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Furthermore, by using [2, p. 230, (1)] a computable representation for the G-function in 
(1) (and hence also for F,112(s)) may be given in terms of essentially a linear combina- 
tion of four hypergeometric functions OF3[b2s2 /16] provided that no two of the parameters 
{1, 1 1+v-P- 1v-P) differ by an integer. This result for Fv-112(s) is given (correctly) in 
[3, p. 353, (9)] so that the proposed integral is in fact already tabulated in terms of known 
computable functions. 
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A Nonharmonic Trigonometric Series 

Problem 94-12, by M. L. GLASSER (Clarkson University). 
The following function has been encountered in studying the dielectric function for a 

"quantum dot": 

E sin(a ,I) f (a) = T 
n=1 

Find lima+1o f(a) and limaeo f'(a). 

Solution by J. BOERSMA (Eindhoven University of Technology, Eindhoven, The Netherlands). 
The two limits are determined by a Mellin transform method with the results 

lim f (a) = 7r, limf '(a) = ( (), 
aI~O aj~O2 

where ? stands for the Riemann zeta function. 
We start with the Mellin transform 

roc 

M[sinx; s] sinx x'-1 dx = sin(rs/2)r(s), 

valid for -1 < Re s < 1, and absolutely convergent for -1 < Re s < 0. By Mellin's 
inversion formula [1, p. 46, Thm. 281 we have 

1 rc+ioo 
sinx = 27r I sin(7rs/2)r(s)xsds, (x > 0), 

in which -1 < cl < 0, so that the integration path is in the strip of absolute convergence. In 
fact, the path may be shifted to Re s = C2 with -1 < C2 < 1/2. To show this, we use the 
asymptotic expansion of the r-function to establish the estimate 

sin(7rs/2)f(s) = O(Itia-112), (t -z*o ), 
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where s = a + it. Then it follows that the contributions of the closing line segments [cl + 
iT, c, ? i T] vanish as T -x o, if cl < c2 < 1/2. 

The next step is to replace sin(a,/ih) by the integral representation presented above, and 
to interchange the order of summation and integration in the series for f (a). As a result it is 
found that 

1 f C+ioC (1) f(a) = . sin(7rs/2)r(s)w(1 +s/2)a'5ds, 
27ri J_-i__ 

where the factor ((1 + s/2) stems from E=l n'I-s12 = ((1 + s/2), valid for Re s > 0; 
accordingly, one should take 0 < c < 1/2. The integrand (1) is an analytic function of 
s, except for simple poles at s = 0 with residue 7r, and at s = -2k - 1 with residues 
(l)k'(l/2 -k)a2k+l/(2k + 1)!, where k = 0, 1, 2, .... By shifting the path of integration 
to Re s = -2N (with N = 1, 2, 3, ... )5 we are led to the representation 

N-I (_l)k~.Q - k)akI+ N() 

k=i (2k + 1)! 

where the remainder term RN (a) is given by 
1 r-2N+ic0 

(2) RN (a) = I sin(7rs/2)r(s)(1 + s/2) a-s ds. 27r i J-2Nioo 

To justify the shift of the integration path, we need the estimate [2, pp. 81-82] 

((1 + s/2) = T(1 + 4 (a + it)) = O(1t|1(a)+e), (I i x) 

valid for every e > 0, in which it(u) is determined by 

gu(u) =0 if a > 0; gu(a) < -a/4 if -2 < a <0; gt(c) = -(1 +o)/2 if a <-2. 

It is now clear that a - 1 + gt(o) < 0 if a < 4, and the integrand in (1) tends to zero as 
Im s -- ?ox, for fixed Re s <- . Hence, the contributions of the closing line segments 
[-2N?iT,c?iT]vanishas T-- x. 

