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1 Introduction 

This document explores the possibilities of giving a Hoare-style proof system for a 
language, called SPOOL, which is a sequential version of the language POOL [1]. 
SPOOL is an object-oriented language, just like POOL, but it is sequential, so that 
we do not have to deal with the specific problems connected with parallelism (it turns 
out that the other problems are already difficult enough). 

The main aspect of SPOOL that is dealt with is the problem of how to reason about 
pointer structures. In SPOOL, objects can be created at arbitrary points in a pro
gram, references to them can be stored in variables and passed around as parameters 
in messages. This implies that complicated and dynamically evolving structures of 
references between objects can occur. We want to reason about these structures on 
an abstraction level that is at least as high as that of the progromming language. In 
more detail, this means the following: 

• The only operations on "pointers" (references to objects) are 

- testing for equality 

- dereferencing (looking at the value of an instance variable of the referenced 
object) 

• In a given state of the system, it is only possible to mention the objects that 
exist in that state. Objects that do not (yet) exist never playa role. 

Strictly speaking, direct dereferencing is not even allowed in the programming lan
guage, because each object only has access to its own instance variables. However, for 
the time being we allow it in the assertion language. Otherwise, even more advanced 
techniques would be necessary to reason about the correctness of a program. 

The above restrictions have quite severe consequences for the proof system. The 
limited set of operations on pointers implies that first-order logic is too weak to 
express some interesting properties of pointer structures (for example, the fact that it 
is possible to go from w to z by following a finite number of x-links). It is surely too 
weak to apply the standard techniques in proofs of completeness of a proof system, 
where arbitrarily long computation sequences are coded into a finite set of variables. 

Therefore we have to extend our assertion language to make it more expressive. We 
considered two approaches: 

• Using recursively defined predicates, by which the above "interesting" properties 
of pointer structures can be expressed quite easily. This aproach is worked out 
in [2]. 
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• Allowing the assertion language to reason about finite sequences of objects. In 
this way the above properties can also be expressed (but not quite so elegantly). 
This approach is studied in this report. 

In section 2 we shall present the syntax of this language SPOOL. Then, in section 3 
we shall give a denotational semantics for it. In section 4 we introduce an assertion 
language, using quantification over finite sequences of objects, in which properties 
of states in a computation can be formulated, and we formally define its semantics. 
After that, in section 5, we present a Hoare-style proof system for SPOOL using 
this assertion language. This proof system is proved to be sound with respect to 
the denotational semantics. In section 6 we prove the completeness of the system. 
Finally, in section 7, some conclusions are drawn from the present work. 
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2 The language SPOOL 

2.1 An informal introduction 

The shortest description of the language SPOOL would be that it results from omit
ting the body of each class in POOL-T [1]. The most important consequence ofthis is 
that the parallelism, present in POOL-T, disappears. But let us try to give a short, 
independent description of SPOOL. 

The most important concept is the concept of an object. This is an entity containing 
data and procedures (methods) acting on these data. The data are stored in variables, 
which come in two kinds: instance variables, whose lifetime is the same as that of 
the object they belong to, and temporary variables, which are local to a method and 
last as long as the method is active. Variables can contain references to other objects 
in the system (or even the object under consideration itself). The object a variable 
refers to (its value) can be changed by an assignment. The value of a variable can 
also be nil, which means that it refers to no object at all. 

The variables of an object cannot be accessed directly by other objects. The only 
way for objects to interact is by sending messages to each other. If an object sends 
a message, it specifies the receiver, a method name, and possibly some parameter 
objects. Then control is transferred from the sender object to the receiver. This 
receiver then executes the specified method, using the parameters in the message. 
Note that this method can, of course, access the instance variables of the receiver. 
The method returns a result, an object, which is sent back to the sender. Then 
control is transferred back to the sender which resumes its activities, possibly using 
this result object. 

The sender of a message is blocked until the result comes back, that is, it cannot 
answer any message while it still has an outstanding message of its own. Therefore, 
when an object sends a message to itself (directly or indirectly) this will lead to 
abnormal termination of the program. This is an important difference with some 
other object-oriented languages, like Smalltalk-80 [6]. 

Objects are grouped into classes. Objects in one class (the instances of the class) 
share the same methods, so in a certain sense they share the same behaviour. New 
instances of a given class can be created at any time. There are two standard classes, 
In! and Bool, of integers and booleans, respectively. They differ from the other classes 
in that their instances already exist at the beginning of the execution of the program 
and no new ones can be created. Moreover, some standard operations on these classes 
are defined. 

A program essentially consists of a number of class definitions, together with a state
ment to be executed by an instance of a specific class. Usually, but not necessarily, this 
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instance is the only non-standard object that exists at the beginning of the program: 
the others still have to be created. 

2.2 The syntax 

In order to describe the language SPOOL, which is strongly typed, we use typed 
versions of all variables, expressions, etc. These types are indicated by subscripts 
or superscripts in this language description. Often, when this typing information 
is redundant, it is omitted. Of course, for a practical version of the language, a 
syntactical variant, in which the type of each variable is indicated by a declamtion, is 
easier to use. 

Assumption 2.1 
We assume the following sets to be given: 

• A set C of class names, with typical element c (this means that metavariables 
like c, c', c" ... range over elements of the set C. We assume that Int, Bool ¢ C 
and define the set C+ = C U {Int, Bool} with typical element d. 

• For each c E C and d E C+ we assume a set IVar~ of instance variables of type d 
in class c. By this we mean that such a variable may occur in the definition of 
class c and that its contents will be an object oftype d. The set IVar~ will have 
as a typical element xd" 

• For each dEC we assume a set TVar d of tempomry variables of type d, with 
typical element Ud. 

• We shall let the metavariable n range over elements of Z, the set of whole 
numbers. 

• For each c E C and do, ... ,dn E C+ (n:::: 0) we assume a set MName~o •.... dn 

of method names of class c with result type do and parameter types d" . .. , dn. 
The set MName'do •.... dn will have m:l,. .... dn as a typical element. 

Now we can specify the syntax of our language. We start with the expressions: 

Definition 2.2 
For any c E C and d E C+ we define the set Exp'j of expressions of type d in class c, 
with typical element ed' as follows: 
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eC 
d .. - x~ 

Ud 

nild 

self if c = d 

true I false if d = Bool 

n if d = Int 
c· C 

e1d' = e2dl if d = Bool 

ei c + €2
c if d = Int 

ei
c < €2

c if d = Bool 

The intuitive meaning of these expressions will probably be clear from section 2.1. 
Note that in the language we put a dot over the equal sign (=) to distinguish it from 
the equality sign we use in the meta-language. 

Definition 2.S 
The set SExp~ of expressions with possible side effect of type d in class c, with typical 
element sd' is defined as follows: 

Sd .. - ed 
newd if dEC (d oF Int, Bool) 

c, co (C C) ( > 0) eo co ' md,d1, ... ,dn €ld1 "" ,endn n _ 

The first kind of side effect expression is a normal expression, which has no actual 
side effect, of course. The second kind is the creation of a new object. This new 
object will also be the valne of the side effect expression. The third kind of side effect 
expression specifies that a message is to be sent to the object that results from eo, 
with method name m and with arguments (the objects resulting from) e1, . .. , en. 

Definition 2.4 
The set StatC of statements in class c, with typical element SC, is defined by: 

se .. _ xd f- sd 
Ud +- 3d 
sd 
SI;S2 

if eC then Sf [else Si) fi 

while eC do SC od 

Again, the intnitive meaning of these statements will probably be clear. Note that a 
side effect expression s may occur in the place of a statement. This means that s is 
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evaluated and then its value is discarded, so that only the side effect remains. If in 
a conditional statement the else-part is absent, the statement is interpreted as if it 
contained else nil. 

Definition 2.5 
The set MethDef~o, ... ,dn of method definitions of class c with result type do and pa
rameter types d1 , • .. , dn (with typical element /1~o, ... ,dn) is defined by: 

Jl~o, ... ,dn ::= (Uld1 ," . ,Undn ) : se i €do 
Here we require that the Uidi are all different and that none of them occurs at the left 
hand side of an assignment in SC (and, of course, that n ~ 0). 

When an object is sent a message, the method named in the message is invoked as 
follows: The variables U1, ..• , Un (the parameters of the methods) are given the values 
specified in the message, all other temporary variables are initialized to nil, and then 
the statement S is executed. After that the expression e is evaluated and its value, 
the result of the method, is sent back to the sender of the message, where it will be 
the value of the send-expression that sent the message. 

Definition 2.6 
The set ClassDef;", , ... ,mn of class definitions of class c defining methods m1, ... , m n , 

with typical element D;", , ... ,mn ' is defined by: 

D~ll .... mn ::= c : (ml~l ¢: JLIJ
1 

, ••. , mnJ
n 

{:: JLnJn ) 

where we require that all the method names are different (and n ~ 0). 

Definition 2.7 
The set Unit~~';::'~~k of units with classes Cl,.'" en defining methods ml,"" mk, 
with typical element UC, , ... ,Cn is defined by: ml.· .. ,711.Il:' 

uc}, ... ,cn "= D ~l D ~n 
ml •... ,mk .. 1711.1"'" nmn 

where m1, ... , mk = m1, ... , m n . We require that all the class names are different. 

Definition 2.8 
Finally, the set ProgC of programs in class e, with typical element pC, is defined by: 

Pc ::= (UC" .. ·,Cn Ie: SC) 
mI,···.mk 

Here we require that c occurs in C1,"" Cn. (The symbol 'I' is part of the syntax, not 
of the meta-syntax.) 

The interpretation of such a program is that the statement S is executed by some 
object of class c (the root object) in the context of the declarations contained in the 
unit U. In many cases (including the following example) we shall assume that at the 
beginning of the execution this root object is the only existing non-standard object. 
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Example 2.9 
The following program generates prime numbers using the sieve method of Eratos
thenes. We assume the following symbols: 

• The class name Sieve E C (abbreviated sometimes by Cl) with instance variables 
p E [VarCl and next E [Var~;, temporary variable q E TVar and method name 
. MN Cl Input E arne c" • 

• The class name Driver E C (abbreviated by C2) with instance variables i, bound E 
IVarc, and first E [Var~. . 

Then this is the program: 

(Sieve: (input ~ (q) : if next = nil 

), 
Driver: () 

Driver: i +- 2; 

then next ~ new; 
p <- q 

else if q mod p i 0 

fi 

then next! input( q) 
fi 

i self 

first +- new; 
while i < bound 
do first! input(i); 

) 

I <- I + 1 
od 

Figure 1 represents the system in a certain stage of the execution of the program. 
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Driver 
i:(35D 

Sieve Sieve Sieve 
bound:m p:CIJ p:(D p:([:) 

first:C3- next:G- next: (3- next:C3-

Figure 1: Objects in the sieve program in a certain stage of the execution 
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3 Semantics 

3.1 Domain definitions 

Definition 3.1 
We assume for every c E C an infinite set OC of object names of class c, with typical 
element f3c. We define pc to be the set of all finite subsets of OC, with typical 
element 1I"c. Furthermore we assume a function pickc : pc -+ OC which satisfies 

(3.1) 

This function will be used to generate the name of a new object, whenever one is 
created. 

For the standard classes Int and Bool we define the sets of object names as follows: 

o z 
o = B = {t,f} 

(We shall not need functions pick or pick.) 

Definition 3.2 
For every set X we define the corresponding flat domain XL to be the set X U {.J..}, 
equipped with an ordering (;; defined by 

x (;; y ¢=} x = .J.. V x = y. 

Note that for every set X, XL is a complete partial order (cpo). Sometimes we shall 
only consider the underlying set of this ordering, for example in definition 3.4. 

Definition 3.3 
We shall often use generalized Cartesian products of the form 

II B(i). 
iEA 

As usual, each element of this set is a function f with domain A such that f( i) E B( i) 
for each i E A. We shall sometimes write f(i) for f( i) if i E A and f E fIiEA B( i), 
and also we sometimes write (f( i»)iEA f!>r >.( i E A).f( i). Finite products are special 
cases: If A is of the form {1, ... ,n} we sometimes write B(1) x ... x B(n). 

Definition 3.4 
We define the set ~ of states, with typical element a, as follows: 

~ = II pc x II (oc -+ 1Var:i -+ oi) x II (TVard -+ oi) 
C c,d d 

A little explanation is surely required here. A state a E ~ records the values of the 
variables in the whole system at a certain point in the computation: 
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• Its first component "'(1) gives for every class e E C a finite set of objects "'(1)(e) E 
pc. This set represents the objects that exist in this state (Le., they have already 
been created). 

• The second component "'(2) records the values of the instance variables. More 
concretely, if e E C and d E C+ are class names, (3e E oe is an object of class e, 
and x:; E [Var:; is an instance variable of type d in class e, then "'(2)(e.d) ((3e)( x:;) E 
01 is the value of the instance variable x:/ of object (3e. If this value is .1, this 
means that the variable refers to no object. This is the situation for a variable 
that has not been initialized, but it can also be achieved by assigning nil to it. 

• The third component "'(3) records the values of the temporary variables. More 
concretely again, if d E C+ is a class name and Ud E TVard is a temporary 
variable of type d, then "'(3)(d) ( Ud) E 01. is the value of the variable Ud. Here 
again, it is possible that the value of the variable is nil. 

For any state", we introduce by convention that "'(1)0 = Z and "'(1)0 = B. Further
more we write ",(d) for "'(t)(d)' 

Definition 3.5 
Note that in general it is possible that in a state the variables of an existing object refer 
to an object that does not exist. If this is not the case and, additionally, the variables 
of the non-existing objects are not initialized, we say that the state is eonsistent. 

More precisely, we call a state", consistent if 

• '<Ie E C '<I(3e E a(e) '<Ie' E C '<Ix:;' E [Var:;' "'(2)(e.c')((3e)(x~,) E ",t') 

• '<Ie E C '<Iue E TVar e "'(3)(e) ( ue) E ",t) 
• '<Ie E C '<I(3e E oe \ ",(c) Vd E C+ '<Ix:; E [Var:; a(2)(c.d)((3e)(xd) = .1 

(Note that it would not make sense for either e or e' to be Int or Baal). We shall 
occasionally use the shorthand OK (a) to indicate that", is consistent. 

Definition 3.6 
We say that a state ",' extends a state", (notation", :S "") if '<Ie E C ",(c) <;; ",,(c). 

Definition 3.7 
We shall make flexible use of the so· called variant notation, especially in connection 
with states. The variant notation is a short way to express a new state that arises 
when some component of an old state is modified. For example, if we write 
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this means the following: 

, 
a(l) 

a(2)(c,d) (,82)( X ) 

a(2)(c,d)(,82)(X') = 

a(2)(c,d)(,8') 

= a(l) 

,8, 

a(2)(c4,82)(X') 

= a(2)(c,d) (,8') 
, 

a(2)(c',d') 

a(J) = a(3) 

a(2)(c',d') 

if x' i x 

if ,8' i ,82 

ife'ieord'id 

(This example also illustrates the usefulness of this notation.) 

Definition 3.8 
The set ,:l c of contexts of class e, with typical element oC, is defined as follows: 

,:lc = Oc X TIpc' 

c' 

The meaning of a context Oc is as follows: 

• The first component 0(1) E OC indicates the object that is currently execu.ting 
(the object denoted by self). 

• The second component 0(2) represents all the objects that are waiting for the 
result of a message they have sent. This is because these objects become blocked, 
that is, they cannot answer any message before they have received the result of 
their outstanding message. If e' E C is a class name, then 0(2)(c') E pc' is the 
set of blocked objects of class e'. 

Definition 3.9 
We say that a context OC agrees with a state a if 

• 0(1) E a(c) 

• Ve' E C 0(2)(c') <;;; a(c') 

We shall write the shorthand OK(a,o) to indicate that a is consistent and 0 agrees 
with a. 

Definition 3.10 
The domain r of environments, with typical element 'Y, is defined as follows: 

r = c}:I.,dn ( MNamedo, ... ,dn --> (g o~) -->,:lc --> ~.L --> (~.L X o't')) 
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An environment "I records the meaning of the methods. More concretely, if c E 
C and do, ... , dn E C+ are classes, m E MName'do •.... dn is a method name, /3 = 
((31 d" ... ,(3n dn) E rri~1 O~ a row of objects (each possibly .i), 0 E ~c a context, 
a E ~l. a state (again possibly .i), then "I(c.d)(m)(/3)(o)(a) is a pair (a', (30) E ~l. X 

O~, with the intended meaning that if the method named by m is invoked with 
parameters /3, in the context 0 (which indicates among others the object that executes 
the method), and starting in the state a, then after the execution a' will be the new 
state and (30 is the result of the message. Here (a',(3o) = (.1,.1) indicates abnormal 
termination or divergence. 

Definition 3.11 
We call an environment "I agreement-preserving if for every c, do, . .. ,dn, for every m:I, 
for every oC, for every a E ~, and for every /3 = ((31 d" . .. ,(3n dn) E rri~1 a~i) (note 
that we consider only existing objects) we have that if OK(a,o) and (a',(3dO ) = 
"I(c.d)(m)(/3)(o)(a) and a' '1.1 then OK(a'), a::> a', and (3do E a1do ). 

Note that the requirement is somewhat stronger than preservation of the agreement 
between state and context. We require that the new state extends the old state and 
that it is consistent. This automatically implies that the context 0 agrees with the 
new state. 

3.2 The semantic functions 

Definition 3.12 
The semantics of expressions is given by a function 

£:1 : Exp~ -+ ~c -+ El. -+ 01., 

which is defined as follows: 

£J[e~](o)(.1) = .1 (from now on we assume a 'I .i) 

£,j[xd](o)(a) = a(2)(c.dl6{1))( x:n 
£,j[Ud]( 0)( a) = a(3)(d) ( Ud) 

£,j[nild]( 0)( a) = .1 

t:J[self]( 0)( a) = 0(1) 
t:,j[true]( 0)( a) = t 

t:d[false]( 6)( a) = f 

t::J[n](o)(a) = n 

t:dh~, = e2~.](0)(a) = t 

f 

(only if d = Bool) 
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fJ[eld + eZJ](6)(a) = 1- if fJ[el](6)(a) = 1- or fd[ez](6)(a) = 1-

= fJ[el](6)(a) + fJ[ez](6)(a) otherwise 

(only if d = Int) 

fJ[el d' < ezd-](6)(a) = 1- if fJ,[et](6)(a) = 1-

or fJ,[ez](6)(a) = 1-

= t if fd,[el](6)(a) < f,j,[ez](6)(a) 

= f otherwise 

(only if d = Bool and d' = Int) 

Although most of these equations speak for themselves, we shall give some informal 
explanation. 

• The function f[e](6) is strict;that is, it will always yield 1- if it is applied to a 
state a that is equal to 1.. 

• The value of an instance variable is looked up in the second component of the 
state a. The first component of the context .I indicates the currently active 
object. 

• The value of a temporary variable is looked up in the third component of the 
state a. 

• The value of the expression nil is always 1.. 

• The value of the expression self is the first component of the context 6. 

• The Boolean constants true and false get the corresponding truth-values as their 
value. 

• Integer numbers are mapped to themselves. Note that at this point we are 
confusing syntactic and semantic entities a little, but here this is harmless. 

• The equal sign between expressions means that we test whether their values are 
really the same objects. Note that this is a kind of non-strict predicate, because 
if both sides yield 1-, the resnlt of the equality is nevertheless t. 

• Addition is only defined for genuine integers: If one of the two sides yields 1-
the result is also 1.. 

• The same is true for the relation <. 
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where 
FE = {init }Pi{ SPE+(pi, init)}. 

Now by lemma 6.46 and lemma 6.47 an application of the consequence rule gives us 
Fi I- FE where 

Fi = {Pi[ei/self,uil[!lidi][be; 0 (self)lbe.J}Pi{ SPE+(pi, init)}. 

So we have 

Fl. ... ,Fk I- {Pi II /\ v} '" nil II self rf- bc:}(ulc:: Si){ Q;[e;jr;]}. 
j 

By theorem 6.33 we have 

I- {Subs (ire , stl ,cr) }(Ulc: : Si){ SUbs(/re ,stl ,cr)}. 

So by the conjunction rule we infer 

{ Pi IIl\j vj '" njlll self rf- be: II Subs( Ire, stl , cr) } 

FI , ... ,Fm I- (ulc:: Si) 

{Q;[e;jrilll Subs(lre, stl, cr)}. 

By proposition 6.50 an application of the consequence rille gives us 

F}, ... , Fm I- {Pi II /\ vj '" njlll self rf- bc:}(UIc: : Si){ Qt[e;jr;J}. 
j 

We now can apply rule (NMR), making use of lemma 6.46, yielding the derivability 
of the correctness formula: 

{PI II /\ vJ '" njlll self rf- be; }(ulc~ : Sl){ Qthhl}. 
j 

Applying next (MI) or (MT) gives us the derivability of 

{ PI [e" Iself, u"l[!1 zI ][bel 0 (self) /bell }Pl { SP L+ (PI, init) }. 

So an application of the consequence rule (the assertion init by lemma 6.46 implies 
the precondition, and 1= SPL+(PI, init) ---> SPL(PI, init)) gives us the desired result 
(note that Pl = P by definition) 

I- {init }p{ SPL(p, init)}. 

o 

We conclude with the completeness theorem: 
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• In order to evaluate a send-expression, first the destination object /30 and the 
parameters /3I, ... ,/3n are computed (in the old state). Note that if the desti
nation is 1- (i.e., nil), then the program will fail, which is represented by setting 
«(1',/3d) to (1-,1-). Otherwise a new context is created, in which the executing 
object is the destination of the message, and in which the sending object is 
added to the set of blocked objects (of the appropriate class). Then the mean
ing of the method m is looked up in the environment "I and, provided with the 
parameters, the new context and the old state, it gives us the new state and the 
result of the send-expression. 

Definition 3.14 
The semantics of statements is given by a function 

8 c 
: 8tatC --+ r --+ ~ c --+ ~.L --+ ~.L' 

which is defined as follows: 

8C[8C]("I)(6)(1-) = 1- from now on we assume (1 cJ 1-

8C[x~ <-- sdJ("I)(6)«(1) = (1" 

where «(1',/3) Zd[zd]("1)(6)«(1) 

(1" = (1'{f3/6(1),x} 

8C[uc <-- zd]("!)(6)«(1) = (1" 

where «(1',/3) = Zd[zd]("1)(6)«(1) 
(1" = (1' {/3/u} 

8C[s:;]("1)(6)«(1) = (Zd[s:;]("1)(6)«(1))(l) 

8C[81; 82]("1)(6)( (1) = 8C[82]( "1)( 6) (8C[81]( "1)(6)«(1)) 

8 C[if e then 81 else 8 2 fi]( "1)( 6)( (1) = 1- if/3=1-

8C[81]("I)(6)«(1) if /3 = t = 
if /3 = f 

where /3 = e[e](6)«(1) 

8 C[while e do 8 od]( "I) = J1,if! 
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where if! : (~C --+ (~.L --+ ~.L)) --+ (~c --+ (~.L --+ ~.L)) is defined as follows: 

if! ( <p)( 6)( (1) 1- if /3 = 1-

= <p (6, 8C[S]("!)(6)«(1)) if /3 = t 

= (1 if/3=f 

where /3 = £[e](6)«(1) 
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Here is some informal explanation: 

• For any S", and 8, S[Sll(,)(8) is a strict function from ~l. to ~l.' 

• If an assignment to an instance variable x is done, first the right hand side is 
evaluated, resulting in a new state (1' (because of possible side effects), and an 
object (3. Now the final state (1" is constructed from a' by modifying its second 
component in such a way that the object (3 becomes the value of the variable x. 

• For an assignment to a temporary variable, essentially the same thing is done, 
except that the new value is stored away in the third component of the resulting 
state a". 

• If a side effect expression occurs at the place of a statement, it is evaluated 
and its resulting object is ignored. Only the new state is kept (this is tbe first 
component of the result of the evaluation). 

• Sequential composition of statements is modelled by letting the second state
ment act on the state that results from the first statement. 

• For a conditional statement first the condition is evaluated. Depending on that 
the first or the second clause is executed (or a failure is signalled). 

• A while statement is modelled by taking the least fixed point of the operator <P. 
This operator takes its argument <p as an approximation of the meaning of the 
while statement and maps it to a better approximation, obtained by unwinding 
the loop one more time. 

