, so that only the side effect remains. If in
a conditional statement the else-part is absent, the statement is interpreted as if it
contained else nil.

Definition 2.5
The set MethDef~o, ... ,dn of method definitions of class c with result type do and pa
rameter types d1 , • .. , dn (with typical element /1~o, ... ,dn) is defined by:

Jl~o, ... ,dn ::= (Uld1 ," . ,Undn) : se i €do
Here we require that the Uidi are all different and that none of them occurs at the left
hand side of an assignment in SC (and, of course, that n ~ 0).

When an object is sent a message, the method named in the message is invoked as
follows: The variables U1, ..• , Un (the parameters of the methods) are given the values
specified in the message, all other temporary variables are initialized to nil, and then
the statement S is executed. After that the expression e is evaluated and its value,
the result of the method, is sent back to the sender of the message, where it will be
the value of the send-expression that sent the message.

Definition 2.6
The set ClassDef;", , ... ,mn of class definitions of class c defining methods m1, ... , m n ,

with typical element D;", , ... ,mn ' is defined by:

D~ll mn ::= c : (ml~l ¢: JLIJ
1

, ••. , mnJ
n

{:: JLnJn)

where we require that all the method names are different (and n ~ 0).

Definition 2.7
The set Unit~~';::'~~k of units with classes Cl,.'" en defining methods ml,"" mk,
with typical element UC, , ... ,Cn is defined by: ml.· .. ,711.Il:'

uc}, ... ,cn "= D ~l D ~n
ml •... ,mk .. 1711.1"'" nmn

where m1, ... , mk = m1, ... , m n . We require that all the class names are different.

Definition 2.8
Finally, the set ProgC of programs in class e, with typical element pC, is defined by:

Pc ::= (UC" .. ·,Cn Ie: SC)
mI,···.mk

Here we require that c occurs in C1,"" Cn. (The symbol 'I' is part of the syntax, not
of the meta-syntax.)

The interpretation of such a program is that the statement S is executed by some
object of class c (the root object) in the context of the declarations contained in the
unit U. In many cases (including the following example) we shall assume that at the
beginning of the execution this root object is the only existing non-standard object.

Doc. No.

8

Example 2.9
The following program generates prime numbers using the sieve method of Eratos
thenes. We assume the following symbols:

• The class name Sieve E C (abbreviated sometimes by Cl) with instance variables
p E [VarCl and next E [Var~;, temporary variable q E TVar and method name
. MN Cl Input E arne c" •

• The class name Driver E C (abbreviated by C2) with instance variables i, bound E
IVarc, and first E [Var~. .

Then this is the program:

(Sieve: (input ~ (q) : if next = nil

),
Driver: ()

Driver: i +- 2;

then next ~ new;
p <- q

else if q mod p i 0

fi

then next! input(q)
fi

i self

first +- new;
while i < bound
do first! input(i);

)

I <- I + 1
od

Figure 1 represents the system in a certain stage of the execution of the program.

Doc. No.

9

Driver
i:(35D

Sieve Sieve Sieve
bound:m p:CIJ p:(D p:([:)

first:C3- next:G- next: (3- next:C3-

Figure 1: Objects in the sieve program in a certain stage of the execution

Doc. No.

10

3 Semantics

3.1 Domain definitions

Definition 3.1
We assume for every c E C an infinite set OC of object names of class c, with typical
element f3c. We define pc to be the set of all finite subsets of OC, with typical
element 1I"c. Furthermore we assume a function pickc : pc -+ OC which satisfies

(3.1)

This function will be used to generate the name of a new object, whenever one is
created.

For the standard classes Int and Bool we define the sets of object names as follows:

o z
o = B = {t,f}

(We shall not need functions pick or pick.)

Definition 3.2
For every set X we define the corresponding flat domain XL to be the set X U {.J..},
equipped with an ordering (;; defined by

x (;; y ¢=} x = .J.. V x = y.

Note that for every set X, XL is a complete partial order (cpo). Sometimes we shall
only consider the underlying set of this ordering, for example in definition 3.4.

Definition 3.3
We shall often use generalized Cartesian products of the form

II B(i).
iEA

As usual, each element of this set is a function f with domain A such that f(i) E B(i)
for each i E A. We shall sometimes write f(i) for f(i) if i E A and f E fIiEA B(i),
and also we sometimes write (f(i»)iEA f!>r >.(i E A).f(i). Finite products are special
cases: If A is of the form {1, ... ,n} we sometimes write B(1) x ... x B(n).

Definition 3.4
We define the set ~ of states, with typical element a, as follows:

~ = II pc x II (oc -+ 1Var:i -+ oi) x II (TVard -+ oi)
C c,d d

A little explanation is surely required here. A state a E ~ records the values of the
variables in the whole system at a certain point in the computation:

Doc. No.

11

• Its first component "'(1) gives for every class e E C a finite set of objects "'(1)(e) E
pc. This set represents the objects that exist in this state (Le., they have already
been created).

• The second component "'(2) records the values of the instance variables. More
concretely, if e E C and d E C+ are class names, (3e E oe is an object of class e,
and x:; E [Var:; is an instance variable of type d in class e, then "'(2)(e.d) ((3e)(x:;) E
01 is the value of the instance variable x:/ of object (3e. If this value is .1, this
means that the variable refers to no object. This is the situation for a variable
that has not been initialized, but it can also be achieved by assigning nil to it.

• The third component "'(3) records the values of the temporary variables. More
concretely again, if d E C+ is a class name and Ud E TVard is a temporary
variable of type d, then "'(3)(d) (Ud) E 01. is the value of the variable Ud. Here
again, it is possible that the value of the variable is nil.

For any state", we introduce by convention that "'(1)0 = Z and "'(1)0 = B. Further
more we write ",(d) for "'(t)(d)'

Definition 3.5
Note that in general it is possible that in a state the variables of an existing object refer
to an object that does not exist. If this is not the case and, additionally, the variables
of the non-existing objects are not initialized, we say that the state is eonsistent.

More precisely, we call a state", consistent if

• '<Ie E C '<I(3e E a(e) '<Ie' E C '<Ix:;' E [Var:;' "'(2)(e.c')((3e)(x~,) E ",t')

• '<Ie E C '<Iue E TVar e "'(3)(e) (ue) E ",t)
• '<Ie E C '<I(3e E oe \ ",(c) Vd E C+ '<Ix:; E [Var:; a(2)(c.d)((3e)(xd) = .1

(Note that it would not make sense for either e or e' to be Int or Baal). We shall
occasionally use the shorthand OK (a) to indicate that", is consistent.

Definition 3.6
We say that a state ",' extends a state", (notation", :S "") if '<Ie E C ",(c) <;; ",,(c).

Definition 3.7
We shall make flexible use of the so· called variant notation, especially in connection
with states. The variant notation is a short way to express a new state that arises
when some component of an old state is modified. For example, if we write

Doc. No.

12

this means the following:

,
a(l)

a(2)(c,d) (,82)(X)

a(2)(c,d)(,82)(X') =

a(2)(c,d)(,8')

= a(l)

,8,

a(2)(c4,82)(X')

= a(2)(c,d) (,8')
,

a(2)(c',d')

a(J) = a(3)

a(2)(c',d')

if x' i x

if ,8' i ,82

ife'ieord'id

(This example also illustrates the usefulness of this notation.)

Definition 3.8
The set ,:l c of contexts of class e, with typical element oC, is defined as follows:

,:lc = Oc X TIpc'

c'

The meaning of a context Oc is as follows:

• The first component 0(1) E OC indicates the object that is currently execu.ting
(the object denoted by self).

• The second component 0(2) represents all the objects that are waiting for the
result of a message they have sent. This is because these objects become blocked,
that is, they cannot answer any message before they have received the result of
their outstanding message. If e' E C is a class name, then 0(2)(c') E pc' is the
set of blocked objects of class e'.

Definition 3.9
We say that a context OC agrees with a state a if

• 0(1) E a(c)

• Ve' E C 0(2)(c') <;;; a(c')

We shall write the shorthand OK(a,o) to indicate that a is consistent and 0 agrees
with a.

Definition 3.10
The domain r of environments, with typical element 'Y, is defined as follows:

r = c}:I.,dn (MNamedo, ... ,dn --> (g o~) -->,:lc --> ~.L --> (~.L X o't'))

Doc. No.

13

An environment "I records the meaning of the methods. More concretely, if c E
C and do, ... , dn E C+ are classes, m E MName'do •.... dn is a method name, /3 =
((31 d" ... ,(3n dn) E rri~1 O~ a row of objects (each possibly .i), 0 E ~c a context,
a E ~l. a state (again possibly .i), then "I(c.d)(m)(/3)(o)(a) is a pair (a', (30) E ~l. X

O~, with the intended meaning that if the method named by m is invoked with
parameters /3, in the context 0 (which indicates among others the object that executes
the method), and starting in the state a, then after the execution a' will be the new
state and (30 is the result of the message. Here (a',(3o) = (.1,.1) indicates abnormal
termination or divergence.

Definition 3.11
We call an environment "I agreement-preserving if for every c, do, . .. ,dn, for every m:I,
for every oC, for every a E ~, and for every /3 = ((31 d" . .. ,(3n dn) E rri~1 a~i) (note
that we consider only existing objects) we have that if OK(a,o) and (a',(3dO) =
"I(c.d)(m)(/3)(o)(a) and a' '1.1 then OK(a'), a::> a', and (3do E a1do).

Note that the requirement is somewhat stronger than preservation of the agreement
between state and context. We require that the new state extends the old state and
that it is consistent. This automatically implies that the context 0 agrees with the
new state.

3.2 The semantic functions

Definition 3.12
The semantics of expressions is given by a function

£:1 : Exp~ -+ ~c -+ El. -+ 01.,

which is defined as follows:

£J[e~](o)(.1) = .1 (from now on we assume a 'I .i)

£,j[xd](o)(a) = a(2)(c.dl6{1))(x:n
£,j[Ud](0)(a) = a(3)(d) (Ud)

£,j[nild](0)(a) = .1

t:J[self](0)(a) = 0(1)
t:,j[true](0)(a) = t

t:d[false](6)(a) = f

t::J[n](o)(a) = n

t:dh~, = e2~.](0)(a) = t

f

(only if d = Bool)

Doc. No.

(only if c = d)

(only if d = Bool)

(only if d = Bool)

(only if d = Int)

if t:J.[e1](6)(a) = t:J.[e1](0)(a)

otherwise

14

fJ[eld + eZJ](6)(a) = 1- if fJ[el](6)(a) = 1- or fd[ez](6)(a) = 1-

= fJ[el](6)(a) + fJ[ez](6)(a) otherwise

(only if d = Int)

fJ[el d' < ezd-](6)(a) = 1- if fJ,[et](6)(a) = 1-

or fJ,[ez](6)(a) = 1-

= t if fd,[el](6)(a) < f,j,[ez](6)(a)

= f otherwise

(only if d = Bool and d' = Int)

Although most of these equations speak for themselves, we shall give some informal
explanation.

• The function f[e](6) is strict;that is, it will always yield 1- if it is applied to a
state a that is equal to 1..

• The value of an instance variable is looked up in the second component of the
state a. The first component of the context .I indicates the currently active
object.

• The value of a temporary variable is looked up in the third component of the
state a.

• The value of the expression nil is always 1..

• The value of the expression self is the first component of the context 6.

• The Boolean constants true and false get the corresponding truth-values as their
value.

• Integer numbers are mapped to themselves. Note that at this point we are
confusing syntactic and semantic entities a little, but here this is harmless.

• The equal sign between expressions means that we test whether their values are
really the same objects. Note that this is a kind of non-strict predicate, because
if both sides yield 1-, the resnlt of the equality is nevertheless t.

• Addition is only defined for genuine integers: If one of the two sides yields 1-
the result is also 1..

• The same is true for the relation <.

Doc. No.

88

where
FE = {init }Pi{ SPE+(pi, init)}.

Now by lemma 6.46 and lemma 6.47 an application of the consequence rule gives us
Fi I- FE where

Fi = {Pi[ei/self,uil[!lidi][be; 0 (self)lbe.J}Pi{ SPE+(pi, init)}.

So we have

Fl. ... ,Fk I- {Pi II /\ v} '" nil II self rf- bc:}(ulc:: Si){ Q;[e;jr;]}.
j

By theorem 6.33 we have

I- {Subs (ire , stl ,cr) }(Ulc: : Si){ SUbs(/re ,stl ,cr)}.

So by the conjunction rule we infer

{ Pi IIl\j vj '" njlll self rf- be: II Subs(Ire, stl , cr) }

FI , ... ,Fm I- (ulc:: Si)

{Q;[e;jrilll Subs(lre, stl, cr)}.

By proposition 6.50 an application of the consequence rille gives us

F}, ... , Fm I- {Pi II /\ vj '" njlll self rf- bc:}(UIc: : Si){ Qt[e;jr;J}.
j

We now can apply rule (NMR), making use of lemma 6.46, yielding the derivability
of the correctness formula:

{PI II /\ vJ '" njlll self rf- be; }(ulc~ : Sl){ Qthhl}.
j

Applying next (MI) or (MT) gives us the derivability of

{ PI [e" Iself, u"l[!1 zI][bel 0 (self) /bell }Pl { SP L+ (PI, init) }.

So an application of the consequence rule (the assertion init by lemma 6.46 implies
the precondition, and 1= SPL+(PI, init) ---> SPL(PI, init)) gives us the desired result
(note that Pl = P by definition)

I- {init }p{ SPL(p, init)}.

o

We conclude with the completeness theorem:

Doc. No.

16

• In order to evaluate a send-expression, first the destination object /30 and the
parameters /3I, ... ,/3n are computed (in the old state). Note that if the desti
nation is 1- (i.e., nil), then the program will fail, which is represented by setting
«(1',/3d) to (1-,1-). Otherwise a new context is created, in which the executing
object is the destination of the message, and in which the sending object is
added to the set of blocked objects (of the appropriate class). Then the mean
ing of the method m is looked up in the environment "I and, provided with the
parameters, the new context and the old state, it gives us the new state and the
result of the send-expression.

Definition 3.14
The semantics of statements is given by a function

8 c
: 8tatC --+ r --+ ~ c --+ ~.L --+ ~.L'

which is defined as follows:

8C[8C]("I)(6)(1-) = 1- from now on we assume (1 cJ 1-

8C[x~ <-- sdJ("I)(6)«(1) = (1"

where «(1',/3) Zd[zd]("1)(6)«(1)

(1" = (1'{f3/6(1),x}

8C[uc <-- zd]("!)(6)«(1) = (1"

where «(1',/3) = Zd[zd]("1)(6)«(1)
(1" = (1' {/3/u}

8C[s:;]("1)(6)«(1) = (Zd[s:;]("1)(6)«(1))(l)

8C[81; 82]("1)(6)((1) = 8C[82]("1)(6) (8C[81]("1)(6)«(1))

8 C[if e then 81 else 8 2 fi]("1)(6)((1) = 1- if/3=1-

8C[81]("I)(6)«(1) if /3 = t =
if /3 = f

where /3 = e[e](6)«(1)

8 C[while e do 8 od]("I) = J1,if!

Doc. No.

where if! : (~C --+ (~.L --+ ~.L)) --+ (~c --+ (~.L --+ ~.L)) is defined as follows:

if! (<p)(6)((1) 1- if /3 = 1-

= <p (6, 8C[S]("!)(6)«(1)) if /3 = t

= (1 if/3=f

where /3 = £[e](6)«(1)

17

Here is some informal explanation:

• For any S", and 8, S[Sll(,)(8) is a strict function from ~l. to ~l.'

• If an assignment to an instance variable x is done, first the right hand side is
evaluated, resulting in a new state (1' (because of possible side effects), and an
object (3. Now the final state (1" is constructed from a' by modifying its second
component in such a way that the object (3 becomes the value of the variable x.

• For an assignment to a temporary variable, essentially the same thing is done,
except that the new value is stored away in the third component of the resulting
state a".

• If a side effect expression occurs at the place of a statement, it is evaluated
and its resulting object is ignored. Only the new state is kept (this is tbe first
component of the result of the evaluation).

• Sequential composition of statements is modelled by letting the second state
ment act on the state that results from the first statement.

• For a conditional statement first the condition is evaluated. Depending on that
the first or the second clause is executed (or a failure is signalled).

• A while statement is modelled by taking the least fixed point of the operator <P.
This operator takes its argument <p as an approximation of the meaning of the
while statement and maps it to a better approximation, obtained by unwinding
the loop one more time.

Definition 3.15
The semantics of method definitions is given by a function

(
n) Me : MethDe e -+ r -+ Od; do,· .. ,dn f do, ... ,dn II l.

1:::=1

which is defined by:

Doc. No.

18

M~o, ... ,dJ(ILld". .. ,lLnd.) : SC i e~O)h')«(31 d" ... ,(3ndn)(OC)((1) == «(1"', (3dO
)

where (1' == .1. if 0(1) E 0(2)(C) or (1 == .1.

==

u(3)(d) (ILd) ==

==
(1/1 ==
pdo ==
q'" ==

«(1(1),(1(2), (1(3)

(3d .. •

.1.

SC[SC)(1)(8C
)((1')

£J,[e~]W)«(1/1)

.1.

(/I /I) (1(1)' (1(2)' (1(3)

otherwise

if d == di and ILd == lLid.

for i = 1, ... ,n

otherwise

if (1/1 == .1.

if (1/1 :f .1.

Again we give an informal explanation: The first thing to be checked when a method is
to be executed is whether the executing object is blocked, that is whether 8(1) E 8(2)(c)

or whether the starting state (1 is .1.. If this is the case the result ofthe method will be
the pair (1.,1.) (this will come out automatically if we set (1' to 1.). Next we construct
a state (1' by initializing all temporary variables to 1., except the formal parameters,
which are bound to the corresponding actual ones (that is, the variable lLid. is set
to (3/'). In this modified state (1' we execute the statement SC of the method, which
results in a new state (1/1. In this state we can evaluate the result expression e~o'
which gives us the object (3do. The state (1'" after the method execution is obtained
by restoring the temporary variables to their values before the method execution.

Definition 3.16
The semantics of class definitions is given by a function

C~l, mfl : ClassDef~ll mn ---40 r ~ r
which is defined as follows:

C:;'" ... ,mJc: (mId-, <= I'ld-, , ... , mnJ-n <= I'nd-n)](I)

== I{M[l'lJ-)(I) / m1d-J ... {M[l'nd-)(I) / mn:r.}

This means that in the environment 1 the value associated with each method m in
the class definition is replaced by the value obtained from the corresponding method
definition. However, this method definition is still evaluated with respect to the old
environment I' Note that the order of the replacements does not matter, because it
is required that all method names must be different.

Definition 3.17
The semantics of units is given by a function

Doc. No.

which is defined by:

UCl, ... ,Cn [D "J ... D c_n 1(",,) = ",,'
ml •... ,mk 1m!, ,nm,.JJ I I

where "'I' = "'I{(j/mj}j=I

((".·.,(k) = J.L'l1

'l1((i, .. • ,(k)

"'I"
Ci·

(we suppose that mj = mj/). ,

= ("'I"(ci"dj)(mj))j=I

= C[D,] 0"'0 C[Dn]b{(j/mj}j=I)

19

The main point in this definition is the construction of an environment "'I' from the
least fixed point of the operator 'l1. This operator q; takes as its argument a row
(L ... , (I, of possible meanings of the methods defined in the unit. Assuming these
meanings for the corresponding methods, a new environment "'I" is deteflnined from
the class definitions in the unit and from this environment the new meanings for the
previous methods are extracted, yielding the output of'l1. The least fixed point of'l1
therefore consists of the meanings of the methods defined in the unit, where for the
other methods the meanings recorded in 7 are assumed.

Because we require that all the class names (the Ci) are different, earn C[D{;] modifies
a different part of the environment "'I{(j/mj}j=I' Therefore the order in which they
are composed does not matter.

Definition 3.18
Finally we give the semantics of programs by defining a function

pc: ProgC -+ r -+ tJ.c -+ ~.L -+ ~.L

as follows:

P[(U;r;;:::~,;;.1c : SC)](7) = SC[S]("'I')

where "'I' = U[U]("'I)

If every method used in the program is defined in the unit then the meaning is
independent of the environment 7. One could take the "empty" environment 70,
defined by

"'Io(c, d)(mJ)(J'j)(6%1) = (.L, .L)
(this is certainly agreement· preserving).

3.3 Remarks on the semantics

In the foregoing definition of the semantic functions that playa role in our language,
we have omitted some details. One of these details is the fact that all the functions
of which we need the least fixed point are indeed continuous.

Doc. No.

20

Lemma 3.19
The function Cf?, used in the semantics of while statements in definition 3.14, is con
tinuous.

Proof
First of all it is easy to see that

• For every expression Ed and for every context 6c, the function £[e](6) is strict,
Le., that £[e](6)(l.) = 1..

• For every statement se, for every environment '"I, and for every context 6e , the
function S[8]('"I)(6) is also strict, i.e., S[S]('"I)(O)(.L) = .L.

Now after a little calculation it becomes clear that this is all we need to ensure the
continuity of Cf?, which moreover maps strict functions in ~l. ---+ ~l. again to strict
functions (so its least fixed point will also be a strict function). 0

Lemma 3.20
The function iii, used in defiuition 3.17 to define the semantics of units, is continuous.

Proof
The proof of this lemma is somewhat more involved. It would proceed in the following
steps:

• For any side effect expression s:/, Z[s] is a continuous function from r to ~ e ---+

~l. ---+ (~l. X 01.).

• For any statement se, 8[S] is a continuous function from r to ~e ---+ ~l. ---+ ~l.'

• For any method definition i'do, ... ,dn, M[P] is a continuous function from r to

(m=l o~) ---+ ~e ---+ ~l. ---+ (~l. X of').
• For any class definition Din, C[D] is a continuous function from r to r.

• Now we can prove that iii is a continuous function.

o

In retrospect we can change the domain assignments of several entities as follows
(where -=. stands for continuous functions and ~ for strict functions):

Doc. No.

r = II (MName~o' ... 'dn -+ (fr o~) -+ ~c -+ E.L -!. (E.L X o't))
c,do, ...• dn I_I

("c • E C A C " 8 Od "'d' XPd -+ L.l. -+.t..t.l -+ l.

Z:J : SExp~ -+ r":' ~c -+ E.L -!. (E.L X 01)
SC : StatC -+ r":' ~c -+ E.L -!. E.L,

M~o, ... ,dn: MethDe!do, ... ,dn, r":' (Ii: O~) -+ ~c....., E.L -!. (E.L X O't)
1=1

C

C~l1 ,mn : ClassDef~ll" .. ,mn --+ r -+ r
UCl> .. "cn : Unite! , ... ,Cn -+ r ~ r

ml,···,mk ml,···,ml;:

pc: ProgC, r":' ~c -+ E.L -!. E.L

Lemma 3.21

21

Now we come to the issues of consistent states and agreement between context and
state. We can make the following observations:

• For any expression ed' for any state a E E, and for any context 0 E ~ C such

that OK(a,o), we have that t:[e](6)(a) E a~).

• For any side effect expression sd, for any agreement-preserving environment "
for any state a E E, and for any context 0 E ~c such that OK(a,o), we have
that if (a',(3d) = Z[s](,)(o)(a) and a' # .l then OK(a'), a:5 a' (therefore also

OK(u',o)), and (3d E a'~).