Changing the integration variable s into -s in (2), we use the functional equation of the 
zeta function and some standard properties of the r-function to obtain the representation 

27 3/.2 2N+ioc cos(7rs/4) (s/2) I a s 

R(a--27r i JN-ioe COS(7rs/2) srm( + s)/2) 2 V /2, 
s 

In the latter integral we set s = 2N(1 + it). Next we establish the inequalities 
cos(N7r(1 + itO/2) < 2 exp[- N7r It 1/2], 1~(N(l + it))l < N) 
cos(Nzr(1 + it)) 

and, by use of the asymptotic expansion of the r-function, 

< (27rf /2KNNNe 1 + ite N exp[N7r ItI/2], r(I + N(I + it))N 

where KN = 1 + O (N1). The remainder term RN (a) can now be estimated by 

IRN(a)l < 2l/2KNO(N)NN ( ) N +tIN+1 

= 1 / 2KN (N)N-N /_ 
2 N 

r(I1/2)r(N/2) - 1/ 2KN ,(N-J N -N 
~1V~\~I~' 

2,/2 2zre/ r((N + 1)/2) 
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From the latter estimate it is clear that RN (a) -+ 0 as N -+ oo. Consequently, we have for 
f (a) the representation by a convergent power series 

f (a) =7r+ (2k + 1)! 

valid for all a > 0. The limit results stated at the outset are now obvious. Alternatively, 
-( I-k) may be expressed in terms of 1 + k) by means of the functional equation of the 

zeta function, leading to 

f(a)=zr+27r1/2 sin((k + ') 7)~(k+) (a) 2k+1I f (a) = 7r + 2nr 1/2 E sn(+ 2) 2 k+2( a ) 
(k + )k! 

The latter series is convergent for all complex a. 
Remark 1. For a quick derivation of f (0+) = 7r, write f (a) as a Riemann sum: f (a) = 

E 0=1 g(a2n)a2, where g(x) = sin(jx)/x. It can be shown that lima,0o f (a) is equal to the 
Riemann integral 

j 
g(x)dx =j i (T ) dx = 2 

sin 
dt = 7r. 

x ~~~~~~~t 

Remark 2. Similar results can be derived for the cosine-series, namely, 

00 
cos(a,/n-) I 

C+iOO0 

E c( ) - 2 i 1 oO cos(7rs/2)I(s)((1 +s/2)a-sds 
n=1 

= -2loga-+y + E (2)! a2k 

= 2loga-y + -+ 7r 1/2 L 1~2 )(~~4 , (a > 0), 
where4 E mr(2m + Ee constant 

where y is Euler's constant. 
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Solution by ROBIN JOHN CHAPMAN (University of Exeter, UK). 
We start by proving a more general result. Let 

(1) f,q(a) = L n), (0< < 1). 
n=1 

I claim that lima,,o ffi(a) = zr/(2,6). I remark that this is also true when ,B = 1, for by the 
theory of Fourier series 

? sin(na) zr-a 

n=h n 2 

when O < a < 27r. 
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Note that if ?(x) is a continuously differentiable function then integration by parts gives 

rn n 

(x)dx = ?(n) - (x - n + l)&'(x) dx. 

Applying this to ?(x) = sin(ax 0)/x and summing gives 

N 
sin(anO) [N sin(axo) dx + (x cos(axO) _ sin(axO) ) (2) E x j{x Iap x2- x2 )dx, 

n=I n O X r 

where {x} = x - Lxj denotes the fractional part of x. Putting y = axo gives 

jN sin(axf) 1 jaN sin 
I ~~~dx =-Idy, 

JO x j O y 

which tends to zr/(21i) as N -+ oo. If E > 0 the convergence is uniform for a > E. The 
integrand of the second integral is O(x-l) as x -O 0 and O(xO2) as x -+ oc. Hence 

(3) ffi(a)~~7 = + cos(axfi) _sin(axO) (3) fo(a) = 2p + 1 x}I (ap 2 -# 2,) dx. 

If K > E > 0 the second integrand in (2) is bounded by (Kfi + 1)x -2 so the series (1) 
converges uniformly for a E [e, K]. The integrand in (3) tends pointwise to zero as a J, 0. If 
0 < a < I it is bounded in absolute value by 2+r(x), where 

xI I ifx < 1, 

(x) -x2 if X > 1 

is a positive integrable function. Hence by Lebesgue's theorem of dominated convergence 
7r 

lim f (a) = 
a40 2 

as claimed. 
We now return to the case ,B = 1/2. Using (3) we write 

f(a) = fl/2(a) = r + 'agi(a)- g2(a), 

where 

f0 co s(a~f 
gi(a) = ]{x} (3a2 dx 

and 

92(a) = j{x}- ) dx. 