Definition 3.15 
The semantics of method definitions is given by a function 

( 
n ) Me : MethDe e -+ r -+ Od; do,· .. ,dn f do, ... ,dn II l. 

1:::=1 

which is defined by: 
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M~o, ... ,dJ( ILld". .. ,lLnd.) : SC i e~O)h' )«(31 d" ... ,(3ndn )( OC)( (1) == «(1"', (3dO
) 

where (1' == .1. if 0(1) E 0(2)(C) or (1 == .1. 

== 

u(3)(d) ( ILd) == 

== 
(1/1 == 
pdo == 
q'" == 

«(1(1),(1(2), (1(3) 

(3d .. • 

.1. 

SC[ SC)( 1)( 8C
)( (1') 

£J,[e~]W)«(1/1) 

.1. 

(/I /I ) (1(1)' (1(2)' (1(3) 

otherwise 

if d == di and ILd == lLid. 

for i = 1, ... ,n 

otherwise 

if (1/1 == .1. 

if (1/1 :f .1. 

Again we give an informal explanation: The first thing to be checked when a method is 
to be executed is whether the executing object is blocked, that is whether 8(1) E 8(2)(c) 

or whether the starting state (1 is .1.. If this is the case the result ofthe method will be 
the pair (1.,1.) (this will come out automatically if we set (1' to 1.). Next we construct 
a state (1' by initializing all temporary variables to 1., except the formal parameters, 
which are bound to the corresponding actual ones (that is, the variable lLid. is set 
to (3/'). In this modified state (1' we execute the statement SC of the method, which 
results in a new state (1/1. In this state we can evaluate the result expression e~o' 
which gives us the object (3do. The state (1'" after the method execution is obtained 
by restoring the temporary variables to their values before the method execution. 

Definition 3.16 
The semantics of class definitions is given by a function 

C~l, .... mfl : ClassDef~ll .... mn ---40 r ~ r 
which is defined as follows: 

C:;'" ... ,mJc: (mId-, <= I'ld-, , ... , mnJ-n <= I'nd-n)](I) 

== I{M[l'lJ-)(I) / m1d-J ... {M[l'nd-)(I) / mn:r.} 

This means that in the environment 1 the value associated with each method m in 
the class definition is replaced by the value obtained from the corresponding method 
definition. However, this method definition is still evaluated with respect to the old 
environment I' Note that the order of the replacements does not matter, because it 
is required that all method names must be different. 

Definition 3.17 
The semantics of units is given by a function 
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which is defined by: 

UCl, ... ,Cn [D "J ... D c_n 1(",,) = ",,' 
ml •... ,mk 1m!, ,nm,.JJ I I 

where "'I' = "'I{(j/mj}j=I 

((".·.,(k) = J.L'l1 

'l1((i, .. • ,(k) 

"'I" 
Ci· 

(we suppose that mj = mj/). , 

= ("'I"(ci"dj )(mj))j=I 

= C[D, ] 0"'0 C[Dn]b{(j/mj}j=I) 
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The main point in this definition is the construction of an environment "'I' from the 
least fixed point of the operator 'l1. This operator q; takes as its argument a row 
(L ... , (I, of possible meanings of the methods defined in the unit. Assuming these 
meanings for the corresponding methods, a new environment "'I" is deteflnined from 
the class definitions in the unit and from this environment the new meanings for the 
previous methods are extracted, yielding the output of'l1. The least fixed point of'l1 
therefore consists of the meanings of the methods defined in the unit, where for the 
other methods the meanings recorded in 7 are assumed. 

Because we require that all the class names (the Ci) are different, earn C[D{;] modifies 
a different part of the environment "'I{(j/mj}j=I' Therefore the order in which they 
are composed does not matter. 

Definition 3.18 
Finally we give the semantics of programs by defining a function 

pc: ProgC -+ r -+ tJ.c -+ ~.L -+ ~.L 

as follows: 

P[ (U;r;;:::~,;;.1c : SC)]( 7) = SC[ S]( "'I') 

where "'I' = U[U]("'I) 

If every method used in the program is defined in the unit then the meaning is 
independent of the environment 7. One could take the "empty" environment 70, 
defined by 

"'Io( c, d)( mJ)(J'j)( 6%1) = (.L, .L) 
(this is certainly agreement· preserving). 

3.3 Remarks on the semantics 

In the foregoing definition of the semantic functions that playa role in our language, 
we have omitted some details. One of these details is the fact that all the functions 
of which we need the least fixed point are indeed continuous. 
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Lemma 3.19 
The function Cf?, used in the semantics of while statements in definition 3.14, is con
tinuous. 

Proof 
First of all it is easy to see that 

• For every expression Ed and for every context 6c, the function £[e](6) is strict, 
Le., that £[e](6)(l.) = 1.. 

• For every statement se, for every environment '"I, and for every context 6e , the 
function S[8]('"I)(6) is also strict, i.e., S[S]('"I)(O)(.L) = .L. 

Now after a little calculation it becomes clear that this is all we need to ensure the 
continuity of Cf?, which moreover maps strict functions in ~l. ---+ ~l. again to strict 
functions (so its least fixed point will also be a strict function). 0 

Lemma 3.20 
The function iii, used in defiuition 3.17 to define the semantics of units, is continuous. 

Proof 
The proof of this lemma is somewhat more involved. It would proceed in the following 
steps: 

• For any side effect expression s:/, Z[s] is a continuous function from r to ~ e ---+ 

~l. ---+ (~l. X 01.). 

• For any statement se, 8[S] is a continuous function from r to ~e ---+ ~l. ---+ ~l.' 

• For any method definition i'do, ... ,dn, M[P] is a continuous function from r to 

(m=l o~) ---+ ~e ---+ ~l. ---+ (~l. X of'). 
• For any class definition Din, C[D] is a continuous function from r to r. 

• Now we can prove that iii is a continuous function. 

o 

In retrospect we can change the domain assignments of several entities as follows 
(where -=. stands for continuous functions and ~ for strict functions): 
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r = II (MName~o' ... 'dn -+ (fr o~) -+ ~c -+ E.L -!. (E.L X o't)) 
c,do, ...• dn I_I 

("c • E C A C " 8 Od "'d' XPd -+ L.l. -+.t..t.l -+ l. 

Z:J : SExp~ -+ r":' ~c -+ E.L -!. (E.L X 01) 
SC : StatC -+ r":' ~c -+ E.L -!. E.L, 

M~o, ... ,dn: MethDe!do, ... ,dn ....., r":' (Ii: O~) -+ ~c....., E.L -!. (E.L X O't) 
1=1 

C 

C~l1 .... ,mn : ClassDef~ll" .. ,mn --+ r -+ r 
UCl> .. "cn : Unite! , ... ,Cn -+ r ~ r 

ml,···,mk ml,···,ml;: 

pc: ProgC ....., r":' ~c -+ E.L -!. E.L 

Lemma 3.21 
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Now we come to the issues of consistent states and agreement between context and 
state. We can make the following observations: 

• For any expression ed' for any state a E E, and for any context 0 E ~ C such 

that OK(a,o), we have that t:[e](6)(a) E a~). 

• For any side effect expression sd, for any agreement-preserving environment " 
for any state a E E, and for any context 0 E ~c such that OK(a,o), we have 
that if (a',(3d) = Z[s](,)(o)(a) and a' # .l then OK(a'), a:5 a' (therefore also 

OK(u',o)), and (3d E a'~). 

• For any statement SC, for any agreement-preserving environment" for any state 
a E E, and for any context 0 E ~c such that OK(a,o), if a' = S[S](,)(6)(a) 
and a' # .l then OK(a') and a:5 a' (therefore also OK(a',o)). 

• For any method definition Pdo, ... ,dn' for any agreement-preserving environment" 
for any state a E E, for any context 0 E ~C such that OK(a,o), and for any 

row of (existing) objects iJ = ((3, d1
, ... , (3n dn) E IT:;", a~;) we have if (a', (3do) = 

M[p](,)(iJ)(o)(a) and a' # .l then OK(a'), a :5 a' (so also OK(a',o)), and 
(3do E a/~ do) • 

• For any class definition D and for any agreement-preserving environment, we 
have that C[D](f) is again an agreement-preserving environment. 

• For any unit U and for any agreement-preserving environment, we have that 
U[U](,) is again an agreement-preserving environment. 

• For any program pC, for any agreement- preserving environment " for any state 
a E E, and for any context oC such that O[«a,o), if a' = P[p](f)(o)(a) and 
a' #.l then OK(a') and a:5 a' (therefore also OK(a',o)). 
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Proof 
The proof consists of an easy induction on the structure of the syntactical object 
under consideration. 0 
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4 The assertion language and its semantics 

In this section we shall develop a formalism for expressing certain properties of states, 
and we shall give a semantics for it. 

One element of this assertion language will be the introduction of logical variables. 
These variables may not occur in the program, but only in the assertion language. 
Therefore we are always sure that the value of a logical variable can never be changed 
by a statement. Apart from a certain degree of cleanliness, this has the additional 
advantage that we can use logical variables to express the constancy of certain ex
pressions (for example in the proof rule (MI) for message passing in definition 5.24). 
Logical variables also serve as bound variables for quantifiers. 

The set of expressions in the assertion language is larger than the set of programming 
language expressions not only because it contains logical variables, but also because 
it is allowed to refer to instance variables of other objects. Furthermore we include 
conditional expressions in the assertion language because they are very convenient 
(e.g., in the axiom (SAl), see definitions 5.6 and 5.7). 

In two respects our assertion language differs from the usual first-order predicate logic: 
Firstly, the range of quantifiers is limited to the existing, non-nil objects in the current 
state. With respect to the classes Int and Baal this only means that the range does 
not include L This does not affect essentially the expressive power of the assertion 
language, but in most practical cases one wants to exclude .1 from the quantification, 
so in these cases the assertions become shorter. For the other classes this restriction 
means that we cannot talk about objects that have not yet been created, even if they 
could be created in the future. This is done in order to satisfy the requirements on the 
proof system stated in the introduction. Because of this the range of the quantifiers 
can be different for different states. More in particular, a statement can change the 
truth of an assertion even if none of the program variables accessed by the statement 
occurs in the assertion, simply by creating an object and thereby changing the range 
of a quantifier. (The idea of restricting the range of quantifiers was inspired by [8].) 

Secondly, in order to strengthen the expressiveness of the logic, it is augmented with 
quantification over finite sequences of objects. It is quite clear that this is necessary, 
because simple first-order logic is not able to express certain interesting properties. 

4.1 The assertion language 

Definition 4.1 
For each d E C+ we introduce the symbol d* for the type of all finite sequences with 
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elements from d, we let C· stand for the set {d* Id E C+}, and we use ct, with typical 
element a, for the union C+ U C'. 

We define Od' to be the set of finite sequences with elements from 01 (note that 
the elements can also be 1-). The empty sequence €d is also included in Od'. The 
elements in a sequence are always numbered starting from 1. In order to simplify 
some formulae we define Of to be the s?IDe as Od', in deviation from definition 3.2. 
In addition to f3d' , we shall sometimes use ad' to range over elements of Od'. 

We have the following functions: 

• lend: Od' .... Z returns the number of elements in the sequence. 

• dtd : Od' X Z .... 01 extracts from the first argument the element numbered by 
the second argument. If the second argument is "out of bounds" (less than 1 or 
greater that the length of the first argument) then the result is L 

Assumption 4.2 
We assume that for every a in Ct we have a set LVara of logical variables of type a, 
with typical element Za' 

Definition 4.3 
We the set LExp~ of logical expressions of type a in class c, with typical element I~, 
as follows: 

IC 
a .. - eC 

a if a E C+ 

Za 

Ie c' c" xa if a E C+ 

if loc then 11~ else 12~ fi if a E C+ 

lId = 12d if a = Bool 

11 C + 12c if a = Int 

11 c <12c if a = Bool 

115,1 if a = Int and d E C+ 

11~* ·12 c if a E C+ 

Note that the difference with the set EXPd of expressions in the programming language 
is that in logical expressions we can use logical variables, refer to the instance variables 
of other objects, and write conditional expressions. Furthermore, we extended the 
domain of discourse by means of logical variables ranging over sequences and notations 
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to express the length of a sequence and the selection of an element from a sequence. 
The selection operator'·' can be distinguished from the dereferencing operator'.' by 
its higher vertical position on the line and by the type of its first argument. 

Definition 4.4 
The set Assc of assertions in class c, with typical elements pc and QC, is defined by: 

pc .. _ IC 

pc -+ QC 

.pc 

'1z. pc 

3z. pc 

This definition is rather conventional. 

Definition 4.5 
Of course, we shall freely use the logical connectives II, V, and _, which we consider 
as abbreviations of appropriate constructions with -+ and '. Furthermore we shall 
use l~ r as an abbreviation for l~ = ni1d and l~ 1 for • l~ = ni1d. 

Definition 4.6 
Finally we define the set CorrPC of correctness formulae in class c, with typical 
element pc, as follows: 

pc pc 

{PC}pC{QC} 

4.2 Semantics of assertions and correctness formulae 

Definition 4.7 
In order to be able to assign a semantics to logical expressions we first define the set n 
of valuations, with typical element w, as follows: 

n = II (LVar. -+ OjJ . 
• 

(Remember that 01 = 0· if a E C·.) A valuation assigns a value to each logical 
variable. 

Definition 4.8 
We call a valuation w compatible with a state (T if 
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• '<Ie E C '<Izc' E LVarc' '<In E Z eUC(w(c')(z), n) Eat) 

Again an abbreviation is useful: we shall write OK(a,o,w) meaning that a is consis
tent, 0 agrees with a, and w is compatible with a. 

Lemma 4.9 
Concerning the preservation of compatibility by statements and programs we have 
the following properties: 

• For any statement SC, for any agreement-preserving environment "(, for any 
state a E ~, for any context OC and for any valuation w such that OK(a,o,w) 
we have if a' = S[S]("()(8)(a) and a' f- 1- then OK(a',o,w). 

• For any program pC, for any agreement-preserving environment "(, for any state 
a E ~, for any context OC and for any valuation w such that OK(a, o,w) we have 
if a' = P[p]("()(o)(a) and a' f- 1- then OK(a',o,w). 

Proof 
This is an easy consequence oflemma 3.21. 

Definition 4.10 
We define the semantics of logical expressions by specifying the function 

as follows: 

C~[e~](w)( 0)( a) 

C~[Zd](W)( 0)( a) 

C~ : LExpr~ _ n _ ~ c - ~ --+ 01 

[~[e](o)(a) 

W(d)(Z) 

C~[l~,. x~](w)(o)(a) = 1- if f3 = 1-

= a(2)(c"d)(f3)(XJ') otherwise 

where (3"' = Cd[l](w)(b)(a) 

C~[if 1013001 then 11~ else 12~ fi](w)(o)(a) = 1-

= C~[ll](w)(o)(a) 

= C~[12](w)(0)(a) 

iff3=1-

if f3 = t 

iff3=f 

where f3 = Cd[lo](w)(o)(a) 

CW1~' = 12~,](w)(0)(a) = t 

= f 

(only if d = Bool) 

if C~,[ll](w)(o)(a) = CW2](w)(0)(a) 
otherwise 
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C:l[h:l + 12:l](w)(6)(0") = 1- if Cdl/t](w)(6)(0") = 1-

or CW2](w)(6)(0") = 1-

= C:l[Il](W)( 6)( 0") + Cd[12](w)( 6)( 0") 

(only if d = Int) 

C:l[h:l, < hd,](w)(6)(0") = 1-

= t 

= f 

otherwise 

if Cd,[ld(w)(6)(0") = 1-

or Cd,[12](w)(6)(0") = 1-

if Cd-[ld(w)(6)(0") < CW2](w)(6)(0") 

otherwise 

(only if d = Bool and d' = Int) 

CC[Ildol](w)(6)(0") = lend(C:lo[l](w)(8)(0")) 

C:l[h:lo '12C](w)(6)(0") = e/td(Cdo [11](W)(8)(0"), CC[12](w)(6)(0")) 
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These equations are just what one would expect, especially after having seen defini
tion 3.12. 

Lemma 4.11 
If 0" E ~, 6 E ,6.c, andw E n are such that OK(0",6,w), then for every logical expression 

IE LExpr:l we have C[I](w)(6)(0") E O"~), and for every expression I E LExpr:lo we 

have eltd(C[IHw)( 6)( 0"), n) E O"~), for every n. 

Proof 
Induction on the complexity of l. o 

Definition 4.12 
Now we can define the semantics of assertions in terms of the function 

as follows: 

AC[IC](v)(w)(o)(O") = t if CC[I](w)(6)(0") = t 
= f otherwise 

AC[-,PC](v)(w)(6)(0") = f if AC[P](v)(w)(6)(0") = t 
= t otherwise 

AC[ltZd PC](v)(w)(6)(0") = t if for all,8 E O"(d) we have 

AC[PC](v)(w{,8/z})(6)(0") = t 
= f otherwise 
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AC[3zd PC]( V )(w)( 0)( u) t if there is a f3 E u(d) such that 

AC[PC](v)(w{,B/z})(o)(u) = t 
f otherwise 

AC[\fZd' PC](w)(o)(rr) = t if for all 0: E Od' such that 

'In E Z eIt( 0:, n) E rr~) we have 

AC[PC](w{o:/z})(o)(rr) = t 

= f otherwise 

AC[3zd• PC](w)(o)(rr) = t if there is an 0: E Od' such that 

'In E Z e/t(o:,n) E rr~) and 

AC[PC](w{o:/z})(o)(rr) = t 

f otherwise 

A few remarks should be made here . 

• Note that the possible values of a boolean logical expression are t, f, and .L. If 
such an expression is viewed as an assertion, only t and f remain. If viewed as 
an expression it yields 1., as an assertion it delivers f . 

• It is very important to note that in assertions of the form Vz P and 3z P the 
quantification ranges only over the existing, non-nil objects of the appropriate 
type. 

Example 4.13 
The formula 

x 
V --+ W 

from [7] can be expressed in our new assertion language in the following way: 

3zd• (z . 1 == v II z ·Izl == w II 'In (0 < nil n < Izl) -+ (z . n).x == z . (n + I)) 

Example 4.14 
There are no logical expressions in the language to construct a sequence with one 
specific element (a singleton). However, if we want to say that property P holds for 
the singleton whose element is given by the logical expression I, we can do this as 
follows: 

3Zd' Izl == IlIz·1 == IIlP(z) 
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or equivalently: 
'IZd' (Izl = 1 II z· 1 = I) -> P(z). 

A similar procedure is possible for the empty sequence and for the concatenation of 
two sequences. Furthermore we can see whether two sequences are equal by checking 
if they have the same lengths and whether their corresponding elements are equal. 
(Direct ways of expressing the above things could be included in the assertion lan
guage, but they would make the substitution operation [new/u] in definitions 5.13 
and 5.15 much more complicated.) 

Definition 4.15 
Finally we define the notion of truth and validity of correctness formulae. 

• We say that a correctness formula of the form pc is true with respect to a 
valuation w, a context lic, and a state cr, written as w, Ii, cr 1= P, if OK(cr,li,w) 
and 

• We call a correctness formula of the form pc valid, written as 1= P, if it is true 
with respect to every w, lic, and cr such that OK(cr,li,w). 

• A correctness formula of the form {PC}pC{QC} is called true with respect to an 
environment "(, a valuation w, a context lic, and a state cr, written as "(,w, Ii, cr1= 
{P}p{ Q}, if w, Ii, cr 1= P implies that for the state cr' = PC[p]( "()( Ii)( cr) we have 

cr' # .L => w,li,cr' 1= Q. 

• We define a correctness formula of the form {PC}pC{ QC} to be valid with respect 
to an environment "(, written as "( 1= {P}p{Q}, if we have "(,w, Ii, cr 1= {P}p{Q} 
for every w, lic, and cr. We call such a correctness formula simply valid if it is 
valid with respect to every environment. 
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5 The proof system 

In this section we shall present a number of axioms and rules that can be used to 
derive correctness formulae. For each axiom and rule we shall give its justification 
by proving that it is valid. Note that axioms are correctness formulae so we have 
already defined what validity means for them. We call a proof rule valid if for every 
environment "'I the validity of the premisses of the rule with respect to "'I implies the 
validity of the conclusion with respect to "'I. The consequence of the validity of all the 
axioms and rules will be that our proof system is sound, i.e., that if we can derive a 
correctness formula (without any further assumptions), this correctness formula will 
be valid. (There is one rule in the system that cannot be proved valid in isolation: the 
recursion rule (MR) in definition 5.33. It will get a special treatment in the soundness 
proof of the whole proof system (see theorem 5.40).) 

5.1 Simple assignments 

Definition 5.1 
We shall call a statement a simple assignment if it is of the form x +- e or u +- e (that 
is, it uses the first form of a side effect expression: the one without a side effect). 

5.1.1 Simple assignment to a temporary variable 

Definition 5.2 
Our first axiom deals with the case that the target variable is a temporary variable: 

{PC[e~/ud]} (ulc : Ud +- e:t) { pc} (SAT) 

Here the notation P[elu] means: P in which e is substituted for x. We shall formalize 
that notion in the next definition. (Note that this definition merely asserts that the 
name (SAT) refers to the class of formulae of the form listed above.) 

Definition 5.3 
We shall define the substitution operation [elu] first for logical expressions: 

x [elu] = x 

U [elu] e 

u' [elu] = u' if ul to u 

z [elu] = z 

I [elu] = I if I = nil, self, true, false 

n [elu] = n 

I.x[elu] (I[elu]) . x 
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if 10 then 11 else 12 fi[e/uJ = if 10[e/uJ then It[e/uJ else 12 [e/uJ fi 

(11 = 12 )[e/uJ = (11 [e/u]) = (l2[e/u]) 

(11 + 12) [e/uJ = (tIle/u]) + (12[e/u]) 

11/ [e/uJ = II[e/uJl 

(11 ·12)[e/uJ = (It[e/uJ·12[e/u]) 

Now we define this substitution for assertions other than logical expressions: 

(P -> Q)[e/uJ = (P[e/u]) -> (Q[e/u]) 

(,P) [e/uJ = ,(P[e/u]) 

(Vz P) 

(3z P) 

[e/uJ 

[e/uJ 

Vz (P[e/u]) 

= 3z (P[e/uJ) 

31 

This definition can be summarized by saying that we can perform the substitution 
[e/uJ by replacing u by e everywhere in the expression or assertion at hand. However, 
this will not be true for the notions of substitution that we will define in the sequel, 
despite the fact that we use a very similar notation to indicate those substitutions. 

In the following lemma we express the most important characteristic of the substitu
tion [e/uJ. Informally spoken, for any logical expression or assertion, the substituted 
form has the same value in the state before the assignment as the unsubstituted form 
has in the state after the assignment. 

Lemma 5.4 
Consider the assignment statement Ud +- ed' Let 'Y E r, a E ~ and 8 E ~ c be 
arbitrary, and let 

a' = S[u +- e]( 'Y)( 8)( a). 

Then we have the following facts: 

1. For every logical expression Idl and every valuation w 

,C[1[e/uJ](w)(6)(a) = £[I](w)(6)(a/). 

2. For every assertion pc, every valuation w 

A[P[e/u]](w)(6)(a) = A[P](w)(o)(a'). 
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Proof 
First we observe that <7' = S[u <- e]('Y)(6)(<7) means that <7' 
f3 = E[e](6)(<7). 

<7{f3/u}, where 

Now we can prove the first part of the lemma by induction with respect to the structure 
of I. The only interesting case occurs when! = u so that l[efuJ = e: 

£[e](w)(6)(<7) = E[e](6)(<7) 

= f3 
= <7(3)(4u) 

E[u] (6)(<7') 

£[uJl(w)( 6)( <7') 

After that we can prove the second part of the lemma by a straightforward induction 
on the structure of P. 

Of course, this lemma is easily extended to the case where instead of an assignment 
statement we take a progmm in which the statement is a simple assignment to a 
temporary variable: 

Corollary 5.5 
The axiom (SAT) is valid, that is, for every environment 'Y we have 

'Y 1= {P[e/uJ} Wlc: u <- e) {p}. 
o 

Note that the corollary uses only one direction of the lemma. The two directions 
together say that P[e/uJ is the weakest precondition of the statement u <- e with 
respect to the postcondition P. 