• For any statement SC, for any agreement-preserving environment" for any state
a E E, and for any context 0 E ~c such that OK(a,o), if a' = S[S](,)(6)(a)
and a' # .l then OK(a') and a:5 a' (therefore also OK(a',o)).

• For any method definition Pdo, ... ,dn' for any agreement-preserving environment"
for any state a E E, for any context 0 E ~C such that OK(a,o), and for any

row of (existing) objects iJ = ((3, d1
, ... , (3n dn) E IT:;", a~;) we have if (a', (3do) =

M[p](,)(iJ)(o)(a) and a' # .l then OK(a'), a :5 a' (so also OK(a',o)), and
(3do E a/~ do) •

• For any class definition D and for any agreement-preserving environment, we
have that C[D](f) is again an agreement-preserving environment.

• For any unit U and for any agreement-preserving environment, we have that
U[U](,) is again an agreement-preserving environment.

• For any program pC, for any agreement- preserving environment " for any state
a E E, and for any context oC such that O[«a,o), if a' = P[p](f)(o)(a) and
a' #.l then OK(a') and a:5 a' (therefore also OK(a',o)).

Doc. No.

22

Proof
The proof consists of an easy induction on the structure of the syntactical object
under consideration. 0

Doc. No.

23

4 The assertion language and its semantics

In this section we shall develop a formalism for expressing certain properties of states,
and we shall give a semantics for it.

One element of this assertion language will be the introduction of logical variables.
These variables may not occur in the program, but only in the assertion language.
Therefore we are always sure that the value of a logical variable can never be changed
by a statement. Apart from a certain degree of cleanliness, this has the additional
advantage that we can use logical variables to express the constancy of certain ex
pressions (for example in the proof rule (MI) for message passing in definition 5.24).
Logical variables also serve as bound variables for quantifiers.

The set of expressions in the assertion language is larger than the set of programming
language expressions not only because it contains logical variables, but also because
it is allowed to refer to instance variables of other objects. Furthermore we include
conditional expressions in the assertion language because they are very convenient
(e.g., in the axiom (SAl), see definitions 5.6 and 5.7).

In two respects our assertion language differs from the usual first-order predicate logic:
Firstly, the range of quantifiers is limited to the existing, non-nil objects in the current
state. With respect to the classes Int and Baal this only means that the range does
not include L This does not affect essentially the expressive power of the assertion
language, but in most practical cases one wants to exclude .1 from the quantification,
so in these cases the assertions become shorter. For the other classes this restriction
means that we cannot talk about objects that have not yet been created, even if they
could be created in the future. This is done in order to satisfy the requirements on the
proof system stated in the introduction. Because of this the range of the quantifiers
can be different for different states. More in particular, a statement can change the
truth of an assertion even if none of the program variables accessed by the statement
occurs in the assertion, simply by creating an object and thereby changing the range
of a quantifier. (The idea of restricting the range of quantifiers was inspired by [8].)

Secondly, in order to strengthen the expressiveness of the logic, it is augmented with
quantification over finite sequences of objects. It is quite clear that this is necessary,
because simple first-order logic is not able to express certain interesting properties.

4.1 The assertion language

Definition 4.1
For each d E C+ we introduce the symbol d* for the type of all finite sequences with

Doc. No.

24

elements from d, we let C· stand for the set {d* Id E C+}, and we use ct, with typical
element a, for the union C+ U C'.

We define Od' to be the set of finite sequences with elements from 01 (note that
the elements can also be 1-). The empty sequence €d is also included in Od'. The
elements in a sequence are always numbered starting from 1. In order to simplify
some formulae we define Of to be the s?IDe as Od', in deviation from definition 3.2.
In addition to f3d' , we shall sometimes use ad' to range over elements of Od'.

We have the following functions:

• lend: Od' Z returns the number of elements in the sequence.

• dtd : Od' X Z 01 extracts from the first argument the element numbered by
the second argument. If the second argument is "out of bounds" (less than 1 or
greater that the length of the first argument) then the result is L

Assumption 4.2
We assume that for every a in Ct we have a set LVara of logical variables of type a,
with typical element Za'

Definition 4.3
We the set LExp~ of logical expressions of type a in class c, with typical element I~,
as follows:

IC
a .. - eC

a if a E C+

Za

Ie c' c" xa if a E C+

if loc then 11~ else 12~ fi if a E C+

lId = 12d if a = Bool

11 C + 12c if a = Int

11 c <12c if a = Bool

115,1 if a = Int and d E C+

11~* ·12 c if a E C+

Note that the difference with the set EXPd of expressions in the programming language
is that in logical expressions we can use logical variables, refer to the instance variables
of other objects, and write conditional expressions. Furthermore, we extended the
domain of discourse by means of logical variables ranging over sequences and notations

Doc. No.

25

to express the length of a sequence and the selection of an element from a sequence.
The selection operator'·' can be distinguished from the dereferencing operator'.' by
its higher vertical position on the line and by the type of its first argument.

Definition 4.4
The set Assc of assertions in class c, with typical elements pc and QC, is defined by:

pc .. _ IC

pc -+ QC

.pc

'1z. pc

3z. pc

This definition is rather conventional.

Definition 4.5
Of course, we shall freely use the logical connectives II, V, and _, which we consider
as abbreviations of appropriate constructions with -+ and '. Furthermore we shall
use l~ r as an abbreviation for l~ = ni1d and l~ 1 for • l~ = ni1d.

Definition 4.6
Finally we define the set CorrPC of correctness formulae in class c, with typical
element pc, as follows:

pc pc

{PC}pC{QC}

4.2 Semantics of assertions and correctness formulae

Definition 4.7
In order to be able to assign a semantics to logical expressions we first define the set n
of valuations, with typical element w, as follows:

n = II (LVar. -+ OjJ .
•

(Remember that 01 = 0· if a E C·.) A valuation assigns a value to each logical
variable.

Definition 4.8
We call a valuation w compatible with a state (T if

Doc. No.

26

• '<Ie E C '<Izc' E LVarc' '<In E Z eUC(w(c')(z), n) Eat)

Again an abbreviation is useful: we shall write OK(a,o,w) meaning that a is consis
tent, 0 agrees with a, and w is compatible with a.

Lemma 4.9
Concerning the preservation of compatibility by statements and programs we have
the following properties:

• For any statement SC, for any agreement-preserving environment "(, for any
state a E ~, for any context OC and for any valuation w such that OK(a,o,w)
we have if a' = S[S]("()(8)(a) and a' f- 1- then OK(a',o,w).

• For any program pC, for any agreement-preserving environment "(, for any state
a E ~, for any context OC and for any valuation w such that OK(a, o,w) we have
if a' = P[p]("()(o)(a) and a' f- 1- then OK(a',o,w).

Proof
This is an easy consequence oflemma 3.21.

Definition 4.10
We define the semantics of logical expressions by specifying the function

as follows:

C~[e~](w)(0)(a)

C~[Zd](W)(0)(a)

C~ : LExpr~ _ n _ ~ c - ~ --+ 01

[~[e](o)(a)

W(d)(Z)

C~[l~,. x~](w)(o)(a) = 1- if f3 = 1-

= a(2)(c"d)(f3)(XJ') otherwise

where (3"' = Cd[l](w)(b)(a)

C~[if 1013001 then 11~ else 12~ fi](w)(o)(a) = 1-

= C~[ll](w)(o)(a)

= C~[12](w)(0)(a)

iff3=1-

if f3 = t

iff3=f

where f3 = Cd[lo](w)(o)(a)

CW1~' = 12~,](w)(0)(a) = t

= f

(only if d = Bool)

if C~,[ll](w)(o)(a) = CW2](w)(0)(a)
otherwise

Doc. No.

o

C:l[h:l + 12:l](w)(6)(0") = 1- if Cdl/t](w)(6)(0") = 1-

or CW2](w)(6)(0") = 1-

= C:l[Il](W)(6)(0") + Cd[12](w)(6)(0")

(only if d = Int)

C:l[h:l, < hd,](w)(6)(0") = 1-

= t

= f

otherwise

if Cd,[ld(w)(6)(0") = 1-

or Cd,[12](w)(6)(0") = 1-

if Cd-[ld(w)(6)(0") < CW2](w)(6)(0")

otherwise

(only if d = Bool and d' = Int)

CC[Ildol](w)(6)(0") = lend(C:lo[l](w)(8)(0"))

C:l[h:lo '12C](w)(6)(0") = e/td(Cdo [11](W)(8)(0"), CC[12](w)(6)(0"))

27

These equations are just what one would expect, especially after having seen defini
tion 3.12.

Lemma 4.11
If 0" E ~, 6 E ,6.c, andw E n are such that OK(0",6,w), then for every logical expression

IE LExpr:l we have C[I](w)(6)(0") E O"~), and for every expression I E LExpr:lo we

have eltd(C[IHw)(6)(0"), n) E O"~), for every n.

Proof
Induction on the complexity of l. o

Definition 4.12
Now we can define the semantics of assertions in terms of the function

as follows:

AC[IC](v)(w)(o)(O") = t if CC[I](w)(6)(0") = t
= f otherwise

AC[-,PC](v)(w)(6)(0") = f if AC[P](v)(w)(6)(0") = t
= t otherwise

AC[ltZd PC](v)(w)(6)(0") = t if for all,8 E O"(d) we have

AC[PC](v)(w{,8/z})(6)(0") = t
= f otherwise

Doc. No.

28

AC[3zd PC](V)(w)(0)(u) t if there is a f3 E u(d) such that

AC[PC](v)(w{,B/z})(o)(u) = t
f otherwise

AC[\fZd' PC](w)(o)(rr) = t if for all 0: E Od' such that

'In E Z eIt(0:, n) E rr~) we have

AC[PC](w{o:/z})(o)(rr) = t

= f otherwise

AC[3zd• PC](w)(o)(rr) = t if there is an 0: E Od' such that

'In E Z e/t(o:,n) E rr~) and

AC[PC](w{o:/z})(o)(rr) = t

f otherwise

A few remarks should be made here .

• Note that the possible values of a boolean logical expression are t, f, and .L. If
such an expression is viewed as an assertion, only t and f remain. If viewed as
an expression it yields 1., as an assertion it delivers f .

• It is very important to note that in assertions of the form Vz P and 3z P the
quantification ranges only over the existing, non-nil objects of the appropriate
type.

Example 4.13
The formula

x
V --+ W

from [7] can be expressed in our new assertion language in the following way:

3zd• (z . 1 == v II z ·Izl == w II 'In (0 < nil n < Izl) -+ (z . n).x == z . (n + I))

Example 4.14
There are no logical expressions in the language to construct a sequence with one
specific element (a singleton). However, if we want to say that property P holds for
the singleton whose element is given by the logical expression I, we can do this as
follows:

3Zd' Izl == IlIz·1 == IIlP(z)

Doc. No.

29

or equivalently:
'IZd' (Izl = 1 II z· 1 = I) -> P(z).

A similar procedure is possible for the empty sequence and for the concatenation of
two sequences. Furthermore we can see whether two sequences are equal by checking
if they have the same lengths and whether their corresponding elements are equal.
(Direct ways of expressing the above things could be included in the assertion lan
guage, but they would make the substitution operation [new/u] in definitions 5.13
and 5.15 much more complicated.)

Definition 4.15
Finally we define the notion of truth and validity of correctness formulae.

• We say that a correctness formula of the form pc is true with respect to a
valuation w, a context lic, and a state cr, written as w, Ii, cr 1= P, if OK(cr,li,w)
and

• We call a correctness formula of the form pc valid, written as 1= P, if it is true
with respect to every w, lic, and cr such that OK(cr,li,w).

• A correctness formula of the form {PC}pC{QC} is called true with respect to an
environment "(, a valuation w, a context lic, and a state cr, written as "(,w, Ii, cr1=
{P}p{ Q}, if w, Ii, cr 1= P implies that for the state cr' = PC[p]("()(Ii)(cr) we have

cr' # .L => w,li,cr' 1= Q.

• We define a correctness formula of the form {PC}pC{ QC} to be valid with respect
to an environment "(, written as "(1= {P}p{Q}, if we have "(,w, Ii, cr 1= {P}p{Q}
for every w, lic, and cr. We call such a correctness formula simply valid if it is
valid with respect to every environment.

Doc. No.

30

5 The proof system

In this section we shall present a number of axioms and rules that can be used to
derive correctness formulae. For each axiom and rule we shall give its justification
by proving that it is valid. Note that axioms are correctness formulae so we have
already defined what validity means for them. We call a proof rule valid if for every
environment "'I the validity of the premisses of the rule with respect to "'I implies the
validity of the conclusion with respect to "'I. The consequence of the validity of all the
axioms and rules will be that our proof system is sound, i.e., that if we can derive a
correctness formula (without any further assumptions), this correctness formula will
be valid. (There is one rule in the system that cannot be proved valid in isolation: the
recursion rule (MR) in definition 5.33. It will get a special treatment in the soundness
proof of the whole proof system (see theorem 5.40).)

5.1 Simple assignments

Definition 5.1
We shall call a statement a simple assignment if it is of the form x +- e or u +- e (that
is, it uses the first form of a side effect expression: the one without a side effect).

5.1.1 Simple assignment to a temporary variable

Definition 5.2
Our first axiom deals with the case that the target variable is a temporary variable:

{PC[e~/ud]} (ulc : Ud +- e:t) { pc} (SAT)

Here the notation P[elu] means: P in which e is substituted for x. We shall formalize
that notion in the next definition. (Note that this definition merely asserts that the
name (SAT) refers to the class of formulae of the form listed above.)

Definition 5.3
We shall define the substitution operation [elu] first for logical expressions:

x [elu] = x

U [elu] e

u' [elu] = u' if ul to u

z [elu] = z

I [elu] = I if I = nil, self, true, false

n [elu] = n

I.x[elu] (I[elu]) . x

Doc. No.

if 10 then 11 else 12 fi[e/uJ = if 10[e/uJ then It[e/uJ else 12 [e/uJ fi

(11 = 12)[e/uJ = (11 [e/u]) = (l2[e/u])

(11 + 12) [e/uJ = (tIle/u]) + (12[e/u])

11/ [e/uJ = II[e/uJl

(11 ·12)[e/uJ = (It[e/uJ·12[e/u])

Now we define this substitution for assertions other than logical expressions:

(P -> Q)[e/uJ = (P[e/u]) -> (Q[e/u])

(,P) [e/uJ = ,(P[e/u])

(Vz P)

(3z P)

[e/uJ

[e/uJ

Vz (P[e/u])

= 3z (P[e/uJ)

31

This definition can be summarized by saying that we can perform the substitution
[e/uJ by replacing u by e everywhere in the expression or assertion at hand. However,
this will not be true for the notions of substitution that we will define in the sequel,
despite the fact that we use a very similar notation to indicate those substitutions.

In the following lemma we express the most important characteristic of the substitu
tion [e/uJ. Informally spoken, for any logical expression or assertion, the substituted
form has the same value in the state before the assignment as the unsubstituted form
has in the state after the assignment.

Lemma 5.4
Consider the assignment statement Ud +- ed' Let 'Y E r, a E ~ and 8 E ~ c be
arbitrary, and let

a' = S[u +- e]('Y)(8)(a).

Then we have the following facts:

1. For every logical expression Idl and every valuation w

,C[1[e/uJ](w)(6)(a) = £[I](w)(6)(a/).

2. For every assertion pc, every valuation w

A[P[e/u]](w)(6)(a) = A[P](w)(o)(a').

Doc. No.

32

Proof
First we observe that <7' = S[u <- e]('Y)(6)(<7) means that <7'
f3 = E[e](6)(<7).

<7{f3/u}, where

Now we can prove the first part of the lemma by induction with respect to the structure
of I. The only interesting case occurs when! = u so that l[efuJ = e:

£[e](w)(6)(<7) = E[e](6)(<7)

= f3
= <7(3)(4u)

E[u] (6)(<7')

£[uJl(w)(6)(<7')

After that we can prove the second part of the lemma by a straightforward induction
on the structure of P.

Of course, this lemma is easily extended to the case where instead of an assignment
statement we take a progmm in which the statement is a simple assignment to a
temporary variable:

Corollary 5.5
The axiom (SAT) is valid, that is, for every environment 'Y we have

'Y 1= {P[e/uJ} Wlc: u <- e) {p}.
o

Note that the corollary uses only one direction of the lemma. The two directions
together say that P[e/uJ is the weakest precondition of the statement u <- e with
respect to the postcondition P.

5.1.2 Simple assignment to an instance variable

Definition 5.6
In the case that the target variable of an assignment statement is an instance variable,
we use the following axiom:

(SAl)

This looks very similar to our first axiom (SAT), but note that we have not yet defined
what substitution means if we substitute an expression for an instance variable instead

Doc. No.

33

of a temporary variable. We shall do that now, and the difference will become clear
immediately:

Definition 5.7
The substitution operation [e/xJ is defined as follows on logical expressions:

x [e/xJ = e

x' [e/xJ x' if x' # x

u [e/xJ u

z [e/xJ = z

I [e/xJ = I if 1= nil, self, true, false

n [e/ xJ = n

I.x [e/xJ if (1[e/x]) = self then e else (l[e/x]). x fi

l.x'[e/xJ = (I[e/x]). x' if x' # x

if 10 then I, else 12 fi[e/xJ = if 10[e/xJ then h[e/xJ else 12[e/xJ fi

(I, = 12)[e/xJ = (h[e/x]) = (12[e/x])

(It + 12) [e/xJ = (h[e/x]) + (l2[e/x])

(I, < 12)[e/xJ = (I,[e/x]) < (12[e/x])

III [e/xJ = II[e/xli
(I, ·12)[e/xJ = (l1[e/xJ ·12[e/x])

The definition is extended to assertions other than logical expressions in the same
way as before:

(P -+ Q)[e/xJ = (P[e/x]) -+ (Q[e/x])

(~P) (e/xJ = ~(P[e/x])

('1z P) [e/xJ = '1z (P[e/x])

(3z P) [e/xJ = 3z (P[e/x])

The most important aspect of this definition is certainly the conditional expression
that turns up when we are dealing with a logical expression of the form I. x. This
is necessary because a certain form of form of aliasing is possible: the situation that
different expressions refer to the same variable. In the case of I. x, it is possible
that, after substitution, I refers to the currently active object, so that I. x is the

Doc. No.

34

same variable as x and should be substituted bye. It is also possible that, after
substitution, I does not refer to the currently executing object, and in this case no
substitution should take place. Since we cannot decide between these possibilities by
the form of the expression only, a conditional expression is constructed which decides
"dynamically" .

Lemma 5.8
Consider the assignment statement xd +- ed. Let 'Y E r, <7 E ~, and 6 E A C be
arbitrary, and let

<7' = S[x +- e]('Y)(6)((7).

Then we have the following facts:

1. For every logical expression l;j, and every valuation w

£[I[e/x]](w)(6)(<7) = £[I](w)(6)(<7').

2. For every assertion pc and every valuation w

A[P[e/xJ](w)(6)(<7) = A[P~(w)(6)(<7').

Proof
Like in lemma 5.4 we first note that <7' = <7{,8/6(1), X} where,8 = £[e](6)(<7). The
first part of the lemma is now proved by induction on the complexity of l. We shall
only deal with the most interesting case: I = I'. x. The induction hypothesis tells
us that £[I'[e/x]](w)(6)(<7) = .c[I'](w)(6)(<7'). Let us call this object ,80. Now if
,80 = 6(1) then £[1'. x](w)(6)(<7') = <7(2)(6(1»)(x) = ,8 = .c[e](w)(6)(<7). Otherwise
we have £[I'.x](w)(6)(<7') = <7(2)(,80)(x) = £[(l'[e/x]).x](w)(6)(<7). So £[if I'[e/x] =
self then e else (l'[e/x]). x fi](w)(6)(<7) = £[I'.x](w)(6)(<7').

The rest of the lemma is proved in a way, similar to lemma 5.4. o

Again we can extend this to programs instead of statements:

Corollary 5.9
The axiom (SAl) is valid, that is, for every environment 'Y we have

'Y F {P[e/x]} (ulc : x +- e) { p}.

o

Note that this corollary also uses only one direction of the corresponding lemma.
Again the two directions together say that pre/xl is the weakest precondition of the
statement x +- e with respect to the postcondition P.

Doc. No.

35

5.2 Creating new objects

5.2.1 Assigning a new object to a temporary variable

Definition 5.10
For an assignment of the form u <- new we have a axiom similar to the previous two:

(NT)

Again we still have to define what this notion of substitution looks like, but first we
shall define the substitution of an expression for a logical variable, because we shall
need that later:

Definition 5.11
We define the substitution operation [ej z] on logical expressions by:

x [ej z] = x

u [ej z] = u

z [ej z] = I
z' [ej z] = z' ifz'#z

I' [ej z] I' if I' = nil, self, true, false

n [el z] n

I'.x[ejz] (I'[ej z]) . x

if 10 then It else 12 fi[ejz] = if lo[ejz] then It [ejz] else 12[ejz] fi

(It == 12)[ejz] (It[ejz]) == (12[ejz])

(Id 12) [ejz] = (It [ejz]) + (12[ejz])

11\ [ejz] = II[ejz]1

(it . 12)[ej z] = (lIlej z] ·12[ej z])

We extend this definition to assertions other than logical expressions as follows:

Doc. No.

•

36

•

(P - Q)[e/z] (P[e/z]) _ (Q[e/z])

(.P) [e/ z] .(P[e/z])

(liz P) [e/ z] = liz P

(liz' P) [e/ z] liz' (P[e/z]) ifz'r'z

(3z P) [e/ z) = 3z P

(3z' P) [e/ z] 3z' (P[e/z]) ifz'r'z

This definition can be summarized by observing that the substitution can be carried
out by replacing z by e everywhere except in the scope of a quantifier where z is
bound.

Lemma 5.12
Let a E E, 6 E tJ.c, e E Exp~, and z E LVard be arbitrary, and let f3 = t:[e](6)(a).
Then we have

1. For all I E LExp~, and for all wEn:

C[I[e/z]](w)(6)(a) = C[I](w{f3/z})(o)(a).

2. For all P E Assc, for all wEn:

A[P[e/ z]](w)(6)(a) = A[P](w{f3 / z})(0)(a).

Proof
A rather trivial induction on the complexity of I and P. o

Now we can define the substitution [newc/uc]. We shall do this first for logical expres
sions. As with the notions of substitution used in the axioms for simple assignments,
we want the expression after substitution to have the same meaning in a state before
the assignment as the unsubstituted expression has in the state after the assignment.
However, in the case of a new-assignment, there are expressions for which this is not
possible, because they refer to the new object (in the new state) and there is no ex
pression that could refer to that object in the old state, because it does not exist yet.
Therefore the result of the substitution must be left undefined in some cases.

However we will show that we are able to carry out the substitution. The idea
behind this is that in such an assertion the variable u referring to the new object
can essentially occur only in a context where either one of its instance variables is
referenced, or it is compared for equality with another expression. In both of these
cases we can predict the outcome without having to refer to the new object.

Doc. No .

