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Abstract

This paper is concerned with the tail asymptotics of the supremum of the superposition
of two stochastic processes, of which at least one has subexponential characteristics.
Canonical examples of such processes include Levy processes and random walks with
subexponential jumps, On-Off processes with subexponential activity periods, and
Gaussian processes exhibiting long-range dependence; these processes routinely arise
in queueing and risk theory. In contrast to previous work, we allow combinations of
any of the above processes as input in the same model.

We give general necessary as well as sufficient conditions for a so-called reduced
load equivalence. In this case, one of the two processes can be replaced by its mean. It
is shown that this property holds whenever certain structural properties are satisfied.

If the reduced-load equivalence does not hold, then the asymptotics are qualita
tively different. This is illustrated by a number of examples, which show that the
well-behaved process may contribute to the asymptotics by its moderate deviations,
large deviations, or oscillatory behavior.
2000 Mathematics Subject Classification: 60G15 (primary), 60FlO, 60G70 (secondary).
Keywords f3 Phrases: extremes, fractional Brownian motion, Gaussian processes, On
Off processes, perturbed risk models, regular variation, ruin probabilities, subexpo
nential distributions.
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1 Introduction

Consider two independent stochastic processes {X(t), t 2:: O} and {Y(t), t 2:: O}. This
paper is concerned with the tail asymptotics of the supremum of the superposition of X

and Y, i.e., we are interested in the behavior of

J!D{sup[X(t) + Y(t) - ct] > u},
t>O

u -+ 00. (1.1)

This probability may be interpreted as an overflow probability in queueing theory, but
also as a ruin probability. Motivated by applications in both queueing and ruin problems,
we are especially interested in the case where at least one of the processes X and Y has
subexponential characteristics. Typical examples of such processes include:

• Processes with subexponential jumps, like the input process of an ordinary single
server queue or the standard risk model. See Asmussen [5] for an excellent textbook
treatment.

• Processes with gradual input, where at least one of the driving random variables
is heavy-tailed. A celebrated queueing example is the On-Off model, but there
are also models in insurance risk with this property, like the Bjork-Grandell model

(see Section 5 of Asmussen et al. [6]).

• Processes where none of the driving random variables are heavy-tailed, but where
subexponentiality is a consequence of the strong dependence structure. Specifically,
one could think of Gaussian processes like fractional Brownian motion with Hurst

parameter H > ~.

The above list is, of course, not exhaustive. For instance, heavy tails arise in a completely
different way in stochastic difference equations, see e.g. Kesten [30], Goldie [23]' and
Kalashnikov & Norberg [29]. There are also processes exhibiting both heavy tails and
long-range dependence, see e.g. Mikosch & Samorodnitsky [35] for related recent work.
Although the sample paths of the above processes look qualitatively different, they share
an important property: The tail of their supremum distribution is subexponential. Key
references for the three respective cases are Veraverbeke [45J, Jelenkovic & Lazar [27], and
Hiisler & Piterbarg [26].

This brings us to the motivation of the present paper, which is in fact two-fold. First of
all, in applications like insurance or telecommunications, models can arise that have two
qualitatively different input streams. A well-known example in insurance is the class of
perturbed risk models, which is reviewed in Schmidli [43J. Another example comes from
telecommunications, where several traffic streams, each having a completely different level
of aggregation, may share a buffer. This may be modeled by the superposition of a
Gaussian process and an On-Off process. In particular, Gaussian processes can arise
as the (heavy-traffic) limit of a large number of On-Off sources, see e.g. Kurtz [32] and
D~bickl & Palmowksi [15]. A similar phenomenon arises in modeling Internet traffic. Files
are often distinguished by their size, which can show extreme variability, leading to a
distinction between mice and elephants. These two traffic classes may be modeled by
Gaussian processes and On-Off processes.
From a methodological perspective, this paper may be viewed as an attempt to combine
the analysis of different classes of processes into a single framework. As indicated above, in
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isolation, the above-mentioned processes share the property that the tail of their supremum