5.1.2 Simple assignment to an instance variable 

Definition 5.6 
In the case that the target variable of an assignment statement is an instance variable, 
we use the following axiom: 

(SAl) 

This looks very similar to our first axiom (SAT), but note that we have not yet defined 
what substitution means if we substitute an expression for an instance variable instead 
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of a temporary variable. We shall do that now, and the difference will become clear 
immediately: 

Definition 5.7 
The substitution operation [e/xJ is defined as follows on logical expressions: 

x [e/xJ = e 

x' [e/xJ x' if x' # x 

u [e/xJ u 

z [e/xJ = z 

I [e/xJ = I if 1= nil, self, true, false 

n [e/ xJ = n 

I.x [e/xJ if (1[e/x]) = self then e else (l[e/x]). x fi 

l.x'[e/xJ = (I[e/x]). x' if x' # x 

if 10 then I, else 12 fi[e/xJ = if 10[e/xJ then h[e/xJ else 12[e/xJ fi 

(I, = 12)[e/xJ = (h[e/x]) = (12[e/x]) 

(It + 12 ) [e/xJ = (h[e/x]) + (l2[e/x]) 

(I, < 12)[e/xJ = (I,[e/x]) < (12[e/x]) 

III [e/xJ = II[e/xli 
(I, ·12)[e/xJ = (l1[e/xJ ·12[e/x]) 

The definition is extended to assertions other than logical expressions in the same 
way as before: 

(P -+ Q)[e/xJ = (P[e/x]) -+ (Q[e/x]) 

(~P) (e/xJ = ~(P[e/x]) 

('1z P) [e/xJ = '1z (P[e/x]) 

(3z P) [e/xJ = 3z (P[e/x]) 

The most important aspect of this definition is certainly the conditional expression 
that turns up when we are dealing with a logical expression of the form I. x. This 
is necessary because a certain form of form of aliasing is possible: the situation that 
different expressions refer to the same variable. In the case of I. x, it is possible 
that, after substitution, I refers to the currently active object, so that I. x is the 
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same variable as x and should be substituted bye. It is also possible that, after 
substitution, I does not refer to the currently executing object, and in this case no 
substitution should take place. Since we cannot decide between these possibilities by 
the form of the expression only, a conditional expression is constructed which decides 
"dynamically" . 

Lemma 5.8 
Consider the assignment statement xd +- ed. Let 'Y E r, <7 E ~, and 6 E A C be 
arbitrary, and let 

<7' = S[x +- e]( 'Y)( 6)( (7). 

Then we have the following facts: 

1. For every logical expression l;j, and every valuation w 

£[I[e/x]](w)(6)(<7) = £[I](w)(6)(<7'). 

2. For every assertion pc and every valuation w 

A[P[e/xJ](w)(6)(<7) = A[P~(w)(6)(<7'). 

Proof 
Like in lemma 5.4 we first note that <7' = <7{,8/6(1), X} where,8 = £[e](6)(<7). The 
first part of the lemma is now proved by induction on the complexity of l. We shall 
only deal with the most interesting case: I = I'. x. The induction hypothesis tells 
us that £[I'[e/x]](w)(6)(<7) = .c[I'](w)(6)(<7'). Let us call this object ,80. Now if 
,80 = 6(1) then £[1'. x](w)(6)(<7') = <7(2)(6(1»)(x) = ,8 = .c[e](w)(6)(<7). Otherwise 
we have £[I'.x](w)(6)(<7') = <7(2)(,80)(x) = £[(l'[e/x]).x](w)(6)(<7). So £[if I'[e/x] = 
self then e else (l'[e/x]). x fi](w)(6)(<7) = £[I'.x](w)(6)(<7'). 

The rest of the lemma is proved in a way, similar to lemma 5.4. o 

Again we can extend this to programs instead of statements: 

Corollary 5.9 
The axiom (SAl) is valid, that is, for every environment 'Y we have 

'Y F {P[e/x]} (ulc : x +- e) { p}. 

o 

Note that this corollary also uses only one direction of the corresponding lemma. 
Again the two directions together say that pre/xl is the weakest precondition of the 
statement x +- e with respect to the postcondition P. 
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5.2 Creating new objects 

5.2.1 Assigning a new object to a temporary variable 

Definition 5.10 
For an assignment of the form u <- new we have a axiom similar to the previous two: 

(NT) 

Again we still have to define what this notion of substitution looks like, but first we 
shall define the substitution of an expression for a logical variable, because we shall 
need that later: 

Definition 5.11 
We define the substitution operation [ej z] on logical expressions by: 

x [ej z] = x 

u [ej z] = u 

z [ej z] = I 
z' [ej z] = z' ifz'#z 

I' [ej z] I' if I' = nil, self, true, false 

n [el z] n 

I'.x[ejz] (I'[ej z]) . x 

if 10 then It else 12 fi[ejz] = if lo[ejz] then It [ejz] else 12[ejz] fi 

(It == 12)[ejz] (It[ejz]) == (12[ejz]) 

(Id 12) [ejz] = (It [ejz]) + (12[ejz]) 

11\ [ejz] = II[ejz]1 

(it . 12)[ej z] = (lIlej z] ·12[ej z]) 

We extend this definition to assertions other than logical expressions as follows: 
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(P - Q)[e/z] (P[e/z]) _ (Q[e/z]) 

(.P) [e/ z] .(P[e/z]) 

(liz P) [e/ z] = liz P 

(liz' P) [e/ z] liz' (P[e/z]) ifz'r'z 

(3z P) [e/ z) = 3z P 

(3z' P) [e/ z] 3z' (P[e/z]) ifz'r'z 

This definition can be summarized by observing that the substitution can be carried 
out by replacing z by e everywhere except in the scope of a quantifier where z is 
bound. 

Lemma 5.12 
Let a E E, 6 E tJ.c, e E Exp~, and z E LVard be arbitrary, and let f3 = t:[e](6)(a). 
Then we have 

1. For all I E LExp~, and for all wEn: 

C[I[e/z]](w)(6)(a) = C[I](w{f3/z})(o)(a). 

2. For all P E Assc, for all wEn: 

A[P[e/ z]](w)( 6)( a) = A[P](w{f3 / z})( 0)( a). 

Proof 
A rather trivial induction on the complexity of I and P. o 

Now we can define the substitution [newc/uc]. We shall do this first for logical expres
sions. As with the notions of substitution used in the axioms for simple assignments, 
we want the expression after substitution to have the same meaning in a state before 
the assignment as the unsubstituted expression has in the state after the assignment. 
However, in the case of a new-assignment, there are expressions for which this is not 
possible, because they refer to the new object (in the new state) and there is no ex
pression that could refer to that object in the old state, because it does not exist yet. 
Therefore the result of the substitution must be left undefined in some cases. 

However we will show that we are able to carry out the substitution. The idea 
behind this is that in such an assertion the variable u referring to the new object 
can essentially occur only in a context where either one of its instance variables is 
referenced, or it is compared for equality with another expression. In both of these 
cases we can predict the outcome without having to refer to the new object. 
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Definition 5.13 
Here comes the formal definition of the substitution [new/u] for logical expressions: 

x [new/u] = x 

u [new/u] is undefined 

u'[new/u] = u ifu'rf u 

z [new/u] = z 

I [new/u] = I if I = nil, self, true, false 

n [new/u] = n 

x' · x[new/u] = x'.x 

u · x[new/u] = nil 

u' · x[new/u] = u'. x ifu'rfu 

z · x[new/u] = Z.x 

I · x[new/u] I. x if I = nil, self 

I. x' . x[new/u] = (I. x'[new/u]). x 

(if 10 then 11 else 12 fi.x ) [new/u] 

= if lo[new/u] then (/1.x)[new/u] else (/2 .x)[new/u] fi 

if 10 then l, else 12 fi[new/u] 

= if Io[new/u] then 11 [new/u] else I2[new/u] fi 

if the substitutions of the subexpressions are all defined, 

otherwise undefined 

(11 = 12) [new/u] = (11[new/u]) = (12[new/u]) 

if neither 11 nor 12 is u or of the form if ... fi 

(11 = 12) [new/u] = false 

if either l, = u and 12 is not u or of the form if ... fi 

or 12 = u and 11 is not u or of the form if ... fi 

(11 = 12) [new/u] = true 

if 11 = 12 = U 
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(if 10 then I, else 12 fi == 13) [new /u] 

= if 10[new/uJi 

then (13i)[new/u] 

else if lo[new/u] 

fi 

then (I, == 13) [new/u] 

else (12 == 13) [new/u] 

fi 

(I, == if 10 then 12 else 13 fi) [new/u] 

= if 10[new/uJi 

then (I, i) [new/u] 

else if Io[new/u] 

fi 

then (II == Iz)[new/u] 

else (I, == 13) [new/u] 

fi 

if 1, is not of the form if ... fi 

III [new/uJ = II[new/u]1 

(I, .Iz)[new/u] = (I, [new/uJ) . (lz[new/uJ) 

Lemma 5.14 
Let u E TVar d with dEC (Le., d # Int, Bool). 

1. For every logical expression I we have that I[new/u] is defined if and only if I is 
not of the form indicated by the following BNF definition: 
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2. If a E E, 6 E t:,c, w E fl, and 'Y E r are such that OK(a,6,w), and if a' = 
S[u _ new]('Y)(6)(a) then for every logical expression 1 such that I[new/u] is 
defined we have 

C[I[new/u]](w)(6)(a) = C[I](w)(6)(a'). 

Proof 
The first part is easily proved by induction on the complexity of I. For the second 
part we first observe that 

a' = a{ a{1)(d) U {,8} / d} {,8 / u} 

where,8 = pickd(a{1)(d»), so,8 rt. a{1)(d) U {1.} (see definitions 3.13 and 3.14). 

Now we can prove our lemma by induction on the complexity of I. In several places 
we need the information that OK(a,6,w) together with lemma 4.11 in order to prove 
that the result of an intermediate logical expression is not equal to,8. Let us deal 
with one representative case: I = x' . x. Then I[new/u] = I = x' . x. Now the induction 
hypothesis tells us that C[x'](w)(o)(a) = C[x'](w)(6)(a'). If we put this equal to,8' 
then we know ,8' f. ,8 because lemma 4.11 tells us that ,8' E a(l)(d) U {1.}. Therefore 
we have C[x' .x](w)(6)(a) = a(2)(,8')(x) = a(2)(,8')(x) = C[x' .x](w)(6)(a'). 0 

Definition 5.15 
We extend the substitution operation [new/u] to assertions other than logical expres· 
sions as follows (we assume that the type of u is dEC): 

(P -+ Q)[new/u] = (P[new/uJ) -+ (Q[new/uJ) 

(,P) [new/u] = ,(P[new/uJ) 

(VZd P) [new/u] = (Vz(P[new/uJ)) II (P[u/z][new/uJ) 

(Vzd• P) [new/u] = (Vz Vz: Izl = Iz'l- (P[z',u/z](new/uJ)) 

(Vza P) [new/u] = (Vz(P[new/uJ)) if a f. d, d* 

(3Zd P) [new/u] = (3z(P[new/uJ)) V (P[u/z](new/uJ) 

(3zd• P) [new/uJ = (3z 3z: Izl = Iz'llI (P[z',uJzJ(new/uJ)) 

(3za P) [new/uJ = (3z(P[new/uJ)) if a f. d, d* 

Here we choose for z' the first variable from LVar. that does not occur in P. The 
idea is that z and z, together code a sequence of objects in the state after the new
statement. At the places where z' yields t the value of the coded sequence is the 
newly created object. Where z' yields f the value of the coded sequence is the same 
as the value of z and where z, delivers 1. the coded sequences also yields 1.. 

We still have to define the substitution operation [z', uJ z] and we shall do that now: 
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Definition 5.16 
Let dEC, u E TVard, z E LVard" and z, E LVar •. For logical expressions we define 
the operation [z', u/ z] as follows: 

e [z',u/z] = e 

z [z',u/z] is undefined 

z" [z', u/ z] = z" if z" # z 

!.x [z',u/z] = (I[z',u/z]).x 

Izl [z', u/ z] = Izl 
III [z',u/z] = II[z',u/z]1 ifl#z 
(z.12) [z',u/z] = ifz"(l2[z',u/z])thenuelsez'(l2[z',u/z])fi 

(/1 ·12)[z',u/z] = (ldz',u/z]), (12[z',u/z]) ifl1 # z 

if 10 then 11 else 12 fi [z', u/ z] = 
if (lo[z', u/ z]) then (11 [z', u/ z]) else (lz[z', u/ z]) fi 

(11 = 12)[z',u/z] = (h[z',u/z]) = (/2[Z',U/Z]) 

(11 + 12)[z',u/z] = (11[z',u/z]) + (/2[Z',U/z]) 

= Il[z',u/zll Ill[z', u/ zl 
(l1· 12)[z',u/z] = (h[z', u/ z]· h[z', u/ z]) 

We extend this definition to assertions other than logical expressions as follows: 

(P -+ Q)[z',u/z] = (P[z',u/z]) -+ (Q[z',u/z]) 

(.P) [z',u/z] = .(P[z',u/z]) 

(\lz P) [z', u/ z] = (\lz P) 

(\lz" P) [z',u/zj = (\lz" (P[z',u/z])) 

(3z P) [z', u/ z] = (3z P) 

(3z" P) [z',u/z] = (3z" (P[z',u/z])) 

Lemma 5.17 

ifz"#z 

ifz"#z 

Let u,z,z' be as in definition 5.16. Let U E E, {j E ~c, wEn, and take a = W(d')(Z), 

a' = W(.)(z'), (3 = U(3)(d)(U). Suppose that lend(a) = len(a'). Define a" E Od' to be 
the sequence that satisfies (for all n E Z): 
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len(a") = len(a) 

elt(a",n) = f3 
elt(a",n) elt(a,n) 

elt(a",n) = L 

and takew' =w{a"/z}. 

Then we have: 

if elt(a',n) = t 

if elt(a',n) = f 
if elt(a',n) = L 

1. For every 1 E LExpr';, such that 1 01 z: 

.cal[z', u/ zll(w)( hl( 0") = .c~[I](w')( 15)( 0"). 

2. For every P E Assc such that z' does not occur in P: 

AC[P[z', u/ z]](w)( 15)(0") = AC[P](w')( 15)(0"). 

Proof 
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The proof consists of a quite easy induction on the complexity of I and P respectively. 
Of course, the only interesting case is when 1 is of the form z . 12. Note that the 
condition on z' is necessary to exclude assertions of the form 'I z' P or 3z' P. 0 

Lemma 5.18 
Let 0" E E, 15 E ~c, wEn such that OK(O",h,w). Let dEC, u E TVard, '"( E rand 
define 0"' = SC[u <- new]('"()(h)(O"). Then for every assertion P E Assc we have 

AC[P[new/u]](w)(h)(O") = AC[P](w)(h)(O"'). 

Proof 
Again we use induction on the complexity of P. The only case which is not yet clear 
from the first approach is quantification over sequences, so let us consider the case 
where P = '1zd' Q. Take f3 = Jd(O"(d»), so that O",(d) = O"(d) U {f3} and f3 = 0"(3)(d)(U), 
and let z' be the first variable from LVar, that does not occur in Q. 

Now suppose that 
A[('1zd' Q)[new/u]](w)(h)(O") = t. 

We shall prove that 
A['1zd' Q](w)(h)(O"') = t 

so we have to show that for every a" E Od' such that elt( a", n) E O"'~) for all nEZ, 
it is the case that A[Q](w{all/z})(h)(O"') = t. If we have such an a", we can define 
a E Od' and a' E 0' as follows: 
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len( a) = len( a'l = len( a") 

elt(a, n) .L, elt(a',n) 

elt(a,n) = elt(a",n), elt(a',n) 

Now because 

= t if elt(a",n) = f3 
f if 1 ::; n ::; len( a") 

and elt( a", n) f- f3 

A[\tZd.\lz:lzl = Iz/l---> Q[z',ulz][newlu]](w)(8)(0") = t 

and because a and a' have equal length and do not have elements outside O"~) and 

0"2 respectively, we know that 

A[Q[z', ul z](new lu]](w{ al z}{ a' I Z/})( 8)( 0") = t. 
The induction hypothesis then tells us that 

A[Q[Z', ul z]](w{ al z}{ a' I Z/})( 8)( 0"') = t. 

Finally we can apply lemma 5.17 and use the fact that Z' does not occur in Q, to see 
that 

A[Q](w{a"lz})(8)(0"') = t. 

To prove that A[\tZd' Q](w)(6)(,r) = t implies A[(\lzd' Q)[newlu]](w)(6)(0") = t 
involves reasoning in the other direction, in particular to find a suitable a" for each 
pair a, a' that satisfies certain conditions. We omit further details. 0 

Again we extend this result to the case of programs: 

Corollary 5.19 
The axiom (NT) is valid, that is, for every environment "I we have 

"11= {P[newlu]} (Ulc: u <- new) {p}. 
o 

5.2.2 Assigning a new object to an instance variable 

Definition 5.20 
If our assignment is of the form x <- new we have the following axiom: 

(NI) 

Fortunately, after having worked through the previous subsection, this new axiom is 
simple to define and to prove valid. 
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Definition 5.21 
The substitution operation [newe, / x~,] is defined by: 

P[newe'/x~,] = P[Ue'/x~,] [neWe'/ue,] 

where U e' is a temporary variable that does not occur in P. (It is easy to see that 
this definition does not depend on the actual U used.) 

Lemma 5.22 
Let U E 1;, C E Ae and wEn be such that OK(u, c,w). Let J E r, dEC, x E IVar~, 
and define u' = S[x <- new](J)(c)(u). Then for every assertion pc we have 

w,c,u 1= P[new/x] ¢=> w,c,u'l= P. 

Proof 
Choose some u E TVard which does not occur in P, so that we have P[new/x] = 
P[u/x][new/u]. Let U" = S[u <- new; x <- u](J)(c)(u). We have by lemma 5.8 and 
lemma 5.18 that w,c,u 1= P[u/x][new/u] ¢=> w,c,u"l= P. 

Now if /3 = pickd(u(d) then we have u' = u{/3/c(1),x} and u" = u{/3/U}{/3/C(l),X}, 
so that u" = u' {/3 / u}. Because u does not occur in P we have w, c, u' 1= P ¢=> 

w, C, U" 1= P, and the result of the lemma follows. 0 

Corollary 5.23 
The axiom (NI) is valid, that is, for every environment J we have 

"/1= {P[newjxl} (U\c: x <- new) {p}. 
o 

5.3 Sending messages 

In this subsection we present some proof rules for verifying the third kind of assign
ments: the ones where a message is sent and the result stored in the variable on the 
left hand side. We start with a rule for a non-recursive method and later on we show 
how to deal with recursion. 

Definition 5.24 
For the statement x <- eolm( e1, ... , en), where x E IVar~o' m E MNamec;., ... ,d

n
, 

eo E Exp~ and ei E Exp~; for i = 1, ... , n, we have the following proof rule: 

{pc' II 117:1 Vi = nil}(U\c' : S){ Qe'[e/r]}, Q[e/self, u][f/z] -> Re[r /x] 

{P[e/self,u][!/z]}(U\c: x <- eOlm(e1, ... ,en)){R} 
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where S E State' and e E Exp~o are the statement and expression occurring in the def
inition of the method m in the unit U, Ul, ... , Un are its formal parameters, Vl, •.. , Vk 
is a row of temporary variables that are not formal parameters (k 2: 0), r is a logical 
variable of type do that does not occur in R, 1 is an arbitrary row of expressions (not 
logical expressions) in class c, and z is a row of logical variables, mutually different 
and different from r, such that the type of each Zi is the same as the type of the 
corresponding J;. Furthermore, [e/self, ill stands for a simultaneous substitution hav
ing the "components" [eo/self], h/Ul], ... , (en/un] (a formal definition will follow). 
We require that no temporary variables other than the formal parameters Ul, ... , Un 

occur in P or Q. 

We still have to define precisely what [e/self, ill means, but before doing that let us 
give some informal explanation of the above rule. When a statement as above is 
executed, several things happen. First, control is transferred from the sender of the 
message to the receiver (context switching). The formal parameters of the receiver 
are initialized with the values of the expressions that form the actual parameters of 
the message and the other temporary variables are initialized to nil. Then the body S 
of the method is executed. After that the result expression e is evaluated, control is 
returned to the sender, the temporary variables are restored, and the result object is 
assigned to the variable x. 

The first thing, the context switching, is represented by the substitution [eo/self]. A 
little more precisely, an assertion P as seen from the receiver's viewpoint is equivalent 
to P[eo/self] from the viewpoint ofthe sender. Note that this substitution also changes 
the class of the assertion: P[eo/self] E Asse whereas P E Asse'. Now the passing 
of the parameters is simply represented by the substitution [eb .•. , en/Ul>" . ,Un]. 
Therefore after the parameters have been transferred to the receiver, P from the 
receiver's viewpoint corresponds to P[e/self,iL] as seen by the sender. (Note that we 
really need simultaneous substitution here, because Ui might occur in an ej with j < i, 
but it should not be substituted again.) In reasoning about the body of the method 
we may also use the information that temporary variables that are not parameters 
are initialized to nil. 

The second thing to note is the way the result is passed back. Here the logical 
variable r plays an important role. This is best understood by imagining after the 
body S of the method the statement r +- e (which is syntactically illegal, however, 
because r is a logical variable). In the sending object one could imagine the (equally 
illegal) statement x +- r. Now if the body S terminates in a state where Q[e/r] holds 
(a premiss of the rule) then after thfs "virtual" statement r +- e we would have a 
situation in which Q holds. Otherwise stated, the assertion Q describes the situation 
after executing the method body, in which the result is represented by the logical 
variable r, everything seen from the viewpoint of the receiver. Now if we context
switch this Q to the sender's side, and if it implies R[r/x], then we know that after 
assigning the result to the variable x (our second imaginary assignment x +- r), the 

Doc. No. 



45 

assertion R will hold. 

Now we come to the role of 1 and z. We know that during the evaluation of the 
method the sending object becomes blocked, that is, it cannot answer any incoming 
messages. Therefore its instance variables will not change in the meantime. The 
temporary variables will be restored after the method is executed, so these will also 
be unchanged and finally the symbol self will retain its meaning over the call. All 
the expressions in class c (and in particular the Ii) are built from these expressions 
plus some inherently constant expressions and therefore their value will not change 
during the call. However, the method can change the variables of other objects and 
new objects can be created, so that the properties of these unchanged expressions 
can change. In order to be able to make use of the fact that the expressions 1 are 
constant during the call, the rule offers the possibility to replace them temporarily by 
the logical variables z, which are automatically constant. So, in reasoning from the 
receiver's viewpoint (in the rule this applies to the assertions P and Q) the value ofthe 
expression J; is represented by Zi, and in context switching Ii comes in again by the 
substitution [l/z]. Note that the constancy of 1 is guaranteed up to the point where 
the result of the method is assigned to x, and that x may occur in Ii, so that it is 
possible to make use of the fact that x remains unchanged right up to the assignment 
of the result. 

Definition 5.25 
Now we define formally the substitution operation [e/self]. First we do this for logical 
expressions: 

x [e/self] = e. x 

u [e/self] = u 

Z [e/self] = Z 

self [e/self] = e 

I [e/self] = I 

I. x [e/self] = (I[e/self]) . x 

if I = nil, true, false, n 

if 10 then It else /2 fi[e/self] = if lo[e/self] then It[e/self] else 12[e/self] fi 

(/t ,: 12 )[e/self] = (It [e/self]) ,: (I2 [e/self]) 

(It + 12 )[e/self] = (It[e/self]) + (h[e/self]) 

Ill[e/self] Il[e/selfll 

(It '/2)[e/self] = (It[e/self]'/2[e/self]) 
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Now we extend this to assertions other than logical expressions: 

(P ---> Q)[e/self] = (P[e/self]) ---> (Q[e/self]) 

(.P) [e/self] = .(P[e/self]) 

(VzP) [e/self] = Vz(P[e/self]) 

(3zP) [e/self] = 3z(P[e/self]) 

Lemma 5.26 
Let u E ~, 0 E ~c, e E Exp~" and define f3 c' = £[e](o)(u). Let 0' E ~c' be such that 
8(1) = f3. Then we have 

1. For every logical expression I~ and every valuation w 

'c[I](w)( 8')( u) = 'c[I[e/self]](w)( 8)( u). 

2. For every assertion pc' and every valuation w 

A[P](w)(8')(u) = A[P[e/self]](w)(8)(u). 