.. I

37

Definition 5.13
Here comes the formal definition of the substitution [new/u] for logical expressions:

x [new/u] = x

u [new/u] is undefined

u'[new/u] = u ifu'rf u

z [new/u] = z

I [new/u] = I if I = nil, self, true, false

n [new/u] = n

x' · x[new/u] = x'.x

u · x[new/u] = nil

u' · x[new/u] = u'. x ifu'rfu

z · x[new/u] = Z.x

I · x[new/u] I. x if I = nil, self

I. x' . x[new/u] = (I. x'[new/u]). x

(if 10 then 11 else 12 fi.x) [new/u]

= if lo[new/u] then (/1.x)[new/u] else (/2 .x)[new/u] fi

if 10 then l, else 12 fi[new/u]

= if Io[new/u] then 11 [new/u] else I2[new/u] fi

if the substitutions of the subexpressions are all defined,

otherwise undefined

(11 = 12) [new/u] = (11[new/u]) = (12[new/u])

if neither 11 nor 12 is u or of the form if ... fi

(11 = 12) [new/u] = false

if either l, = u and 12 is not u or of the form if ... fi

or 12 = u and 11 is not u or of the form if ... fi

(11 = 12) [new/u] = true

if 11 = 12 = U

Doc. No.

38

(if 10 then I, else 12 fi == 13) [new /u]

= if 10[new/uJi

then (13i)[new/u]

else if lo[new/u]

fi

then (I, == 13) [new/u]

else (12 == 13) [new/u]

fi

(I, == if 10 then 12 else 13 fi) [new/u]

= if 10[new/uJi

then (I, i) [new/u]

else if Io[new/u]

fi

then (II == Iz)[new/u]

else (I, == 13) [new/u]

fi

if 1, is not of the form if ... fi

III [new/uJ = II[new/u]1

(I, .Iz)[new/u] = (I, [new/uJ) . (lz[new/uJ)

Lemma 5.14
Let u E TVar d with dEC (Le., d # Int, Bool).

1. For every logical expression I we have that I[new/u] is defined if and only if I is
not of the form indicated by the following BNF definition:

Doc. No.

Iu .. - u

if 10 then lu else I, fi

if 10 then I, else lu fi

39

2. If a E E, 6 E t:,c, w E fl, and 'Y E r are such that OK(a,6,w), and if a' =
S[u _ new]('Y)(6)(a) then for every logical expression 1 such that I[new/u] is
defined we have

C[I[new/u]](w)(6)(a) = C[I](w)(6)(a').

Proof
The first part is easily proved by induction on the complexity of I. For the second
part we first observe that

a' = a{ a{1)(d) U {,8} / d} {,8 / u}

where,8 = pickd(a{1)(d»), so,8 rt. a{1)(d) U {1.} (see definitions 3.13 and 3.14).

Now we can prove our lemma by induction on the complexity of I. In several places
we need the information that OK(a,6,w) together with lemma 4.11 in order to prove
that the result of an intermediate logical expression is not equal to,8. Let us deal
with one representative case: I = x' . x. Then I[new/u] = I = x' . x. Now the induction
hypothesis tells us that C[x'](w)(o)(a) = C[x'](w)(6)(a'). If we put this equal to,8'
then we know ,8' f. ,8 because lemma 4.11 tells us that ,8' E a(l)(d) U {1.}. Therefore
we have C[x' .x](w)(6)(a) = a(2)(,8')(x) = a(2)(,8')(x) = C[x' .x](w)(6)(a'). 0

Definition 5.15
We extend the substitution operation [new/u] to assertions other than logical expres·
sions as follows (we assume that the type of u is dEC):

(P -+ Q)[new/u] = (P[new/uJ) -+ (Q[new/uJ)

(,P) [new/u] = ,(P[new/uJ)

(VZd P) [new/u] = (Vz(P[new/uJ)) II (P[u/z][new/uJ)

(Vzd• P) [new/u] = (Vz Vz: Izl = Iz'l- (P[z',u/z](new/uJ))

(Vza P) [new/u] = (Vz(P[new/uJ)) if a f. d, d*

(3Zd P) [new/u] = (3z(P[new/uJ)) V (P[u/z](new/uJ)

(3zd• P) [new/uJ = (3z 3z: Izl = Iz'llI (P[z',uJzJ(new/uJ))

(3za P) [new/uJ = (3z(P[new/uJ)) if a f. d, d*

Here we choose for z' the first variable from LVar. that does not occur in P. The
idea is that z and z, together code a sequence of objects in the state after the new
statement. At the places where z' yields t the value of the coded sequence is the
newly created object. Where z' yields f the value of the coded sequence is the same
as the value of z and where z, delivers 1. the coded sequences also yields 1..

We still have to define the substitution operation [z', uJ z] and we shall do that now:

Doc. No.

40

Definition 5.16
Let dEC, u E TVard, z E LVard" and z, E LVar •. For logical expressions we define
the operation [z', u/ z] as follows:

e [z',u/z] = e

z [z',u/z] is undefined

z" [z', u/ z] = z" if z" # z

!.x [z',u/z] = (I[z',u/z]).x

Izl [z', u/ z] = Izl
III [z',u/z] = II[z',u/z]1 ifl#z
(z.12) [z',u/z] = ifz"(l2[z',u/z])thenuelsez'(l2[z',u/z])fi

(/1 ·12)[z',u/z] = (ldz',u/z]), (12[z',u/z]) ifl1 # z

if 10 then 11 else 12 fi [z', u/ z] =
if (lo[z', u/ z]) then (11 [z', u/ z]) else (lz[z', u/ z]) fi

(11 = 12)[z',u/z] = (h[z',u/z]) = (/2[Z',U/Z])

(11 + 12)[z',u/z] = (11[z',u/z]) + (/2[Z',U/z])

= Il[z',u/zll Ill[z', u/ zl
(l1· 12)[z',u/z] = (h[z', u/ z]· h[z', u/ z])

We extend this definition to assertions other than logical expressions as follows:

(P -+ Q)[z',u/z] = (P[z',u/z]) -+ (Q[z',u/z])

(.P) [z',u/z] = .(P[z',u/z])

(\lz P) [z', u/ z] = (\lz P)

(\lz" P) [z',u/zj = (\lz" (P[z',u/z]))

(3z P) [z', u/ z] = (3z P)

(3z" P) [z',u/z] = (3z" (P[z',u/z]))

Lemma 5.17

ifz"#z

ifz"#z

Let u,z,z' be as in definition 5.16. Let U E E, {j E ~c, wEn, and take a = W(d')(Z),

a' = W(.)(z'), (3 = U(3)(d)(U). Suppose that lend(a) = len(a'). Define a" E Od' to be
the sequence that satisfies (for all n E Z):

Doc. No.

len(a") = len(a)

elt(a",n) = f3
elt(a",n) elt(a,n)

elt(a",n) = L

and takew' =w{a"/z}.

Then we have:

if elt(a',n) = t

if elt(a',n) = f
if elt(a',n) = L

1. For every 1 E LExpr';, such that 1 01 z:

.cal[z', u/ zll(w)(hl(0") = .c~[I](w')(15)(0").

2. For every P E Assc such that z' does not occur in P:

AC[P[z', u/ z]](w)(15)(0") = AC[P](w')(15)(0").

Proof

41

The proof consists of a quite easy induction on the complexity of I and P respectively.
Of course, the only interesting case is when 1 is of the form z . 12. Note that the
condition on z' is necessary to exclude assertions of the form 'I z' P or 3z' P. 0

Lemma 5.18
Let 0" E E, 15 E ~c, wEn such that OK(O",h,w). Let dEC, u E TVard, '"(E rand
define 0"' = SC[u <- new]('"()(h)(O"). Then for every assertion P E Assc we have

AC[P[new/u]](w)(h)(O") = AC[P](w)(h)(O"').

Proof
Again we use induction on the complexity of P. The only case which is not yet clear
from the first approach is quantification over sequences, so let us consider the case
where P = '1zd' Q. Take f3 = Jd(O"(d»), so that O",(d) = O"(d) U {f3} and f3 = 0"(3)(d)(U),
and let z' be the first variable from LVar, that does not occur in Q.

Now suppose that
A[('1zd' Q)[new/u]](w)(h)(O") = t.

We shall prove that
A['1zd' Q](w)(h)(O"') = t

so we have to show that for every a" E Od' such that elt(a", n) E O"'~) for all nEZ,
it is the case that A[Q](w{all/z})(h)(O"') = t. If we have such an a", we can define
a E Od' and a' E 0' as follows:

Doc. No.

42

len(a) = len(a'l = len(a")

elt(a, n) .L, elt(a',n)

elt(a,n) = elt(a",n), elt(a',n)

Now because

= t if elt(a",n) = f3
f if 1 ::; n ::; len(a")

and elt(a", n) f- f3

A[\tZd.\lz:lzl = Iz/l---> Q[z',ulz][newlu]](w)(8)(0") = t

and because a and a' have equal length and do not have elements outside O"~) and

0"2 respectively, we know that

A[Q[z', ul z](new lu]](w{ al z}{ a' I Z/})(8)(0") = t.
The induction hypothesis then tells us that

A[Q[Z', ul z]](w{ al z}{ a' I Z/})(8)(0"') = t.

Finally we can apply lemma 5.17 and use the fact that Z' does not occur in Q, to see
that

A[Q](w{a"lz})(8)(0"') = t.

To prove that A[\tZd' Q](w)(6)(,r) = t implies A[(\lzd' Q)[newlu]](w)(6)(0") = t
involves reasoning in the other direction, in particular to find a suitable a" for each
pair a, a' that satisfies certain conditions. We omit further details. 0

Again we extend this result to the case of programs:

Corollary 5.19
The axiom (NT) is valid, that is, for every environment "I we have

"11= {P[newlu]} (Ulc: u <- new) {p}.
o

5.2.2 Assigning a new object to an instance variable

Definition 5.20
If our assignment is of the form x <- new we have the following axiom:

(NI)

Fortunately, after having worked through the previous subsection, this new axiom is
simple to define and to prove valid.

Doc. No.

43

Definition 5.21
The substitution operation [newe, / x~,] is defined by:

P[newe'/x~,] = P[Ue'/x~,] [neWe'/ue,]

where U e' is a temporary variable that does not occur in P. (It is easy to see that
this definition does not depend on the actual U used.)

Lemma 5.22
Let U E 1;, C E Ae and wEn be such that OK(u, c,w). Let J E r, dEC, x E IVar~,
and define u' = S[x <- new](J)(c)(u). Then for every assertion pc we have

w,c,u 1= P[new/x] ¢=> w,c,u'l= P.

Proof
Choose some u E TVard which does not occur in P, so that we have P[new/x] =
P[u/x][new/u]. Let U" = S[u <- new; x <- u](J)(c)(u). We have by lemma 5.8 and
lemma 5.18 that w,c,u 1= P[u/x][new/u] ¢=> w,c,u"l= P.

Now if /3 = pickd(u(d) then we have u' = u{/3/c(1),x} and u" = u{/3/U}{/3/C(l),X},
so that u" = u' {/3 / u}. Because u does not occur in P we have w, c, u' 1= P ¢=>

w, C, U" 1= P, and the result of the lemma follows. 0

Corollary 5.23
The axiom (NI) is valid, that is, for every environment J we have

"/1= {P[newjxl} (U\c: x <- new) {p}.
o

5.3 Sending messages

In this subsection we present some proof rules for verifying the third kind of assign
ments: the ones where a message is sent and the result stored in the variable on the
left hand side. We start with a rule for a non-recursive method and later on we show
how to deal with recursion.

Definition 5.24
For the statement x <- eolm(e1, ... , en), where x E IVar~o' m E MNamec;., ... ,d

n
,

eo E Exp~ and ei E Exp~; for i = 1, ... , n, we have the following proof rule:

{pc' II 117:1 Vi = nil}(U\c' : S){ Qe'[e/r]}, Q[e/self, u][f/z] -> Re[r /x]

{P[e/self,u][!/z]}(U\c: x <- eOlm(e1, ... ,en)){R}

Doc. No.

(MI)

44

where S E State' and e E Exp~o are the statement and expression occurring in the def
inition of the method m in the unit U, Ul, ... , Un are its formal parameters, Vl, •.. , Vk
is a row of temporary variables that are not formal parameters (k 2: 0), r is a logical
variable of type do that does not occur in R, 1 is an arbitrary row of expressions (not
logical expressions) in class c, and z is a row of logical variables, mutually different
and different from r, such that the type of each Zi is the same as the type of the
corresponding J;. Furthermore, [e/self, ill stands for a simultaneous substitution hav
ing the "components" [eo/self], h/Ul], ... , (en/un] (a formal definition will follow).
We require that no temporary variables other than the formal parameters Ul, ... , Un

occur in P or Q.

We still have to define precisely what [e/self, ill means, but before doing that let us
give some informal explanation of the above rule. When a statement as above is
executed, several things happen. First, control is transferred from the sender of the
message to the receiver (context switching). The formal parameters of the receiver
are initialized with the values of the expressions that form the actual parameters of
the message and the other temporary variables are initialized to nil. Then the body S
of the method is executed. After that the result expression e is evaluated, control is
returned to the sender, the temporary variables are restored, and the result object is
assigned to the variable x.

The first thing, the context switching, is represented by the substitution [eo/self]. A
little more precisely, an assertion P as seen from the receiver's viewpoint is equivalent
to P[eo/self] from the viewpoint ofthe sender. Note that this substitution also changes
the class of the assertion: P[eo/self] E Asse whereas P E Asse'. Now the passing
of the parameters is simply represented by the substitution [eb .•. , en/Ul>" . ,Un].
Therefore after the parameters have been transferred to the receiver, P from the
receiver's viewpoint corresponds to P[e/self,iL] as seen by the sender. (Note that we
really need simultaneous substitution here, because Ui might occur in an ej with j < i,
but it should not be substituted again.) In reasoning about the body of the method
we may also use the information that temporary variables that are not parameters
are initialized to nil.

The second thing to note is the way the result is passed back. Here the logical
variable r plays an important role. This is best understood by imagining after the
body S of the method the statement r +- e (which is syntactically illegal, however,
because r is a logical variable). In the sending object one could imagine the (equally
illegal) statement x +- r. Now if the body S terminates in a state where Q[e/r] holds
(a premiss of the rule) then after thfs "virtual" statement r +- e we would have a
situation in which Q holds. Otherwise stated, the assertion Q describes the situation
after executing the method body, in which the result is represented by the logical
variable r, everything seen from the viewpoint of the receiver. Now if we context
switch this Q to the sender's side, and if it implies R[r/x], then we know that after
assigning the result to the variable x (our second imaginary assignment x +- r), the

Doc. No.

45

assertion R will hold.

Now we come to the role of 1 and z. We know that during the evaluation of the
method the sending object becomes blocked, that is, it cannot answer any incoming
messages. Therefore its instance variables will not change in the meantime. The
temporary variables will be restored after the method is executed, so these will also
be unchanged and finally the symbol self will retain its meaning over the call. All
the expressions in class c (and in particular the Ii) are built from these expressions
plus some inherently constant expressions and therefore their value will not change
during the call. However, the method can change the variables of other objects and
new objects can be created, so that the properties of these unchanged expressions
can change. In order to be able to make use of the fact that the expressions 1 are
constant during the call, the rule offers the possibility to replace them temporarily by
the logical variables z, which are automatically constant. So, in reasoning from the
receiver's viewpoint (in the rule this applies to the assertions P and Q) the value ofthe
expression J; is represented by Zi, and in context switching Ii comes in again by the
substitution [l/z]. Note that the constancy of 1 is guaranteed up to the point where
the result of the method is assigned to x, and that x may occur in Ii, so that it is
possible to make use of the fact that x remains unchanged right up to the assignment
of the result.

Definition 5.25
Now we define formally the substitution operation [e/self]. First we do this for logical
expressions:

x [e/self] = e. x

u [e/self] = u

Z [e/self] = Z

self [e/self] = e

I [e/self] = I

I. x [e/self] = (I[e/self]) . x

if I = nil, true, false, n

if 10 then It else /2 fi[e/self] = if lo[e/self] then It[e/self] else 12[e/self] fi

(/t ,: 12)[e/self] = (It [e/self]) ,: (I2 [e/self])

(It + 12)[e/self] = (It[e/self]) + (h[e/self])

Ill[e/self] Il[e/selfll

(It '/2)[e/self] = (It[e/self]'/2[e/self])

Doc. No.

46

Now we extend this to assertions other than logical expressions:

(P ---> Q)[e/self] = (P[e/self]) ---> (Q[e/self])

(.P) [e/self] = .(P[e/self])

(VzP) [e/self] = Vz(P[e/self])

(3zP) [e/self] = 3z(P[e/self])

Lemma 5.26
Let u E ~, 0 E ~c, e E Exp~" and define f3 c' = £[e](o)(u). Let 0' E ~c' be such that
8(1) = f3. Then we have

1. For every logical expression I~ and every valuation w

'c[I](w)(8')(u) = 'c[I[e/self]](w)(8)(u).

2. For every assertion pc' and every valuation w

A[P](w)(8')(u) = A[P[e/self]](w)(8)(u).

Proof
An easy induction on the complexity of I and P. o

Definition 5.27
Although the intention of simultaneous substitution is probably clear to the reader,
we give its definition for the case in which we really need it here, for completeness'
sake. Let e = eo, ... , en and u = Ul, ... , Un. Then we define:

x [e/self,u] = eo.x

Ui [e/self, u] = ei

U [e/self, u] = U

z [e/self, u] = z

self [e/self, u] = eo

I [e/self, u] = I

l. x[e/self, u] = (I[e/self, u]). x

for i = 1, ... ,n

if 1= nil,true,false,n

if 10 then It else 12 file / self, u] = if lo[e / self, u] then 11 [e / self, u] else 12 [e / self, u] fi

(11 ~ 12)[e/self,u] = (ll[e/self,u]) ~ (12[e/self,u])

(11 + 12)[e/self,u] = (!t [e/self, u]) + (12[e/self,u])

(11 < 12)[e/self,u] (!t[e/self,u]) < (12[e/self,u])

Doc. No.

III[e/self, u] = II[e/self, uJi

(I I ·I2)[e/self,u] (il [e/self, u] ·I2 [e/self,u])

Now we extend this to assertions other than logical expressions:

(P -> Q)[e/self,u] = (P[e/self,u]) -> (Q[e/self,u])

(,P) [e/self,u] = ,(P[e/self,u])

('1zP) [e/self,u] = '1z(P[e/self,u])

(3zP) [e/self, u] = 3z(P[e/self, u])

Of course we also have a corresponding lemma:

Lemma 5.28

47

Let U E E, 6 E ~c and ei E EXP~i for i = O, ... ,n (with do E C). Define fJ; =
[[ei](6)(u). Let 6' E ~do be such that 6(1) =!3o and let u' = U{!3;/Ui}7=I' Then we
have

1. For every logical expression I~o and every valuation w

£[I](w)(6')(u') = £[l[e/self,u]](w)(6)(u).

2. For every assertion pdo and every valuation w

A[P](w)(6')(u') = A[P[e/self,u]](w)(6)(u).

Proof
Again a quite simple induction on the complexity of I and P. o

Example 5.29
Let us illustrate the use of the rule (MI) by a small example. Consider the unit
U = c : (m ~ (uo) : Xl <- Uo r X2) and the program p = (Uk: Xl <- UI!m(X2)). We
want to show

So let us apply the rule (MI) with the following choices:

P = Xl = Zl 1\ ,self = Z2

Q = Xl = Uo 1\ r = X2 1\ ,self = Z2

R = Ul . Xl == X2 /\ Xl == Ul . X2

k = 0 (we shall use no Vi)

it = Xl (represented by Zl in P and Q)

12 = self (represented by Z2 in P and Q)

Doc. No.

48

o
before after

Figure 2: The situation before and after sending the message (example 5.29)

First notice that P[u1,xz/self,uo][x1,self/zl,zz] = U1.X1 = X1/\ ~U1 = self so that
the result of the rule is precisely what we want.

For the first premiss we have to prove

{Xl = Zl /\ ~self = Zz }(Ulc : Xl <- UO){ Xl = Uo /\ Xz = Xz /\ ~self = zz}.

This is easily done with the axiom (SAl) and the rule of consequence (which will be
introduced in definition 5.39).

With respect to the second premiss, we have

Q[U1, xz/self, UO][X1, self / Zl, zz] = U1' Xl = Xz /\ r = U1 . Xz /\ ~U1 = self

R[r/x1] = if U1 = self then r else U1' Xl fi = Xz /\ r = U1. Xz

It is quite clear that the first implies the second, and we can use this implication as
an axiom (see definition 5.38).

Lemma 5.30
The proof rule (MI) is valid.

Proof
Consider the rule as listed in definition 5.24. Let "'I E r and suppose that the premisses
are valid with respect to "'I. We shall prove that the conclusion is valid with respect
to "'I' So let 17 E E, 6 E ~c, and wEn be such that (j,6,w 1= P[e/self,u](i/z]. Let
"'I' = U[U]("'!) and let 17' = P[(ulc: X <- eO!m(e1,"., en))]("'1)(6)((j). So 17' = S[x <

eO!m(e1, ... ,en)]("'1')(8)((j). We have to prove (j',6,w 1= R.

Let w' = W{£[fi](6)((j)/Zi}!~1' Then lemma 5.12 gives us (j,6,w' 1= P[e/self,u].
Let /3i = £[ei](8)((7) for i = 0, ... , n and suppose that /30 i' .L and /30 !/: 8(z)(c)
(otherwise we would have that 17' = .L and the result would be trivial). Define

8' = (/30,6{2){6(Z)(c)U {8{1)} Ic}) and 171 = (17(1), (j(Z)' 171(3)) where 171 (3)(di)(Ui) = /3i
and 171 (3)(d)(Ud) = .L if u!/: {U1, .. .,Un }. Now because of lemma 5.28 and the fact

Doc. No.

a,5,w F= P[e/self,u][J/z] ~ a,5,w' F= P[e/self,u] ~

a",5,wl F= Q[e/self,u][l/z] {= a",5,w; F= Q[e/self,u] {=

.lJ-

a", 5, WI F= R[r/x]

.lJ-

a',5,wl F= R

.lJ-

a',5,w F= R

0'1, 8', Wi 1= P

.lJ

a2,5',w' F= Q[e/r]

.lJ-

Figure 3: The structure of the proof of lemma 5.30.

49

that temporary variables other than the Ui may not occur in P, we have aI, 5', w' F= P.
We also know that aI, 0', w' F= Vi ,:, nil for i = 1, ... , k so aI, 5', w' F= P" /\7:1 Vi ,:, nil.

Now because of the construction of 'Y' in definition 3.17 we know that 'Y'(c',d)(m) =
M[(u) : S 1 e]('Y') so we can refer directly to the method definition of min U to
see what 'Y'(c',d)(m) does. So let us take a2 = P[(Ulc' : S)]('Y)(5')(a1), then a2 =
S[S]('Y')(o')(ad. Assume that a2 i' 1., otherwise we have a' = 1. and we are ready.
The validity of the first pretniss with respect to 'Y tells us that a2,5',w' F= Q[e/r]. Let
{3 = £[e](5')(a2),wl = w{{3/r}, and w; = w'{{3/r}. Then because of lemma 5.12 we
have a2, 5',w; F= Q.

Let a" = (a2(1),a2(2),a(3)) (we restore the temporary variables). Now we appeal to
the reader's understanding of the semantics of the language to see that the method
destination eo, the actual parameters el, ... , en and the expressions! are unchanged
in a" in comparison with a. Otherwise stated, £[ei](0)(a) = £[ei](0)(a") and the
same for Ii. (Of course, this can also be proved formally.) Then we know from
lemma 5.28 that a",o,w; F= Q[e/self,u] and from lemma 5.12 together with the ob-

servation that w; = WI {£[/i](5)(a)/ Zi}!~1 we get a", 5,Wl F= Q[e/self, u][!/z].