Differentiating the integral for go formally with respect to a gives the integral for gl. As 
the integrand in the integral for gI is bounded above by the L1 function x H-+ {x}/x3/2, then 
g'(a) = g, (a). Now consider gI. Integration by parts gives, for a suitable function 4, 

jn { xhPI(x) dx= 4 (n) 
- 

X 
{x}2 0'(x) dx. 

n- 12 _ 2 
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Applying this to ?(x) = x-3/2 cos(a Vx) and summing gives 

gi (a 1 = cos(a3'/i) 0; 
{x}2 a sin(a %,/i-) 3 cos(a),/ix) d 

2E 1 n312 J 2 2x2 2x5/2 / 

The formal derivative of this with respect to a is 

_1 sin(a%/;i) f X {x}2 (a cos(a/X') _ 2 sin(a xi) 
h (a) = - = + J 4 3 12 2 /dx. 

We have already shown that the sum here is uniformly convergent when a lies in a set of the form 
[e, K]; also the integrand is bounded by a multiple of the L1 function x -+ X}2 (X-2 + x-3/2) 
when a < K. Hence gj(a) = h(a), and so f'(a) = - gI(a) + a2h(a). By Lebesgue's 
dominated convergence theorem, and the fact that lima,o f(a) exists, it follows that h(a) 
tends to a finite limit as a J, 0. Hence, again by Lebesgue's theorem, 

lim f'(a) = 1 d{x} 

It only remains to identify this final integral. If s = a + it is a complex number with real 
part a > 1, then 

E = 1+ E s= 1+ }; s -, dx E_ X1j ?sjN{ +1d 

and so 

aocxf{XI s {x}1 
(4) ((s) = I + JX-s J '1 dx= -s f { dx. 

But the integral on the right-hand side of this is an analytic function for a > 0, and so by 
analytic continuation (4) is valid for all s =$ 1 with a > 0. Suppose that s is real and 0 < s < 1. 
Then 

{x} 'dx 1 

A Xs+d 1 Xs 1-s 

Hence for 0 < s < 1 we have 

a(S) = -sj ' } dx 

and so 

((1/2) =[- 
X 

dx 

as required. 

Also solved by CARL C. GROSJEAN (University of Ghent, Ghent, Belg,ium), W. B. JORDAN 
(Scotia, NY), KEE-WAI LAU (Hong Kong), G. LOHOFER (German Aerospace Research 
Establishment, Koln, Germany), 0. P. LOSSERS (Technical University, Eindhoven, The Nether- 
lands), G. F. NEWELL (University of California, Berkeley), PETER WAGNER (University of Inns- 
bruck, Innsbruck, Austria), JAMES A. WILSON (Iowa State University), and the proposer. 
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PETER WAGNER also found the generalization obtained by ROBIN CHAPMAN. The proposer 
incorporated both the results of Boersma and Chapman in the following generalization. Let 

fp(a) = sin(anP) (a > 0). 
n=1 n 

Then the Mellin transform is 

Fp(s) = L fxs-1sin(npx)dx 

= r(s) sin(7rs/2) (l + ps), (O < Res < l, p > 0). 

For p > 0, 

1 C+io _ 

fp(a) = 2si f(asFS) sin(rs/2) (1 + ps)ds, (O < c < 

For 0 < p < 1 we can close the contour to the left (justified as in Boersma's solution) and 
sum the residues of the simple poles to get 

fp(a) = + J ((2+1)! -(1 -(2k+ l)p). 

For p = 1, this result reduces to fi (a) = (7r - a)/2, valid for 0 < a < 27r. The generalization 
to the sum with nY in the denominator can be obtained in the same way, but there are several 
cases that must be looked at separately. 

A Limit Problem from the Theory of Delay Equations 

Problem 94-13*, by YUNKANG Liu (Cambridge University, Cambridge, England). 
Suppose that a and b are complex constants, Re b > 0 and A E (0, 1). Prove or disprove 

(1) li Y(t)eb = - ( (l~~~~~~~~ )0 k=o b 

where 

? tn n-I 

y(t) = 1 + E L H(b + axk) 
n= 1*k=O 

is the unique solution of the delay differential equation 

y'(t) = ay(AI) + by(t), I > 0, y(O) = 1. 

The existence of the limit was proved by Kato and McLeod [1] in the case of b > 0 and later 
extended by Kato [2] to the case of Re b > 0. The proof that (1) holds in the case of b > 0 is 
trivial. 
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