Proof 
An easy induction on the complexity of I and P. o 

Definition 5.27 
Although the intention of simultaneous substitution is probably clear to the reader, 
we give its definition for the case in which we really need it here, for completeness' 
sake. Let e = eo, ... , en and u = Ul, ... , Un. Then we define: 

x [e/self,u] = eo.x 

Ui [e/self, u] = ei 

U [e/self, u] = U 

z [e/self, u] = z 

self [e/self, u] = eo 

I [e/self, u] = I 

l. x[e/self, u] = (I[e/self, u]). x 

for i = 1, ... ,n 

if 1= nil,true,false,n 

if 10 then It else 12 file / self, u] = if lo[e / self, u] then 11 [e / self, u] else 12 [e / self, u] fi 

(11 ~ 12)[e/self,u] = (ll[e/self,u]) ~ (12[e/self,u]) 

(11 + 12)[e/self,u] = (!t [e/self, u]) + (12[e/self,u]) 

(11 < 12)[e/self,u] (!t[e/self,u]) < (12[e/self,u]) 
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III[e/self, u] = II[e/self, uJi 

(I I ·I2 )[e/self,u] (il [e/self, u] ·I2 [e/self,u]) 

Now we extend this to assertions other than logical expressions: 

(P -> Q)[e/self,u] = (P[e/self,u]) -> (Q[e/self,u]) 

(,P) [e/self,u] = ,(P[e/self,u]) 

('1zP) [e/self,u] = '1z(P[e/self,u]) 

(3zP) [e/self, u] = 3z(P[e/self, u]) 

Of course we also have a corresponding lemma: 

Lemma 5.28 
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Let U E E, 6 E ~c and ei E EXP~i for i = O, ... ,n (with do E C). Define fJ; = 
[[ei](6)(u). Let 6' E ~do be such that 6(1) =!3o and let u' = U{!3;/Ui}7=I' Then we 
have 

1. For every logical expression I~o and every valuation w 

£[I](w)(6')(u') = £[l[e/self,u]](w)(6)(u). 

2. For every assertion pdo and every valuation w 

A[P](w)(6')(u') = A[P[e/self,u]](w)(6)(u). 

Proof 
Again a quite simple induction on the complexity of I and P. o 

Example 5.29 
Let us illustrate the use of the rule (MI) by a small example. Consider the unit 
U = c : (m ~ (uo) : Xl <- Uo r X2) and the program p = (Uk: Xl <- UI!m(X2)). We 
want to show 

So let us apply the rule (MI) with the following choices: 

P = Xl = Zl 1\ ,self = Z2 

Q = Xl = Uo 1\ r = X2 1\ ,self = Z2 

R = Ul . Xl == X2 /\ Xl == Ul . X2 

k = 0 (we shall use no Vi) 

it = Xl (represented by Zl in P and Q) 

12 = self (represented by Z2 in P and Q) 
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o 
before after 

Figure 2: The situation before and after sending the message (example 5.29) 

First notice that P[u1,xz/self,uo][x1,self/zl,zz] = U1.X1 = X1/\ ~U1 = self so that 
the result of the rule is precisely what we want. 

For the first premiss we have to prove 

{Xl = Zl /\ ~self = Zz }(Ulc : Xl <- UO){ Xl = Uo /\ Xz = Xz /\ ~self = zz}. 

This is easily done with the axiom (SAl) and the rule of consequence (which will be 
introduced in definition 5.39). 

With respect to the second premiss, we have 

Q[U1, xz/self, UO][X1, self / Zl, zz] = U1' Xl = Xz /\ r = U1 . Xz /\ ~U1 = self 

R[r/x1] = if U1 = self then r else U1' Xl fi = Xz /\ r = U1. Xz 

It is quite clear that the first implies the second, and we can use this implication as 
an axiom (see definition 5.38). 

Lemma 5.30 
The proof rule (MI) is valid. 

Proof 
Consider the rule as listed in definition 5.24. Let "'I E r and suppose that the premisses 
are valid with respect to "'I. We shall prove that the conclusion is valid with respect 
to "'I' So let 17 E E, 6 E ~c, and wEn be such that (j,6,w 1= P[e/self,u](i/z]. Let 
"'I' = U[U]("'!) and let 17' = P[(ulc: X <- eO!m(e1,"., en))]("'1)(6)((j). So 17' = S[x <

eO!m(e1, ... ,en )]("'1')(8)((j). We have to prove (j',6,w 1= R. 

Let w' = W{£[fi](6)((j)/Zi}!~1' Then lemma 5.12 gives us (j,6,w' 1= P[e/self,u]. 
Let /3i = £[ei]( 8)( (7) for i = 0, ... , n and suppose that /30 i' .L and /30 !/: 8(z)(c) 
(otherwise we would have that 17' = .L and the result would be trivial). Define 

8' = (/30,6{2){6(Z)(c)U {8{1)} Ic}) and 171 = (17(1), (j(Z)' 171(3)) where 171 (3)(di)(Ui) = /3i 
and 171 (3)(d)(Ud) = .L if u!/: {U1, .. .,Un }. Now because of lemma 5.28 and the fact 
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a,5,w F= P[e/self,u][J/z] ~ a,5,w' F= P[e/self,u] ~ 

a",5,wl F= Q[e/self,u][l/z] {= a",5,w; F= Q[e/self,u] {= 

.lJ-

a", 5, WI F= R[r/x] 

.lJ-

a',5,wl F= R 

.lJ-

a',5,w F= R 

0'1, 8', Wi 1= P 

.lJ

a2,5',w' F= Q[e/r] 

.lJ-

Figure 3: The structure of the proof of lemma 5.30. 
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that temporary variables other than the Ui may not occur in P, we have aI, 5', w' F= P. 
We also know that aI, 0', w' F= Vi ,:, nil for i = 1, ... , k so aI, 5', w' F= P" /\7:1 Vi ,:, nil. 

Now because of the construction of 'Y' in definition 3.17 we know that 'Y'(c',d)(m) = 
M[(u) : S 1 e]('Y') so we can refer directly to the method definition of min U to 
see what 'Y'(c',d)(m) does. So let us take a2 = P[(Ulc' : S)]('Y)(5')(a1), then a2 = 
S[S]('Y')(o')(ad. Assume that a2 i' 1., otherwise we have a' = 1. and we are ready. 
The validity of the first pretniss with respect to 'Y tells us that a2,5',w' F= Q[e/r]. Let 
{3 = £[e](5')(a2),wl = w{{3/r}, and w; = w'{{3/r}. Then because of lemma 5.12 we 
have a2, 5',w; F= Q. 

Let a" = (a2(1),a2(2),a(3)) (we restore the temporary variables). Now we appeal to 
the reader's understanding of the semantics of the language to see that the method 
destination eo, the actual parameters el, ... , en and the expressions! are unchanged 
in a" in comparison with a. Otherwise stated, £[ei]( 0)( a) = £[ei]( 0)( a") and the 
same for Ii. (Of course, this can also be proved formally.) Then we know from 
lemma 5.28 that a",o,w; F= Q[e/self,u] and from lemma 5.12 together with the ob-

servation that w; = WI {£[/i]( 5)(a)/ Zi}!~1 we get a", 5,Wl F= Q[e/self, u][!/z]. 

From the second premiss we can conclude that a",5,wl F= R[r/x]. Now for the final 
state a' we know that a' = a"{,6/o(1),x}, so lemma 5.8 tells us that a',5,Wl F= R. 
Finally, because r does not occur in R, we have a', 5,w F= R. 0 

Definition 5.31 
For the statement U f- eo!m(et, ... ,en), where u E TVardo, m E MNamed~, ... ,dfl' 
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eo E Exp~, and ei E EXPd; for i = 1, ... , n, we have the proof rule (MT) which 
is identical to the rule (MI) introduced in definition 5.24, except that the instance 
variable x is replaced everywhere by the temporary variable u. 

Lemma 5.32 
The proof rule (MT) is valid. 

Proof 
This can be proved by a slight adaptation of the proof of lemma 5.30. o 

Now we come to the issues of how to handle recursive and even mutually recursive 
methods. For this we use an adapted version of the classical recursion rule (see for 
example [3]). The classical rule goes as follows (in the notation of [3]): 

{p}P{q} I- {p}So{q} 
{p}P{q} 

The idea is to prove (the operator I- expresses provability) the correctness of the body 
(So) from the assumption that the procedure call (P) itself satisfies its specification. 
If that has been done we can conclude the correctness of the procedure call without 
assumptions. The validity of this rule can be proved as follows: the meaning of the 
procedure call is the limit of a increasing sequence starting with .L, in which every 
element is obtained from the previous one by assuming the previous as the meaning 
of the procedure call and calculating the meaning of the body from that. From the 

. premiss of the rule we can prove that every element in the sequence satisfies the 
specification and by a continuity argument we conclude that the procedure call itself 
satisfies the specification. 

There are several remarks to be made. One is that in proving the premiss of the 
rule we may not make use of the declaration of P, because otherwise we are not sure 
that the implication also holds for the intermediate elements in the approximating 
sequence. The second remark is that if we have a non-recursive rule like our rules (MI) 
and (MT), then we could change the conclusion of the recursion rule into {p}S{q}, 
from which we could infer {p} P{ q} by the non-recursive rule. We do that in our proof 
system to be able to use the outcome of the recursion rule for different values of the 
parameters. Finally it is clear how to extend the rule to several, mutually recursive 
procedures. 

Definition 5.33 
For mutually recursive methods m" ... , mn we have the following rule: 

FI, ... , Fn r F{, ... , ~ 
F 

(MR) 

where 
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Fi = {PiC: [ei /self, iiiHp pi] }(U-Ic; : Xi <- eb!mi(eL . .. , e~.»){ R;C'} 

F: {p,c: /\ /\j~1 V} == nil}(u-IC:: Si){ Q~:[e;/ri]} 
F; = Qi[ei/self,iii][p/zi]-+ R;[r;jx;] 

F {P1/\/\j;1 vJ == nil}(UIc~: S1){Q~;[edr1]} 
iii, Si, and ei are as they occur in the definition of mi in U 

Xi are instance or temporary variables 

U- results from U by deleting the definitions of m1, . .. , mn 

Pi, Qi, Ri, 1', zi, jji, k;, and ri are just like in definition 5.24 
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We cannot prove the validity of this proof rule on its own, because it depends on what 
the other rules can prove (the operator f- occurs in the premiss). 

5.4 Other axioms and rules 

Finally in this subsection we shall list the remaining axioms and rules of our proof 
system. They will deal with the more ordinary statements and therefore they are not 
very new (most of them can already be found in [4]). 

Definition 5.34 
For a side effect expression s;l functioning as a statement we have the following rule: 

{pc }(ulc: Ud <- s;l){ QC} 

{p}(Ulc: s){Q} 

where Ud is a temporary variable not occurring in P or Q. 

Definition 5.35 
For the sequential composition of statements we have the following proof rule: 

{pC }(uISf){ QC} {Qc }(uIS~){ RC} 

{p }(uIS1; S2){ R} 

Definition 5.36 
For the conditional statement we have this rule: 

{pC /\ eC }(uISf){ QC} {pc /\ ,e }(uISi){ QC} 

{p }(Ulif e then S1 else S2 fi){ Q } 
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Definition 5.37 
For the while loop we have the following rule: 

{pc 1\ eC }(uW){ pc} 
(W) {p }(U!while e do S od){ p 1\ ~e} 

Definition 5.38 
For every valid (see definition 4.15) assertion pc we have the axiom: 

p (TR) 

Definition 5.39 
Finally, we have the so-called rule of consequence: 

Pf -+ Pi 
(Re) 

Theorem 5.40 
The proof system consisting of the axioms (SAT), (SAl), (NT), (NI), and (TR), plus 
the rules (MI), (MT), (MR), (ES), (SC), (C), (W), and (RC) is sound, that is, for 
every row of correctness formulae Fo, . .. , Fn and for every environment 7 we have if 
FI , ... , Fn I- Fo and 7 1= Fi for i = 1, ... , n then 7 1= Fo· 

Proof 
For all rules except (MR) the validity can be proved individually. For some we have 
already done that, for the others it is very easy. The rest of the proof runs by induction 
on the length of the proof of Fo from FI, ... ,Fn. The only interesting case occurs if 
the last rule applied is (MR). From now on let us use the notation of definition 5.33 
and forget about the old Fo, ... , Fn. 

In the premiss of the rule (MR) we first have PI, ... ,Pn , and these are valid because 
the only way to get them is by using the axiom (TR). The second premiss says 
that FI, ... , Fn I- F{, ... , F". This must be provable by a shorter proof than our 
current one so the induction hypothesis says that for every environment 7 such that 
7 1= FI ,· .. , Fn we also have that 7 1= F{, ... , F". Let us take a particular 7 and define 
7' = U[U](""Y). Now 7' is the limit of an increasing sequence 76,7[,··· where 76 = 

7' {>.il. >'6. >'<7. (.L,.L) / mi}:1 and 7:+1 is obtained from 7: by calculating and filling 
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in the meanings of the method definitions of mI, ... , m n . Furthermore we observe 
that for every i and for every m E {mI, ... , mn } we have that U[U-](-I'D(m) = ,i{m) 
because m is not defined in U-. 

Now for ,b we have quite trivially that ,b 1= Fi, ... ,?,. (the send-expression never 
terminates). Furthermore from ,: 1= FJ we can get to ':+1 1= Fj by an argument 
analogous to that in lemma 5.30. LFrom the validity of the second premiss we can 
then conclude that ';+1 1= FJ for j = 1, ... , n. By induction we get ,: 1= Fi,··· , F,. 
for every i, so by continuity we get in particular " 1= Fi. And this in turn implies 
,1= F. 0 
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6 Completeness 

6.1 Introduction 

We prove in this section that every valid correctness formula about an arbitrary closed 
program is derivable from the proof system based on the assertion language with 
quantification over finite sequences of objects. To this end we use enhanced versions of 
the standard techniques for proving completeness. These techniques are based on the 
expressibility of the strongest postcondition, or, alternatively, the weakest precondition. 
Using the assertion language with quantification over finite sequences of objects we 
know how to express the strongest postcondition. However, we conjecture that we 
cannot in general express the strongest postcondition or the weakest precondition 
within the assertion language with recursive predicates. We think this is due to the 
inexpressibility within this assertion language of the notion of finiteness. 

In order to get a complete proof system, however, we have to modify the rules (MI), 
(MT), and (MR) so that we can reason about deadlock behaviour. Regardless of the 
assertion language we use these rules are incomplete. Consider the following example: 

Example 6.1 
Let p = (U Ic : x +- selflm()) be closed and mO ~ nil i nil occur in U. We obvi

ously have F= {true} p{ false}. But we do not have the derivability of this correctness 
formula. For otherwise there would exist assertions P, Q and R such that: 

1. f- {PA!\iVi = nil}(Ujc: nil){Q[nil/r]} 

2. F= Q[self/self][!/z]_ R[r/x] 

3. F= true - P[self /self] [f!.z] and F= R - false 

for some sequence of expressions !, sequence of corresponding logical variables z and 
logical variable r of the same type as the instance variable x. Now, as F= R _ false, 
we have 1= R[r/x]- false. So from clause 2 it then follows that F= Q[self /self][f!z]
false. Furthermore we have 1= Q[self/self] .... Q so we infer 1= Q[f!z] _ false. From 
clause lin turn it is not difficult to deduce that 1= P _ Q[nil/r] (use Vin TVar(P, Q) = 
o and the truth of the correctness formula of clause 1). So we have 1= P[!/z] _ 
Q[nil/r][f!z]. Note next that F= Q[!/z]- false implies F= Q[nil/r][!/z]- false, from 
which we infer that F= P[!/z]_ false, which in turn, using F= P[self /self] .... P, would 
imply by clause 3 F= true -> false. We thus have reached a contradiction. So we 

conclude that II {true }p{ false}. 
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Note that adding the conjunct .( self ,:, eo) to the precondition of the conclusion of 
the rules (MI) and (MT) does not solve the general case of longer cycles in the calling 
chain. 

To reason about deadlock in the proof system based on the assertion language contain· 
ing quantification over finite sequences we introduce a collection of logical variables 
with special roles. 

Definition 6.2 
We fix for each class name c a logical variable be E LVare •. Furthermore we define 
BVar = {be: C E C}. 

We will interpret the variable be as denoting a sequence of all the blocked objects of 
class c. Formally, we redefine the notion OK(17, 6,w) as follows: 

Definition 6.3 
For arbitrary 17,6,w we define OK(17,6,w) iff 17 is consistent, 8 agrees with 17, w is 
compatible with 17 and for an arbitrary c we have 

6(2)(e) = {a: 3n E N(elt(be,n) = a # .Ln. 

So we have OK( 17, c,w) if additionally be, for an arbitrary c, consists precisely of all 
the blocked objects of class c. Note that we have thus introduced in the assertion 
language a means to refer to the second component of a context. Given this fixed 
interpretation we do not allow the variable be to be quantified. It is a straightforward 
exercise to check that under this definition of OK(17,8,w) the soundness proofs given 
still hold. 

Next we modify the rule (MI) as follows: 

Definition 6.4 
For the statement x +- eo!m(et, ... ,en), where x E IVar~o' m E MName~o, ... ,dn' 

eo E Exp~, and ei E EXPJ
i 

for i = 1, ... , n, we have the following proof rule: 

{pc' /\ 1\7=1 Vi':' nil/\ .(self E be') }(ulc': S){ Qe'[e/r]}, QI .... Re[r/x] 

{p' }(Uic : X <-- eo!m( el, ... ,en )){ R} 
(MI) 

where pI = P[e/self, u](J/z](be 0 (self)/be], Q' = Q[e/self, u][J/z][be 0 (self)/be], S E 
Statd and e E EXp':f. are the statement and expression occurring in the definition 
of the method m in the unit U, Ul, •.. , Un are its formal parameters, VI, ••• , Vk is 
a row of temporary variables that are not formal parameters (k ~ 0), r is a logical 
variable of type do that does not occur in R, J is an arbitrary row of expressions (not 
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logical expressions) in class c, and z is a row of logical variables, mutually different 
and different from r, such that the type of each Zi is the same as the type of the 
corresponding Ii. We require that no temporary variables other than the formal 
parameters U1, . •• , Un occur in P or Q. The boolean expression 11 E 12 abbreviates 
3i(l1 = 12 • i), where i is some fresh logical integer variable. P[be 0 (self)/bel, for an 
arbitrary assertion P, equals the assertion 

3z(P[z/bcJlllzl = Ibel + 111 Vi(i:; Ibel .... z· i = be· i) II (z ·Izl = self)) 

where z E LVare., i E LVar are some fresh variables. 

The idea of this substitution [be 0 (self)/bel can be explained roughly as follows: Oc
currences of the variable be in the assertions pc' and Qe', which describe the input 
state and the output state of the receiver of the method call, denote the set of blocked 
objects of class c belonging to those states. When we want to describe the input state 
and the output state of the receiver from the point of view of the sender we have to 
take into account that this set of blocked objects can now be viewed as the set of 
blocked objects of class c belonging to the input state and the output state of the 
sender of the method call plus the sender itself. 

The rules (MT) and (MR) are modified accordingly. The soundness proofs of these 
new versions of (MI) and (MT) are straightforward modifications of the proofs of the 
soundness of the original ones (in the proof of 5.30 the substitution [be 0 (self) /bcJ can 
be considered simply as part of the simultaneous substitution [l! zl). The proof of the 
soundness of the new version of (MR), as~uming the soundness of the new versions of 
(MI) and (MT), does not need to be modified. 

We note that with respect to the proof system based on the assertion language con
taining recursive predicates this proof method does not apply. To incorporate some 
reasoning mecl1anism about deadlock behaviour in this system one could add to it 
some notion of auxiliary variables, which can be used to code the relevant control 
information. 

It will appear to be tecl1nically convenient to introduce another modification of the 
rule (MR). This modification consists simply of replacing every occurrence of U- in 
this rule by U itself. We denote the resulting rule by (NMR). The main difference 
between the rules (NMR) and (MR) is that the rule (NMR) allows nested applications 
to some method name. However, in appendix A it is shown that a proof using the 
rule (NMR) can be transformed into a proof using (MR), and vice versa. 

To be able to prove completeness we have to add the following rules to the proof system 
(based on the assertion language containing quantification over finite sequences). 

Definition 6.5 
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Conjunction rule: 

Definition 6.6 
Elimination rule 1: 

{Pfk{Qi} {Pik{Q~} 
{Pi 1\ Pi }pc{ Qi 1\ Q~} 

{3zdPC V P[nil/ ZdJ}Pc{ QC} 
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(CR) 

(ER1) 

where Zd rf- LVar(QC) U BVar. Due to the interpretation ofthe quantifiers as ranging 
only over existing objects we have to express explicitly that the precondition also 
holds when the value of the quantified variable is undefined (nil). 

Definition 6.7 
Elimination rule 2: 

{pC}pC{QC} 

{3ZaPc}Pc{ QC} 

where a = d*, for some d, and Za rf- LVar(QC) U BVar. 

Definition 6.8 
Initialization rule 1: 

{pC }pc{ QC} 

{PC[I/zJ}pc{ QC} 

where Z and I are of the same type, and Z rf- LVar(QC) U BVar. 

Definition 6.9 
Initialization rule 2: 

{pC }pc{ QC} 

{PC[I/uJ }pc{ QC} 

where u and I are of the same type and u rf- TVar(p, Q). 

Definition 6.10 
Substitution rule: 

where z',z are logical variables of the same type, and z rf- BVar. 

(ER2) 

(IR1) 

(IR2) 

(SR) 

The soundness of these new rules is a straightforward exercise. We illustrate the 
necessity of the condition z rf- BVar by the following example: 
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Example 6.11 
Let p = (ule': y +- x!m()). By the new definition of OK((J,Ii,w) we have, assuming 
the type of the variable x to be c, 

where x E be abbreviates the assertion 3i( x = be·i). If we would allow the initialization 
of the variable be, or allow it to be substituted, we could derive from this formula by 
an application of the rule (SR) or (IRl) the following: 

Applying next the elimination 
derivability of the formula: 

{x E z}p{false}. 

rule (ER2), assuming z 1. BVar, then gives us the 

{3z(x E z)}p{false}. 

Finally, we apply the consequence rule: 

{true }p{ false}. 

But this last formula is not valid in general! 

Finally, for technical convenience we would like to assume that the sets C, IVar, and 
TVar are finite. This assumption can be justified as follows: Let C' be a finite subset 
of C, and IVar' be a finite subset of Ue.d IVar:;, where c ranges over C', and d ranges 
over the set C'+ = C'u {Int, Bool}. Next we fix the temporary integer variables u, u', 
and for every d E C'+ the temporary variables red, red' Let re denote a sequence 
of these variables. Now let TVar' be a finite subset of Ud TVard (again, d ranging 
over C'+), such that re ~ TVar'. Given these sets C',IVar', and TVar' we have the 
following definition. 

Definition 6.12 
We define an expression l~ to be restricted iff c E C', a = d,d*, with d E C'+, 
IVar(l~) ~ IVar', and TVar(l~) ~ TVar'. We define an assertion pc to be restricted 
iff c E C' and every expression occurring in pc is restricted. We call a program 
p = (Uic : S) restricted iff c E C', every expression occurring in p is restricted, 
u, u' ¢ TVar(p), and, finally, the temporary variables red, red are only allowed in the 
main statement S itself, where S = red +- Sd or S = red +- Sd, with TVar(s)n re = 0. 
A correctness formula {p }p{ Q} is called restricted iff P,Q, and p are restricted. 

We will prove that an arbitrary valid restricted correctness formula is derivable by a 
derivation in which there occur only restricted correctness formulae. Such a derivation 
we call restricted too. The extra variables re are used in applications of the rules 
(W) and (ES): The variables red, red are used to store temporarily the result of the 
execution of a statement Sd; the variables u, u' are needed to express the invariant 
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of a while statement. However applications of the consequence rule in a restricted 
derivation are based on a different notion of validity of assertions and correctness 
formulae. This new notion of validity consists of restricting all the semantic entities 
to the sets C', [Var', and TVar'. As an example of the restriction of a semantic entity 
we define that of a state. 

Definition 6.13 
We define the restriction of a state u, which we denote by u 1, to be an element of 

E J= II pc X II (oe -.,fVar~ -+ 01.) X II (TVar~ -+ 01.) 
cEC' cEC' ,dec'+ deG'+ 

such that 

• u J(e) = u(e), C E C'. 

• u J (a) (x) = u(a)(x), a E 0<, for c E C', and x E [Var'. 

• u J (u) = u(u), u E TVar'. 