From the second premiss we can conclude that a",5,wl F= R[r/x]. Now for the final
state a' we know that a' = a"{,6/o(1),x}, so lemma 5.8 tells us that a',5,Wl F= R.
Finally, because r does not occur in R, we have a', 5,w F= R. 0

Definition 5.31
For the statement U f- eo!m(et, ... ,en), where u E TVardo, m E MNamed~, ... ,dfl'

Doc. No.

50

eo E Exp~, and ei E EXPd; for i = 1, ... , n, we have the proof rule (MT) which
is identical to the rule (MI) introduced in definition 5.24, except that the instance
variable x is replaced everywhere by the temporary variable u.

Lemma 5.32
The proof rule (MT) is valid.

Proof
This can be proved by a slight adaptation of the proof of lemma 5.30. o

Now we come to the issues of how to handle recursive and even mutually recursive
methods. For this we use an adapted version of the classical recursion rule (see for
example [3]). The classical rule goes as follows (in the notation of [3]):

{p}P{q} I- {p}So{q}
{p}P{q}

The idea is to prove (the operator I- expresses provability) the correctness of the body
(So) from the assumption that the procedure call (P) itself satisfies its specification.
If that has been done we can conclude the correctness of the procedure call without
assumptions. The validity of this rule can be proved as follows: the meaning of the
procedure call is the limit of a increasing sequence starting with .L, in which every
element is obtained from the previous one by assuming the previous as the meaning
of the procedure call and calculating the meaning of the body from that. From the

. premiss of the rule we can prove that every element in the sequence satisfies the
specification and by a continuity argument we conclude that the procedure call itself
satisfies the specification.

There are several remarks to be made. One is that in proving the premiss of the
rule we may not make use of the declaration of P, because otherwise we are not sure
that the implication also holds for the intermediate elements in the approximating
sequence. The second remark is that if we have a non-recursive rule like our rules (MI)
and (MT), then we could change the conclusion of the recursion rule into {p}S{q},
from which we could infer {p} P{ q} by the non-recursive rule. We do that in our proof
system to be able to use the outcome of the recursion rule for different values of the
parameters. Finally it is clear how to extend the rule to several, mutually recursive
procedures.

Definition 5.33
For mutually recursive methods m" ... , mn we have the following rule:

FI, ... , Fn r F{, ... , ~
F

(MR)

where

Doc. No.

Fi = {PiC: [ei /self, iiiHp pi] }(U-Ic; : Xi <- eb!mi(eL . .. , e~.»){ R;C'}

F: {p,c: /\ /\j~1 V} == nil}(u-IC:: Si){ Q~:[e;/ri]}
F; = Qi[ei/self,iii][p/zi]-+ R;[r;jx;]

F {P1/\/\j;1 vJ == nil}(UIc~: S1){Q~;[edr1]}
iii, Si, and ei are as they occur in the definition of mi in U

Xi are instance or temporary variables

U- results from U by deleting the definitions of m1, . .. , mn

Pi, Qi, Ri, 1', zi, jji, k;, and ri are just like in definition 5.24

51

We cannot prove the validity of this proof rule on its own, because it depends on what
the other rules can prove (the operator f- occurs in the premiss).

5.4 Other axioms and rules

Finally in this subsection we shall list the remaining axioms and rules of our proof
system. They will deal with the more ordinary statements and therefore they are not
very new (most of them can already be found in [4]).

Definition 5.34
For a side effect expression s;l functioning as a statement we have the following rule:

{pc }(ulc: Ud <- s;l){ QC}

{p}(Ulc: s){Q}

where Ud is a temporary variable not occurring in P or Q.

Definition 5.35
For the sequential composition of statements we have the following proof rule:

{pC }(uISf){ QC} {Qc }(uIS~){ RC}

{p }(uIS1; S2){ R}

Definition 5.36
For the conditional statement we have this rule:

{pC /\ eC }(uISf){ QC} {pc /\ ,e }(uISi){ QC}

{p }(Ulif e then S1 else S2 fi){ Q }

Doc. No.

(ES)

(SC)

(C)

52

Definition 5.37
For the while loop we have the following rule:

{pc 1\ eC }(uW){ pc}
(W) {p }(U!while e do S od){ p 1\ ~e}

Definition 5.38
For every valid (see definition 4.15) assertion pc we have the axiom:

p (TR)

Definition 5.39
Finally, we have the so-called rule of consequence:

Pf -+ Pi
(Re)

Theorem 5.40
The proof system consisting of the axioms (SAT), (SAl), (NT), (NI), and (TR), plus
the rules (MI), (MT), (MR), (ES), (SC), (C), (W), and (RC) is sound, that is, for
every row of correctness formulae Fo, . .. , Fn and for every environment 7 we have if
FI , ... , Fn I- Fo and 7 1= Fi for i = 1, ... , n then 7 1= Fo·

Proof
For all rules except (MR) the validity can be proved individually. For some we have
already done that, for the others it is very easy. The rest of the proof runs by induction
on the length of the proof of Fo from FI, ... ,Fn. The only interesting case occurs if
the last rule applied is (MR). From now on let us use the notation of definition 5.33
and forget about the old Fo, ... , Fn.

In the premiss of the rule (MR) we first have PI, ... ,Pn , and these are valid because
the only way to get them is by using the axiom (TR). The second premiss says
that FI, ... , Fn I- F{, ... , F". This must be provable by a shorter proof than our
current one so the induction hypothesis says that for every environment 7 such that
7 1= FI ,· .. , Fn we also have that 7 1= F{, ... , F". Let us take a particular 7 and define
7' = U[U](""Y). Now 7' is the limit of an increasing sequence 76,7[,··· where 76 =

7' {>.il. >'6. >'<7. (.L,.L) / mi}:1 and 7:+1 is obtained from 7: by calculating and filling

Doc. No.

53

in the meanings of the method definitions of mI, ... , m n . Furthermore we observe
that for every i and for every m E {mI, ... , mn } we have that U[U-](-I'D(m) = ,i{m)
because m is not defined in U-.

Now for ,b we have quite trivially that ,b 1= Fi, ... ,?,. (the send-expression never
terminates). Furthermore from ,: 1= FJ we can get to ':+1 1= Fj by an argument
analogous to that in lemma 5.30. LFrom the validity of the second premiss we can
then conclude that ';+1 1= FJ for j = 1, ... , n. By induction we get ,: 1= Fi,··· , F,.
for every i, so by continuity we get in particular " 1= Fi. And this in turn implies
,1= F. 0

Doc. No.

54

6 Completeness

6.1 Introduction

We prove in this section that every valid correctness formula about an arbitrary closed
program is derivable from the proof system based on the assertion language with
quantification over finite sequences of objects. To this end we use enhanced versions of
the standard techniques for proving completeness. These techniques are based on the
expressibility of the strongest postcondition, or, alternatively, the weakest precondition.
Using the assertion language with quantification over finite sequences of objects we
know how to express the strongest postcondition. However, we conjecture that we
cannot in general express the strongest postcondition or the weakest precondition
within the assertion language with recursive predicates. We think this is due to the
inexpressibility within this assertion language of the notion of finiteness.

In order to get a complete proof system, however, we have to modify the rules (MI),
(MT), and (MR) so that we can reason about deadlock behaviour. Regardless of the
assertion language we use these rules are incomplete. Consider the following example:

Example 6.1
Let p = (U Ic : x +- selflm()) be closed and mO ~ nil i nil occur in U. We obvi

ously have F= {true} p{ false}. But we do not have the derivability of this correctness
formula. For otherwise there would exist assertions P, Q and R such that:

1. f- {PA!\iVi = nil}(Ujc: nil){Q[nil/r]}

2. F= Q[self/self][!/z]_ R[r/x]

3. F= true - P[self /self] [f!.z] and F= R - false

for some sequence of expressions !, sequence of corresponding logical variables z and
logical variable r of the same type as the instance variable x. Now, as F= R _ false,
we have 1= R[r/x]- false. So from clause 2 it then follows that F= Q[self /self][f!z]
false. Furthermore we have 1= Q[self/self] Q so we infer 1= Q[f!z] _ false. From
clause lin turn it is not difficult to deduce that 1= P _ Q[nil/r] (use Vin TVar(P, Q) =
o and the truth of the correctness formula of clause 1). So we have 1= P[!/z] _
Q[nil/r][f!z]. Note next that F= Q[!/z]- false implies F= Q[nil/r][!/z]- false, from
which we infer that F= P[!/z]_ false, which in turn, using F= P[self /self] P, would
imply by clause 3 F= true -> false. We thus have reached a contradiction. So we

conclude that II {true }p{ false}.

Doc. No.

55

Note that adding the conjunct .(self ,:, eo) to the precondition of the conclusion of
the rules (MI) and (MT) does not solve the general case of longer cycles in the calling
chain.

To reason about deadlock in the proof system based on the assertion language contain·
ing quantification over finite sequences we introduce a collection of logical variables
with special roles.

Definition 6.2
We fix for each class name c a logical variable be E LVare •. Furthermore we define
BVar = {be: C E C}.

We will interpret the variable be as denoting a sequence of all the blocked objects of
class c. Formally, we redefine the notion OK(17, 6,w) as follows:

Definition 6.3
For arbitrary 17,6,w we define OK(17,6,w) iff 17 is consistent, 8 agrees with 17, w is
compatible with 17 and for an arbitrary c we have

6(2)(e) = {a: 3n E N(elt(be,n) = a # .Ln.

So we have OK(17, c,w) if additionally be, for an arbitrary c, consists precisely of all
the blocked objects of class c. Note that we have thus introduced in the assertion
language a means to refer to the second component of a context. Given this fixed
interpretation we do not allow the variable be to be quantified. It is a straightforward
exercise to check that under this definition of OK(17,8,w) the soundness proofs given
still hold.

Next we modify the rule (MI) as follows:

Definition 6.4
For the statement x +- eo!m(et, ... ,en), where x E IVar~o' m E MName~o, ... ,dn'

eo E Exp~, and ei E EXPJ
i

for i = 1, ... , n, we have the following proof rule:

{pc' /\ 1\7=1 Vi':' nil/\ .(self E be') }(ulc': S){ Qe'[e/r]}, QI Re[r/x]

{p' }(Uic : X <-- eo!m(el, ... ,en)){ R}
(MI)

where pI = P[e/self, u](J/z](be 0 (self)/be], Q' = Q[e/self, u][J/z][be 0 (self)/be], S E
Statd and e E EXp':f. are the statement and expression occurring in the definition
of the method m in the unit U, Ul, •.. , Un are its formal parameters, VI, ••• , Vk is
a row of temporary variables that are not formal parameters (k ~ 0), r is a logical
variable of type do that does not occur in R, J is an arbitrary row of expressions (not

Doc. No.

56

logical expressions) in class c, and z is a row of logical variables, mutually different
and different from r, such that the type of each Zi is the same as the type of the
corresponding Ii. We require that no temporary variables other than the formal
parameters U1, . •• , Un occur in P or Q. The boolean expression 11 E 12 abbreviates
3i(l1 = 12 • i), where i is some fresh logical integer variable. P[be 0 (self)/bel, for an
arbitrary assertion P, equals the assertion

3z(P[z/bcJlllzl = Ibel + 111 Vi(i:; Ibel z· i = be· i) II (z ·Izl = self))

where z E LVare., i E LVar are some fresh variables.

The idea of this substitution [be 0 (self)/bel can be explained roughly as follows: Oc
currences of the variable be in the assertions pc' and Qe', which describe the input
state and the output state of the receiver of the method call, denote the set of blocked
objects of class c belonging to those states. When we want to describe the input state
and the output state of the receiver from the point of view of the sender we have to
take into account that this set of blocked objects can now be viewed as the set of
blocked objects of class c belonging to the input state and the output state of the
sender of the method call plus the sender itself.

The rules (MT) and (MR) are modified accordingly. The soundness proofs of these
new versions of (MI) and (MT) are straightforward modifications of the proofs of the
soundness of the original ones (in the proof of 5.30 the substitution [be 0 (self) /bcJ can
be considered simply as part of the simultaneous substitution [l! zl). The proof of the
soundness of the new version of (MR), as~uming the soundness of the new versions of
(MI) and (MT), does not need to be modified.

We note that with respect to the proof system based on the assertion language con
taining recursive predicates this proof method does not apply. To incorporate some
reasoning mecl1anism about deadlock behaviour in this system one could add to it
some notion of auxiliary variables, which can be used to code the relevant control
information.

It will appear to be tecl1nically convenient to introduce another modification of the
rule (MR). This modification consists simply of replacing every occurrence of U- in
this rule by U itself. We denote the resulting rule by (NMR). The main difference
between the rules (NMR) and (MR) is that the rule (NMR) allows nested applications
to some method name. However, in appendix A it is shown that a proof using the
rule (NMR) can be transformed into a proof using (MR), and vice versa.

To be able to prove completeness we have to add the following rules to the proof system
(based on the assertion language containing quantification over finite sequences).

Definition 6.5

Doc. No.

Conjunction rule:

Definition 6.6
Elimination rule 1:

{Pfk{Qi} {Pik{Q~}
{Pi 1\ Pi }pc{ Qi 1\ Q~}

{3zdPC V P[nil/ ZdJ}Pc{ QC}

57

(CR)

(ER1)

where Zd rf- LVar(QC) U BVar. Due to the interpretation ofthe quantifiers as ranging
only over existing objects we have to express explicitly that the precondition also
holds when the value of the quantified variable is undefined (nil).

Definition 6.7
Elimination rule 2:

{pC}pC{QC}

{3ZaPc}Pc{ QC}

where a = d*, for some d, and Za rf- LVar(QC) U BVar.

Definition 6.8
Initialization rule 1:

{pC }pc{ QC}

{PC[I/zJ}pc{ QC}

where Z and I are of the same type, and Z rf- LVar(QC) U BVar.

Definition 6.9
Initialization rule 2:

{pC }pc{ QC}

{PC[I/uJ }pc{ QC}

where u and I are of the same type and u rf- TVar(p, Q).

Definition 6.10
Substitution rule:

where z',z are logical variables of the same type, and z rf- BVar.

(ER2)

(IR1)

(IR2)

(SR)

The soundness of these new rules is a straightforward exercise. We illustrate the
necessity of the condition z rf- BVar by the following example:

Doc. No.

58

Example 6.11
Let p = (ule': y +- x!m()). By the new definition of OK((J,Ii,w) we have, assuming
the type of the variable x to be c,

where x E be abbreviates the assertion 3i(x = be·i). If we would allow the initialization
of the variable be, or allow it to be substituted, we could derive from this formula by
an application of the rule (SR) or (IRl) the following:

Applying next the elimination
derivability of the formula:

{x E z}p{false}.

rule (ER2), assuming z 1. BVar, then gives us the

{3z(x E z)}p{false}.

Finally, we apply the consequence rule:

{true }p{ false}.

But this last formula is not valid in general!

Finally, for technical convenience we would like to assume that the sets C, IVar, and
TVar are finite. This assumption can be justified as follows: Let C' be a finite subset
of C, and IVar' be a finite subset of Ue.d IVar:;, where c ranges over C', and d ranges
over the set C'+ = C'u {Int, Bool}. Next we fix the temporary integer variables u, u',
and for every d E C'+ the temporary variables red, red' Let re denote a sequence
of these variables. Now let TVar' be a finite subset of Ud TVard (again, d ranging
over C'+), such that re ~ TVar'. Given these sets C',IVar', and TVar' we have the
following definition.

Definition 6.12
We define an expression l~ to be restricted iff c E C', a = d,d*, with d E C'+,
IVar(l~) ~ IVar', and TVar(l~) ~ TVar'. We define an assertion pc to be restricted
iff c E C' and every expression occurring in pc is restricted. We call a program
p = (Uic : S) restricted iff c E C', every expression occurring in p is restricted,
u, u' ¢ TVar(p), and, finally, the temporary variables red, red are only allowed in the
main statement S itself, where S = red +- Sd or S = red +- Sd, with TVar(s)n re = 0.
A correctness formula {p }p{ Q} is called restricted iff P,Q, and p are restricted.

We will prove that an arbitrary valid restricted correctness formula is derivable by a
derivation in which there occur only restricted correctness formulae. Such a derivation
we call restricted too. The extra variables re are used in applications of the rules
(W) and (ES): The variables red, red are used to store temporarily the result of the
execution of a statement Sd; the variables u, u' are needed to express the invariant

Doc. No.

59

of a while statement. However applications of the consequence rule in a restricted
derivation are based on a different notion of validity of assertions and correctness
formulae. This new notion of validity consists of restricting all the semantic entities
to the sets C', [Var', and TVar'. As an example of the restriction of a semantic entity
we define that of a state.

Definition 6.13
We define the restriction of a state u, which we denote by u 1, to be an element of

E J= II pc X II (oe -.,fVar~ -+ 01.) X II (TVar~ -+ 01.)
cEC' cEC' ,dec'+ deG'+

such that

• u J(e) = u(e), C E C'.

• u J (a) (x) = u(a)(x), a E 0<, for c E C', and x E [Var'.

• u J (u) = u(u), u E TVar'.

In a similar way we have corresponding restricted versions of all our semantic entities.
We have the following lemma, which states that the meaning of a restricted program
depends only on those parts of a state specified by the sets C' ,JVar', and TVar'.

Lemma 6.14
For an arbitrary restricted program p, and u, u', 0,"1 such that

1. u(e) = u,(e), c if. C'.

2. u(a) = u'(a), for a E oe, c if. C'.

3. u(a) = u'(a), for a E oe \ u,(e), c E C'.

4. u(a)(x) = u'(a)(x), for a E u(e), c E C', x if. [Var'.

5. u'(a)(x) = 1., for a E u,(e) \ u(e), c E C', x if. [Var'.

6. u(u) = u'(u), u f/. TVar'.

we have
u' = P[p]("1)(0)(u) iff u' J= P'[p]("1 1)(0 1)(u 1),

where P',"I 1, and 0 L denote the restricted versions of P,"I, and 6, respectively. (Here
u(a) denotes the local state of a and u(a)(x), x an instance variable, denotes the
value of the variable x of the object a, finally, u(u), u a temporary variable, denotes
the value of u in state u.)

Doc. No.

60

The first condition above states that (7 and <I agree with respect to the existing objects
of class c, c rf. C'. The second condition states that (7 and (7' agree with respect to
the local states of objects belonging to a class c, c rf. C'. That the states (7 and (7'

agree with respect to the local states of objects belonging to a class c, c E C', which
do not exist in (7', is expressed by the third clause. The fourth clause states that (7

and (7' agree with respect to the variables not belonging to IVar' of objects of a class
c, c E C', which exist in (7. The fifth clause then states that the value of a variable
not belonging to IVar' of an object of a class c, c E C', which exist in (7' but does
not exist in (7, is undefined in the state (7'. The last clause states that (7 and (7' agree
with respect to the temporary variables not belonging to TVar'. These conditions
are necessary to prove that if (7' 1= P'[p](')' 1)(.1 1)(7 1) then (7' = P[p](')')(.1)(7).

Proof
Induction on the structure of the program p. o

By the following two lemmas we have that applications of the consequence rule occur
ring in a restricted derivation also apply with respect to the original notion of validity,
thus justifying our assumption of the finiteness of the sets C, IVar, and TVar. These
lemmas state that the truth of a restricted assertion and that of a correctness formula
only depend on those parts of a state specified by the sets C' ,IVar', and TVar'.

Lemma 6.15
For an arbitrary restricted assertion pc, and (7,.I,w such that OK(7,.I,w) we have

(7,.I,w F pc iff (7 1,.1 !,w H= PC,

where w lE na LVara -> 01, with a ranging over the set {d,d*: dE C'+}, and
w 1 (z) = w(z).

Proof
Straightforward induction on the structure of pc. o

Furthermore we have

Lemma 6.16
Let (7,.I,w such that OK(7,.I,w). We have for an arbitrary restricted correctness

formula {p }p{ Q }

(7,.I,w F {p}p{Q} iff (7 1,.1 !,w 1F {p}p{Q}.

Proof
Straightforward, using lemmas 6.14 and 6.15. o

Doc. No.

61

So in the sequel we may assume the sets C,IVar, and TVar to be finite. Further,
we assume given a set of temporary variables re as defined above. A program p from
now on will denote, when not stated otherwise, a program such that the temporary
variables re, rei are allowed to occur in it only in assignments re +- s, rei +- s, with
re, rei ¢ TVar(s), and u, u' ¢ TVar(p). This concludes our discussion concerning the
justification of the assumption of the finiteness of the sets C, IVar, and TVar.

6.2 The strongest postcondition

To be able to prove completeness we first have to analyze the notion of a strongest
postcondition and its expressibility in the assertion language. As noted already in
the introduction, the expressibility of the strongest postcondition in the assertion
language with recursive predicates is still an open problem and SO is the completeness
of the proof system based on this assertion language.

For the analysis of the notion of a strongest postcondition we need some definitions
and a theorem. We start with the following definition:

Definition 6.17
An object-space isomorphism (osi) is a family of functions 1 = (fd)dEC+, where Id E
01 -> 01 is a bijection, I d(1.) = 1. and I d , for d = Int, Bool, is the identity mapping.

Given an osi 1 we next define the isomorphic image of an arbitrary state.

Definition 6.18
Given an osi 1 we define for an arbitrary state CT the state I(CT) as follows:

• For every c: I(CT)(c) = IC(CT(c»).

• For every c,d,ac,xd: I(CT)(a)(xd) = Id(CT(J-IC(a))(xd)), where the osi r 1

denotes the inverse of I: r 1 = ((Jd)-l k

• For every d,Ud: I(CT)(Ud) = Id(CT(Ud)).

Here IC(X), for some X ~ OC, denotes the set {JC(a): a EX}.

The following theorem essentially expresses that states which are isomorphic cannot
be distinguished by the assertion language.

Theorem 6.19
Let 1 be an osi and CT,Ii,w be such that OK(CT,Ii,w). Then for every logical expression
l~ and assertion pc we have:

Doc. No.

62

• f"(.c[l~](w)(o)(a)) = .c[l~](f(w))(f(o))(f(a)),

• A[PC](w)(6)(0) = A[PC](f(w))(f(o))(f(a)).

where f(o)(1) = /"(0(1)),

f(0)(2)(c') = /"'(0(2)(c'))' for an arbitrary c', and

f(w)(Zd) = fd(w(Zd)), (fd' «a1, . .. , an)) = (Id(aI), ... ,Id(an))).

Proof
Straightforward induction on the structure of l~, pc. We only treat the case I = xd:

o

We are now sufficiently prepared to analyze the notion of a strongest postcondition.
Given a program pc and an assertion pc, we denote by sp(pC, PC) the set of final
states of executions of pC starting from a state satisfying pc. An assertion, defining
this set of states sp(pC, PC) is called the strongest postcondition of pc with respect to
pC. As established by the previous theorem, the set of states defined by an arbitrary
assertion is closed under isomorphism. However, in general, given a program pC and
an assertion pc, the set of states sp(pC, PC) is not closed under isomorphism. Consider
the following example:

Example 6.20
Take pc = (Ulc : x <- new), with pC closed, and a,o',o such that a'(c) = {a,,8},
arc) = {a}, 0(1) = a and a' = P[pC](-y)(o)(o). Let pc = true. So we have that
pickC({a}) =,8. Let f be an arbitrary osi such that pickC({fcC a)}) oft /"(,8) and
pickC({fC(,8)}) oft /"(a). So we have that f(a')(c) = {fC(a),j«,8)}. Now suppose
that there is a aD such that f(a') = P[pc](-y)(I(o))(f(ao)). Then we would have

a~c) = {fC(a)} or a~c) = {fC(,8)}, but both cases lead to a contradiction. Therefore
such a aD does not exist and f(a') fJ. sp(pC, true).