distribution can be subexponential. This fact, with some further structural assumptions on
the processes involved, is sometimes sufficient to reach conclusions on the tail asymptotics
of the superposition, see Section 3. As we shall see, in other cases, the situation is more
complicated.
There exists a vast literature on the tail asymptotics of the above-mentioned processes in
isolation. The tail asymptotics of the supremum of random walks and queues have been

analyzed by, among others, Pakes [38], Veraverbeke [45], Korshunov [31J, and Asmussen
et al. [6J. For work on On-Off models, see e.g. Agrawal et al. [2J, Boxma [12], Jelenkovic
& Lazar [27], Jelenkovic et al. [28J, Likhanov& Mazumdar [33J, Rolskiet al. [41J, Zwart
et al. [46], and Zwart [47]. The exact tail asymptotics of the supremum of a class of self
similar Gaussian processes have been derived by Husler & Piterbarg [26J. Related results

may be found in, for example, D©bicki [13, 14J, Duffield & O'Connell [18J, Narayan [36J,
and Norros [37J. A survey is provided in D©bicki & Rolski [16J.
We now turn to a discussion of the results of the present paper. The first question we
investigate is under -what conditions a so-called reduced-load equivalence (RLE) holds, Le.,

JP{sup[X(t) + Y(t) - ctJ > u} '"'-' JP{sup[Y(t) - ctJ > u},
t~O t~O

(1.2)

or a similar equivalence with the role of X and Y interchanged. (The symbol '"'-' denotes
that the ratio of both sides tends to 1 as u -t 00.) We give general necessary as well
as sufficient conditions for the above equivalence in Section 3, extending recent results
of Agrawal et al. [2J and Jelenkovic et al. [28J. It is shown that the 'threshold point' of
Weibullian tails with exponent 1/2 found in these references as well as in Asmussen et

al. [4J does not always apply. In fact, the main theme of Section 3 is that this threshold is
determined by the order of growth of (i) the variance of X(u), and (ii) the most probable
time for the process {Y(t) - ct} to reach a large level u. The above-mentioned threshold
applies only if both quantities grow linearly with u.
We apply this result to various special cases. In particular, we may take both processes
Gaussian. In that case, the process X(t) + Y(t) is also Gaussian, but other properties,
like self-similarity, may be lost. Using this procedure, we obtain a modest extension of
the exact asymptotics for a class of self-similar Gaussian processes which were obtained

in [26J.
If the RLE does not hold, then a natural question is what the form of the asymptotics
in (1.1) might be. This is the second subject of the paper: In Sections 5-7, we give three
examples, which show that X can contribute to the asymptotics through its moderate
deviations (Section 5), large deviations (Section 6), or oscillatory behavior (Section 7).
In all examples, X is a centered Gaussian process and Y is an On-Off process with peak
rate r.

In Section 5, we take r > c, but assume that the tail of Vy is not heavy enough for (1.2)
to hold. In this case, the asymptotics of V..f+y are shown to be rather complicated. This
section relies on recent work of Foss & Korshunov [20J.
In Sections 6 and 7, we drop the assumption r > c, which implies that the right-hand side
of (1.2) is O. In this scenario, the typical way for the process {X(t) + Y(t) - ct} to reach
a large value is fundamentally different, depending on whether r = c or r < c (needless to
say, they both differ from the case r > c). We obtain exact asymptotics for (1.1) in both
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cases.

The remainder of the paper is organized as follows. In Section 2 we introduce some
notation and review some background results for the classes of processes we consider. The
main contributions of the paper may be found in Sections 3-7. In Section 3 we formulate
the conditions for the RLE to hold. These conditions are applied to the above-mentioned
classes of processes in Section 4. The cases indicated above where the RLE does not hold,
are examined in Sections 5, 6 and 7. Additional proofs are gathered in Section 8. The
paper concludes with Section 9.

2 Model description

In this section we introduce some notation and review some background results for the
various processes that we consider. For convenience, we adopt the terminology of queues,
although one should keep in mind the connections with risk theory (the overflow proba

bilities to be studied may be interpreted as ruin probabilities, see for example [5, 6]).