In a similar way we have corresponding restricted versions of all our semantic entities. 
We have the following lemma, which states that the meaning of a restricted program 
depends only on those parts of a state specified by the sets C' ,JVar', and TVar'. 

Lemma 6.14 
For an arbitrary restricted program p, and u, u', 0,"1 such that 

1. u(e) = u,(e), c if. C'. 

2. u(a) = u'(a), for a E oe, c if. C'. 

3. u(a) = u'(a), for a E oe \ u,(e), c E C'. 

4. u(a)(x) = u'(a)(x), for a E u(e), c E C', x if. [Var'. 

5. u'(a)(x) = 1., for a E u,(e) \ u(e), c E C', x if. [Var'. 

6. u(u) = u'(u), u f/. TVar'. 

we have 
u' = P[p]("1)( 0)( u) iff u' J= P'[p]("1 1)(0 1)( u 1), 

where P',"I 1, and 0 L denote the restricted versions of P,"I, and 6, respectively. (Here 
u( a) denotes the local state of a and u( a)( x), x an instance variable, denotes the 
value of the variable x of the object a, finally, u( u), u a temporary variable, denotes 
the value of u in state u.) 
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The first condition above states that (7 and <I agree with respect to the existing objects 
of class c, c rf. C'. The second condition states that (7 and (7' agree with respect to 
the local states of objects belonging to a class c, c rf. C'. That the states (7 and (7' 

agree with respect to the local states of objects belonging to a class c, c E C', which 
do not exist in (7', is expressed by the third clause. The fourth clause states that (7 

and (7' agree with respect to the variables not belonging to IVar' of objects of a class 
c, c E C', which exist in (7. The fifth clause then states that the value of a variable 
not belonging to IVar' of an object of a class c, c E C', which exist in (7' but does 
not exist in (7, is undefined in the state (7'. The last clause states that (7 and (7' agree 
with respect to the temporary variables not belonging to TVar'. These conditions 
are necessary to prove that if (7' 1= P'[p](')' 1)(.1 1)(7 1) then (7' = P[p](')')(.1)(7). 

Proof 
Induction on the structure of the program p. o 

By the following two lemmas we have that applications of the consequence rule occur
ring in a restricted derivation also apply with respect to the original notion of validity, 
thus justifying our assumption of the finiteness of the sets C, IVar, and TVar. These 
lemmas state that the truth of a restricted assertion and that of a correctness formula 
only depend on those parts of a state specified by the sets C' ,IVar', and TVar'. 

Lemma 6.15 
For an arbitrary restricted assertion pc, and (7,.I,w such that OK(7,.I,w) we have 

(7,.I,w F pc iff (7 1,.1 !,w H= PC, 

where w lE na LVara -> 01, with a ranging over the set {d,d*: dE C'+}, and 
w 1 (z) = w(z). 

Proof 
Straightforward induction on the structure of pc. o 

Furthermore we have 

Lemma 6.16 
Let (7,.I,w such that OK(7,.I,w). We have for an arbitrary restricted correctness 

formula {p }p{ Q } 

(7,.I,w F {p}p{Q} iff (7 1,.1 !,w 1F {p}p{Q}. 

Proof 
Straightforward, using lemmas 6.14 and 6.15. o 
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So in the sequel we may assume the sets C,IVar, and TVar to be finite. Further, 
we assume given a set of temporary variables re as defined above. A program p from 
now on will denote, when not stated otherwise, a program such that the temporary 
variables re, rei are allowed to occur in it only in assignments re +- s, rei +- s, with 
re, rei ¢ TVar(s), and u, u' ¢ TVar(p). This concludes our discussion concerning the 
justification of the assumption of the finiteness of the sets C, IVar, and TVar. 

6.2 The strongest postcondition 

To be able to prove completeness we first have to analyze the notion of a strongest 
postcondition and its expressibility in the assertion language. As noted already in 
the introduction, the expressibility of the strongest postcondition in the assertion 
language with recursive predicates is still an open problem and SO is the completeness 
of the proof system based on this assertion language. 

For the analysis of the notion of a strongest postcondition we need some definitions 
and a theorem. We start with the following definition: 

Definition 6.17 
An object-space isomorphism (osi) is a family of functions 1 = (fd)dEC+, where Id E 
01 -> 01 is a bijection, I d( 1.) = 1. and I d , for d = Int, Bool, is the identity mapping. 

Given an osi 1 we next define the isomorphic image of an arbitrary state. 

Definition 6.18 
Given an osi 1 we define for an arbitrary state CT the state I( CT) as follows: 

• For every c: I(CT)(c) = IC(CT(c»). 

• For every c,d,ac,xd: I(CT)(a)(xd) = Id(CT(J-IC(a))(xd)), where the osi r 1 

denotes the inverse of I: r 1 = ((Jd)-l k 

• For every d,Ud: I(CT)(Ud) = Id(CT(Ud)). 

Here IC(X), for some X ~ OC, denotes the set {JC(a): a EX}. 

The following theorem essentially expresses that states which are isomorphic cannot 
be distinguished by the assertion language. 

Theorem 6.19 
Let 1 be an osi and CT,Ii,w be such that OK(CT,Ii,w). Then for every logical expression 
l~ and assertion pc we have: 
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• f"(.c[l~](w)(o)(a)) = .c[l~](f(w))(f(o))(f(a)), 

• A[PC](w)(6)(0) = A[PC](f(w))(f(o))(f(a)). 

where f(o)(1) = /"(0(1)), 

f(0)(2)(c') = /"'(0(2)(c'))' for an arbitrary c', and 

f( w)( Zd) = fd(w( Zd)), (fd' «a1, . .. , an)) = (Id( aI), ... ,Id( an))). 

Proof 
Straightforward induction on the structure of l~, pc. We only treat the case I = xd: 

o 

We are now sufficiently prepared to analyze the notion of a strongest postcondition. 
Given a program pc and an assertion pc, we denote by sp(pC, PC) the set of final 
states of executions of pC starting from a state satisfying pc. An assertion, defining 
this set of states sp(pC, PC) is called the strongest postcondition of pc with respect to 
pC. As established by the previous theorem, the set of states defined by an arbitrary 
assertion is closed under isomorphism. However, in general, given a program pC and 
an assertion pc, the set of states sp(pC, PC) is not closed under isomorphism. Consider 
the following example: 

Example 6.20 
Take pc = (Ulc : x <- new), with pC closed, and a,o',o such that a'(c) = {a,,8}, 
arc) = {a}, 0(1) = a and a' = P[pC](-y)(o)(o). Let pc = true. So we have that 
pickC( {a}) =,8. Let f be an arbitrary osi such that pickC( {fcC a)}) oft /"(,8) and 
pickC({fC(,8)}) oft /"(a). So we have that f(a')(c) = {fC(a),j«,8)}. Now suppose 
that there is a aD such that f(a') = P[pc](-y)(I(o))(f(ao)). Then we would have 

a~c) = {fC(a)} or a~c) = {fC(,8)}, but both cases lead to a contradiction. Therefore 
such a aD does not exist and f(a') fJ. sp(pC, true). 

This discrepancy between the assertion language and the semantics of the program
ming language is solved by closing this set sp(pC, PC) under isomorphism. Of course 
it is not immediately clear that this will work! We will see later that we indeed 
encounter some difficulties in the completeness proof due to this. These difficulties 
require some additional reasoning not present in the standard completeness proofs. 
The following theorem states the existence of an assertion defining the closure under 
isomorphism of the set sp(pC, PC). 

Theorem 6.21 
Let pc be closed (not necessarily restricted), BVar ~ L ~ LVar (L finite), pc 
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such that LVar(PC) C;;; L. Then there exists an assertion SP1(p, F) such that 
LVar(SP1(p,PC)) C;;; L and for u,o,w such that OK(u,o,w) we have: 

u,o,w F SP1(p,F) 

iff there exist an osi f and a state Uo such that: 

• feu) = P[p](..,,)(6')(uo),-y arbitrary, 

• CTo,E',w' 1= pc, 

where 6' = f(6) and w' = f(w)! L. Here we define 

(f(w)! L)(z) = f(w(z)) Z E L 

= 1. zE(LVarnUdLVard)\L 

= f zE(LVarnUdLVard.)\L. 

Note that in the above theorem we cannot take few), where f(w)(z) = f(w(z)), for 
w'. This would require that few) and Uo are compatible, which cannot be expressed 
by our assertion language. For suppose there exists an a E u(c'), for some c', such 

that r' (a) rf. u~c'). Let Zc' rf. L, it then follows that u, 6,w{ «/ zc'} F SP1(p, F), 
but on the other hand it is not the case that f( w{ a/ zc'}) and Uo are compatible, so 
we do not have uo,6',f(w{a/zc'}) F pc. Note that the above argument essentially 
boils down to the fact that we cannot describe by one assertion the values of infinitely 
many logical variables. Thus we have to specify a finite set of logical variables L such 
that the restriction of f( w) to this set L is compatible with Uo. 

Proof 
See appendix B. o 

The following two lemmas together state the correctness of our definition of the notion 
of strongest postcondition. 

Lemma 6.22 
For an arbitrary BVar C;;; L C;;; LVar (L finite), closed program pc and assertion pc 
such that LVar( PC) <;; L, we have 

Proof 
Let u,u',6,w (u,u' "/1.) be such that OK(u,6,w), u' = PC[pC](..")(6)(u)(..,, arbitrary), 
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and <r, 6, w ~ pc. We have that rr', 6, w ~ SPL(p, PC), for take for the osi f the family 
of identity mappings, for <ro the state <r, and note that because LVar(PC) <;; L we 
have <r, 6,w' ~ pc, where w' = w 1 L. 0 

Lemma 6.23 
For an arbitrary closed program pc, assertions pC,Qc, BVar <;; L <;; LVar (L finite) 
such that LVar( pc, QC) <;; L we have 

~ {pc} pc { QC } implies ~ SPL(pc, PC) -+ QC. 

Proof 
Assume ~ {p }p{ Q } and let <r, 6,w such that OK(<r, 6,w) and <r, 6,w ~ SPL(pc, PC). 
So there exist an osi f and a state <ro such that: 

• f(<r) = P[p](-r)(6')(<ro),-r arbitrary. 

• Clo,E',w' FPc. 

where 6' = f(6) and w' = f(w) 1 L. From ~ {pc }pc{ QC} we then infer that 
f(<r),8',w' ~ QC. By LVar(QC) <;; L we have f(<r),6',f(w) ~ QC. SO by theorem 6.19 
we conclude <r, 6, w ~ QC. 0 

6.3 Freezing the initial state 

An essential notion of the standard technique for proving completeness consists of 
what is called freezing the initial state. To explain this notion, let, only in this para
graph, p denote a program of some simple procedural language (like the ones treated 
in [3] or [10]) and u, u' denote some simple functions assigning values to program 
variables. Let x denote the set of program variables occurring in p, z denote a corre
sponding sequence oflogical variables and x:' z abbreviate /I.;(x; :, z;). Furthermore 
let SP(p,x :, z) be an assertion describing the set of final states resulting from exe
cutions of p starting in a state satisfying x :, Z. In the standard completeness proof 
an important consequence of the definition of the notion of strongest postcondition is 
that the assertion SP(p, x :, z) in the following sense describes the graph of p: 

• If the execution of p starting from the state <r results in the state u ' then 
SP(p, x :, z) holds in u' when the logical variable Zi is interpreted as U(Xi)' the 
value of Xi in <r. 
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• If SP(p, x = z) holds in a state (7', assuming the logical variable z. to be inter
preted as some value d., then there exists an execution of p starting from the 
state (7'{d./x;}i which results in (7'. 

Note that the logical variables z are used to "freeze" the initial state. 

Now one of the problems in applying the standard techniques for proving completeness 
to our proof system consists of how to store a state in a finite set of logical variables. A 
simple assertion like x = z does not make sense, because a variable x can be evaluated 
only with respect to some object. To be able to construct an assertion which expresses 
how a state is stored in the logical environment we introduce some special logical 
variables. First we fix for each class name c the logical variables ere, ble E LVar e" 
Every existing object belonging to class e is supposed to be a member of the sequence 
denoted by ere. For convenience, we also include nil in ere. The sequence denoted 
by ble on the other hand is supposed to contain all the blocked objects belonging to 
class c. Furthermore for each instance variable Xd we fix a logical variable ivx E LVard' 
and, finally, for each temporary variable Ud we fix a logical variable tv" E LVard. The 
sequence denoted by ivx , x E lVare, will store the value of the variable x for every 
existing object belonging to class e in the following way: Every existing object of 
class c occurs at least once in the sequence denoted by ere. Now the ith element of 
the sequence ivx is the value of the variable x in the object that is the ith element of 
the sequence cr e. The value of tv". U E TVar, just equals that of u. 

All these newly introduced logical variables we assume to be distinct. We let st 
denote a particular sequence (without repetitions) of these logical variables. Now we 
are ready to define formally the assertion init, which expresses that the current state 
is represented by st. In other words, init is our analogue of the assertion x = z. 

Definition 6.24 
We define the assertion init as follows: 

init = I\e ere' 1 = nil/\ VZe3i(ze = ere' i) /\ 

I\e Vi(l\xEIVc(( ere' i) . x = ivx . i» /\ 

I\"ETV( u = tv.) 

I\e( be = ble) 

where lve = Ud lVar:/, TV = Ud TVar d, and the logical variable i is supposed 
to range over the integers. Note that in our assertion language we do not have 
equality between logical expressions of type dO, for an arbitrary d. However, these 
equalities can easily be expressed in the assertion language: If I, and 12 are two logical 
expressions ranging over sequences, then I, = 12 can be expressed as Vi(l, . i = 12 . i), 
where i is some logical integer variable. Furthermore we remark that for every class 
name C we have init E Asse. 
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In the following two definitions we define a transformation of a logical expression and 
an assertion such that the transformed versions only refer to the logical environment. 
Expressions referring to the state will be translated into expressions which refer to 
the corresponding part of the logical environment it used to reflect the state. The 
problem such a transformation poses can be best explained by the following example: 

Example 6.25 
Suppose we want to transform the expression consisting of the instance variable x. 
This expression denotes the value of x with respect to the object denoted by the 
expression self. But to look up this value in the logical environment one has to know 
where the object denoted by self occurs in the sequence denoted by ere, assuming x E 
IVar~ for some d. However, this cannot be determined statically! Note also that we 
cannot force the existing objects of a class, say class e, to occur in a particular order in 
the sequence denoted by ere. Our solution to this problem consists essentially of using 
a second logical expression, of type Bool, to describe under which conditions the first 
expression correctly translates the original one. We will also need a number of logical 
variables that range over integers, more precisely, over indices in the sequences ere. 
In our example above, the expression x is then translated into the triple ((i), self = 
ere· i, ivx • i), where i is some logical integer variable. This is interpreted as follows: 
Whenever the variable i takes such a value that the Boolean expression self = ere· i 
is true, then the expression ivx . i takes the desired value. 

The analogue of these transformations in the standard completeness proof is the 
substitution [zlx], where z is the part of the logical environment which is used to 
store the part of the state as specified by x. 

Definition 6.26 
We define I~ r itl = (i, h c, 12~) for an arbitrary logical expression I~ by induction on 
the structure of I~. Let f denote the empty sequence. We treat the following cases: 

• xH itl = ((i), self = ere· i, ivx . i) 
where i is some fresh logical integer variable (it does not occur in it). 

• Ud r itl = (f, true, tvu ) 

• Ifitl = (f,true,l) 
where I = nil, self, true, false, n, or z. 

• (Ie. xd)[ itl = (i 0 (j), I, td2 = ere· j, ivx . j) 
where Icritl = (1,1,,12) and j ~I. 

• (I, + 12)fitl = (.,1" 1\ I~, ,1" + I~,) 
where I,ritl = (I"I,,,I,,), 12ritl = (12,[2,,12,), I = I, 0],] is some sequence 
of fresh logical integer variables of the same length as ' 2 , I~, = 12,[3/'2], and 
I~, = 12, [J/'2]. 
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• (\lzaP)lstJ = \lza(Za ~ cre -+ PlstJ), 
where a = c*. 

• (3zaP)lstJ = 3zaPlstJ, 
where a = d, d*, d = Int, Bool. 

• (3zeP)litJ = 3ze(ze E cre 1\ PlstJ). 

• (3zaP)litJ = 3za(za ~ ere 1\ PlitJ), 
where a = c*. 

Here I, E 12 abbreviates 3i(1, = 12 . i) and It ~ 12 abbreviates \li(1t . i E 12 ). Note 
that, although nil E cre, the quantification in (\lzeP)litJ and (3zeP)litJ excludes nil, 
because quantification always excludes nil. 

The following theorem states that the above transformation as applied to assertions 
preserves truth. It can be seen as an analogue of the substitution lemma of first-order 
predicate logic. 

Theorem 6.29 
Let pe be an arbitrary assertion. Furthermore let CT,{j,W such that OK(CT,{j,W) and 
CT,{j,W 1= init. Then: 

CT,6,w 1= pe iff CT,O,W 1= pelstJ. 

Proof 
The proof proceeds by induction on the structure of pe. The case that pe equals 
Ie is treated as follows: We prove that for every logical expression I~ there exists a 
sequence of integers n such that CT,o,w{n/l} 1= 11 and that for all such n we have 
.c[I~](W)(t5)(CT) = .c[12](w{n/t})(CT), where I~ritl = (',11 ,12 ), This is proved by induc
tion on the structure of I~. 0 

6.4 Invariance 

In this section we formulate a syntactic criterion for an assertion to be invariant over 
the execution of an arbitrary program. First we note that not allowing program 
variables to occur in an assertion does not guarantee this invariance property! This 
is due to the restriction of the range of the quantifiers to existing objects. Consider 
the following example: 

Example 6.30 
Let P denote the assertion 3z\lz'(z = z'), where z,z' E LVare for some class name c. 
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This assertion P expresses that there exists precisely one object of class c. Let pC = 
(Ulx <- new), U arbitrary and x E IVar~. Then it is not the case that 1= {p }pc{ p}, 
because there exist two objects of class c in the output state. 

However, the standard technique to prove completeness relies heavily on the invariance 
of assertions in which no program variables occur. To be able to apply this technique 
we define the notion of quantification-restricted assertions. 

Definition 6.31 
We define an assertion pc to be quantification-restricted if 

pc .. _ IC 

3za P I VZa P 

where a = d, d*, d = Int, Bool 

3zc( Zc E Zc' " PC) 

3zc.(zc* ~ z~. A PC) 

Vzc(zc E zc' .... PC) 

YZc.(zc* ~ z~. ---+ PC) 

Here we assume the variables Zc' and z~. to be distinct and the assertion P at the 
right-hand side of the symbol ::= to be quantification-restricted. 

An important property of such a quantification-restricted assertion is that its truth 
is not affected by the creation of new objects: 

Lemma 6.32 
For every quantification-restricted assertion P and every variable v such that v I/: 
IVar(P) U TVar(P) we have 1= P <-+ P[new/v]. 

Proof 
Induction on the complexity of P. We treat the representative case of P = 3zc(zc E 
Zc' " Q), assuming the type of the variable v to be c: Now P[new/v] = 3zc(zc E 
Zc' "Q[new/v]) V (v E Zc' "Q[v/zcJ)[new/v]. But as (v E Zc' )[new/v] can be easily 
seen to be equivalent to false the second disjunct will be equivalent to false too. 
Furthermore we have by the induction hypothesis that Q[new/v] is equivalent to Q. 
Putting these observations together gives us the equivalence of P and P[new/v]. The 
case P = V zc( Zc E z~. .... Q) is treated analogously. The cases of P = 3zc' (zc' ~ 
~. "Q), Vzc'(zc' ~ ~ ..... Q) are slightly more complex due to the complexity of 
the substitution operations involved, but the reasoning pattern is basically the same. 

D 
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A consequence of tWs lemma is the following invariance property of quantification
restricted assertions: 

Theorem 6.33 
Let pC = (Ulc : S) be closed and pc be a quantification-restricted assertion such that 

IVar(PC) n IVar(pC) = 0 and TVar(PC) n TVar(pC) = 0. Then: I- {pc }pc{ pc}. 

Proof 
The proof proceeds by induction on the complexity of S. We consider the case of 
S = V <- eO!m(el,'" ,en): Let M be the smallest set suclt that 

• pE M, 

• if p' = (U1e': v' <- e~!m'(e;, ... ,eDlE M 
then Pi = (ulc; : v; <- e&!m;( eL· .. , e~.l) E M, 

h . ;, (; i ) i,.( ; i ) . S' S' b' th were v, +- €o,mj €l"'" €ni or €o.ml €l"'" €nj occurs In, elng e 
body of the method m'. In the latter case we have Vi = red" assuming di to be 
the type of the result expression of mi. 

Let M = {PI, ... ,pd, P = PI, assuming the following notational conventions: Pi = 
(UICi : Vi +- eh!mi(eL.··,e~.») E M and mi(uL ... ,u~J <= Si 1 €i occurs in U, 

J ..' 
i = 1, ... , k. Furthermore, e' denotes the sequence ei, ... , e~. and ul the sequence 
ul, ... ,U~j' Next we introduce for every class name c a neV: var~able Zc.' We let 
z denote a sequence (without repetitions) of these variables and b denote the cor
responding sequence of the variables bc E BVar. Finally we put for i = 1, ... , k: 
Fi = {p,}p;{ p,}, where P' = PC[z/b][zc/self], Zc being a new variable. 

Now we have that 

FI'.'" Fk I- {p'}(UIe: : S;}{ p'} 

(c; being the type of eh). This is established by induction on the complexity of So. 
The only slightly less straightforward case of S; = v <- new is taken care by the 
previous lemma. 

Putting Pi,Qi,Ri = P' and introducing some logical variable ri rf. LVar(P') (of the 
same type as the variable v;), i = 1, ... , k, and observing that P'[e' /self, jji][bci 0 

(self}/bc;] = P' we infer by (NMR) that: 

Next we put PI, Q, = P' and R, = PC[z/b]. We have that: 
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F= Ql[el /self,ul][self/zcll[bc1 0 (self)/bc1l--+ Rl[rl/vd· 

Thus applying (MI) (or (MT)) gives us that: 

71 

Finally an application of the substitution rule gives us the derivability of the correct· 
ness formula {pc }pc{ pc}. D 

6.5 Most general correctness formulae 

Now we are able to prove that for an arbitrary pc = (Ulc : v +- eo!m( el, ... , mn)) 
the correctness formula {init }pc{ SP'i,(pc, init)}, for some L ~ LVar, is a most 
general one in the sense that an arbitrary valid correctness formula can be de· 
rived from the proof system which results from adding these correctness formulae 
as additional axioms. Completeness then follows by establishing the derivability of 
{init}pC{SPL(pC, init)}, for an arbitrary pc = (Ulc: v +- eO!m(el, ... ,mn )). 

But first we need to introduce some new logical variables corresponding to those of st. 
This is necessary because the variables of st have a fixed interpretation as specified by 
the assertion init. But every valid correctness formula in which variables of st occur, 
implicitly provides these variables with some possibly different interpretation. To 
avoid a clash between these different interpretations we must temporarily substitute 
in the correctness formula, of which we want to establish its derivability, every variable 
of st by some corresponding new variable. 

So we introduce for each c fresh logical variables crl c, bll C E LVar c'. For each 
instance variable x E IVar d we introduce the fresh logical variable ivl x E LVar d', 
and with each temporary variable u E TVar d we associate the fresh logical variable 
tvl u E LVard. We assume again that all these newly introduced logical variables are 
distinct. We let stl denote a sequence (without repetitions) of these variables. We 
can thus assume that st n stl = 0. 

Furthermore we introduce for every temporary variable red (defined in the introduc
tion to justify the assumption of the finiteness of the sets C,IVar, and TVar) a fresh 
logical variable Ired. Let Ire denote a sequence of these logical variables. We will use 
the variable Ire when applying the rule (ES): Applications of this rule will make use 
of the variable re to store temporarily the result of the expression s. Therefore we 
have to substitute occurrences of re in the precondition and the postcondition by the 
corresponding variable Ire. We will see later how to restore the original precondition 
and postcondition after such an application of the rule (ES). 
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We start with the following lemma stating the derivability of valid correctness formu
lae about simple assignments. 