This discrepancy between the assertion language and the semantics of the program
ming language is solved by closing this set sp(pC, PC) under isomorphism. Of course
it is not immediately clear that this will work! We will see later that we indeed
encounter some difficulties in the completeness proof due to this. These difficulties
require some additional reasoning not present in the standard completeness proofs.
The following theorem states the existence of an assertion defining the closure under
isomorphism of the set sp(pC, PC).

Theorem 6.21
Let pc be closed (not necessarily restricted), BVar ~ L ~ LVar (L finite), pc

Doc. No.

63

such that LVar(PC) C;;; L. Then there exists an assertion SP1(p, F) such that
LVar(SP1(p,PC)) C;;; L and for u,o,w such that OK(u,o,w) we have:

u,o,w F SP1(p,F)

iff there exist an osi f and a state Uo such that:

• feu) = P[p](..,,)(6')(uo),-y arbitrary,

• CTo,E',w' 1= pc,

where 6' = f(6) and w' = f(w)! L. Here we define

(f(w)! L)(z) = f(w(z)) Z E L

= 1. zE(LVarnUdLVard)\L

= f zE(LVarnUdLVard.)\L.

Note that in the above theorem we cannot take few), where f(w)(z) = f(w(z)), for
w'. This would require that few) and Uo are compatible, which cannot be expressed
by our assertion language. For suppose there exists an a E u(c'), for some c', such

that r' (a) rf. u~c'). Let Zc' rf. L, it then follows that u, 6,w{ «/ zc'} F SP1(p, F),
but on the other hand it is not the case that f(w{ a/ zc'}) and Uo are compatible, so
we do not have uo,6',f(w{a/zc'}) F pc. Note that the above argument essentially
boils down to the fact that we cannot describe by one assertion the values of infinitely
many logical variables. Thus we have to specify a finite set of logical variables L such
that the restriction of f(w) to this set L is compatible with Uo.

Proof
See appendix B. o

The following two lemmas together state the correctness of our definition of the notion
of strongest postcondition.

Lemma 6.22
For an arbitrary BVar C;;; L C;;; LVar (L finite), closed program pc and assertion pc
such that LVar(PC) <;; L, we have

Proof
Let u,u',6,w (u,u' "/1.) be such that OK(u,6,w), u' = PC[pC](..")(6)(u)(..,, arbitrary),

Doc. No.

64

and <r, 6, w ~ pc. We have that rr', 6, w ~ SPL(p, PC), for take for the osi f the family
of identity mappings, for <ro the state <r, and note that because LVar(PC) <;; L we
have <r, 6,w' ~ pc, where w' = w 1 L. 0

Lemma 6.23
For an arbitrary closed program pc, assertions pC,Qc, BVar <;; L <;; LVar (L finite)
such that LVar(pc, QC) <;; L we have

~ {pc} pc { QC } implies ~ SPL(pc, PC) -+ QC.

Proof
Assume ~ {p }p{ Q } and let <r, 6,w such that OK(<r, 6,w) and <r, 6,w ~ SPL(pc, PC).
So there exist an osi f and a state <ro such that:

• f(<r) = P[p](-r)(6')(<ro),-r arbitrary.

• Clo,E',w' FPc.

where 6' = f(6) and w' = f(w) 1 L. From ~ {pc }pc{ QC} we then infer that
f(<r),8',w' ~ QC. By LVar(QC) <;; L we have f(<r),6',f(w) ~ QC. SO by theorem 6.19
we conclude <r, 6, w ~ QC. 0

6.3 Freezing the initial state

An essential notion of the standard technique for proving completeness consists of
what is called freezing the initial state. To explain this notion, let, only in this para
graph, p denote a program of some simple procedural language (like the ones treated
in [3] or [10]) and u, u' denote some simple functions assigning values to program
variables. Let x denote the set of program variables occurring in p, z denote a corre
sponding sequence oflogical variables and x:' z abbreviate /I.;(x; :, z;). Furthermore
let SP(p,x :, z) be an assertion describing the set of final states resulting from exe
cutions of p starting in a state satisfying x :, Z. In the standard completeness proof
an important consequence of the definition of the notion of strongest postcondition is
that the assertion SP(p, x :, z) in the following sense describes the graph of p:

• If the execution of p starting from the state <r results in the state u ' then
SP(p, x :, z) holds in u' when the logical variable Zi is interpreted as U(Xi)' the
value of Xi in <r.

Doc. No.

65

• If SP(p, x = z) holds in a state (7', assuming the logical variable z. to be inter
preted as some value d., then there exists an execution of p starting from the
state (7'{d./x;}i which results in (7'.

Note that the logical variables z are used to "freeze" the initial state.

Now one of the problems in applying the standard techniques for proving completeness
to our proof system consists of how to store a state in a finite set of logical variables. A
simple assertion like x = z does not make sense, because a variable x can be evaluated
only with respect to some object. To be able to construct an assertion which expresses
how a state is stored in the logical environment we introduce some special logical
variables. First we fix for each class name c the logical variables ere, ble E LVar e"
Every existing object belonging to class e is supposed to be a member of the sequence
denoted by ere. For convenience, we also include nil in ere. The sequence denoted
by ble on the other hand is supposed to contain all the blocked objects belonging to
class c. Furthermore for each instance variable Xd we fix a logical variable ivx E LVard'
and, finally, for each temporary variable Ud we fix a logical variable tv" E LVard. The
sequence denoted by ivx , x E lVare, will store the value of the variable x for every
existing object belonging to class e in the following way: Every existing object of
class c occurs at least once in the sequence denoted by ere. Now the ith element of
the sequence ivx is the value of the variable x in the object that is the ith element of
the sequence cr e. The value of tv". U E TVar, just equals that of u.

All these newly introduced logical variables we assume to be distinct. We let st
denote a particular sequence (without repetitions) of these logical variables. Now we
are ready to define formally the assertion init, which expresses that the current state
is represented by st. In other words, init is our analogue of the assertion x = z.

Definition 6.24
We define the assertion init as follows:

init = I\e ere' 1 = nil/\ VZe3i(ze = ere' i) /\

I\e Vi(l\xEIVc((ere' i) . x = ivx . i» /\

I\"ETV(u = tv.)

I\e(be = ble)

where lve = Ud lVar:/, TV = Ud TVar d, and the logical variable i is supposed
to range over the integers. Note that in our assertion language we do not have
equality between logical expressions of type dO, for an arbitrary d. However, these
equalities can easily be expressed in the assertion language: If I, and 12 are two logical
expressions ranging over sequences, then I, = 12 can be expressed as Vi(l, . i = 12 . i),
where i is some logical integer variable. Furthermore we remark that for every class
name C we have init E Asse.

Doc. No.

66

In the following two definitions we define a transformation of a logical expression and
an assertion such that the transformed versions only refer to the logical environment.
Expressions referring to the state will be translated into expressions which refer to
the corresponding part of the logical environment it used to reflect the state. The
problem such a transformation poses can be best explained by the following example:

Example 6.25
Suppose we want to transform the expression consisting of the instance variable x.
This expression denotes the value of x with respect to the object denoted by the
expression self. But to look up this value in the logical environment one has to know
where the object denoted by self occurs in the sequence denoted by ere, assuming x E
IVar~ for some d. However, this cannot be determined statically! Note also that we
cannot force the existing objects of a class, say class e, to occur in a particular order in
the sequence denoted by ere. Our solution to this problem consists essentially of using
a second logical expression, of type Bool, to describe under which conditions the first
expression correctly translates the original one. We will also need a number of logical
variables that range over integers, more precisely, over indices in the sequences ere.
In our example above, the expression x is then translated into the triple ((i), self =
ere· i, ivx • i), where i is some logical integer variable. This is interpreted as follows:
Whenever the variable i takes such a value that the Boolean expression self = ere· i
is true, then the expression ivx . i takes the desired value.

The analogue of these transformations in the standard completeness proof is the
substitution [zlx], where z is the part of the logical environment which is used to
store the part of the state as specified by x.

Definition 6.26
We define I~ r itl = (i, h c, 12~) for an arbitrary logical expression I~ by induction on
the structure of I~. Let f denote the empty sequence. We treat the following cases:

• xH itl = ((i), self = ere· i, ivx . i)
where i is some fresh logical integer variable (it does not occur in it).

• Ud r itl = (f, true, tvu)

• Ifitl = (f,true,l)
where I = nil, self, true, false, n, or z.

• (Ie. xd)[itl = (i 0 (j), I, td2 = ere· j, ivx . j)
where Icritl = (1,1,,12) and j ~I.

• (I, + 12)fitl = (.,1" 1\ I~, ,1" + I~,)
where I,ritl = (I"I,,,I,,), 12ritl = (12,[2,,12,), I = I, 0],] is some sequence
of fresh logical integer variables of the same length as ' 2 , I~, = 12,[3/'2], and
I~, = 12, [J/'2].

Doc. No.

68

• (\lzaP)lstJ = \lza(Za ~ cre -+ PlstJ),
where a = c*.

• (3zaP)lstJ = 3zaPlstJ,
where a = d, d*, d = Int, Bool.

• (3zeP)litJ = 3ze(ze E cre 1\ PlstJ).

• (3zaP)litJ = 3za(za ~ ere 1\ PlitJ),
where a = c*.

Here I, E 12 abbreviates 3i(1, = 12 . i) and It ~ 12 abbreviates \li(1t . i E 12). Note
that, although nil E cre, the quantification in (\lzeP)litJ and (3zeP)litJ excludes nil,
because quantification always excludes nil.

The following theorem states that the above transformation as applied to assertions
preserves truth. It can be seen as an analogue of the substitution lemma of first-order
predicate logic.

Theorem 6.29
Let pe be an arbitrary assertion. Furthermore let CT,{j,W such that OK(CT,{j,W) and
CT,{j,W 1= init. Then:

CT,6,w 1= pe iff CT,O,W 1= pelstJ.

Proof
The proof proceeds by induction on the structure of pe. The case that pe equals
Ie is treated as follows: We prove that for every logical expression I~ there exists a
sequence of integers n such that CT,o,w{n/l} 1= 11 and that for all such n we have
.c[I~](W)(t5)(CT) = .c[12](w{n/t})(CT), where I~ritl = (',11 ,12), This is proved by induc
tion on the structure of I~. 0

6.4 Invariance

In this section we formulate a syntactic criterion for an assertion to be invariant over
the execution of an arbitrary program. First we note that not allowing program
variables to occur in an assertion does not guarantee this invariance property! This
is due to the restriction of the range of the quantifiers to existing objects. Consider
the following example:

Example 6.30
Let P denote the assertion 3z\lz'(z = z'), where z,z' E LVare for some class name c.

Doc. No.

69

This assertion P expresses that there exists precisely one object of class c. Let pC =
(Ulx <- new), U arbitrary and x E IVar~. Then it is not the case that 1= {p }pc{ p},
because there exist two objects of class c in the output state.

However, the standard technique to prove completeness relies heavily on the invariance
of assertions in which no program variables occur. To be able to apply this technique
we define the notion of quantification-restricted assertions.

Definition 6.31
We define an assertion pc to be quantification-restricted if

pc .. _ IC

3za P I VZa P

where a = d, d*, d = Int, Bool

3zc(Zc E Zc' " PC)

3zc.(zc* ~ z~. A PC)

Vzc(zc E zc' PC)

YZc.(zc* ~ z~. ---+ PC)

Here we assume the variables Zc' and z~. to be distinct and the assertion P at the
right-hand side of the symbol ::= to be quantification-restricted.

An important property of such a quantification-restricted assertion is that its truth
is not affected by the creation of new objects:

Lemma 6.32
For every quantification-restricted assertion P and every variable v such that v I/:
IVar(P) U TVar(P) we have 1= P <-+ P[new/v].

Proof
Induction on the complexity of P. We treat the representative case of P = 3zc(zc E
Zc' " Q), assuming the type of the variable v to be c: Now P[new/v] = 3zc(zc E
Zc' "Q[new/v]) V (v E Zc' "Q[v/zcJ)[new/v]. But as (v E Zc')[new/v] can be easily
seen to be equivalent to false the second disjunct will be equivalent to false too.
Furthermore we have by the induction hypothesis that Q[new/v] is equivalent to Q.
Putting these observations together gives us the equivalence of P and P[new/v]. The
case P = V zc(Zc E z~. Q) is treated analogously. The cases of P = 3zc' (zc' ~
~. "Q), Vzc'(zc' ~ ~ Q) are slightly more complex due to the complexity of
the substitution operations involved, but the reasoning pattern is basically the same.

D

Doc. No.

70

A consequence of tWs lemma is the following invariance property of quantification
restricted assertions:

Theorem 6.33
Let pC = (Ulc : S) be closed and pc be a quantification-restricted assertion such that

IVar(PC) n IVar(pC) = 0 and TVar(PC) n TVar(pC) = 0. Then: I- {pc }pc{ pc}.

Proof
The proof proceeds by induction on the complexity of S. We consider the case of
S = V <- eO!m(el,'" ,en): Let M be the smallest set suclt that

• pE M,

• if p' = (U1e': v' <- e~!m'(e;, ... ,eDlE M
then Pi = (ulc; : v; <- e&!m;(eL· .. , e~.l) E M,

h . ;, (; i) i,.(; i) . S' S' b' th were v, +- €o,mj €l"'" €ni or €o.ml €l"'" €nj occurs In, elng e
body of the method m'. In the latter case we have Vi = red" assuming di to be
the type of the result expression of mi.

Let M = {PI, ... ,pd, P = PI, assuming the following notational conventions: Pi =
(UICi : Vi +- eh!mi(eL.··,e~.») E M and mi(uL ... ,u~J <= Si 1 €i occurs in U,

J ..'
i = 1, ... , k. Furthermore, e' denotes the sequence ei, ... , e~. and ul the sequence
ul, ... ,U~j' Next we introduce for every class name c a neV: var~able Zc.' We let
z denote a sequence (without repetitions) of these variables and b denote the cor
responding sequence of the variables bc E BVar. Finally we put for i = 1, ... , k:
Fi = {p,}p;{ p,}, where P' = PC[z/b][zc/self], Zc being a new variable.

Now we have that

FI'.'" Fk I- {p'}(UIe: : S;}{ p'}

(c; being the type of eh). This is established by induction on the complexity of So.
The only slightly less straightforward case of S; = v <- new is taken care by the
previous lemma.

Putting Pi,Qi,Ri = P' and introducing some logical variable ri rf. LVar(P') (of the
same type as the variable v;), i = 1, ... , k, and observing that P'[e' /self, jji][bci 0

(self}/bc;] = P' we infer by (NMR) that:

Next we put PI, Q, = P' and R, = PC[z/b]. We have that:

Doc. No.

and
F= Ql[el /self,ul][self/zcll[bc1 0 (self)/bc1l--+ Rl[rl/vd·

Thus applying (MI) (or (MT)) gives us that:

71

Finally an application of the substitution rule gives us the derivability of the correct·
ness formula {pc }pc{ pc}. D

6.5 Most general correctness formulae

Now we are able to prove that for an arbitrary pc = (Ulc : v +- eo!m(el, ... , mn))
the correctness formula {init }pc{ SP'i,(pc, init)}, for some L ~ LVar, is a most
general one in the sense that an arbitrary valid correctness formula can be de·
rived from the proof system which results from adding these correctness formulae
as additional axioms. Completeness then follows by establishing the derivability of
{init}pC{SPL(pC, init)}, for an arbitrary pc = (Ulc: v +- eO!m(el, ... ,mn)).

But first we need to introduce some new logical variables corresponding to those of st.
This is necessary because the variables of st have a fixed interpretation as specified by
the assertion init. But every valid correctness formula in which variables of st occur,
implicitly provides these variables with some possibly different interpretation. To
avoid a clash between these different interpretations we must temporarily substitute
in the correctness formula, of which we want to establish its derivability, every variable
of st by some corresponding new variable.

So we introduce for each c fresh logical variables crl c, bll C E LVar c'. For each
instance variable x E IVar d we introduce the fresh logical variable ivl x E LVar d',
and with each temporary variable u E TVar d we associate the fresh logical variable
tvl u E LVard. We assume again that all these newly introduced logical variables are
distinct. We let stl denote a sequence (without repetitions) of these variables. We
can thus assume that st n stl = 0.

Furthermore we introduce for every temporary variable red (defined in the introduc
tion to justify the assumption of the finiteness of the sets C,IVar, and TVar) a fresh
logical variable Ired. Let Ire denote a sequence of these logical variables. We will use
the variable Ire when applying the rule (ES): Applications of this rule will make use
of the variable re to store temporarily the result of the expression s. Therefore we
have to substitute occurrences of re in the precondition and the postcondition by the
corresponding variable Ire. We will see later how to restore the original precondition
and postcondition after such an application of the rule (ES).

Doc. No.

72

We start with the following lemma stating the derivability of valid correctness formu
lae about simple assignments.

Lemma 6.34
For an arbitrary program P = (Ulc: v <- e) we have

Proof
Let v = u, u some temporary variable. (The case of v being an instance variable is
treated similarly.) By lemma 5.4 (note that we actually mean here the corresponding
lemma for the proof system based on the assertion language with quantification over
sequences) and the assumption that 1= {pc }p{ Q} it follows that 1= pc -+ QC[e/u]. So

an application of the axiom (SAT) and the consequence rule gives us the derivability

of the correctness formula {pc} p{ Q }. 0

We have a similar lemma for the creation of new objects:

Lemma 6.35
For an arbitrary program p = (U Ie : v <- new) we have

Proof
Let v = u, u some temporary variable. (The case of v being an instance variable is

treated similarly.) By lemma 5.18 and the assumption that 1= {pc} p{ Q } it follows
that 1= pc -+ QC[new/v]. So an application of the axiom (NT) and the consequence

rule gives us the derivability of the correctness formula {pc} p{ Q }. 0

Next we have the following lemma stating the derivability of an arbitrary valid cor
rectness formula about sending messages:

Lemma 6.36
Let p = (Ulc : v <- eo!m(et, ... ,en)) be a closed program. Furthermore let pC,Qc
and BVar <;; L <;; LVar (L finite) such that LVar(P,Q) <;; L \ stl, and it u stl <;; L.
Then:

1= {pc }p{ QC} implies {init }p{ SP,£{p, init)} f- {pc }p{ QC}.

Doc. No.

73

Proof
Let P' = P[s!l / st] and Q' = Q[s!l / st]. Furthermore we introduce the following
abbreviation: P" = P'LstJ. We start with the assumption:

{init }p{ SP'L(p, init)}.

By theorem 6.33 (note that P" is quantification-restricted, IVar(P") = 0, and TVar(P") =
0) we have the derivability of the following formula:

Applying the conjunction rule gives us:

{p" II init }p{ 1'" II SPL(p, init)}.

We next prove that 1= P" II SP'i(p, init) -+ Q':
Let a, o,w 1= P" II SPL(p, init). So there exist a state ao and an osi f such that

• f(a) = P[pKy)(o')(ao), ')' arbitrary,

• 0'0,8', w' F init,

where 0' = f(o) and w' = few) 1 L.

By theorem 6.19 we have that f(a),f(o),J(w) 1= plIo It is not difficult to check
that LVar(P") <; L, so we have f(a),o',w' 1= plIo Furthermore we have that 1=
{ ,P" } p{ ,1'" } (by theorem 6.33 we have f- { ,P" } p{ ,P" }, so the truth of the above

correctness formula follows from the soundness of the proof system). It follows that
ao, 0', w' 1= plIo By theorem 6.29, note that ao, 0', w' 1= init, we then infer ao, 0' ,w' 1=
P'. By the soundness of the substitution rule (SR) we have that 1= {p} p{ Q } implies

the truth of the correctness formula {p' }p{ Q'}. SO we infer that f(a), 0', w' 1= Q'.
But as LVar(Q') <; L we have f(a),o',J(w) 1= Q'. Finally an application of theorem
6.19 gives us the desired result a,o,w 1= Q'.

Now we return to our main argument. By the consequence rule we thus infer:

{P"II init}p{Q'}.

Next we apply the initialization rule (IR1):

{(P" II init)[u/tv]}p{ Q'},

Doc. No.

74

where u is a sequence of all the temporary variables and tv denotes the corresponding
sequence of logical variables tvu , u E u. Now we use the elimination rule (ER2):

{3zl(P" II init)[ujtv]}p{ Q/},

where Zl is a sequence ofthe logical variables {erc, blc : c E C} and {ivx : x E [Var}.
Note that instead of initializing the variables tv we could also eliminate them by rule
(ER1). However, applying the rule (ER1) would require some additional notational
machinery in order to deal with the extra case of nil.

Next we prove 1= P'--> 3z'(P" II init)[ujtv]: Let a,8,w be such that OK(a,8,w) and
a,8,w 1= pl. It is not difficult to see that there exists an Wi such that Wi differs from
w only with respect to the variables of st and a, 6,w' 1= init. As LVar(pl) n st = II) we
have a, 8, Wi 1= P'. Applying theorem 6.29 then gives us a,6,w' 1= plLstJ. For every
temporary variable u we have a(3)(u) = w'(tvu), so we infer a, 8,w' 1= (P" II init)[uJTv].
So we conclude a, 8,w 1= 3z'(P" II init)[ujtv].

We thus have by the consequence rule:

Finally an application of the substitution rule finishes the proof. Note that since
LVar(PC, QC) n stl = 0, we have that PI[stj stl] = pc and Q/[stj stl] = QC, so we get

o

We next have lemmas 6.38 and 6.39 stating the derivability of valid correctness formu
lae about statements S = s, where s is a side-effect expression. In these two lemmas
we make use of the following lemma:

Lemma 6.37
Let p = (Vic: s) and pi = (Vic: re <-- s) be restricted programs (see definition 6.12).
We then have for arbitrary assertions P and Q that

where pi = P[lrejre] and Q' = Q[lrejre].

Proof
Let a,8,w 1= pi and a' = P[p'](,),)(8)(a). We have that a' = a"{(3jre}, with
(a",(3) = Z[s](')")(6)(a), ')" = U[V](')'). As re ~ TVar(s) (p being restricted) we
have (a1,(3) = Z[s](')")(6)(ao), with a1 = a"{w(lre)jre} and ao = a{w(lre)jre}).
This being intuitively clear we feel justified in stating it without a proof. Now,

Doc. No.

75

as (J,li,w F P' we have that (Jo,li,w F P. So from F {p}p{Q} we then infer

(Jl,li,w F Q, or, equivalently, (J",{j,w F Q'. Finally, as re rf- TVar(Q'), we conclude
that (J',/i,w F Q'. 0

Lemma 6.38
Let p = (ulc: s), where s = e,new. Furthermore let P,Q such that LVar(p,Q)nlre =
0. Then:

Proof
Let P' = P[lre/reJ and Q' = Q[lre/reJ, where Ire and re are of the same type as the

expression s. By lemma 6.37 we have F {p'}p'{ Q'}, where p' = (Ulc: re +-- s). By
lemma 6.34, in case s = e, and lemma 6.35, if s = new, we then have

So by rule (ES) it follows that

Furthermore we have F {Ire'" re }(Ulc : re' +-- s){ Ire '" re}. So again by lemmas
6.34 and 6.35 we have

I- {Ire '" re }(Uic : re' +-- s){ Ire '" re}.