Lemma 6.34 
For an arbitrary program P = (Ulc: v <- e) we have 

Proof 
Let v = u, u some temporary variable. (The case of v being an instance variable is 
treated similarly.) By lemma 5.4 (note that we actually mean here the corresponding 
lemma for the proof system based on the assertion language with quantification over 
sequences) and the assumption that 1= {pc }p{ Q} it follows that 1= pc -+ QC[e/u]. So 

an application of the axiom (SAT) and the consequence rule gives us the derivability 

of the correctness formula {pc} p{ Q }. 0 

We have a similar lemma for the creation of new objects: 

Lemma 6.35 
For an arbitrary program p = (U Ie : v <- new) we have 

Proof 
Let v = u, u some temporary variable. (The case of v being an instance variable is 

treated similarly.) By lemma 5.18 and the assumption that 1= {pc} p{ Q } it follows 
that 1= pc -+ QC[new/v]. So an application of the axiom (NT) and the consequence 

rule gives us the derivability of the correctness formula {pc} p{ Q }. 0 

Next we have the following lemma stating the derivability of an arbitrary valid cor
rectness formula about sending messages: 

Lemma 6.36 
Let p = (Ulc : v <- eo!m(et, ... ,en)) be a closed program. Furthermore let pC,Qc 
and BVar <;; L <;; LVar (L finite) such that LVar(P,Q) <;; L \ stl, and it u stl <;; L. 
Then: 

1= {pc }p{ QC} implies {init }p{ SP,£{p, init)} f- {pc }p{ QC}. 
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Proof 
Let P' = P[s!l / st] and Q' = Q[s!l / st]. Furthermore we introduce the following 
abbreviation: P" = P'LstJ. We start with the assumption: 

{init }p{ SP'L(p, init)}. 

By theorem 6.33 (note that P" is quantification-restricted, IVar(P") = 0, and TVar(P") = 
0) we have the derivability of the following formula: 

Applying the conjunction rule gives us: 

{p" II init }p{ 1'" II SPL(p, init)}. 

We next prove that 1= P" II SP'i(p, init) -+ Q': 
Let a, o,w 1= P" II SPL(p, init). So there exist a state ao and an osi f such that 

• f(a) = P[pKy)(o')(ao), ')' arbitrary, 

• 0'0,8', w' F init, 

where 0' = f(o) and w' = few) 1 L. 

By theorem 6.19 we have that f(a),f(o),J(w) 1= plIo It is not difficult to check 
that LVar(P") <; L, so we have f(a),o',w' 1= plIo Furthermore we have that 1= 
{ ,P" } p{ ,1'" } (by theorem 6.33 we have f- { ,P" } p{ ,P" }, so the truth of the above 

correctness formula follows from the soundness of the proof system). It follows that 
ao, 0', w' 1= plIo By theorem 6.29, note that ao, 0', w' 1= init, we then infer ao, 0' ,w' 1= 
P'. By the soundness of the substitution rule (SR) we have that 1= {p} p{ Q } implies 

the truth of the correctness formula {p' }p{ Q'}. SO we infer that f( a), 0', w' 1= Q'. 
But as LVar(Q') <; L we have f(a),o',J(w) 1= Q'. Finally an application of theorem 
6.19 gives us the desired result a,o,w 1= Q'. 

Now we return to our main argument. By the consequence rule we thus infer: 

{P"II init}p{Q'}. 

Next we apply the initialization rule (IR1): 

{(P" II init)[u/tv]}p{ Q'}, 
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where u is a sequence of all the temporary variables and tv denotes the corresponding 
sequence of logical variables tvu , u E u. Now we use the elimination rule (ER2): 

{3zl(P" II init)[ujtv]}p{ Q/}, 

where Zl is a sequence ofthe logical variables {erc, blc : c E C} and {ivx : x E [Var}. 
Note that instead of initializing the variables tv we could also eliminate them by rule 
(ER1). However, applying the rule (ER1) would require some additional notational 
machinery in order to deal with the extra case of nil. 

Next we prove 1= P'--> 3z'(P" II init)[ujtv]: Let a,8,w be such that OK(a,8,w) and 
a,8,w 1= pl. It is not difficult to see that there exists an Wi such that Wi differs from 
w only with respect to the variables of st and a, 6,w' 1= init. As LVar(pl) n st = II) we 
have a, 8, Wi 1= P'. Applying theorem 6.29 then gives us a,6,w' 1= plLstJ. For every 
temporary variable u we have a(3)( u) = w'( tvu), so we infer a, 8,w' 1= (P" II init)[uJTv]. 
So we conclude a, 8,w 1= 3z'(P" II init)[ujtv]. 

We thus have by the consequence rule: 

Finally an application of the substitution rule finishes the proof. Note that since 
LVar(PC, QC) n stl = 0, we have that PI[stj stl] = pc and Q/[stj stl] = QC, so we get 

o 

We next have lemmas 6.38 and 6.39 stating the derivability of valid correctness formu
lae about statements S = s, where s is a side-effect expression. In these two lemmas 
we make use of the following lemma: 

Lemma 6.37 
Let p = (Vic: s) and pi = (Vic: re <-- s) be restricted programs (see definition 6.12). 
We then have for arbitrary assertions P and Q that 

where pi = P[lrejre] and Q' = Q[lrejre]. 

Proof 
Let a,8,w 1= pi and a' = P[p'](,),)(8)(a). We have that a' = a"{(3jre}, with 
(a",(3) = Z[s](')")(6)(a), ')" = U[V](')'). As re ~ TVar(s) (p being restricted) we 
have (a1,(3) = Z[s](')")(6)(ao), with a1 = a"{w(lre)jre} and ao = a{w(lre)jre}). 
This being intuitively clear we feel justified in stating it without a proof. Now, 
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as (J,li,w F P' we have that (Jo,li,w F P. So from F {p}p{Q} we then infer 

(Jl,li,w F Q, or, equivalently, (J",{j,w F Q'. Finally, as re rf- TVar(Q'), we conclude 
that (J',/i,w F Q'. 0 

Lemma 6.38 
Let p = (ulc: s), where s = e,new. Furthermore let P,Q such that LVar(p,Q)nlre = 
0. Then: 

Proof 
Let P' = P[lre/reJ and Q' = Q[lre/reJ, where Ire and re are of the same type as the 

expression s. By lemma 6.37 we have F {p'}p'{ Q'}, where p' = (Ulc: re +-- s). By 
lemma 6.34, in case s = e, and lemma 6.35, if s = new, we then have 

So by rule (ES) it follows that 

Furthermore we have F {Ire'" re }(Ulc : re' +-- s){ Ire '" re}. So again by lemmas 
6.34 and 6.35 we have 

I- {Ire '" re }(Uic : re' +-- s){ Ire '" re}. 

Applying again the rule (ES) then gives 

Next we apply the conjunction rule 

Now F (Ire", re II Q') -> Q and F P -> (31reP" V P"[nil/lre]), where P" = Ire '" 
rellP'. (Note that Ire rf- LVar(P).) So applying first the consequence rule for Q, then 
the elimination rule (ERl) (note that Ire rf- LVar( Q)), and finally the consequence 
rule for P, gives us the derivability of 

o 

We have a similar lemma for valid correctness formulae about a program p of the 
form (u1c:eo!m(el, ... ,en)). 
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Lemma 6.39 
Let P = (Ulc : eO!m(e" ... ,en») be a closed program. Furthermore let P,Q, and 
BVar <;; L <;; LVar (Lfinite) such that LVar(P,Q) <;; L\(st1 Ulre), itUst1 Ulre <;; L. 
Then we have 

where p' = (Uic : red <- eo!m(e" . .. , en»), assuming the type of the result expression 
of m to be d. 

Proof 
Let P' = P[/red/red] and Q' = Q[/red/red]. An application of lemma 6.37 gives us 

1= {p'}p'{Q'} (remember that p is assumed to be restricted). By lemma 6.36 we 
have 

{init}p' { Sh(p', init)} I- {p'}p' {Q'}. 

Applying next the rule (ES) gives us 

By theorem 6.33 (observe that red ¢ TVar(p» we have the derivability of the formula 

So by an application of the conjunction rule we have 

{init }p{ SPL(p, init)} I- {p' II/red': red }p{ Q' II/red': red}. 

Now we have F= (Q'lIlred ,: red) -. Q. Furthermore for P" = P'II/red ,: red we have 
F= P -. (3/redP" V P"[nil/ired]) (note that ired rf- LVar(P». So first applying the 
consequence rule for Q, then the elimination rule (ERl) (note that ired rf- LVar(Q)), 
and finally the consequence rule for P finishes the proof. 0 

Next we have the following main theorem of this section stating the derivability of an 
arbitrary valid correctness formula using as additional axioms the correctness formulae 

of the form {init }p{ SPL(P, init)}, where p = (ulc : v <- eO!m(el, . .. , en»). 

Theorem 6.40 
Let p = (Ulc : S) be a closed program. Furthermore let pc, QC, and BVar <;; L <;; LVar 
(L finite) such that LVar(pc,QC) <;; L \ (st1 U Ire), it U st1 U Ire <;; L. Then: 

where Fi = {init}Pi{SPZ(Pi,init)}, Pi = (Ulci: Vi <- Si), with S",,,,Sn being all 
the send-expressions occurring in S such that Vi <- Si occurs in S or Vi = red, and Si 
occurs as a statement in S. Here di is assumed to be the type of Si. 
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Proof 
The proof proceeds by induction on the complexity of S. 

S = v <- s: Depending on the structure of s, by one of the lemmas 6.34, 6.35, 6.36. 

S = s: Depending on the structure of s, by one of the lemmas 6.38, 6.39. 

S = S1;S2: 
Let L- = L \ (stl U Ire). We have by lemma 6.22 

and 

where Pi = (Ulc: Silo By the induction hypothesis we have 

and 

It thus suffices to prove that 1= SPL-(P2,SPL-(P1,IJe)) _ QC: An application of 
the ru1e for sequential composition (SC) and the consequence rule then gives us the 
desired result. 

So suppose that u,o,w 1= SPL-(P2,SPL-(P1,PC)), with OK(u,o,w). By theorem 
6.21 there exist a state uo and an osi f such that 

• f( a) = P[p2]CY)( 0')( ao), 'Y arbitrary, 

• ao,o',w' 1= SPL -(P1,PC
), 

where 0' = f(o) and w' = few) 1 L-. 
Now ao, 0', w' 1= SP L- (P1, PC) in turn implies that there exist a state ab and an osi 9 
such that 

• g(ao) = P[P1]C'Y)(0")(ub), 'Y arbitrary, 

• (1' E/' w" 1= pc 0" , 
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where 0" = g(o') and w" = g(uJ) t L-. 
To relate these computations of P1 and P2 we apply corollary C.8 of appendix C: 
There exists an osi h such that hC t u~c) = gC t u~c), for every c, and h(J( u)) = 
P[p2Ky )(g( 0') )(g( uo)), where,), is arbitrary. 

Since g( 0') = 0" it follows that h(J( u)) = P[p]( ')' )(0")( uh), with')' arbitrary. So by 

uh,o",w"l= pc and 1= {pc}p{Qc} we infer h(J(u)),o",w"l= QC. 

Now note that OK(uo,o'). So we have h(O(l») = gC(O(l») = 0('1) and h(0(2)(c») = 
g(0(2)(C») = o(~)(c)' for every c. Thus we infer that 0" = h(o') = h(J(o)). Moreover 
for z E L- we have h(J(w(z))) = h(w'(z)) = g(w'(z)) = w"(z). Note that the 
second identity is justified by OK(uo,o',w'). So by theorem 6.19 and the fact that 
LVar(QC) ~ L- we conclude u,o,w 1= QC. 

S = if ... fi: Straightforward. 

S = while e do Sl od: 
In order to deal with this case we construct a loop invariant R as follows. Let L - = 
L \ (st1 U Ire) and L+ = L- U {zu, zu'}, where Zu and Zu' are some new logical integer 
variables. We define P' = P[zu, zu'lu, u'] and Q' = Q[zu, zu,lu, u']. Let p' = (Ulc : 
while e 1\ u < u' do Sl;U <- U + 1 od). Furthermore let R' = SPL+(p',P' 1\ u = 
0) and define R = 3zR'[z,zlu,u'], where z E LVar is a new variable. Note that 

LVar(R) ~ L+. Furthermore we have 1= {p'}p{Q'} (note that u,u' f. TVar(p), p 
being restricted). 

We have 1= p' --+ R: 

Let u, o,w 1= P', with OK(u,o,w). We prove that for w' = w{Olz} we have u, 0, w' 1= 
R'[z,zlu,u']. Now u,o,uJ 1= R'[z,zlu,u'] iff u',o,w 1= R' by a straightforward 
extension of lemma 5.4 (note that z f. Exp), where u' = u{O, Olu, u'} (note that 
z f. LVar( R')). Because u, u' f. TVar( P') we have u', 0, w 1= P' 1\ u = O. Furthermore 
it is easy to see that u' = P[p']( ')')( 0)( u'), with')' arbitrary. Finally, as LVar( P') ~ L+ 
we have by theorem 6.21 u',o,w 1= R'. 

Next we prove 1= R 1\ ~e --+ Q': 
Let u, 0, w 1= R 1\ ~e. So let a E N such that u', 0, w 1= R', where u' = u{ a, alu, u'}. 
So there exist f, Uo such that 

• feu') = P[p'D(')')(b')(uo),y arbitrary, 

• 0'0, 8',w' 1= pl/\ U == 0, 

where 0' = f(o) and w' = few) t L+. Now u,u' f. TVar(e) so u,o,w 1= ~e implies 
u',o,w 1= ~e. By theorem 6.19 we have f(u'),o',f(w) 1= ~e. So from LVar(e) = 0 
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it follows that J(u'),o',w' F ~e. From this it is not difficult to derive that J(u') = 
P[p](,),)(o')(ub), where ub = uo{a,a/u,u'}. Now as u,u' rf- TVar(P') it follows that 

ub,o',w' F P'. So by F {p'}p{Q'} we have J(u'),o',w' F Q'. By LVar(Q') ~ L+ 

and theorem 6.19 we have u', 0, w F Q'. SO that from u, u' rf- TVar( Q') we finally 
conclude u, 0, w F Q'. 

Finally, we have F { R" e }P1 {R}, where P1 = (ulc : S1): 
Let uo, o,w F R" e, with OK(uo, o,w), and U1 = P[P1](')')( o)(uo), with')' arbitrary. 
Let a E N such that ub,o,w F R', where ub = uo{a,a/u,u'}. So there exist J,u 
such that 

• J( ub) = P[p']( ')')( 0')( u), ')' arbitrary, 

• u,6',w' 1= pi /\ u == 0, 

where 0' = J(o) and w' = J(w)! L+. 
So we have the following situation: 

u' o 

p' 
u,o' --+ J(ub) 

Here u,o .!!. u' should be interpreted as u' = P[p[( ')')( 0)( u), ')' arbitrary. We have 
ub,o,w F e because u,u' rf- TVar(e). So by theorem 6.19 and LVar(e) = 0 we 
infer J(ub),o',w' F e. Now let u\ = uda,a/u,u'}. It then follows that u\ = 
P[p1 [( ')')( 0)( ub). We now have the following situation: 

p' 
u,o' --+ J( ub) 

PI,.' 
--+ v1 

An application of corollary C.8 then gives us an osi 9 such that gC ! u,~c) = r ! u,~c) 
for every c, and g(uj) = P[p1](')')(g(0))(J(ub)), with')' arbitrary. Note that from 
OK(ub,o) it then follows that g(o) = J(o) = 0'. Finally, we thus have reached the 
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following situation: 
PI 
-> 

PI 
-> a' 1 

a, 0' ~ J(ab),o' 4 g(aD 

Now it follows that for a2 = a{<>+ 1/u/} and a3 = g(aD{<> + 1,<>+ 1/u,u/} we have 
a3 = P[pl](-r)(0')(a2)' with, arbitrary. (Of course this can be proved formally, but 
as the intuition behind a formal proof is quite obvious, the main idea being simply 
that the temporary variable u counts the number ofloops, we think we are justified in 
omitting such a proof.) Now a,o',w' 1= pi, u,u' rf- TVar(pl), so a2,01,w/ l= pi, from 
which in turn it follows by lemma 6.22 that a3,01,w' 1= R'. So we infer g(aD,ol,w'l= 
R. Now LVar(R) <;; L+ and for z E L+ we have g(w(z)) = J(w(z)) = w'(z) (the 
first identity follows from OK(ab,w)) so we have g(aD,o',g(w) 1= R. It follows by an 
application of theorem 6.19 that a;, o,w 1= R. Finally, as we have u, u' rf- TVar(R) 
we conclude aI, o,w 1= R. 

Now by 1= {R 1\ e}pI{R} it follows 'that 1= {RII 1\ e}PI{RII } (note that u,u' rf
TVar(PI)), where R" = R[u,u'/zu,zu,j. As LVar(R") <;; L- we can apply the induc
tion hypothesis: 

By theorem 6.33 we have 

L {. • ,} {' • '} r Zu = U 1\ Zu' = U PI ZU = u 1\ Zu' = U • 

Furthermore we have 1= (R" 1\ Zu = u 1\ Zu' = U ' ) -> R and R -> (R" 1\ Zu = 
u 1\ Zu' = u')[zu,zu,/u,u'j (note that u,u' rf- TVar(R)). So applying the conjunction 
rule, the consequence rule for the postcondition, the initialization rule (IR2), and the 
consequence rule for the precondition gives us 

From an application of the rule (W) and the consequence rule, using the truth of the 
implications pi -> Rand R 1\ -,e --t Q', it then follows that: 

Now again by an application of theorem 6.33 and the conjunction rule we have 

FI , ... , Fn f- { pi 1\ Zu = u 1\ Zu' = u/} p{ Q' 1\ Zu = u 1\ Zu' = u/}. 

We have 1= (Q' 1\ Zu = u 1\ Zu' = ul) -> Q and 1= p -> (Pi 1\ Zu = u 1\ Zu' -
u')[u, u' / zu, Zu' j. So applying first the consequence rule for Q, then the initialization 
rule (IR1), and finally the consequence rule for P gives us the desired result. 0 
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6.6 The context switch 

In this subsection we prove the derivability of the correctness formula {init }p{ SP'i,(p, init)}, 
for P = (ulc : v <- eO!m(el, ... , en)) closed and EVar ~ L ~ LVar such that 
it U sf1 U ire ~ L. From now on until the end of this section unless stated otherwise 
we assume P and L to be fixed. We want to apply the rule (NMR) and theorem 6.40. 
To apply the rule (NMR) we need the following definition: 

Definition 6.41 
Let M be the smallest set such that 

• P E M, 

'f '- (UI ,., 'I '(' , )) E M • 1 P - c. v of- eo·m €l"'" €k 

then Pi = (UICi: Vi <- eh!mi(eL· .. ,e~,)) E M, 
h . i I .( i i ) i I .( i i ) . S' t t t were v, +- €o.m, €I"'" €nj or €o.m, €I"'" en. occurs In as a s a emen 

(in this latter case we have Vi = red" assuming di to be the type of the result 
expression of mil, S' being the body of the method m'. 

Let M = {Pl,'" ,Pk}, P = Pl, assuming the following notational conventions: Pi = 
(ulci : Vi <- e~!mi(eLoo.,e~.)) EM, and mi(uLoo.,u~.) ~ Si rei occurs in U, 
i = 1, ... , k. We let ei den~te the sequence e~, ... , e~i: Furthermore let it be a 
sequence of all the temporary variables, and let the formal parameters of the method 
mi be denoted by ui. 

We start with a sketch of the proof strategy. To apply theorem 6.40 and the rule 
(NMR) we have to define assertions Pi,Qi, i = 1,oo.,k, such that LVar(Pi,Qi) ~ 
L \ (s11 U ire), and 

F= {Pi II /\ vj = nil II self rt bd(ulci; Si){ Qi[e;/ril}, (6.1) 
J 

where vi = u \ vi and c; is the type of eh, 

F= init --+ Pi[eilself,uiJLi/IE'][bc; 0 (self)lbc;l (6.2) 

and 
F= Q;[e' Iself, uiW/, I zi][bc; 0 (self) IbcJ --+ SPi: (pi, init)[r;/v;], (6.3) 

for some sequence of expressions gi and corresponding sequence of logical variables 
zi. Here ri for i = 1, ... , k is a logical variable of the same type as Vi. By 6.1 an 
application of theorem 6.40 then gives us 

F{,oo.,Fk f- {Pi II /\v; = nil II self rt bc:}(ulci: Si){Qi[e;jril} 
J 
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where 

FI = {in;t }Pi{ SPt(Pi, init)}. 

Furthermore by an application of the consequence rule, using (6.2), we have F; I- FI 
where 

Fi = {Pi[ei /self, ii/][i /i][bc; 0 (self) /bc.l }Pi{ SPt(Pi, init) }. 

So we have 

F I , ... , Fk I- {Pi A ;\ v} = nil A self It' bd(ulc: : Si){ Qi[e;jr;J}. 
j 

An application of (NMR) plus (MI) or (MT) and the consequence rule, using (6.2) 
and (6.3), then concludes the proof. 

We start with the considering equations (6.2) and (6.3): We define a substitution 
which neutralizes the context switch. To do so we first introduce some new logical 
variables. 

Definition 6.42 
We associate with u E u a new logical variable tv2 u of the same type and with 
each c E C a new logical variable idc• We define tv2 to be the sequence of logical 
variables tv2u corresponding to the sequence u. Finally let id', i = 1, ... , k, denote 
the sequence consisting of the variable ;d,; followed by the elements of tv2. 

We have the following lemma about the neutralizing capacity of the substitution 
[id'/self,u] with respect to the context switch: 

Lemma 6.43 
For any i E {I, ... , k} and every assertion P E Assc; we have 

Proof 
Straightforward induction on the complexity of pC;. o 

Note that the substitution [idi /self, u] transforms the assertion pC; into an assertion 

in Assc for arbitrary c. Furthermore it is easy to see that if L Var( P) nidi = 0 
then 1= pC; <-+ pc. [idi /self, u][f/idt where f denotes the sequence consisting of the 
expression self followed by the elements of u. Note that in general we do not have 
that pC; is syntactically equal to pOi [id' / self, uHf! id'], as is shown by the following 
example: 
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Example 6.44 . 
Take for pc. = x = z.y, where z if. id'. We have pe'[idi/self,u] = ide •. x = z.y and 

(ide •. x = z.y)[l/id
i
] = self.x = z.y. 

Next we consider the substitution [be. 0 (self)/be']' It is not difficult to see that for 
every assertion pc.j we have 

But note that we do not have the other way around! However, as F init --> ble• = be", 
we do have 

F init --> ((init[ble./be.] II be. = ble• 0 (self))[be• 0 (self)/be.l). 

To summarize the argument above we introduce the following definition: 

Definition 6.45 
For any i E {I, ... , k} and any assertion P E Asse• we define its reverse context switch 
R( pc.) as follows: 

R(pe.) = (pc. [ble./be.] II be. = ble• 0 (self))[idi/self,u] 

We have the following lemma about this reverse context switch: 

Lemma 6.46 
For any i E {I, ... , k} and every assertion P E Asse

• we have 

and if FPc, --> be. = ble• then 

FPC' --> R(pe')[ei/self,u][l/ii][be• 0 (self)/be.J). 

Here 1 = self, u. 

Proof 
Clear from the above. D 

So at this stage candidates for Pi, Q i, i = 1, ... , k, satisfying equations (6.2) and (6.3) 
are the assertions R( init) and R(SPZ(Pi, init)[r;/viJ), i = 1, ... , k. We now proceed 
by analyzing equation (6.1). Suppose we are given that for some P and Q we have 

F {p }Pi{ Q}. In general we do not have 
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where Q' = Q[r;/vi]. This is because it is possible that the object executing Si is not 
the object which is sent the message and furthermore nothing is said about the values 
of the formal parameters. So we add to R(P) the information self':' ebrid'/self,u] 
and u} ,:, e}[idi /self, u], j = 1, ... , ni. We have the following lemma: 

Lemma 6.47 

F= (Ii':' (eWdi/self,u]))[ei/self,u][//idi] 

where l' = self, ui and / = self, u. 