Applying again the rule (ES) then gives

Next we apply the conjunction rule

Now F (Ire", re II Q') -> Q and F P -> (31reP" V P"[nil/lre]), where P" = Ire '"
rellP'. (Note that Ire rf- LVar(P).) So applying first the consequence rule for Q, then
the elimination rule (ERl) (note that Ire rf- LVar(Q)), and finally the consequence
rule for P, gives us the derivability of

o

We have a similar lemma for valid correctness formulae about a program p of the
form (u1c:eo!m(el, ... ,en)).

Doc. No.

76

Lemma 6.39
Let P = (Ulc : eO!m(e" ... ,en») be a closed program. Furthermore let P,Q, and
BVar <;; L <;; LVar (Lfinite) such that LVar(P,Q) <;; L\(st1 Ulre), itUst1 Ulre <;; L.
Then we have

where p' = (Uic : red <- eo!m(e" . .. , en»), assuming the type of the result expression
of m to be d.

Proof
Let P' = P[/red/red] and Q' = Q[/red/red]. An application of lemma 6.37 gives us

1= {p'}p'{Q'} (remember that p is assumed to be restricted). By lemma 6.36 we
have

{init}p' { Sh(p', init)} I- {p'}p' {Q'}.

Applying next the rule (ES) gives us

By theorem 6.33 (observe that red ¢ TVar(p» we have the derivability of the formula

So by an application of the conjunction rule we have

{init }p{ SPL(p, init)} I- {p' II/red': red }p{ Q' II/red': red}.

Now we have F= (Q'lIlred ,: red) -. Q. Furthermore for P" = P'II/red ,: red we have
F= P -. (3/redP" V P"[nil/ired]) (note that ired rf- LVar(P». So first applying the
consequence rule for Q, then the elimination rule (ERl) (note that ired rf- LVar(Q)),
and finally the consequence rule for P finishes the proof. 0

Next we have the following main theorem of this section stating the derivability of an
arbitrary valid correctness formula using as additional axioms the correctness formulae

of the form {init }p{ SPL(P, init)}, where p = (ulc : v <- eO!m(el, . .. , en»).

Theorem 6.40
Let p = (Ulc : S) be a closed program. Furthermore let pc, QC, and BVar <;; L <;; LVar
(L finite) such that LVar(pc,QC) <;; L \ (st1 U Ire), it U st1 U Ire <;; L. Then:

where Fi = {init}Pi{SPZ(Pi,init)}, Pi = (Ulci: Vi <- Si), with S",,,,Sn being all
the send-expressions occurring in S such that Vi <- Si occurs in S or Vi = red, and Si
occurs as a statement in S. Here di is assumed to be the type of Si.

Doc. No.

77

Proof
The proof proceeds by induction on the complexity of S.

S = v <- s: Depending on the structure of s, by one of the lemmas 6.34, 6.35, 6.36.

S = s: Depending on the structure of s, by one of the lemmas 6.38, 6.39.

S = S1;S2:
Let L- = L \ (stl U Ire). We have by lemma 6.22

and

where Pi = (Ulc: Silo By the induction hypothesis we have

and

It thus suffices to prove that 1= SPL-(P2,SPL-(P1,IJe)) _ QC: An application of
the ru1e for sequential composition (SC) and the consequence rule then gives us the
desired result.

So suppose that u,o,w 1= SPL-(P2,SPL-(P1,PC)), with OK(u,o,w). By theorem
6.21 there exist a state uo and an osi f such that

• f(a) = P[p2]CY)(0')(ao), 'Y arbitrary,

• ao,o',w' 1= SPL -(P1,PC
),

where 0' = f(o) and w' = few) 1 L-.
Now ao, 0', w' 1= SP L- (P1, PC) in turn implies that there exist a state ab and an osi 9
such that

• g(ao) = P[P1]C'Y)(0")(ub), 'Y arbitrary,

• (1' E/' w" 1= pc 0" ,

Doc. No.

78

where 0" = g(o') and w" = g(uJ) t L-.
To relate these computations of P1 and P2 we apply corollary C.8 of appendix C:
There exists an osi h such that hC t u~c) = gC t u~c), for every c, and h(J(u)) =
P[p2Ky)(g(0'))(g(uo)), where,), is arbitrary.

Since g(0') = 0" it follows that h(J(u)) = P[p](')')(0")(uh), with')' arbitrary. So by

uh,o",w"l= pc and 1= {pc}p{Qc} we infer h(J(u)),o",w"l= QC.

Now note that OK(uo,o'). So we have h(O(l») = gC(O(l») = 0('1) and h(0(2)(c») =
g(0(2)(C») = o(~)(c)' for every c. Thus we infer that 0" = h(o') = h(J(o)). Moreover
for z E L- we have h(J(w(z))) = h(w'(z)) = g(w'(z)) = w"(z). Note that the
second identity is justified by OK(uo,o',w'). So by theorem 6.19 and the fact that
LVar(QC) ~ L- we conclude u,o,w 1= QC.

S = if ... fi: Straightforward.

S = while e do Sl od:
In order to deal with this case we construct a loop invariant R as follows. Let L - =
L \ (st1 U Ire) and L+ = L- U {zu, zu'}, where Zu and Zu' are some new logical integer
variables. We define P' = P[zu, zu'lu, u'] and Q' = Q[zu, zu,lu, u']. Let p' = (Ulc :
while e 1\ u < u' do Sl;U <- U + 1 od). Furthermore let R' = SPL+(p',P' 1\ u =
0) and define R = 3zR'[z,zlu,u'], where z E LVar is a new variable. Note that

LVar(R) ~ L+. Furthermore we have 1= {p'}p{Q'} (note that u,u' f. TVar(p), p
being restricted).

We have 1= p' --+ R:

Let u, o,w 1= P', with OK(u,o,w). We prove that for w' = w{Olz} we have u, 0, w' 1=
R'[z,zlu,u']. Now u,o,uJ 1= R'[z,zlu,u'] iff u',o,w 1= R' by a straightforward
extension of lemma 5.4 (note that z f. Exp), where u' = u{O, Olu, u'} (note that
z f. LVar(R')). Because u, u' f. TVar(P') we have u', 0, w 1= P' 1\ u = O. Furthermore
it is easy to see that u' = P[p'](')')(0)(u'), with')' arbitrary. Finally, as LVar(P') ~ L+
we have by theorem 6.21 u',o,w 1= R'.

Next we prove 1= R 1\ ~e --+ Q':
Let u, 0, w 1= R 1\ ~e. So let a E N such that u', 0, w 1= R', where u' = u{ a, alu, u'}.
So there exist f, Uo such that

• feu') = P[p'D(')')(b')(uo),y arbitrary,

• 0'0, 8',w' 1= pl/\ U == 0,

where 0' = f(o) and w' = few) t L+. Now u,u' f. TVar(e) so u,o,w 1= ~e implies
u',o,w 1= ~e. By theorem 6.19 we have f(u'),o',f(w) 1= ~e. So from LVar(e) = 0

Doc. No.

79

it follows that J(u'),o',w' F ~e. From this it is not difficult to derive that J(u') =
P[p](,),)(o')(ub), where ub = uo{a,a/u,u'}. Now as u,u' rf- TVar(P') it follows that

ub,o',w' F P'. So by F {p'}p{Q'} we have J(u'),o',w' F Q'. By LVar(Q') ~ L+

and theorem 6.19 we have u', 0, w F Q'. SO that from u, u' rf- TVar(Q') we finally
conclude u, 0, w F Q'.

Finally, we have F { R" e }P1 {R}, where P1 = (ulc : S1):
Let uo, o,w F R" e, with OK(uo, o,w), and U1 = P[P1](')')(o)(uo), with')' arbitrary.
Let a E N such that ub,o,w F R', where ub = uo{a,a/u,u'}. So there exist J,u
such that

• J(ub) = P[p'](')')(0')(u), ')' arbitrary,

• u,6',w' 1= pi /\ u == 0,

where 0' = J(o) and w' = J(w)! L+.
So we have the following situation:

u' o

p'
u,o' --+ J(ub)

Here u,o .!!. u' should be interpreted as u' = P[p[(')')(0)(u), ')' arbitrary. We have
ub,o,w F e because u,u' rf- TVar(e). So by theorem 6.19 and LVar(e) = 0 we
infer J(ub),o',w' F e. Now let u\ = uda,a/u,u'}. It then follows that u\ =
P[p1 [(')')(0)(ub). We now have the following situation:

p'
u,o' --+ J(ub)

PI,.'
--+ v1

An application of corollary C.8 then gives us an osi 9 such that gC ! u,~c) = r ! u,~c)
for every c, and g(uj) = P[p1](')')(g(0))(J(ub)), with')' arbitrary. Note that from
OK(ub,o) it then follows that g(o) = J(o) = 0'. Finally, we thus have reached the

Doc. No.

80

following situation:
PI
->

PI
-> a' 1

a, 0' ~ J(ab),o' 4 g(aD

Now it follows that for a2 = a{<>+ 1/u/} and a3 = g(aD{<> + 1,<>+ 1/u,u/} we have
a3 = P[pl](-r)(0')(a2)' with, arbitrary. (Of course this can be proved formally, but
as the intuition behind a formal proof is quite obvious, the main idea being simply
that the temporary variable u counts the number ofloops, we think we are justified in
omitting such a proof.) Now a,o',w' 1= pi, u,u' rf- TVar(pl), so a2,01,w/ l= pi, from
which in turn it follows by lemma 6.22 that a3,01,w' 1= R'. So we infer g(aD,ol,w'l=
R. Now LVar(R) <;; L+ and for z E L+ we have g(w(z)) = J(w(z)) = w'(z) (the
first identity follows from OK(ab,w)) so we have g(aD,o',g(w) 1= R. It follows by an
application of theorem 6.19 that a;, o,w 1= R. Finally, as we have u, u' rf- TVar(R)
we conclude aI, o,w 1= R.

Now by 1= {R 1\ e}pI{R} it follows 'that 1= {RII 1\ e}PI{RII } (note that u,u' rf
TVar(PI)), where R" = R[u,u'/zu,zu,j. As LVar(R") <;; L- we can apply the induc
tion hypothesis:

By theorem 6.33 we have

L {. • ,} {' • '} r Zu = U 1\ Zu' = U PI ZU = u 1\ Zu' = U •

Furthermore we have 1= (R" 1\ Zu = u 1\ Zu' = U ') -> R and R -> (R" 1\ Zu =
u 1\ Zu' = u')[zu,zu,/u,u'j (note that u,u' rf- TVar(R)). So applying the conjunction
rule, the consequence rule for the postcondition, the initialization rule (IR2), and the
consequence rule for the precondition gives us

From an application of the rule (W) and the consequence rule, using the truth of the
implications pi -> Rand R 1\ -,e --t Q', it then follows that:

Now again by an application of theorem 6.33 and the conjunction rule we have

FI , ... , Fn f- { pi 1\ Zu = u 1\ Zu' = u/} p{ Q' 1\ Zu = u 1\ Zu' = u/}.

We have 1= (Q' 1\ Zu = u 1\ Zu' = ul) -> Q and 1= p -> (Pi 1\ Zu = u 1\ Zu' -
u')[u, u' / zu, Zu' j. So applying first the consequence rule for Q, then the initialization
rule (IR1), and finally the consequence rule for P gives us the desired result. 0

Doc. No.

81

6.6 The context switch

In this subsection we prove the derivability of the correctness formula {init }p{ SP'i,(p, init)},
for P = (ulc : v <- eO!m(el, ... , en)) closed and EVar ~ L ~ LVar such that
it U sf1 U ire ~ L. From now on until the end of this section unless stated otherwise
we assume P and L to be fixed. We want to apply the rule (NMR) and theorem 6.40.
To apply the rule (NMR) we need the following definition:

Definition 6.41
Let M be the smallest set such that

• P E M,

'f '- (UI ,., 'I '(' ,)) E M • 1 P - c. v of- eo·m €l"'" €k

then Pi = (UICi: Vi <- eh!mi(eL· .. ,e~,)) E M,
h . i I .(i i) i I .(i i) . S' t t t were v, +- €o.m, €I"'" €nj or €o.m, €I"'" en. occurs In as a s a emen

(in this latter case we have Vi = red" assuming di to be the type of the result
expression of mil, S' being the body of the method m'.

Let M = {Pl,'" ,Pk}, P = Pl, assuming the following notational conventions: Pi =
(ulci : Vi <- e~!mi(eLoo.,e~.)) EM, and mi(uLoo.,u~.) ~ Si rei occurs in U,
i = 1, ... , k. We let ei den~te the sequence e~, ... , e~i: Furthermore let it be a
sequence of all the temporary variables, and let the formal parameters of the method
mi be denoted by ui.

We start with a sketch of the proof strategy. To apply theorem 6.40 and the rule
(NMR) we have to define assertions Pi,Qi, i = 1,oo.,k, such that LVar(Pi,Qi) ~
L \ (s11 U ire), and

F= {Pi II /\ vj = nil II self rt bd(ulci; Si){ Qi[e;/ril}, (6.1)
J

where vi = u \ vi and c; is the type of eh,

F= init --+ Pi[eilself,uiJLi/IE'][bc; 0 (self)lbc;l (6.2)

and
F= Q;[e' Iself, uiW/, I zi][bc; 0 (self) IbcJ --+ SPi: (pi, init)[r;/v;], (6.3)

for some sequence of expressions gi and corresponding sequence of logical variables
zi. Here ri for i = 1, ... , k is a logical variable of the same type as Vi. By 6.1 an
application of theorem 6.40 then gives us

F{,oo.,Fk f- {Pi II /\v; = nil II self rt bc:}(ulci: Si){Qi[e;jril}
J

Doc. No.

82

where

FI = {in;t }Pi{ SPt(Pi, init)}.

Furthermore by an application of the consequence rule, using (6.2), we have F; I- FI
where

Fi = {Pi[ei /self, ii/][i /i][bc; 0 (self) /bc.l }Pi{ SPt(Pi, init) }.

So we have

F I , ... , Fk I- {Pi A ;\ v} = nil A self It' bd(ulc: : Si){ Qi[e;jr;J}.
j

An application of (NMR) plus (MI) or (MT) and the consequence rule, using (6.2)
and (6.3), then concludes the proof.

We start with the considering equations (6.2) and (6.3): We define a substitution
which neutralizes the context switch. To do so we first introduce some new logical
variables.

Definition 6.42
We associate with u E u a new logical variable tv2 u of the same type and with
each c E C a new logical variable idc• We define tv2 to be the sequence of logical
variables tv2u corresponding to the sequence u. Finally let id', i = 1, ... , k, denote
the sequence consisting of the variable ;d,; followed by the elements of tv2.

We have the following lemma about the neutralizing capacity of the substitution
[id'/self,u] with respect to the context switch:

Lemma 6.43
For any i E {I, ... , k} and every assertion P E Assc; we have

Proof
Straightforward induction on the complexity of pC;. o

Note that the substitution [idi /self, u] transforms the assertion pC; into an assertion

in Assc for arbitrary c. Furthermore it is easy to see that if L Var(P) nidi = 0
then 1= pC; <-+ pc. [idi /self, u][f/idt where f denotes the sequence consisting of the
expression self followed by the elements of u. Note that in general we do not have
that pC; is syntactically equal to pOi [id' / self, uHf! id'], as is shown by the following
example:

Doc. No.

83

Example 6.44 .
Take for pc. = x = z.y, where z if. id'. We have pe'[idi/self,u] = ide •. x = z.y and

(ide •. x = z.y)[l/id
i
] = self.x = z.y.

Next we consider the substitution [be. 0 (self)/be']' It is not difficult to see that for
every assertion pc.j we have

But note that we do not have the other way around! However, as F init --> ble• = be",
we do have

F init --> ((init[ble./be.] II be. = ble• 0 (self))[be• 0 (self)/be.l).

To summarize the argument above we introduce the following definition:

Definition 6.45
For any i E {I, ... , k} and any assertion P E Asse• we define its reverse context switch
R(pc.) as follows:

R(pe.) = (pc. [ble./be.] II be. = ble• 0 (self))[idi/self,u]

We have the following lemma about this reverse context switch:

Lemma 6.46
For any i E {I, ... , k} and every assertion P E Asse

• we have

and if FPc, --> be. = ble• then

FPC' --> R(pe')[ei/self,u][l/ii][be• 0 (self)/be.J).

Here 1 = self, u.

Proof
Clear from the above. D

So at this stage candidates for Pi, Q i, i = 1, ... , k, satisfying equations (6.2) and (6.3)
are the assertions R(init) and R(SPZ(Pi, init)[r;/viJ), i = 1, ... , k. We now proceed
by analyzing equation (6.1). Suppose we are given that for some P and Q we have

F {p }Pi{ Q}. In general we do not have

Doc. No.

F {R(P) II 1\ v} = nil II self if. bc:}(ulci: Si){R(Q')[e;jTi]},
j

84

where Q' = Q[r;/vi]. This is because it is possible that the object executing Si is not
the object which is sent the message and furthermore nothing is said about the values
of the formal parameters. So we add to R(P) the information self':' ebrid'/self,u]
and u} ,:, e}[idi /self, u], j = 1, ... , ni. We have the following lemma:

Lemma 6.47

F= (Ii':' (eWdi/self,u]))[ei/self,u][//idi]

where l' = self, ui and / = self, u.

Proof
Easy. o

Note that from lemma 6.46 and lemma 6.47 it follows that for every pc. such that
1= PCj ~ bei == blci we have

F= P --> (R(P) A I\lj':' (e}[idi/self,u])) [ei/self,u][//idi][be• 0 (self)/be.].

j

Now we are ready for the following lemma which shows how to transform a valid
correctness formula about sending a message into a valid formula about the execution
of the body of the message by the receiver:

Lemma 6.48
For any i E {I, ... ,k} and every P,Q E Asse, such that F= {p }Pi{ Q } we have

F= {p' Al\vj':' nil A self ~ be:}(ulc;: Si){Q'[edri]},
j

where P' = R(P) A I\j Ij ,:, (eWdi/self,u]) and Q' = R(Q[r;/vi]), with ri a fresh
logical variable of the same type as Vi. Here vi = u \ ui .

Proof
Let a, 0, w F= P' A I\j v; ,:, nil A self ~ be:, for a, 0, w such that OK(a, 0, w), and
a' = P[(ulc;: Si)](')')(o)(a), with')' arbitrary and a' # 1..

We define al = a{w(tv2u)/u }UEii and 0(1) = w(idc,), 0(2)(e) = "(2)(e) for every c.

It follows from lemma 5.28 that aI, o',w F= P[ble./be.l A be. = blc. 0 (self).

Next we define 0" as follows: 0(1) = "it), 0;'2)(e,) = 0(2)(e,) \ {w(ide.}}, and 0(2)(e) =
0(2)(e) for any c # Ci. Furthermore we put WI = w{w(blc,)/bc,}. It then follows that
OK (aI, 0", wt) and aI, 0", WI F= P.

Doc. No.

"'o,W 1= P'
.(I.

,,',o,W 1= Q'[e;/r;]

1'1

85

"I,O',W 1= P[ble,/be.l II be. = ble. 0 (self)

.(I.

,,",0',W31= Q[ble., ri/be., vil II be. = ble. 0 (self)

1'1
0"1, 8/1, WI 1= p "2,0",WI 1= Q

Figure 4: The structure of the proof of lemma 6.48.

Let on the other hand u" = ,,'{w(tv2u)/U}uEu and

{
,,"{B/v;}) if Vi E TVar " -

2 - ,,"{!3/w(ide,),vi} if Vi E IVar,

where (3 = [[ei](o)(,,') (remember that ei is the result expression of the method

mil. Now from "'o,w 1= /\j!] = (e}[id'/self,ul) it follows from lemma 5.28 that

0(1) = C[eh[id
i
/self, ul](w)(0)(,,) = C[eh](w)(0")("tl and "(3)(u~) = C[e~](w)(6")("1).

Furthermore from "'o,w 1= self rf. be: it in turn follows that 0(1) rf. 0(2)(eD' Now
putting this together with the assumption that ,,' = P[(ulc: : Si)](,)(o)(,,), using
"'o,w 1= /\jvj '" nil, enables one to infer that "2 = P[Pi]C!)(6")("I).

Furthermore we are given that 1= {p }Pi{ Q} so from "I,O",WI 1= P and "2 =

P[Pi]CI)(6")("tl we infer that "2,0",WI 1= Q. Now let W2 = WI {{3Jri}. It then
follows by lemma 5.8 that ,,",0",W2 1= Q[ri/vil. Next we note that as w2(be,) =
WI (be,) = w(ble,) we have "",0', W3 1= Q[ri, ble,/vi, beil, where W3 = w{{3 /ri}.

From "'o,w 1= R(P) we infer that w(be,) = w(ble,) 0 (w(ide,)). But weide,) = o{t) so

we have ,,",0',w31= Q[ri, ble,/vi,be.l II be. = ble. 0 (self).

Now an application oflemma 5.28 gives us ,,',0,W31= R(Q[r;fvi]). From this in turn
it follows that ,,',o,w 1= Q'[ei/r;]. 0

Now we want to apply lemma 6.48 taking init for P and SP"i,(Pi, init) for Q. Note

that by lemma 6.22 we have 1= {init }Pi{ SP'j;(Pi, init)}. Now taking for Pi the asser

tion R(init) II /\j!j '" (e}[z/self, ul) and for Qi the assertion R(SP"i,(Pi, init)[r;/viD
we have by lemma 6.46 and lemma 6.47 that equations (6.2) and (6.3) are satis
fied. However since in the assertions Pi and Qi new logical variables occur which are

not contained in L, we must apply theorem 6.40 for Fi = {init }Pi{ SPZ+(Pi, init)},
where L+ = L U {ide: C E C} U {tv2u: U E u}. But to apply the rule (NMR)
we then have to take for Qi the assertion R(SPZ+(Pi, init)[r;/vil). An application

Doc. No.

86

of (NMR) and (MI) or (MT) would then give us the derivability of the correctness

formula {init }p{ SPL+(p, init)}. However, as 1= SPL+ (p, init) SPL(p, init) (use

LVar(init) ~ L ~ L+), we have by an application of the consequence rule the deriv

ability of { init } p{ SPL(p, init) }.

But there is one problem we did not discuss yet. As iiI U (re ~ LVar(SP'i+(Pi, init»
we can not apply theorem 6.40! This problem is solved as follows: First we define
L- = L+ \ (stl U Ire). Next we define the following abbreviation:

Definition 6.49
Let Subs(Ire, stl , .or) abbreviate the assertion:

I\(erl e ~ ere II bll e ~ ere Illree E ere II 1\ 1\ ivl x ~ erd II 1\ tvlu E ere).
e dEC xE1Var:i uE TVarc

The assertion Subs(lre,stl, .or) states that all the objects which are denoted by a
variable of Ire or stl, or which occur in a sequence denoted by some variable of stl ,
are stored in the corresponding variable of cr. We have the following proposition:

Proposition 6.50
Let Pi = R(init)lI/\jfj,:, (eWi/self,uJ), Qi = R(SP~:-(pi,init)[r;!viJ) and Qt =
R(SP'i+(Pi, init)[r;!vi))' We have

1= Pi II Subs(lre, stl , er) +-+ Pi

and
1= Qi [e;!r;] II Subs (Ire, stl, .or) Qt[e;jriJ·

Proof
The first assertion follows immediately from the fact that the assertion init (and so
the assertion R(init» implies the assertion VZe(Ze E ere), for every c.