Proof 
Easy. o 

Note that from lemma 6.46 and lemma 6.47 it follows that for every pc. such that 
1= PCj ~ bei == blci we have 

F= P --> (R(P) A I\lj':' (e}[idi/self,u])) [ei/self,u][//idi][be• 0 (self)/be.]. 

j 

Now we are ready for the following lemma which shows how to transform a valid 
correctness formula about sending a message into a valid formula about the execution 
of the body of the message by the receiver: 

Lemma 6.48 
For any i E {I, ... ,k} and every P,Q E Asse, such that F= {p }Pi{ Q } we have 

F= {p' Al\vj':' nil A self ~ be:}(ulc;: Si){Q'[edri]}, 
j 

where P' = R(P) A I\j Ij ,:, (eWdi/self,u]) and Q' = R(Q[r;/vi]), with ri a fresh 
logical variable of the same type as Vi. Here vi = u \ ui . 

Proof 
Let a, 0, w F= P' A I\j v; ,:, nil A self ~ be:, for a, 0, w such that OK( a, 0, w), and 
a' = P[(ulc;: Si)](')')(o)(a), with')' arbitrary and a' # 1.. 

We define al = a{w( tv2u)/u }UEii and 0(1) = w(idc,), 0(2)(e) = "(2)(e) for every c. 

It follows from lemma 5.28 that aI, o',w F= P[ble./be.l A be. = blc. 0 (self). 

Next we define 0" as follows: 0(1) = "it), 0;'2)(e,) = 0(2)(e,) \ {w(ide.}}, and 0(2)(e) = 
0(2)(e) for any c # Ci. Furthermore we put WI = w{w(blc,)/bc,}. It then follows that 
OK (aI, 0", wt) and aI, 0", WI F= P. 
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"I,O',W 1= P[ble,/be.l II be. = ble. 0 (self) 

.(I. 

,,",0',W31= Q[ble., ri/be., vil II be. = ble. 0 (self) 

1'1 
0"1, 8/1, WI 1= p "2,0",WI 1= Q 

Figure 4: The structure of the proof of lemma 6.48. 

Let on the other hand u" = ,,'{w(tv2u)/U}uEu and 

{ 
,,"{B/v;}) if Vi E TVar " -

2 - ,,"{!3/w(ide,),vi} if Vi E IVar, 

where (3 = [[ei](o)(,,') (remember that ei is the result expression of the method 

mil. Now from "'o,w 1= /\j!] = (e}[id'/self,ul) it follows from lemma 5.28 that 

0(1) = C[eh[id
i 
/self, ul](w)( 0)(,,) = C[eh](w)( 0")( "tl and "(3)( u~) = C[e~](w )(6")( "1). 

Furthermore from "'o,w 1= self rf. be: it in turn follows that 0(1) rf. 0(2)(eD' Now 
putting this together with the assumption that ,,' = P[(ulc: : Si)](,)(o)(,,), using 
"'o,w 1= /\jvj '" nil, enables one to infer that "2 = P[Pi]C!)(6")("I). 

Furthermore we are given that 1= {p }Pi{ Q} so from "I,O",WI 1= P and "2 = 

P[Pi]CI)(6")("tl we infer that "2,0",WI 1= Q. Now let W2 = WI {{3Jri}. It then 
follows by lemma 5.8 that ,,",0",W2 1= Q[ri/vil. Next we note that as w2(be,) = 
WI (be,) = w( ble,) we have "",0', W3 1= Q[ri, ble,/vi, beil, where W3 = w{{3 /ri}. 

From "'o,w 1= R(P) we infer that w(be,) = w(ble,) 0 (w(ide,)). But weide,) = o{t) so 

we have ,,",0',w31= Q[ri, ble,/vi,be.l II be. = ble. 0 (self). 

Now an application oflemma 5.28 gives us ,,',0,W31= R(Q[r;fvi]). From this in turn 
it follows that ,,',o,w 1= Q'[ei/r;]. 0 

Now we want to apply lemma 6.48 taking init for P and SP"i,(Pi, init) for Q. Note 

that by lemma 6.22 we have 1= {init }Pi{ SP'j;(Pi, init)}. Now taking for Pi the asser

tion R( init) II /\j!j '" (e}[z/self, ul) and for Qi the assertion R(SP"i,(Pi, init)[r;/viD 
we have by lemma 6.46 and lemma 6.47 that equations (6.2) and (6.3) are satis
fied. However since in the assertions Pi and Qi new logical variables occur which are 

not contained in L, we must apply theorem 6.40 for Fi = {init }Pi{ SPZ+(Pi, init)}, 
where L+ = L U {ide: C E C} U {tv2u: U E u}. But to apply the rule (NMR) 
we then have to take for Qi the assertion R(SPZ+(Pi, init)[r;/vil). An application 
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of (NMR) and (MI) or (MT) would then give us the derivability of the correctness 

formula {init }p{ SPL+(p, init)}. However, as 1= SPL+ (p, init) .... SPL(p, init) (use 

LVar(init) ~ L ~ L+), we have by an application of the consequence rule the deriv

ability of { init } p{ SPL(p, init) }. 

But there is one problem we did not discuss yet. As iiI U (re ~ LVar(SP'i+(Pi, init» 
we can not apply theorem 6.40! This problem is solved as follows: First we define 
L- = L+ \ (stl U Ire). Next we define the following abbreviation: 

Definition 6.49 
Let Subs( Ire, stl , .or) abbreviate the assertion: 

I\(erl e ~ ere II bll e ~ ere Illree E ere II 1\ 1\ ivl x ~ erd II 1\ tvlu E ere). 
e dEC xE1Var:i uE TVarc 

The assertion Subs(lre,stl, .or) states that all the objects which are denoted by a 
variable of Ire or stl, or which occur in a sequence denoted by some variable of stl , 
are stored in the corresponding variable of cr. We have the following proposition: 

Proposition 6.50 
Let Pi = R(init)lI/\jfj,:, (eWi/self,uJ), Qi = R(SP~:-(pi,init)[r;!viJ) and Qt = 
R(SP'i+(Pi, init)[r;!vi))' We have 

1= Pi II Subs(lre, stl , er) +-+ Pi 

and 
1= Qi [e;!r;] II Subs (Ire, stl, .or) .... Qt[e;jriJ· 

Proof 
The first assertion follows immediately from the fact that the assertion init (and so 
the assertion R(init» implies the assertion VZe(Ze E ere), for every c. 

Now we prove the second assertion. Let u, o,w 1= Qne;!r.J II Subs(lre, stl, .or). For 
w, = w{[[ei](o)(u)/ri}, we then have u,o,w, 1= Qi II Subs(lre,stl, .or). 

Next we define u' = u{w,(tv2u)/U}uEu, and 0(,) = w,(ideJ, 0(2)(e) = 6(2)(e), for 
every c. It then follows by lemma 5.28 that: u', 0', w, 1= SP'i-(Pi, init)[ri, ble./Vi, bc;lll 
bei = blei 0 (self) II Subs(lre, stl, er). 

For W2 = w,{w,(bleJ/be,} and 0('1) = 0(1)' for c i- Ci: 0('2)(e) = 0(2)(e)' otherwise: 

0(,2)(e) = 0(2)(e) \ 0(,), we have u', 0", W2 1= SP'i- (Pi, init )[r;JViJ II Subs( Ire, stl , .or). 
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Next, let 

a" = {a'{W2(ri)/6(t),Vi} if Vi E [Var 

a' {W2( ri)/vi} if Vi E TVar. 

It follows that a", 6", W2 1= SP"i- (Pi, init) A Subs(lre, stl , cr). 

So by theorem 6.21 there exist f and ao such that: 

• f(a") = P[p](,)(J(O"))(ao), with, arbitrary, 

• ao,f(6"),w'pinit, 

where w' = f(W2) 1 L-. Let at = f(a"). Now by theorem 6.19 we have that 
at, f(6"), f(W2) 1= Subs(lre,stl,cr). So from {erc: e E C} ~ L- and the compati
bility of w' and ao we then infer the compatibility of f(W2) 1 L+ and ao. Let w" = 
f(W2) 1 L+. We have that ao,/(61 ),w" 1= init, so we have a", .I" ,W2 1= SP';> (Pi, init). 
From this it follows, by "reversing" the part of the above argument which led to the 
statement al ,6",w21= SP'l::-(pi,init), that a,6,w 1= Qt[e;/r;J. 0 

Now we are ready for the following theorem. 

Theorem 6.51 
Let the program P = (UIc: V <- eo!m(et, ... ,en)) be closed and let BVar ~ L ~ LVar 
such that it U stl U Ire ~ L. Then we have 

I- {init }p{ SPLCp, init}. 

Proof 
Let Pi = R( init) A I\j fi == (e~[idi /self, u]), Qi = R(SP~:-(pi' init)[r;/vi]) and Qt = 
R(SP'l> (Pi, init)[ri/vi]). Now by lemma 6.22 we get 

1= {init }Pi{ SP"i-(Pi, init)} 

So we have, by lemma 6.48, 

1= {Pi A /\ vj == nil A self rf. bc:}(Ulci: Si){ Qile;/r.}. 
J 

An application of theorem 6.40 then gives us (note that the restrictions on the logical 
variables are satisfied) 
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where 
FE = {init }Pi{ SPE+(pi, init)}. 

Now by lemma 6.46 and lemma 6.47 an application of the consequence rule gives us 
Fi I- FE where 

Fi = {Pi[ei/self,uil[!lidi][be; 0 (self)lbe.J}Pi{ SPE+(pi, init)}. 

So we have 

Fl. ... ,Fk I- {Pi II /\ v} '" nil II self rf- bc:}(ulc:: Si){ Q;[e;jr;]}. 
j 

By theorem 6.33 we have 

I- {Subs (ire , stl ,cr) }(Ulc: : Si){ SUbs(/re ,stl ,cr)}. 

So by the conjunction rule we infer 

{ Pi IIl\j vj '" njlll self rf- be: II Subs( Ire, stl , cr) } 

FI , ... ,Fm I- (ulc:: Si) 

{Q;[e;jrilll Subs(lre, stl, cr)}. 

By proposition 6.50 an application of the consequence rille gives us 

F}, ... , Fm I- {Pi II /\ vj '" njlll self rf- bc:}(UIc: : Si){ Qt[e;jr;J}. 
j 

We now can apply rule (NMR), making use of lemma 6.46, yielding the derivability 
of the correctness formula: 

{PI II /\ vJ '" njlll self rf- be; }(ulc~ : Sl){ Qthhl}. 
j 

Applying next (MI) or (MT) gives us the derivability of 

{ PI [e" Iself, u"l[!1 zI ][bel 0 (self) /bell }Pl { SP L+ (PI, init) }. 

So an application of the consequence rule (the assertion init by lemma 6.46 implies 
the precondition, and 1= SPL+(PI, init) ---> SPL(PI, init)) gives us the desired result 
(note that Pl = P by definition) 

I- {init }p{ SPL(p, init)}. 

o 

We conclude with the completeness theorem: 
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Theorem 6.52 
Let pC = (U!c : S) be a closed program. We have for an arbitrary correctness formula 

{pc }pc{ QC}: 

Proof 
Let pi and Q' result from substituting for every variable of 8tl and Ire a corresponding 
new variable (new with respect to the sets LVar(PC, QC), it, 8tl, Ire). Let L ~ LVar 
(L finite) be sucb that BVar ~ L, LVar(P' , Q') ~ L and it U 8tl U Ire ~ L. By the 
soundness of the substitution rule we have F {pi }pc{ QI}, so applying theorem 6.40 
gives us 

where Fi = {init}p,{SPf(pi, init)}, Pi = (uICi : Vi +- eh!mi(eL . .. ,e~J) and eh!mi(eL·· ., e~J, 
i = 1, ... ,n, are all the send-expressions occurring in S, and if such an expression 
ei!mi( el, . .. ,e~j) occurs in S as a statement we have that Vi = red.:, assuming di to 
be the type of the result expression of mi. By theorem 6.51 we have the derivability 
of Fi, so we infer that f- {pl}pC{ QI}. Finally an application of the substitution rule 

gives us the derivability of {pc }pc{ QC}. 0 
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7 Conclusions 

In the previous sections we have given a proof system for SPOOL that fulfills the 
requirements we have listed in the introduction: 

• The only possible operations on object references (pointers) are testing for equal
ity and dereferencing . 

• In each state of the system only the existing objects playa role in assertions 
about that state. 

In fact, we have given even two proof systems fulfilling these requirements: one with 
recursively defined predicates and one with the ability to reason about finite sequences 
of objects. 

The technique which we have given for computing the weakest precondition for an 
assignment with respect to a given postcondition, a generalized version of substitu
tion, seems very powerful. Especially the fact that is possible to do this for a new 
assignment, in the situation that it is not possible to mention the newly created object 
in the state before the statement, is a little bit surprising. 

The proof rule for message passing, incorporating the passing of parameters and 
result, context switching, and the constancy of the variables of the sending object, is 
a very complex rule. It seems to work fine for our proof system, but its properties 
have not yet been studied extensively enough. It would be interesting to see whether 
the several things that are handled in one rnle conld be dealt with by a number of 
different, simpler rules. 

We have proved completeness for the proof system based on the assertion language 
containing quantification over finite sequences using the standard techuiques (see [3], 
for example). But how to apply these techniques to the proof system based on recur
sive predicates remains an open problem. 

Therefore we must conclude that there is still some work to be done on these issues. 
In addition, in the present proof systems the protection properties of object are not 
reflected very well. While in the programming language it is not possible for one object 
to access the internal details (variables) of another one, in the assertion language this 
is allowed. In order to improve this it might be necessary to develop a system in 
which an object presents some abstract view of its behaviour to the outside world. 
Perhaps techniques developed to deal with abstract data types are useful here. 
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A A generalisation of the rule (MR) 

In this section we show that in the recursion rule (MR), as introduced in definition 5.33 
and adapted in definition 6.4, we can replace U- by U itself, thus allowing nested 
applications of (MR) to the same methods. Let (NMR) denote the recursion rule 
resulting from (MR) by replacing all occurrences of U- by U. Furthermore let If
denote the derivability using (NMR) (f- denotes derivability using (MR». We have 
the following theorem: 

Theorem A.I 
For every correctness formula F we have If- F iff f- F. 

Proof 
=>: We prove that if FI"'" Fnl f- F then FI' ... ' Fn f- F by induction on the length 
of the derivation. We treat the case that the last rule applied is (NMR). So let the 
following be an instance of (NMR): 

FI, ... ,Fnl f- F{, ... ,r" 
F' I 

where F{ = F. Let U be the unit occurring in this application of (NMR). We may 
assume without loss of generality that all the methods declared by U are specified by 
one of the F;. (Otherwise, let {PI,"', Pk}, where Pi = (uICi : Vi +- e&!mi( eL ... , e~,»), 
be all the send statements occurring in U. Now simply add to FI, ... ,Fn for i = 

1, ... ,k, Gi = {true }Pi{ true}, and note that 

where c: is the type of e& and Si denotes the body of mi.) We shall prove by induction 
on the number of applications of (NMR) in the derivation FI , ... ,Fnl f- F{, ... ,r,. 
that for some iiI,'" ,iik, HI"", Hk, Hi, ... , HI, such that for 1 ::::: i ::::: k 

Hi iIi 
Hi 

is an instance of (MI) or (MT), we have: 

F- F- H- H- L F-' F-' H-' H-' b· o
., n, 11·", k r 1"'" n' 1"", k 

where, for G = {p }(ulc : S){ Q}, (; denotes {p }(EIc: S){ Q}, E being the empty 
unit. Having proved this we apply (MR) thus yielding f- F{( = F). Here we go: 

Induction basis: Assume that no application of (NMR) occurs in the derivation 
FI , . .. , Fnl f- F{, . .. , r". So we have that FI, . .. , Fn f-- F{, . .. , r", where f-- denotes 

Doc. No. 



93 

derivability from f- without (MR). It is not difficult to see that it suffices to prove by 
induction on the length of the derivation that for an arbitrary correctness formula G 
if F" ... ,Fn f-- G then for some ii" ... ,ih, H" ... , Hb Hi, ... , HI, we have 

where for i = 1, ... , k 

Hi Hi 
Hi 

is an instance of (MI) or (MT). We treat the only interesting case that the last rule 
applied is an instance of (MI) or (MT). So suppose F" .. . , Fn f-- G', G, where 

G' G 
G 

is an instance of (MI) or (MT). Now by the induction hypothesis we know that for 
some iil , ... ,iik,Ht, ... , Hk, H~, ... ,Hk: 

such that for i = 1, ... ,k 
HI iii 

Hi 

is an instance of (MI) or (MT). Now let ilk+! = G, Hk+' = G, and Hk+! = G'. We 
then have that 

Induction step: Let for i = 1, ... ,m 

. . . I . I 

Gj, ... ,G~iP-Gi , ... ,G~i 
. , 

0', 

be all the applications of (NMR) in the derivation FI , ... , Fnl f- F{, ... , 1":. such that 

By the same induction argument as used in the basis step above we have for some 
ii" ... ,ih, H" ... ,Hk,Hi, ... ,Hk (such that for i = 1, ... ,k 

is an instance of (MI) or (MT» that 
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where I-~ denotes derivability from I- minus the rules (MR), (MI), and (MT). Now, 
applying the induction hypothesis gives us for i = 1, ... , m: ilj, ... , ilk" Hj, ... , H1;, 

" . , 
Hi , ... , Hi,; such that 

-' -' - . - . - " _. I -,' - . I 
Gi, ... ,G~.,H~, ... ,Hk· ~Gi , ... ,G~. ,Hi , ... ,Hk',. I I I I 

Now it follows by a straightforward induction on the length of the derivation 

that 
;: u U Vi U U Hi I- ;:' U U vi u U Hi 

where 

• F = {F't, ... ,Fn+k}, Fn+i = Hi, i = 1, ... , k, 

• F' = {F', ... ,F~+k}' F~+i = H~, i = 1, ... ,k, 

• Vi = {GL ... ,G~J, 1 $ i $ m, 

I _ -if -j I • 
• Vi - {GI , ... ,Gn; }, 1 $ t $ m, 

• Hi = {ilt, ... ,ilU, 1 $ i $ m, 

I _ - i' - i I • 
• Hi - {HI"" ,Hk; }, 1 $ I $ m. 

{:: This is proved in a similar way as the other direction. o 
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B Expressibility 

In this section we show how to formulate the assertion sP'£(pc, PC) in our assertion 
language, for an arbitrary closed program pC, BVar <;; L <;; LVar (L finite), such that 
LVar(PC) <;; LVar. 

As in section 6 we assume the sets C, IVar, and TVar to be finite. 

B.l Coding mappings 

Assumption B.l 
We assume the existence of the following coding mappings: 

• For every instance variable or temporary variable 11 E ITVar we have [11] E N, 
and for an arbitrary program p we have [p] E N. 

• For every d E C+, [.]d E 01 -+ N denotes an injection such that [.L]d = O. In 
addition, we assume that the function [.] is surjective. 

• For every state a E ~ such that OK(a), [a] E N. 

• For every context 6c E ~c: W] E N. 

Furthermore we assume that the mappings [.] and [.] are definable in our assertion 
language. That is, we regard the following function symbols as abbreviations for 
assertions that are expressible in our assertion language: 

• Ic(n) = m (mnemonic: integer coding) iff [n] = m. 

• Bc(b) = m (mnemonic: Boolean coding) iff [b] = m. 

• Id(n) = m (mnemonic: integer decoding) iff [m] = n. 

To be precise, with the first assumption above we mean that there is an assertion 
Ic(z') = Z2, where z, and Z2 are integer logical variables, such that for every a E 
~,b E ~,w E n with OK(a,b,w) we have 

a,b,w F Ic(z,) = Z2 iff 

In fact from now on for every c E C and a E DC we identify [a]c with a. So we 
assume Dc <;; N. 

In the same say we assume the following predicates and functions to be expressible 
in our assertion language: 
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• EC(n,m) (mnemomic: exists) iff there exist a a E ~ and a E a(c) such that 
[aJc = nand raj = m. 

• A C( n) = m (mnemonic: active) iff there exists a 0 E ~ C such that [oJ = nand 
[o{l)Jc = m. 

• BC( n, m) (mnemonic: blocked) iff there exist a 0 E ~ and an a E 0(2)(c) such 
that [aJc = n and [oj = m. 

• Val~(k,l,m) = n (mnemonic: value) iff there exist a E ~, a E a(c), and x~ E 
IVar~ such that [aJc = k, [x~J = I, raj = m, and [a(a)(x~)Jd = n. 

• Va1d(/, m) = n iff there exist a a E ~ and a Ud E TVard such that [UdJ = I, 
raj = m, and [a( Ud)Jd = n. 

• TC(n,m,l,k) (mnemonic: transforms) iff there exist a closed p E Progc,o E ~c, 
and a, a' E ~ such that OK(a,o), [pJ = n, [oj = m, raj = I, [a'J = k, and 
a' = PC[p](-r)(o)(a) (where I is arbitrary). 

The above assumptions may appear quite implausible at first sight, but they can be 
justified by Church's Thesis, which states that every function or relation that can be 
effectively calculated is recursive, together with the (mathematical) fact that every 
recursive function is representable in the standard Peano theory of natural numbers 
and therefore it is certainly definable in our assertion language. (For a discussion of 
these issues, see [5J or [9J.) 

B.2 Arithmetizing Truth 

To express the strongest postcondition we have to arithmetize the truth of an assertion 
in a state. More precisely, we will define a translation which transforms an arbitrary 
assertion into an assertion in which no instance variables or temporary variables occur. 
The idea of this translation is similar to the one given in the definitions 6.26 and 6.28. 
But instead of transforming an assertion into an assertion referring to a sequence 
of logical variables used to store the state, we now transform it into an assertion 
referring to the code of a state. This is necessary to be able to nse the predicates of 
assumption B.I, in particular the predicate T. 

To get started we introduce some new variables: Let bij denote a sequence of some 
variables bif E L Var c., c E C. We shall use these variables to store the essential 
parts of the bijections that constitute an osi (see definition 6.17). The way in which 
this is done will be made precise in definition B.3, but here we can already explain 
how the bij can be used as a kind of decoding tables. To that end we assume that we 
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have a certain state a such that for every c E C and a E 0i 

{

a if a E a(c) 
elt({3, [alc) = . 

1. otherwise. 

where (3 E OC' is the value of bijC in a certain w. So every existing object of class c 
occurs in the sequence denoted by bijC at a position which equals its code number. It 
is important to note that we cannot express this property of the sequence denoted by 
bijC in the assertion language: There exists no assertion P( bijC) sucb that for every 
a, 0, w with OK( a, 0, w) we have a, 0, w 1= P( bijC) precisely if the above property holds. 
This is because at the level of the assertion language objects simply are not integers. 
Fortunately we shall not need the expressibility of exactly this property, but only of 
this property modulo an osi. This is the subject of section B.3. 

Definition B.2 
Let z", ZU be some logical integer variables. We assume that the value of ZU equals the 
code [al of some state a, and that the value of z" equals [alc for some a E a(c). For 
every logical expression I~ we define Idr z", zUl as a triple (I, II c, 12

C
), where 1 denotes 

a sequence of logical integer variables, and h and 12 are logical expressions. Note that 
we do not define this transformation for logical expressions of type d* with d E C+. 
The idea behind this transformation Idr z", zUl = (1,11 ,12) can be described as follows: 
The expression 11 is constructed sucb that it is only true if the variables i contain the 
code numbers of certain objects that are relevant for the evaluation of I~. To do this, 
11 can consult the variables bij as a translation table from code numbers to actual 
objects. Using this information, 12 is a translation of I~ such that every operation on 
objects described by l~ is translated into a corresponding arithmetical operation on 
code numbers. 

Here is the formal definition: 

• x~rz",zul = (E,true, Val:t(z",k,zU)), 
where k = [x:tJ and E is the empty sequence. 

• udrz",zul = (E,true, Vald(k,zU)), 
where k = [udl. 

• nilrz",zul = (E,true,O). 

• selfr z", zUl = (E, true, z"). 

• Irz",zO'l = (E,true,Bc(l)), 
where I = true, false. 

• nrz",zul = (E,true,[n]). 
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• zrz",z"l = (f,true,Ic(z), 
zrz",z"l = (f,true,Bc(z). 

• Zc r z", z"l = «( i), if Zc ,:, nil then i ,:, 0 else bijC . i = Zc fi, i). 

• (I~, .x~)[z",z"l = (',I" VaIJ'(l2,k,z")), 
where k = [x~J and I~,rz",z"l = (',It,1 2 ). 

• (I. ·I)[z",z"l = (l,lt,Ic(I •. Id(l2))), 
(I •. IH z", z"l = (" I" Bc(l • . Id(l2))), 
where Irz",z"l = (l,h,12). 

• (ld' . 1)[ z", z"l = (, 0 (j), I, II if Id' . Id(l2) ,:, nil then j ,:, 0 else bijd . j -
Id • . Id(12) fi,j), 
where dEC, Irz",z"l = 0,1,,12) and j is a fresh integer logical variable. 

• (ld 12)[z",z"1 = (',I"III~ ,Ic(Id(I12l+ Id(l~,))) _ 1 _ _ __ _ 

where I,rz",z"l = (i"I,,, 112 ), 12rz",z"1 = (i2,12,,12,), i = i, oj, j is some 
sequence of new logical integer variables of the same length as '2, I~, = 12, U 1'2J, 
and I~, = 12, [J/12J. 

• if I, then 12 else 13 fi r z", z"l = (" I" III~, III;J' if h, then I~, else I;, fi) 
whereldz",z"l = (",1,,, I,,), 12 rz", z"l = (i2,12,,12,),13rz",z"1 = ('3,13,,13,), 
, = " 0 )2 0 )3, )2 and )3 are sequences of new logical variables of the same 
length as '2, 13, respectively, such that I" )2 and )3 are mutually disjoint, 
I~, = 12,u2/'2J, I~, = 12, [)2/'2J, 13, = 13,U3!i3J, and 13, = 13,u3/13J. 

• (I,,:, 12)[z",z"1 = (',It,III~,,lt,,:, I~,) 
where I,rz",z"l = (."1,,,1,,), 12 rz",z"1 = ('2,1,,,12,),' =" oJ, J is some 
sequence of new logical integer variables of the same length as '2, I~, = I" u 112J, 
and I~, = 12, U 112J· 

Next we define for every assertion pc its transformation pc L z" , z" J . 

• ICLz",z"J = 31(1,1112':' Bc(true)), 
where Icrz",z"l = (,,1,,12). 

• (P, II P2)Lz", z"J = P,lz",z" J II P2lz", z" J. 

• (3za P)Lz",z"J = 3za P lz",z"J 
for a = Int, Bool, Int*, Bool*. 

• (3zdP)L z", z" J = 3zd( Zd E bijd 1\ P L z", z" J) 
for every dEC. Here Zd E bii abbreviates 3i Zd':' bijd. i (cf. definition 6.28). 

• (3zd.P)lz",z"J = 3zd'(Zd' <;; billl PLz",z"J) 
for every dEC. Here Zd' <;; bijd abbreviates Vi Zd' • i E bijd (cf. definition 6.28). 
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• (l;izaPHz", ZU J = I;izaPlz", ZU J 
for a = Int, Baal, Int', Baal'. 

• (l;izdPHz",zuJ = l;izizd E bijd -+ Plz",zuJ) 
for every dEC. 

• (I;iZd,P)lZ",zuJ = I;iZd'(Zd' ~ bijd -+ Plz",zuJ) 
for every dEC. 
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In thls transformation we assume that the quantified variables are distinct from any of 
the variables of bij. Note that the result of this transformation applied to an arbitrary 
assertion is a quantification-restricted assertion. 

To describe the semantics of this transformation we need the following definition. 

Definition B.3 
Let w E n,a E ~, and let! be an osi (see definition 6.17). Then we write 

Code(w, a,f) iff for every c E C we have 

• at) = {elt(f3c' , n) : n E N} 

• for all a E a(c) and fo; all n E N we have 

elt(f3C' , n) = a iff r(alpha) = n 

where f3c' = w( bijC). 

We write CodeL(w,a,f) if Code(w,a,f) and additionally for every c E C we have 

• w(z) E w(bif) for every z E L n LVarc 

• w(z) ~ w(bijC) for every z E L n LVarc' 

In a sense Code(w, a, f) can be interpreted as saying that w( bijC) codes the restriction 
of the osi ! to the existing objects of a. 

Now we are ready for the following semanticai interpretation of the transformation 
described above. 

Theorem B.4 
Assume to be given the states a, a', a" such that a j a" and an osi ! such that 
!(a(c)) = a'(c) for every c E C. Furthermore let wEn and fj E ,:lc be such that 
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OK(w,o,(JII) and CodeL(w,(J,j), where EVar S;; L S;; LVar. Then for every assertion 
pc such that LVar(PC) S;; Land LVar(Pc) n bij = 0 we have 

(J' 0' w' 1= pc , , iff (J",o,w{n,m/z",z"} 1= P'lz",z"J, 

where 0' = fro), w' = f(w)! L, n = [J(0{1»)]" m = [(J'], and z",z" are new logical 
integer variables. 

Proof 
Induction on the complexity of PC. The case pc = IC is treated as follows. For 
every logical expression Id such that LVar(ld) S;; L and LVar(ld) n bij = 0 we prove, 
by induction on the complexity of Id, the following: Let IHz",z"l = (',11 ,12 ) where 
, = i 1 , .•• , iq. Then there exists a unique sequence of natural numbers Ie = k1 , ••. , kq 
such that 

.c[It](w{le, n, m/" z", z"} )(O)(JII) = t 

and for this Ie we have 

[.c[Id](w')( 0')( (J')]d = .c[I2](w{le, n, m(i, z", z"})( 0)( 0"). 

o 

B.3 Expressing the coding relationship 

In this section we show how to express in the assertion language the relationship 
between a state and its code number. In definition B.6 we shall define the assertion 
Bij(zQ), which expresses, as accurately as possible, that the current state is coded by 
the value of z" and that the logical variables bij form a correct decoding table. How
ever, it is only possible to express this up to isomorfism, as we shall see in lemma B.7. 

Definition B.S 
First we define the following auxiliary assertions: 

• CIC(xC,z", z<T) = le((bij' . z"). XC) = 
CIC( xc, z", z") = le( (bij' . z") . XC) = 
where k = [x]. 

• CPd( Xd, ZOi, ZU) = 

VaIC(z" k z") " , 
ValC(z" k z") " , 

((bijC ·z").xd = nil -> Va1d(z",k,z") = 0)" 
(( bijC . z") . xd f. nil -> Ifp( (bij' . z") . xd = bijd . P -> VaId( z", k, z") '" p)), 
where dEC and k = [xd] 

• CT(u,z") = le(u) = Val(k,z"), 
CT(u,z") = le(u) '" Val(k,z"), 
where k = [u]. 

Doc. No. 



• CTd(Ud,zq) = 
(Ud': nil-+ Vaid(k,zq),: 0)1\ 
(Ud "nil-+ Ifp(bijd. p,: Ud"'" Vaid(k,zq) = p)), 
where dEC and k = [UdJ 

Definition B.6 
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Next we define the assertion Bij(zq), where zq is some logical integer variable, as 
follows. 

Bij(zq) = IIc Ifzc3!i(bijc. i ,: zc) 1\ 

IIc Ifi( EC( i, zq) +-+ bijC . i " nil) 1\ 

IIc'Vi (bij" . i " nil...., lid IIxEIVar~ C1:l( x, i, zq)) 1\ 

lid lIuE TVard CTd(U,zq) 

The first conjunct states that for every c the sequence denoted by bij" stores each 
existing object of class c exactly once. The second conjunct then can be interpreted as 
stating that every existing object of class c occurs in the sequence denoted by bijC at 
a position which equals the code of some object that exists in the state coded by zq. 
The third conjunct relates the local state of every existing object with the one of its 
corresponding code. Finally, the fourth conjunct relates the values of the temporary 
variables with their coded versions. 

In the following lemma we show how this assertion Bij (z) can be used to describe the 
isomorphism between two states. 

LemmaB.7 
Let 17,w,f such that OK(W,17), Code(w,17,f) and w(z) = [17'J. 
Then: 

17, b,w F Bij(z) iff f(17) = 17', 

for an arbitrary b such that OK(17,b,w). 

Proof 
Straightforward. 

B.4 Expressing the strongest postcodition 

o 

Finally we are ready for the theorem stating the expressibility of the strongest post· 
condition. 
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Theorem B.B 
Let pC be closed, BVar <;; L <;; LVar, pc such that LVar(PC) <;; L and bij n L = 0. 
Then: SP'i(pc, PC) = 3bijCl, ... , bijCn ,ZI, Z2,Z3(Q) (assuming C = {CI, ... , cn }), 

where Q = I\I5,p5,5 Qp, and 

• Q2 = Bij(z3)' 

• Q3 = bijc. AC(zl) = self, 

• Q4 = I\c \li( B C( i, zt} <-> bijC . i E bc), 

• Qs = 3zc;,.' . ,Zc:.Al$.p$.4 Rp , 
where 
RI = I\c( Zc' ~ bijC) 

R2 = I\c \li(EC(i,Z2) <-> Zc' . i # nil) 

R3 = I\c(l\z~EL( z~ E Zc' ) 111\.;. EL( z~. <;; Zc' » 
R4 = pClZ, ZIJ [z/bij, AC(ZI)/Z, Z2/ZI] 

where Iia ~ 12a , for a = d*, abbreviates the assertion \li(lla . i = nil Vila' i = 12a . i), 
and z denotes a sequence zc;, . .. , zc~ of fresh logical variables. 

The quantification 3bifl, ... , bijcn will correspond to the phrase (in theorem 6.21) 
"there exists an osi f". The variables Z\, Z2, Z3 will correspond to 81

, Uo, and f( u), 
respectively. The conjunction I\I<i<4 Qi then expresses feu) = P[p](')')(81)(uo). Fi
nally, the assertion Q5 expresses ';;',-81 ,W' F= P, where Wi = few) ! L. Let us look into 
thls more closely. The conjunction RI II R2 states that the variable Zcn 1 ~ i ~ n, 
stores all the existing objects of Uo (of class Ci) at a position whlch equals its code. 
The assertion R3 then states that Wi is compatible with uo. Finally, the assertion R4 
expresses that UO,OI,WI F= P. 

Proof, 
Let u, 8, W F SP'i(pc, PC). So there exists for i = 1, ... , n, ai E QC, , and (3\, (32, fh E 
N such that u,o,wl F= Q, where Wi = w{a;jbif'};{(3I,(32,(33/Z\,Z2,Z3}. 

As u, 0, Wi F= Q\ there exists uo, U" 01 such that UI = P[pC]( ')')( 01
)( uo), ')' arbitrary, 

and (6'] = (31, [uo] = (32, [ud = (33. 

Now let f be an osisuch that fora E u(c;) we have: f(a) = (3 iff elt(w'(bijC'),(3) = a. 
(Note that as u,8,w' F= Q2 we have that for a E u(c;) there exists some (3 E N 

such that elt(ai,(3) = a, furthermore we have EC'((3,(33) so (3 E u1c
;).) So we have 

Code(w',u,J) and by lemma B.7 we infer feu) = u,. 
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From <7, 0, w' 1= Q3 it follows that 0(1) = f(o(l)· Furthermore from <7,O,W' 1= Q4 it 
follows that 0(2)(c) = {JC(a): a E w(bc)}. Note that OK(w,o,<7) so we infer that 
0' = f(o). 

Finally, we have <7,O,W' 1= Q5. SO there exists for i = 1, ... ,n, a: E Dc:, w" = 
w'{a:!zc:h such that <7,O,W" 1= /\'5,j5,4Rj. Let <7' such that, for an arbitrary c, 

<7' (c) = f- 1 C( <7~c). It then follows that <7' :> <7 and by <7,0, W" 1= /\'<j<3 Rj we 
have CodeL(wlll , <7', f), where Will = w{ ajl bifi}j{ 0(1)' ,821 z, z'}. Furthermore we have 
<7,O,WIll 1= pClz,z'J, so we have by theorem BA: <7o,O',W 1= pc, where w = f(w lll ) 1 
L = few) 1 L. This finishes one part of the proof. 

On the other hand, let <7, <70, o,w,f such that: 

• f(<7) = P[pc](-y)(o')(<7o), '")" arbitrary . 

• O'o,8',w' 1= pc. 

where 0' = f(o) and w' = few) 1 L. 

Let ,8, = [0'], ,82 = [<70], ,83 = [f(<7)] and ai E oci, for i = 1, ... ,n (assuming 
C = {C1, ... ,Cn }), such that elt(ai,m) = a(i .1.) iff a E <7(c,) and fC'(a) = m. 
Furthermore let w" = w{ ad bijC, h{,8" ,82, ,831 Z" Z2, Z3}. 

Now f(<7) = P[pC]('")")(o')(<7o) so we have <7,O,w"l= Q,. 

We have Code(w", <7, J), and W"(Z3) = [f(<7)], so by lemma B.7 we have <7, O,W" 1= Q2. 

From 0' = f(o), OK(<7,o,w) and OK(<7o,o') it easily follows that <7,O,W" 1= Q3 /I Q4. 

Let, for i = 1, ... ,n, a: be a subsequence of ai, such that <7~c,) = {a: e/t(a:,a) i 
.1.}. Furthermore let Will = w"{a~/zc;}p. Now from a: being a subsequence of aj it 
immediately follows that <7,0, Will 1= R, . 

From <7~c,) = {a E Dc': e/t(a:,a) i .L} it in turn follows that <7,O,WIll 1= R2. 
Furthermore we have that <70 and w' are compatible, and w' = few) 1 L = f(w lll ) 1 L, 
from which it follows that: <7, 0, Will 1= R3. 

Finally, let <7' be such that for an arbitrary c we have <7'(c) = f- 1C(<7&c) and w = 
wlll{a:!bif'h{0(1),,82/Z,Z'}. We then have that CodeL(w, <7', J) and <7':> <7. So from 
<7o,O',W' 1= pc and w' = few) 1 L applying theorem BA it follows that <7,O,W 1= 
pClz,z'J. So we infer that <7, 0, Will 1= R4. 

Summerizing we conclude that: <7,O,W 1= SP't(pc,PC). o 
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C A closure property of the semantics 

In this appendix we prove a closure property of the semantics with respect to object
space isomorphisms. To get started it it turns out to be convenient to have the 
following definition. 

Definition C.l 
Let pt', ... ,p~n be some sequence of objects. We define OK(pt', ... ,p~n,o,a) iff 
OK(o,a) and additionally Pi E aId;), i = 1, ... ,n. 

Definition C.2 
For 

• FE (ITi'=l O~) -+ Lle -+ E.L -+ (E.L X o'i,'), for some c, n, do, ... , dn , 

• 0 E Ll e -+ E.L -+ (E.L X Of), for some c, d, 

• HElle -+ E,L -+ E.L, for some c, 

we define 

• CI(F) iff for an arbitrary ,l3go, ... , ,I3~n, 0, a, a', f such that OK(Pl,"" Pn, 0, a): 
if F(Pl, ... ,,I3n)(o)(a) = (a',,I3o) 
then there exists an osi g suclt that r 1 a(e) = ge 1 a(e), for an arbitrary c, and 
F(fd1 (,I3t), ... , fdn (,I3n))(f( o))(f( a)) = (g( a'), gdO (Po)), 

• CI(O) iff for an arbitrary p,o,a,a',J suclt that OK(o,a): 
if O(o)(a) = (a',p) 
then there exists an osi g such that fe 1 a(e) = ge 1 a(e), for an arbitrary c, and 
O(f(o))(f(a)) = (g(a'),gdo(P)), 

• Ct(H) iff for an arbitrary fJ,a,a',J such that OK(o,a): 
if H«o)(a) = a' 
then there exists an 08i g such that r 1 a(e) = ge 1 a(e), for an arbitrary c, and 
H(J( 0) )(J( a)) = g( a'). 

(Here 1 denotes the restriction operator.) 

Now we are ready to analyse this closure property denoted by CI. We start with the 
following lemma which states that the meaning of an arbitrary expression 8 E SExp 
satisfies this property assuming it holds for the meaning assigned to an arbitrary 
method: 
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LemmaC.3 
Let, be an environment such that for an arbitrary method name m we have GI(,( m)). 
Then for every expression s E SExp we have GI(Z[s](()). 

Proof 
The proof proceeds by induction on the complexity of s: 

s = e: Note that we have by theorem 6.21 £[e](o)(O") = £[e](f(o))(f(O")) for an 
arbitrary 0,0" such that OK(o,O"). 

s = newd: Let Z[newd](,)(O)(O") = (0"',(3). So we have pickd(O"(d») = f3. Let f3' = 
pick(d)(f( 0" )(d») and g be an osi such that r ! O"(c) = gC ! O"(c), for an arbitrary c, and 
gd(f3) = f3'. It follows that Z[newd](,)(f(o))(f(O")) = (g(O"'),f3I). 

s = eo!m(e" ... ,en): Let for i = O, ..• ,n£[ei](o)(O") -=f3i (OK(o,O")) and 
,(m)(f31, ... ,f3n)(o')(O") = (0"',f3), where 

0(1) = f30 

0(2)(c') = 0(2)(0,){0(2)(0') U o(l)/e'} e' = e 

0(2)(0') = 0(2)(0') e' # e, 

assuming s E SExp~, for some d. 
As we have Gl(,( m)) it follows that ,( m )(f(f31), ... ,J(f3n)(f( O'))(f( 0")) = (g( 0"'), g(f3)), 
for some osi g such that gO ! 0"(0) -= r ! ".(0), e arbitrary. (Note that by lemma 3.21 
and OK( 0,0") we have OK(f31, ... , (3n, 0' , 0").) By theorem 6.21 we have £[ei](f(O))(f(O")) = 
1(f3i). Furthermore we have 

1(0')(1) = 1(f3o) 

1(0')(2)(0') = r'(0(2)(0,»){f°'(0(2)(c'») U r'(O(I»)/e/} e' = e 

I( 0')(2)(0') = /" (0(2)(0'») e # e' . 

So we conclude £[s](,)(f(o))(f(O")) = (g(O"'),g(f3)). 0 

Next we prove the closure property Gl for the meaning assigned to statements assum
ing it holds for the one assigned to expressions. 

LemmaC.4 
Let, be an agreement-preserving environment such that for an arbitrary s E SExp 
we have Gl(Z[s](()). Then we have GI(S[S](,)) for an arbitrary S E Stat. 

Proof 
The proof proceeds by induction on the complexity of S. We treat the following cases: 
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S = x~ <- s~: Let S[S](')')(o)(O") = 0"" (OK(o,O")) and f be some osi. So we have 
Z[s](')')(o)(O") = (O"',(j) such that 0"" = a'{(j/o(1),x}. By Cl(Z[s](')')) it then follows 
that there exists an osi g such that gC 1 O"(c) = r 1 O"(c), for an arbitrary c, and 
Z[s](')')(I(o))(I(O")) = (g(O"'),g«(j)). Now g(O"") = g(O"'){gd«(j)/gc(o(1),x}, so we 
conclude S[S](')')(I(O))(I(O")) = g(a"). 

S = S,;S2: Let S[S](')')(o)(a) = a' (OK(o,O")) and f be some osi. So there ex
ists a 0"" such that S[S,](')')(O)(O") = 0"" and S[S2](')')(0)(0"") = 0"'. By the in
duction hypothesis we have for some osi 9 such that gC 1 O"(c) = r 1 O"(c) for an 
arbitrary c and S[S,](')')(I(O))(I(O")) = g(O""). Another application of the induc
tion hypothesis gives us an osi h such that hC 1 O""(C) = gC 1 a"(c), for an arbi
trary c, and S[ S2](')' )(g( 0) )(g( 0"")) = h( 0"'). Putting these applications of the in
duction hypothesis together gives us hC 1 O"(c) = r 1 O"(c), for an arbitrary c, and 
S[S](')')(I(o))(I(O")) = h(O"'). (Note that by lemma 3.210" :5 0"" and, as OK(o,O"), 
fro) = g(o).) 

S = while e do S, od: Let S[S](')')(o)(O") = 0"'. So we have pif1(o)(O") = 0"', where 
if1 is as defined in definition 3.14. Now it suffices to prove that for an arbitrary <p E 
~c -+ (El. -+ El.) such that Cl(<p) we have Cl(if1(<p)). So assume for some <p we have 
Cl(<p). Let if1(<p)(0)(0") = 0"' (OK(o,O") and f be some osi. We consider the case that 
£[e](o)(O") = t. By theorem 6.21 we then have £[e](I(o))(I(O")) = t. Furthermore we 
have <p( 0, S[ S,](')')( 0)( 0")) = 0"'. Let S[ S,I(,),)( 0)( 0") = 0"", by the induction hypothesis 
it then follows that for some osi 9 we have gC 1 O"(c) = r 1 O"(c), for an arbitrary c, and 
S[S,](')')(I(o))(I(O")) = g(O""). By assumption there exists also an osi h such that 
hC ! a"(c) = gC ! O""(c), for an arbitrary c, and <p(g(o),g(O"")) = h(O"'). Putting this 
together gives us hC(O"(c») = r(O"(c») for an arbitrary c and if1(<p)(I(o))(I(O")) = h(O"'). 
(Note that by lemma 3.2117:5 0"" and, as OK(o,O"), f(o) = g(o).) 0 

We proceed with the following lemma which states the closure property of the meaning 
of class definitions assuming it holds for the meaning of statements: 

Lemma C.S 
Let I be an agreement-preserving environment such that c/(S[S](')')) for an arbitrary 
statement S. Then we have for every method name m defined by D Cl(C[D](')')(m)) 
for an arbitrary class definition D. 

Proof 
Let I' = C[D](')') and f be some osi. Now let the method name m be defined by 
D, say m is declared as P~o, ... ,dk' We have I'(m) = M[p~o, ... ,dk](')')· Let P~O, ... ,dk = 
(u" ... , Uk) : S i e. Moreover let 
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M[(U1, ... ,Uk): S i e](')")(,81, ... ,lh)(8)(a)= (0'111,,8) 

where a' (0'(1),0'(2),0'(3») 

0'(3)( u) = ,8i if U = Ui 

.1 otherwise 

a" SC[S]( ')")( 8)( a') 

,8 = £[e](8)(a") 
(J'" = ("" ) 0'(1),0'(2),0'(3) 

Note that we assume a oj. .1 and 8(1) not to be blocked. If one ofthese do hold we have 
a' = .1 from which follows that 0'111 ,,8 = .1. By the assumption about')" we have for 
some osi 9 gC t a'(c) = r t a'(c), for every arbitrary c, and SC[S](')")(f(6»(f(a'» = 
g(a"). (Note that OK(,81, ... ,,8k,8,a) implies OK(8,a').) As a'(c) = a(c) for an 
arbitrary c we have gC(a(c» = fC(a(c» for an arbitrary c. By theorem 6.21 we have 
g(,8) = £[e](g(8»(g(a"». (Note that as')" is agreement-preserving we have by lemma 
3.21 a :S a", and so OK(8, a").) Putting this together gives us 

o 

In the next lemma we prove that the meaning of units satisfies the closure property 
Ct. 

Lemma C.6 
Let U = D1, ... ,Dn be an unit such that every method occurring in it is defined by 
it. Then for every method name m we have CI(')"'(m», where U[U](')"o) = ')"' and ')"0 

is the "empty" environment defined by 

')"0(,8)(8)(0') = (.1, .i). 

Proof 
We have ')"' = Ui ')"i, ')"0 being the "empty" environment and C[D1] 0" • 0 C[Dn]( ')"i) = 
')"i+1' We prove by induction that Cl(')"i(m)), m arbitrary. From this it is not difficult 
to prove that Cl(')"'(m)). 

i = 0: Evident. 

i = j + 1: By the induction hypothesis we have Cl(')"i(m)). Furthermore by lemma 
3.21 we know that ')"i is agreement-preserving. From this follows by applying the 
lemmas C.3, CA and C.5 that Cl(')"i+1(m». (Note that lemma C.5 can be applied 
only for method names defined by U, but as we have ')"i(m) = ')"o(m), for i E Nand 
m not defined by U this suffices.) 0 

Doc. No. 



108 

We conclude this appendix with the following theorem which states the closure prop
erty of the meaning assigned to closed programs: 

Theorem C.7 
For an arbitrary closed program p = (ulc: S), environment 7 we have Cl(P[P](7)). 

Proof 
First note that as p is a closed program we have P[P](7) = P[p](I'o). We have by 
definition 3.18 that P[p]( 70) = S[S]( 7'), where 7' = U[U]C7o). By lemma C.6 we 
have Cl(7'(m)) for every method name m. So applying the lemmas C.3 and CA gives 
us CI(S[S](7'). (Note that by lemma 3.21 7' is agreement- preserving.) 0 

Corollary C.B 
For an arbitrary closed program P, a, a', ti,j such that a' = [pH 1')( ti)( a) there exists 
an osig such that ge! ale) = f e ! ale) and g(a') = [P](7)(j(ti))(j(a)). 
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