Now we prove the second assertion. Let u, o,w 1= Qne;!r.J II Subs(lre, stl, .or). For
w, = w{[[ei](o)(u)/ri}, we then have u,o,w, 1= Qi II Subs(lre,stl, .or).

Next we define u' = u{w,(tv2u)/U}uEu, and 0(,) = w,(ideJ, 0(2)(e) = 6(2)(e), for
every c. It then follows by lemma 5.28 that: u', 0', w, 1= SP'i-(Pi, init)[ri, ble./Vi, bc;lll
bei = blei 0 (self) II Subs(lre, stl, er).

For W2 = w,{w,(bleJ/be,} and 0('1) = 0(1)' for c i- Ci: 0('2)(e) = 0(2)(e)' otherwise:

0(,2)(e) = 0(2)(e) \ 0(,), we have u', 0", W2 1= SP'i- (Pi, init)[r;JViJ II Subs(Ire, stl , .or).

Doc. No.

87

Next, let

a" = {a'{W2(ri)/6(t),Vi} if Vi E [Var

a' {W2(ri)/vi} if Vi E TVar.

It follows that a", 6", W2 1= SP"i- (Pi, init) A Subs(lre, stl , cr).

So by theorem 6.21 there exist f and ao such that:

• f(a") = P[p](,)(J(O"))(ao), with, arbitrary,

• ao,f(6"),w'pinit,

where w' = f(W2) 1 L-. Let at = f(a"). Now by theorem 6.19 we have that
at, f(6"), f(W2) 1= Subs(lre,stl,cr). So from {erc: e E C} ~ L- and the compati
bility of w' and ao we then infer the compatibility of f(W2) 1 L+ and ao. Let w" =
f(W2) 1 L+. We have that ao,/(61),w" 1= init, so we have a", .I" ,W2 1= SP';> (Pi, init).
From this it follows, by "reversing" the part of the above argument which led to the
statement al ,6",w21= SP'l::-(pi,init), that a,6,w 1= Qt[e;/r;J. 0

Now we are ready for the following theorem.

Theorem 6.51
Let the program P = (UIc: V <- eo!m(et, ... ,en)) be closed and let BVar ~ L ~ LVar
such that it U stl U Ire ~ L. Then we have

I- {init }p{ SPLCp, init}.

Proof
Let Pi = R(init) A I\j fi == (e~[idi /self, u]), Qi = R(SP~:-(pi' init)[r;/vi]) and Qt =
R(SP'l> (Pi, init)[ri/vi]). Now by lemma 6.22 we get

1= {init }Pi{ SP"i-(Pi, init)}

So we have, by lemma 6.48,

1= {Pi A /\ vj == nil A self rf. bc:}(Ulci: Si){ Qile;/r.}.
J

An application of theorem 6.40 then gives us (note that the restrictions on the logical
variables are satisfied)

Doc. No.

F{,···,Fk I- {Pi A /\ v; == nil A self rf. bc:}(Ule:: Si){ Q;[ei/ril},
j

88

where
FE = {init }Pi{ SPE+(pi, init)}.

Now by lemma 6.46 and lemma 6.47 an application of the consequence rule gives us
Fi I- FE where

Fi = {Pi[ei/self,uil[!lidi][be; 0 (self)lbe.J}Pi{ SPE+(pi, init)}.

So we have

Fl. ... ,Fk I- {Pi II /\ v} '" nil II self rf- bc:}(ulc:: Si){ Q;[e;jr;]}.
j

By theorem 6.33 we have

I- {Subs (ire , stl ,cr) }(Ulc: : Si){ SUbs(/re ,stl ,cr)}.

So by the conjunction rule we infer

{ Pi IIl\j vj '" njlll self rf- be: II Subs(Ire, stl , cr) }

FI , ... ,Fm I- (ulc:: Si)

{Q;[e;jrilll Subs(lre, stl, cr)}.

By proposition 6.50 an application of the consequence rille gives us

F}, ... , Fm I- {Pi II /\ vj '" njlll self rf- bc:}(UIc: : Si){ Qt[e;jr;J}.
j

We now can apply rule (NMR), making use of lemma 6.46, yielding the derivability
of the correctness formula:

{PI II /\ vJ '" njlll self rf- be; }(ulc~ : Sl){ Qthhl}.
j

Applying next (MI) or (MT) gives us the derivability of

{ PI [e" Iself, u"l[!1 zI][bel 0 (self) /bell }Pl { SP L+ (PI, init) }.

So an application of the consequence rule (the assertion init by lemma 6.46 implies
the precondition, and 1= SPL+(PI, init) ---> SPL(PI, init)) gives us the desired result
(note that Pl = P by definition)

I- {init }p{ SPL(p, init)}.

o

We conclude with the completeness theorem:

Doc. No.

89

Theorem 6.52
Let pC = (U!c : S) be a closed program. We have for an arbitrary correctness formula

{pc }pc{ QC}:

Proof
Let pi and Q' result from substituting for every variable of 8tl and Ire a corresponding
new variable (new with respect to the sets LVar(PC, QC), it, 8tl, Ire). Let L ~ LVar
(L finite) be sucb that BVar ~ L, LVar(P' , Q') ~ L and it U 8tl U Ire ~ L. By the
soundness of the substitution rule we have F {pi }pc{ QI}, so applying theorem 6.40
gives us

where Fi = {init}p,{SPf(pi, init)}, Pi = (uICi : Vi +- eh!mi(eL . .. ,e~J) and eh!mi(eL·· ., e~J,
i = 1, ... ,n, are all the send-expressions occurring in S, and if such an expression
ei!mi(el, . .. ,e~j) occurs in S as a statement we have that Vi = red.:, assuming di to
be the type of the result expression of mi. By theorem 6.51 we have the derivability
of Fi, so we infer that f- {pl}pC{ QI}. Finally an application of the substitution rule

gives us the derivability of {pc }pc{ QC}. 0

Doc. No.

90

7 Conclusions

In the previous sections we have given a proof system for SPOOL that fulfills the
requirements we have listed in the introduction:

• The only possible operations on object references (pointers) are testing for equal
ity and dereferencing .

• In each state of the system only the existing objects playa role in assertions
about that state.

In fact, we have given even two proof systems fulfilling these requirements: one with
recursively defined predicates and one with the ability to reason about finite sequences
of objects.

The technique which we have given for computing the weakest precondition for an
assignment with respect to a given postcondition, a generalized version of substitu
tion, seems very powerful. Especially the fact that is possible to do this for a new
assignment, in the situation that it is not possible to mention the newly created object
in the state before the statement, is a little bit surprising.

The proof rule for message passing, incorporating the passing of parameters and
result, context switching, and the constancy of the variables of the sending object, is
a very complex rule. It seems to work fine for our proof system, but its properties
have not yet been studied extensively enough. It would be interesting to see whether
the several things that are handled in one rnle conld be dealt with by a number of
different, simpler rules.

We have proved completeness for the proof system based on the assertion language
containing quantification over finite sequences using the standard techuiques (see [3],
for example). But how to apply these techniques to the proof system based on recur
sive predicates remains an open problem.

Therefore we must conclude that there is still some work to be done on these issues.
In addition, in the present proof systems the protection properties of object are not
reflected very well. While in the programming language it is not possible for one object
to access the internal details (variables) of another one, in the assertion language this
is allowed. In order to improve this it might be necessary to develop a system in
which an object presents some abstract view of its behaviour to the outside world.
Perhaps techniques developed to deal with abstract data types are useful here.

Doc. No.

91

References

[1] Pierre America: Definition of the programming language POOL- T. ESPRIT
project 415A, Doc. No. 0091, Philips Research Laboratories, Eindhoven, the
Netherlands, September 1985.

[2] Pierre America: A proof theory for a sequential version of POOL. ESPRlT
project 415A, Doc. No. , Philips Research Laboratories, Eindhoven, the Nether
lands, September 198?

[3] Krzysztof R. Apt: Ten years of Hoare logic: a survey - part I. ACM Trans
actions on Programming Languages and Systems, Vol. 3, No.4, October 1981,
pp. 431-483.

[4] J.W. de Bakker: Mathematical Theory of Program Correctness. Prentice-Hall
International, Englewood Cliffs, New Jersey, 1980.

[5] Herbert B. Enderton: A Mathematical Introduction to Logic. Academic Press,
1972.

[6] Adele Goldberg, David Robson: Smalltalk-80, The Language and its Implemen
tation. Addlson-Wesley, 1983.

[7] Joseph M. Morris: Assignment and linked data structures. Manfred Broy, Gun
ther Schmidt (eds.): Theoretical Foundations of Programming Methodology.
Reidel, 1982, pp. 35-41.

[8] Dana S. Scott: Identity and existence in intuitionistic logic. M.P. Fourman, C.J.
Mulvey, D.S. Scott (eds.): Applications of Sheaves. Proceedings, Durham 1977,
Springer-Verlag, 1979, pp. 660-696 (Lecture Notes in Mathematics 753).

[9] Joseph R. Shoenfield: Mathematical Logic. Addison-Wesley, 1967.

[10] John V. Tucker, Jeffery I. Zucker: Program Correctness over Abstract Data
Types, with Error-State Semantics. CWI Monograph Series, Vol. 6, Centre for
Mathematics and Computer Science/North-Holland, 1988.

Doc. No.

92

A A generalisation of the rule (MR)

In this section we show that in the recursion rule (MR), as introduced in definition 5.33
and adapted in definition 6.4, we can replace U- by U itself, thus allowing nested
applications of (MR) to the same methods. Let (NMR) denote the recursion rule
resulting from (MR) by replacing all occurrences of U- by U. Furthermore let If
denote the derivability using (NMR) (f- denotes derivability using (MR». We have
the following theorem:

Theorem A.I
For every correctness formula F we have If- F iff f- F.

Proof
=>: We prove that if FI"'" Fnl f- F then FI' ... ' Fn f- F by induction on the length
of the derivation. We treat the case that the last rule applied is (NMR). So let the
following be an instance of (NMR):

FI, ... ,Fnl f- F{, ... ,r"
F' I

where F{ = F. Let U be the unit occurring in this application of (NMR). We may
assume without loss of generality that all the methods declared by U are specified by
one of the F;. (Otherwise, let {PI,"', Pk}, where Pi = (uICi : Vi +- e&!mi(eL ... , e~,»),
be all the send statements occurring in U. Now simply add to FI, ... ,Fn for i =

1, ... ,k, Gi = {true }Pi{ true}, and note that

where c: is the type of e& and Si denotes the body of mi.) We shall prove by induction
on the number of applications of (NMR) in the derivation FI , ... ,Fnl f- F{, ... ,r,.
that for some iiI,'" ,iik, HI"", Hk, Hi, ... , HI, such that for 1 ::::: i ::::: k

Hi iIi
Hi

is an instance of (MI) or (MT), we have:

F- F- H- H- L F-' F-' H-' H-' b· o
., n, 11·", k r 1"'" n' 1"", k

where, for G = {p }(ulc : S){ Q}, (; denotes {p }(EIc: S){ Q}, E being the empty
unit. Having proved this we apply (MR) thus yielding f- F{(= F). Here we go:

Induction basis: Assume that no application of (NMR) occurs in the derivation
FI , . .. , Fnl f- F{, . .. , r". So we have that FI, . .. , Fn f-- F{, . .. , r", where f-- denotes

Doc. No.

93

derivability from f- without (MR). It is not difficult to see that it suffices to prove by
induction on the length of the derivation that for an arbitrary correctness formula G
if F" ... ,Fn f-- G then for some ii" ... ,ih, H" ... , Hb Hi, ... , HI, we have

where for i = 1, ... , k

Hi Hi
Hi

is an instance of (MI) or (MT). We treat the only interesting case that the last rule
applied is an instance of (MI) or (MT). So suppose F" .. . , Fn f-- G', G, where

G' G
G

is an instance of (MI) or (MT). Now by the induction hypothesis we know that for
some iil , ... ,iik,Ht, ... , Hk, H~, ... ,Hk:

such that for i = 1, ... ,k
HI iii

Hi

is an instance of (MI) or (MT). Now let ilk+! = G, Hk+' = G, and Hk+! = G'. We
then have that

Induction step: Let for i = 1, ... ,m

. . . I . I

Gj, ... ,G~iP-Gi , ... ,G~i
. ,

0',

be all the applications of (NMR) in the derivation FI , ... , Fnl f- F{, ... , 1":. such that

By the same induction argument as used in the basis step above we have for some
ii" ... ,ih, H" ... ,Hk,Hi, ... ,Hk (such that for i = 1, ... ,k

is an instance of (MI) or (MT» that

Doc. No.

94

where I-~ denotes derivability from I- minus the rules (MR), (MI), and (MT). Now,
applying the induction hypothesis gives us for i = 1, ... , m: ilj, ... , ilk" Hj, ... , H1;,

" . ,
Hi , ... , Hi,; such that

-' -' - . - . - " _. I -,' - . I
Gi, ... ,G~.,H~, ... ,Hk· ~Gi , ... ,G~. ,Hi , ... ,Hk',. I I I I

Now it follows by a straightforward induction on the length of the derivation

that
;: u U Vi U U Hi I- ;:' U U vi u U Hi

where

• F = {F't, ... ,Fn+k}, Fn+i = Hi, i = 1, ... , k,

• F' = {F', ... ,F~+k}' F~+i = H~, i = 1, ... ,k,

• Vi = {GL ... ,G~J, 1 $ i $ m,

I _ -if -j I •
• Vi - {GI , ... ,Gn; }, 1 $ t $ m,

• Hi = {ilt, ... ,ilU, 1 $ i $ m,

I _ - i' - i I •
• Hi - {HI"" ,Hk; }, 1 $ I $ m.

{:: This is proved in a similar way as the other direction. o

Doc. No.

95

B Expressibility

In this section we show how to formulate the assertion sP'£(pc, PC) in our assertion
language, for an arbitrary closed program pC, BVar <;; L <;; LVar (L finite), such that
LVar(PC) <;; LVar.

As in section 6 we assume the sets C, IVar, and TVar to be finite.

B.l Coding mappings

Assumption B.l
We assume the existence of the following coding mappings:

• For every instance variable or temporary variable 11 E ITVar we have [11] E N,
and for an arbitrary program p we have [p] E N.

• For every d E C+, [.]d E 01 -+ N denotes an injection such that [.L]d = O. In
addition, we assume that the function [.] is surjective.

• For every state a E ~ such that OK(a), [a] E N.

• For every context 6c E ~c: W] E N.

Furthermore we assume that the mappings [.] and [.] are definable in our assertion
language. That is, we regard the following function symbols as abbreviations for
assertions that are expressible in our assertion language:

• Ic(n) = m (mnemonic: integer coding) iff [n] = m.

• Bc(b) = m (mnemonic: Boolean coding) iff [b] = m.

• Id(n) = m (mnemonic: integer decoding) iff [m] = n.

To be precise, with the first assumption above we mean that there is an assertion
Ic(z') = Z2, where z, and Z2 are integer logical variables, such that for every a E
~,b E ~,w E n with OK(a,b,w) we have

a,b,w F Ic(z,) = Z2 iff

In fact from now on for every c E C and a E DC we identify [a]c with a. So we
assume Dc <;; N.

In the same say we assume the following predicates and functions to be expressible
in our assertion language:

Doc. No.

96

• EC(n,m) (mnemomic: exists) iff there exist a a E ~ and a E a(c) such that
[aJc = nand raj = m.

• A C(n) = m (mnemonic: active) iff there exists a 0 E ~ C such that [oJ = nand
[o{l)Jc = m.

• BC(n, m) (mnemonic: blocked) iff there exist a 0 E ~ and an a E 0(2)(c) such
that [aJc = n and [oj = m.

• Val~(k,l,m) = n (mnemonic: value) iff there exist a E ~, a E a(c), and x~ E
IVar~ such that [aJc = k, [x~J = I, raj = m, and [a(a)(x~)Jd = n.

• Va1d(/, m) = n iff there exist a a E ~ and a Ud E TVard such that [UdJ = I,
raj = m, and [a(Ud)Jd = n.

• TC(n,m,l,k) (mnemonic: transforms) iff there exist a closed p E Progc,o E ~c,
and a, a' E ~ such that OK(a,o), [pJ = n, [oj = m, raj = I, [a'J = k, and
a' = PC[p](-r)(o)(a) (where I is arbitrary).

The above assumptions may appear quite implausible at first sight, but they can be
justified by Church's Thesis, which states that every function or relation that can be
effectively calculated is recursive, together with the (mathematical) fact that every
recursive function is representable in the standard Peano theory of natural numbers
and therefore it is certainly definable in our assertion language. (For a discussion of
these issues, see [5J or [9J.)

B.2 Arithmetizing Truth

To express the strongest postcondition we have to arithmetize the truth of an assertion
in a state. More precisely, we will define a translation which transforms an arbitrary
assertion into an assertion in which no instance variables or temporary variables occur.
The idea of this translation is similar to the one given in the definitions 6.26 and 6.28.
But instead of transforming an assertion into an assertion referring to a sequence
of logical variables used to store the state, we now transform it into an assertion
referring to the code of a state. This is necessary to be able to nse the predicates of
assumption B.I, in particular the predicate T.

To get started we introduce some new variables: Let bij denote a sequence of some
variables bif E L Var c., c E C. We shall use these variables to store the essential
parts of the bijections that constitute an osi (see definition 6.17). The way in which
this is done will be made precise in definition B.3, but here we can already explain
how the bij can be used as a kind of decoding tables. To that end we assume that we

Doc. No.

97

have a certain state a such that for every c E C and a E 0i

{

a if a E a(c)
elt({3, [alc) = .

1. otherwise.

where (3 E OC' is the value of bijC in a certain w. So every existing object of class c
occurs in the sequence denoted by bijC at a position which equals its code number. It
is important to note that we cannot express this property of the sequence denoted by
bijC in the assertion language: There exists no assertion P(bijC) sucb that for every
a, 0, w with OK(a, 0, w) we have a, 0, w 1= P(bijC) precisely if the above property holds.
This is because at the level of the assertion language objects simply are not integers.
Fortunately we shall not need the expressibility of exactly this property, but only of
this property modulo an osi. This is the subject of section B.3.

Definition B.2
Let z", ZU be some logical integer variables. We assume that the value of ZU equals the
code [al of some state a, and that the value of z" equals [alc for some a E a(c). For
every logical expression I~ we define Idr z", zUl as a triple (I, II c, 12

C
), where 1 denotes

a sequence of logical integer variables, and h and 12 are logical expressions. Note that
we do not define this transformation for logical expressions of type d* with d E C+.
The idea behind this transformation Idr z", zUl = (1,11 ,12) can be described as follows:
The expression 11 is constructed sucb that it is only true if the variables i contain the
code numbers of certain objects that are relevant for the evaluation of I~. To do this,
11 can consult the variables bij as a translation table from code numbers to actual
objects. Using this information, 12 is a translation of I~ such that every operation on
objects described by l~ is translated into a corresponding arithmetical operation on
code numbers.

Here is the formal definition:

• x~rz",zul = (E,true, Val:t(z",k,zU)),
where k = [x:tJ and E is the empty sequence.

• udrz",zul = (E,true, Vald(k,zU)),
where k = [udl.

• nilrz",zul = (E,true,O).

• selfr z", zUl = (E, true, z").

• Irz",zO'l = (E,true,Bc(l)),
where I = true, false.

• nrz",zul = (E,true,[n]).

Doc. No.

98

• zrz",z"l = (f,true,Ic(z),
zrz",z"l = (f,true,Bc(z).

• Zc r z", z"l = «(i), if Zc ,:, nil then i ,:, 0 else bijC . i = Zc fi, i).

• (I~, .x~)[z",z"l = (',I" VaIJ'(l2,k,z")),
where k = [x~J and I~,rz",z"l = (',It,1 2).

• (I. ·I)[z",z"l = (l,lt,Ic(I •. Id(l2))),
(I •. IH z", z"l = (" I" Bc(l • . Id(l2))),
where Irz",z"l = (l,h,12).

• (ld' . 1)[z", z"l = (, 0 (j), I, II if Id' . Id(l2) ,:, nil then j ,:, 0 else bijd . j -
Id • . Id(12) fi,j),
where dEC, Irz",z"l = 0,1,,12) and j is a fresh integer logical variable.

• (ld 12)[z",z"1 = (',I"III~ ,Ic(Id(I12l+ Id(l~,))) _ 1 _ _ __ _

where I,rz",z"l = (i"I,,, 112), 12rz",z"1 = (i2,12,,12,), i = i, oj, j is some
sequence of new logical integer variables of the same length as '2, I~, = 12, U 1'2J,
and I~, = 12, [J/12J.

• if I, then 12 else 13 fi r z", z"l = (" I" III~, III;J' if h, then I~, else I;, fi)
whereldz",z"l = (",1,,, I,,), 12 rz", z"l = (i2,12,,12,),13rz",z"1 = ('3,13,,13,),
, = " 0)2 0)3,)2 and)3 are sequences of new logical variables of the same
length as '2, 13, respectively, such that I")2 and)3 are mutually disjoint,
I~, = 12,u2/'2J, I~, = 12, [)2/'2J, 13, = 13,U3!i3J, and 13, = 13,u3/13J.

• (I,,:, 12)[z",z"1 = (',It,III~,,lt,,:, I~,)
where I,rz",z"l = (."1,,,1,,), 12 rz",z"1 = ('2,1,,,12,),' =" oJ, J is some
sequence of new logical integer variables of the same length as '2, I~, = I" u 112J,
and I~, = 12, U 112J·

Next we define for every assertion pc its transformation pc L z" , z" J .

• ICLz",z"J = 31(1,1112':' Bc(true)),
where Icrz",z"l = (,,1,,12).

• (P, II P2)Lz", z"J = P,lz",z" J II P2lz", z" J.

• (3za P)Lz",z"J = 3za P lz",z"J
for a = Int, Bool, Int*, Bool*.

• (3zdP)L z", z" J = 3zd(Zd E bijd 1\ P L z", z" J)
for every dEC. Here Zd E bii abbreviates 3i Zd':' bijd. i (cf. definition 6.28).

• (3zd.P)lz",z"J = 3zd'(Zd' <;; billl PLz",z"J)
for every dEC. Here Zd' <;; bijd abbreviates Vi Zd' • i E bijd (cf. definition 6.28).

Doc. No.

• (l;izaPHz", ZU J = I;izaPlz", ZU J
for a = Int, Baal, Int', Baal'.

• (l;izdPHz",zuJ = l;izizd E bijd -+ Plz",zuJ)
for every dEC.

• (I;iZd,P)lZ",zuJ = I;iZd'(Zd' ~ bijd -+ Plz",zuJ)
for every dEC.

99

In thls transformation we assume that the quantified variables are distinct from any of
the variables of bij. Note that the result of this transformation applied to an arbitrary
assertion is a quantification-restricted assertion.

To describe the semantics of this transformation we need the following definition.

Definition B.3
Let w E n,a E ~, and let! be an osi (see definition 6.17). Then we write

Code(w, a,f) iff for every c E C we have

• at) = {elt(f3c' , n) : n E N}

• for all a E a(c) and fo; all n E N we have

elt(f3C' , n) = a iff r(alpha) = n

where f3c' = w(bijC).

We write CodeL(w,a,f) if Code(w,a,f) and additionally for every c E C we have

• w(z) E w(bif) for every z E L n LVarc

• w(z) ~ w(bijC) for every z E L n LVarc'

In a sense Code(w, a, f) can be interpreted as saying that w(bijC) codes the restriction
of the osi ! to the existing objects of a.

Now we are ready for the following semanticai interpretation of the transformation
described above.

Theorem B.4
Assume to be given the states a, a', a" such that a j a" and an osi ! such that
!(a(c)) = a'(c) for every c E C. Furthermore let wEn and fj E ,:lc be such that

Doc. No.

100

OK(w,o,(JII) and CodeL(w,(J,j), where EVar S;; L S;; LVar. Then for every assertion
pc such that LVar(PC) S;; Land LVar(Pc) n bij = 0 we have

(J' 0' w' 1= pc , , iff (J",o,w{n,m/z",z"} 1= P'lz",z"J,

where 0' = fro), w' = f(w)! L, n = [J(0{1»)]" m = [(J'], and z",z" are new logical
integer variables.

Proof
Induction on the complexity of PC. The case pc = IC is treated as follows. For
every logical expression Id such that LVar(ld) S;; L and LVar(ld) n bij = 0 we prove,
by induction on the complexity of Id, the following: Let IHz",z"l = (',11 ,12) where
, = i 1 , .•• , iq. Then there exists a unique sequence of natural numbers Ie = k1 , ••. , kq
such that

.c[It](w{le, n, m/" z", z"})(O)(JII) = t

and for this Ie we have

[.c[Id](w')(0')((J')]d = .c[I2](w{le, n, m(i, z", z"})(0)(0").

o

B.3 Expressing the coding relationship

In this section we show how to express in the assertion language the relationship
between a state and its code number. In definition B.6 we shall define the assertion
Bij(zQ), which expresses, as accurately as possible, that the current state is coded by
the value of z" and that the logical variables bij form a correct decoding table. How
ever, it is only possible to express this up to isomorfism, as we shall see in lemma B.7.

Definition B.S
First we define the following auxiliary assertions:

• CIC(xC,z", z<T) = le((bij' . z"). XC) =
CIC(xc, z", z") = le((bij' . z") . XC) =
where k = [x].

• CPd(Xd, ZOi, ZU) =

VaIC(z" k z") " ,
ValC(z" k z") " ,

((bijC ·z").xd = nil -> Va1d(z",k,z") = 0)"
((bijC . z") . xd f. nil -> Ifp((bij' . z") . xd = bijd . P -> VaId(z", k, z") '" p)),
where dEC and k = [xd]

• CT(u,z") = le(u) = Val(k,z"),
CT(u,z") = le(u) '" Val(k,z"),
where k = [u].

Doc. No.

• CTd(Ud,zq) =
(Ud': nil-+ Vaid(k,zq),: 0)1\
(Ud "nil-+ Ifp(bijd. p,: Ud"'" Vaid(k,zq) = p)),
where dEC and k = [UdJ

Definition B.6

101

Next we define the assertion Bij(zq), where zq is some logical integer variable, as
follows.

Bij(zq) = IIc Ifzc3!i(bijc. i ,: zc) 1\

IIc Ifi(EC(i, zq) +-+ bijC . i " nil) 1\

IIc'Vi (bij" . i " nil...., lid IIxEIVar~ C1:l(x, i, zq)) 1\

lid lIuE TVard CTd(U,zq)

The first conjunct states that for every c the sequence denoted by bij" stores each
existing object of class c exactly once. The second conjunct then can be interpreted as
stating that every existing object of class c occurs in the sequence denoted by bijC at
a position which equals the code of some object that exists in the state coded by zq.
The third conjunct relates the local state of every existing object with the one of its
corresponding code. Finally, the fourth conjunct relates the values of the temporary
variables with their coded versions.

In the following lemma we show how this assertion Bij (z) can be used to describe the
isomorphism between two states.

LemmaB.7
Let 17,w,f such that OK(W,17), Code(w,17,f) and w(z) = [17'J.
Then:

17, b,w F Bij(z) iff f(17) = 17',

for an arbitrary b such that OK(17,b,w).

Proof
Straightforward.

B.4 Expressing the strongest postcodition

o

Finally we are ready for the theorem stating the expressibility of the strongest post·
condition.

Doc. No.

lO2

Theorem B.B
Let pC be closed, BVar <;; L <;; LVar, pc such that LVar(PC) <;; L and bij n L = 0.
Then: SP'i(pc, PC) = 3bijCl, ... , bijCn ,ZI, Z2,Z3(Q) (assuming C = {CI, ... , cn }),

where Q = I\I5,p5,5 Qp, and

• Q2 = Bij(z3)'

• Q3 = bijc. AC(zl) = self,

• Q4 = I\c \li(B C(i, zt} <-> bijC . i E bc),

• Qs = 3zc;,.' . ,Zc:.Al$.p$.4 Rp ,
where
RI = I\c(Zc' ~ bijC)

R2 = I\c \li(EC(i,Z2) <-> Zc' . i # nil)

R3 = I\c(l\z~EL(z~ E Zc') 111\.;. EL(z~. <;; Zc' »
R4 = pClZ, ZIJ [z/bij, AC(ZI)/Z, Z2/ZI]

where Iia ~ 12a , for a = d*, abbreviates the assertion \li(lla . i = nil Vila' i = 12a . i),
and z denotes a sequence zc;, . .. , zc~ of fresh logical variables.

The quantification 3bifl, ... , bijcn will correspond to the phrase (in theorem 6.21)
"there exists an osi f". The variables Z\, Z2, Z3 will correspond to 81

, Uo, and f(u),
respectively. The conjunction I\I<i<4 Qi then expresses feu) = P[p](')')(81)(uo). Fi
nally, the assertion Q5 expresses ';;',-81 ,W' F= P, where Wi = few) ! L. Let us look into
thls more closely. The conjunction RI II R2 states that the variable Zcn 1 ~ i ~ n,
stores all the existing objects of Uo (of class Ci) at a position whlch equals its code.
The assertion R3 then states that Wi is compatible with uo. Finally, the assertion R4
expresses that UO,OI,WI F= P.

Proof,
Let u, 8, W F SP'i(pc, PC). So there exists for i = 1, ... , n, ai E QC, , and (3\, (32, fh E
N such that u,o,wl F= Q, where Wi = w{a;jbif'};{(3I,(32,(33/Z\,Z2,Z3}.

As u, 0, Wi F= Q\ there exists uo, U" 01 such that UI = P[pC](')')(01
)(uo), ')' arbitrary,

and (6'] = (31, [uo] = (32, [ud = (33.

Now let f be an osisuch that fora E u(c;) we have: f(a) = (3 iff elt(w'(bijC'),(3) = a.
(Note that as u,8,w' F= Q2 we have that for a E u(c;) there exists some (3 E N

such that elt(ai,(3) = a, furthermore we have EC'((3,(33) so (3 E u1c
;).) So we have

Code(w',u,J) and by lemma B.7 we infer feu) = u,.

Doc. No.

103

From <7, 0, w' 1= Q3 it follows that 0(1) = f(o(l)· Furthermore from <7,O,W' 1= Q4 it
follows that 0(2)(c) = {JC(a): a E w(bc)}. Note that OK(w,o,<7) so we infer that
0' = f(o).

Finally, we have <7,O,W' 1= Q5. SO there exists for i = 1, ... ,n, a: E Dc:, w" =
w'{a:!zc:h such that <7,O,W" 1= /\'5,j5,4Rj. Let <7' such that, for an arbitrary c,

<7' (c) = f- 1 C(<7~c). It then follows that <7' :> <7 and by <7,0, W" 1= /\'<j<3 Rj we
have CodeL(wlll , <7', f), where Will = w{ ajl bifi}j{ 0(1)' ,821 z, z'}. Furthermore we have
<7,O,WIll 1= pClz,z'J, so we have by theorem BA: <7o,O',W 1= pc, where w = f(w lll) 1
L = few) 1 L. This finishes one part of the proof.

On the other hand, let <7, <70, o,w,f such that:

• f(<7) = P[pc](-y)(o')(<7o), '")" arbitrary .

• O'o,8',w' 1= pc.

where 0' = f(o) and w' = few) 1 L.

Let ,8, = [0'], ,82 = [<70], ,83 = [f(<7)] and ai E oci, for i = 1, ... ,n (assuming
C = {C1, ... ,Cn }), such that elt(ai,m) = a(i .1.) iff a E <7(c,) and fC'(a) = m.
Furthermore let w" = w{ ad bijC, h{,8" ,82, ,831 Z" Z2, Z3}.

Now f(<7) = P[pC]('")")(o')(<7o) so we have <7,O,w"l= Q,.

We have Code(w", <7, J), and W"(Z3) = [f(<7)], so by lemma B.7 we have <7, O,W" 1= Q2.

From 0' = f(o), OK(<7,o,w) and OK(<7o,o') it easily follows that <7,O,W" 1= Q3 /I Q4.

Let, for i = 1, ... ,n, a: be a subsequence of ai, such that <7~c,) = {a: e/t(a:,a) i
.1.}. Furthermore let Will = w"{a~/zc;}p. Now from a: being a subsequence of aj it
immediately follows that <7,0, Will 1= R, .

From <7~c,) = {a E Dc': e/t(a:,a) i .L} it in turn follows that <7,O,WIll 1= R2.
Furthermore we have that <70 and w' are compatible, and w' = few) 1 L = f(w lll) 1 L,
from which it follows that: <7, 0, Will 1= R3.

Finally, let <7' be such that for an arbitrary c we have <7'(c) = f- 1C(<7&c) and w =
wlll{a:!bif'h{0(1),,82/Z,Z'}. We then have that CodeL(w, <7', J) and <7':> <7. So from
<7o,O',W' 1= pc and w' = few) 1 L applying theorem BA it follows that <7,O,W 1=
pClz,z'J. So we infer that <7, 0, Will 1= R4.

Summerizing we conclude that: <7,O,W 1= SP't(pc,PC). o

Doc. No.

104

C A closure property of the semantics

In this appendix we prove a closure property of the semantics with respect to object
space isomorphisms. To get started it it turns out to be convenient to have the
following definition.

Definition C.l
Let pt', ... ,p~n be some sequence of objects. We define OK(pt', ... ,p~n,o,a) iff
OK(o,a) and additionally Pi E aId;), i = 1, ... ,n.

Definition C.2
For

• FE (ITi'=l O~) -+ Lle -+ E.L -+ (E.L X o'i,'), for some c, n, do, ... , dn ,

• 0 E Ll e -+ E.L -+ (E.L X Of), for some c, d,

• HElle -+ E,L -+ E.L, for some c,

we define

• CI(F) iff for an arbitrary ,l3go, ... , ,I3~n, 0, a, a', f such that OK(Pl,"" Pn, 0, a):
if F(Pl, ... ,,I3n)(o)(a) = (a',,I3o)
then there exists an osi g suclt that r 1 a(e) = ge 1 a(e), for an arbitrary c, and
F(fd1 (,I3t), ... , fdn (,I3n))(f(o))(f(a)) = (g(a'), gdO (Po)),

• CI(O) iff for an arbitrary p,o,a,a',J suclt that OK(o,a):
if O(o)(a) = (a',p)
then there exists an osi g such that fe 1 a(e) = ge 1 a(e), for an arbitrary c, and
O(f(o))(f(a)) = (g(a'),gdo(P)),

• Ct(H) iff for an arbitrary fJ,a,a',J such that OK(o,a):
if H«o)(a) = a'
then there exists an 08i g such that r 1 a(e) = ge 1 a(e), for an arbitrary c, and
H(J(0))(J(a)) = g(a').

(Here 1 denotes the restriction operator.)

Now we are ready to analyse this closure property denoted by CI. We start with the
following lemma which states that the meaning of an arbitrary expression 8 E SExp
satisfies this property assuming it holds for the meaning assigned to an arbitrary
method:

Doc. No.

105

LemmaC.3
Let, be an environment such that for an arbitrary method name m we have GI(,(m)).
Then for every expression s E SExp we have GI(Z[s](()).

Proof
The proof proceeds by induction on the complexity of s:

s = e: Note that we have by theorem 6.21 £[e](o)(O") = £[e](f(o))(f(O")) for an
arbitrary 0,0" such that OK(o,O").

s = newd: Let Z[newd](,)(O)(O") = (0"',(3). So we have pickd(O"(d») = f3. Let f3' =
pick(d)(f(0")(d») and g be an osi such that r ! O"(c) = gC ! O"(c), for an arbitrary c, and
gd(f3) = f3'. It follows that Z[newd](,)(f(o))(f(O")) = (g(O"'),f3I).

s = eo!m(e" ... ,en): Let for i = O, ..• ,n£[ei](o)(O") -=f3i (OK(o,O")) and
,(m)(f31, ... ,f3n)(o')(O") = (0"',f3), where

0(1) = f30

0(2)(c') = 0(2)(0,){0(2)(0') U o(l)/e'} e' = e

0(2)(0') = 0(2)(0') e' # e,

assuming s E SExp~, for some d.
As we have Gl(,(m)) it follows that ,(m)(f(f31), ... ,J(f3n)(f(O'))(f(0")) = (g(0"'), g(f3)),
for some osi g such that gO ! 0"(0) -= r ! ".(0), e arbitrary. (Note that by lemma 3.21
and OK(0,0") we have OK(f31, ... , (3n, 0' , 0").) By theorem 6.21 we have £[ei](f(O))(f(O")) =
1(f3i). Furthermore we have

1(0')(1) = 1(f3o)

1(0')(2)(0') = r'(0(2)(0,»){f°'(0(2)(c'») U r'(O(I»)/e/} e' = e

I(0')(2)(0') = /" (0(2)(0'») e # e' .

So we conclude £[s](,)(f(o))(f(O")) = (g(O"'),g(f3)). 0

Next we prove the closure property Gl for the meaning assigned to statements assum
ing it holds for the one assigned to expressions.

LemmaC.4
Let, be an agreement-preserving environment such that for an arbitrary s E SExp
we have Gl(Z[s](()). Then we have GI(S[S](,)) for an arbitrary S E Stat.

Proof
The proof proceeds by induction on the complexity of S. We treat the following cases:

Doc. No.

106

S = x~ <- s~: Let S[S](')')(o)(O") = 0"" (OK(o,O")) and f be some osi. So we have
Z[s](')')(o)(O") = (O"',(j) such that 0"" = a'{(j/o(1),x}. By Cl(Z[s](')')) it then follows
that there exists an osi g such that gC 1 O"(c) = r 1 O"(c), for an arbitrary c, and
Z[s](')')(I(o))(I(O")) = (g(O"'),g«(j)). Now g(O"") = g(O"'){gd«(j)/gc(o(1),x}, so we
conclude S[S](')')(I(O))(I(O")) = g(a").

S = S,;S2: Let S[S](')')(o)(a) = a' (OK(o,O")) and f be some osi. So there ex
ists a 0"" such that S[S,](')')(O)(O") = 0"" and S[S2](')')(0)(0"") = 0"'. By the in
duction hypothesis we have for some osi 9 such that gC 1 O"(c) = r 1 O"(c) for an
arbitrary c and S[S,](')')(I(O))(I(O")) = g(O""). Another application of the induc
tion hypothesis gives us an osi h such that hC 1 O""(C) = gC 1 a"(c), for an arbi
trary c, and S[S2](')')(g(0))(g(0"")) = h(0"'). Putting these applications of the in
duction hypothesis together gives us hC 1 O"(c) = r 1 O"(c), for an arbitrary c, and
S[S](')')(I(o))(I(O")) = h(O"'). (Note that by lemma 3.210" :5 0"" and, as OK(o,O"),
fro) = g(o).)

S = while e do S, od: Let S[S](')')(o)(O") = 0"'. So we have pif1(o)(O") = 0"', where
if1 is as defined in definition 3.14. Now it suffices to prove that for an arbitrary <p E
~c -+ (El. -+ El.) such that Cl(<p) we have Cl(if1(<p)). So assume for some <p we have
Cl(<p). Let if1(<p)(0)(0") = 0"' (OK(o,O") and f be some osi. We consider the case that
£[e](o)(O") = t. By theorem 6.21 we then have £[e](I(o))(I(O")) = t. Furthermore we
have <p(0, S[S,](')')(0)(0")) = 0"'. Let S[S,I(,),)(0)(0") = 0"", by the induction hypothesis
it then follows that for some osi 9 we have gC 1 O"(c) = r 1 O"(c), for an arbitrary c, and
S[S,](')')(I(o))(I(O")) = g(O""). By assumption there exists also an osi h such that
hC ! a"(c) = gC ! O""(c), for an arbitrary c, and <p(g(o),g(O"")) = h(O"'). Putting this
together gives us hC(O"(c») = r(O"(c») for an arbitrary c and if1(<p)(I(o))(I(O")) = h(O"').
(Note that by lemma 3.2117:5 0"" and, as OK(o,O"), f(o) = g(o).) 0

We proceed with the following lemma which states the closure property of the meaning
of class definitions assuming it holds for the meaning of statements:

Lemma C.S
Let I be an agreement-preserving environment such that c/(S[S](')')) for an arbitrary
statement S. Then we have for every method name m defined by D Cl(C[D](')')(m))
for an arbitrary class definition D.

Proof
Let I' = C[D](')') and f be some osi. Now let the method name m be defined by
D, say m is declared as P~o, ... ,dk' We have I'(m) = M[p~o, ... ,dk](')')· Let P~O, ... ,dk =
(u" ... , Uk) : S i e. Moreover let

Doc. No.

107

M[(U1, ... ,Uk): S i e](')")(,81, ... ,lh)(8)(a)= (0'111,,8)

where a' (0'(1),0'(2),0'(3»)

0'(3)(u) = ,8i if U = Ui

.1 otherwise

a" SC[S](')")(8)(a')

,8 = £[e](8)(a")
(J'" = ("") 0'(1),0'(2),0'(3)

Note that we assume a oj. .1 and 8(1) not to be blocked. If one ofthese do hold we have
a' = .1 from which follows that 0'111 ,,8 = .1. By the assumption about')" we have for
some osi 9 gC t a'(c) = r t a'(c), for every arbitrary c, and SC[S](')")(f(6»(f(a'» =
g(a"). (Note that OK(,81, ... ,,8k,8,a) implies OK(8,a').) As a'(c) = a(c) for an
arbitrary c we have gC(a(c» = fC(a(c» for an arbitrary c. By theorem 6.21 we have
g(,8) = £[e](g(8»(g(a"». (Note that as')" is agreement-preserving we have by lemma
3.21 a :S a", and so OK(8, a").) Putting this together gives us

o

In the next lemma we prove that the meaning of units satisfies the closure property
Ct.

Lemma C.6
Let U = D1, ... ,Dn be an unit such that every method occurring in it is defined by
it. Then for every method name m we have CI(')"'(m», where U[U](')"o) = ')"' and ')"0

is the "empty" environment defined by

')"0(,8)(8)(0') = (.1, .i).

Proof
We have ')"' = Ui ')"i, ')"0 being the "empty" environment and C[D1] 0" • 0 C[Dn](')"i) =
')"i+1' We prove by induction that Cl(')"i(m)), m arbitrary. From this it is not difficult
to prove that Cl(')"'(m)).

i = 0: Evident.

i = j + 1: By the induction hypothesis we have Cl(')"i(m)). Furthermore by lemma
3.21 we know that ')"i is agreement-preserving. From this follows by applying the
lemmas C.3, CA and C.5 that Cl(')"i+1(m». (Note that lemma C.5 can be applied
only for method names defined by U, but as we have ')"i(m) = ')"o(m), for i E Nand
m not defined by U this suffices.) 0

Doc. No.

108

We conclude this appendix with the following theorem which states the closure prop
erty of the meaning assigned to closed programs:

Theorem C.7
For an arbitrary closed program p = (ulc: S), environment 7 we have Cl(P[P](7)).

Proof
First note that as p is a closed program we have P[P](7) = P[p](I'o). We have by
definition 3.18 that P[p](70) = S[S](7'), where 7' = U[U]C7o). By lemma C.6 we
have Cl(7'(m)) for every method name m. So applying the lemmas C.3 and CA gives
us CI(S[S](7'). (Note that by lemma 3.21 7' is agreement- preserving.) 0

Corollary C.B
For an arbitrary closed program P, a, a', ti,j such that a' = [pH 1')(ti)(a) there exists
an osig such that ge! ale) = f e ! ale) and g(a') = [P](7)(j(ti))(j(a)).

Doc. No.

In this series appeared :

No. Author(s)

85/01 R.H. Male

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.MLJ.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R. Gerth
L. Shira

86/08 R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/l3 R. Gerth
W.P. de Roever

Title

The fonnal specification and derivation of CMOS-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for fonnal specification of
infonnation systems.

Some reflections on the implementation of trace structures.

The partition of an infonnation system in several
systems.

A framework for the conceptual modeling of
discrete dynamic systems.

Nondetenninism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
l>KRfY.ing object oriented systems (Fund. Infonnatica

86/14 R. Koymans

87/01 R. Gerth

87/02 Simon J. Klaver
Chris F.M. Verberne

87/03 G.J. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koymans

87/08 H.M.JL. Schols

87/09 J. Kalisvaart
L.R.A. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/ll P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J.C.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

Tbe maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Tbree families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregts Optimalisering van file allocatie in
gedistribueerde database system en.

87/20 G.J. Houben The R' -AJgebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the Mobius Sequence.

88/02 K.M. van Hee Executable Specification for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples.

88/04 G.J. Houben The Nested Relational AJgebra: A Tool to Handle
J.Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
LJ. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W P. de Roever

88/08 K.M. van Hee A Formal model for System SpeCification.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling.
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits.

88/11 G.l. Houben A graphical interface formalism: specifying nested
J.Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types.

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
LJ. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.ZsLepoeter-MoInar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT. the functional part.

Reconstruction of a 3-D surface from its nonnal vectors.

A systOlic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise fonnal frameWOlK for data modeling.

89/13

89/14

89/15

89/16

89/17

90/1

90/2

90/3

90/4

90/5

90/6

90n

90/8

90/9

90/10

90/11

90/12

A.TM.Aerts
K.M. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

A.T.M.Aerts
K.M. van Hee

M.J. van Diepen
K.M. van Hee

W.P.de Roever-H.Barringer
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-APnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolpcr

K.M. van Hee
P.M.P. Rambags

R. Gerth

A. Peeters

J.A Brzozowski
J.C. Ebergen

A.J.J .M. Marcells

AJ.J.M. Marcelis

M.B. Josephs

A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

M.J. van Diepen
K.M. van Hee

P. America
F.S. de Boer

P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

Formal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes 89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent systems,

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

p. 17.

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

	Contents
	1. Introduction
	2. The language SPOOL
	2.1 An informal introduction
	2.2 The syntax
	3. Semantics
	3.1 Domain definitions
	3.2 The semantic functions
	3.3 Remarks on the semantics
	4. The assertion language and its semantics
	4.1 The assertion language
	4.2 Semantics of assertions and correctness formulae
	5. The proof system
	5.1 Simple assignment
	5.1.1 Simple aaignment to a temporary variable
	5.1.2 Simple assignment to an instance variable
	5.2 Creating new objects
	5.2.1 Assignment a new object to a temporary variable
	5.2.2 Assignment a new object to an instance variable
	5.3 Sending messages
	5.4 Other axioms and rules
	6. Completeness
	6.1 Introduction
	6.2 The strongest postcondition
	6.3 Freezing the initial state
	6.4 Invariance
	6.5 Most general correctness formulae
	6.6 The context switch
	7. Conclusions
	References
	A: A generalisation of the rule (MR)
	B: Expressibility
	C: A closure property of the semantics