2.1 Notation

We consider a fluid queue with infinite buffer size and constant drain rate c fed by two
independent traffic processes X and Y. Denote by X (t) and Y (t) the amount of traffic

generated by the two processes during the time interval [-t,O]. If JE{X(I) + Y(I)} < c,
then the random variable

V.:§+y = sup[X(t) + Y(t) - ct]
t~O

is finite a.s. and can be identified with the buffer content in steady state.
We will frequently make comparisons with the buffer content for each of the two processes

in isolation. For c > JE{X(I)} and D ~ [0,00), define V.:§(D) := sup[X(t) - ctl, and
tED

let V.:§ := V.:§([O,oo)) be a random variable representing the stationary workload in a
buffer with drain rate c fed by the process X (t) only. Similarly, for c > JE{ (Y (I)) and
D ~ [0,00), define Vy(D) := sup[Y(t)-ctl, and let Vy := Vy([O, 00)) be a random variable

tED
representing the stationary workload in a buffer with drain rate r; fed by the process Y(t)
only.

For any two real functions f(·) and g(.), we use the notational convention f(u) f'V g(u) to
denote that f(u) = g(u)(1 + 0(1)) as u -t 00, i.e., lim f(u)/g(u) = 1. We further write

u-too

f(u) ~ (':s)g(u) to indicate that limsupf(u)/g(u) ~ «)1. Analogously, f(u) ~ (,(,)g(u)
u-too

indicates that liminff(u)/g(u) ~ (»1.
u-too

Throughout the paper, we use various classes of distributions. In particular, we consider
the class .c of long-tailed distributions, the class S of subexponential distributions, and
the class R of regularly varying distributions. We also consider the subclass S* of S. For
definitions and further background on these classes, we refer to Embrechts et at. [19].

2.2 Gaussian processes

Let X(t) be a centered Gaussian process with stationary increments, a.s. continuous sam
ple paths, X(O) = °a.s., and variance function Var{X(t)} = ai(t). We often impose (a
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subset of) the following conditions:

C1 a~(t) E C([O, 00)) is increasing;

C2 a~(t) is regularly varying at °with index fJ E (0,2] and a~(t) is regularly varying
at 00 with index a E (0,2);
C3 a~(t) is differentiable and its derivative is regularly varying with index a - 1.

We now state some known results on the tail behavior of Vx' The logarithmic asymptotics

for Vxfollow immediately from DE;bicki [13]. Note that the technical condition in [13] can

easily be verified by invoking the ergodic theorem.

Proposition 2.1 If X(t) satisfies conditions C1-C2 and c > 0, then

(i) log(JID{Vx
C > u}) '" -Mxc(u), where Mxc(u):= min (~+g1:r;

, 't>O 17x

(ii) Mx (u) '" 2 (2-0)"-2 CO u 2
• -

,c 0'" 17k(U) ,

( .. ") M () (u+ct•.)2 j _ 1 0nz xc u '" 2 2 (t) or tu - - 2- U., 17x " C 0

Exact asymptotics for Vx are known in some special cases only, namely in the case of

fractional Brownian motion (FBM) [26] and Gaussian integrated (GI) input [14].
In particular, suppose that X(t) = BH(t), where BH(t) is a fractional Brownian motion
(FBM) with Hurst parameter H E (0,1), i.e., a centered Gaussian process with stationary

increments, a.s. continuous sample paths, and variance function a~H (t) = t2H for H E

(0,1). The following result is taken from [26].

Theorem 2.1 As u -+ 00,

ll.BH 1-2H (1 -H) ~-2H l-l/H (1-H)(l-2H)
JID{VBH > u} '" 21/2Hc ~ (1 - H) u H X

(
c2H (1 _ H)2H-2 _ )

exp -- u2 2H .
2 H2H

Here, ll.BH is Pickands constant. We note that [26] considers a somewhat more general

case, allowing for example self-similar processes non-stationary increments.

2.3 On-Off processes

Throughout the paper, we will frequently assume that Y(t), t ;::: °is an (integrated) On
Off process with stationary increments. For future use, we give an explicit construction

of such a process, following Heath et al. [25]: Let {Ton,m, m ;::: O} be a sequence of LLd.

random variables representing the On periods of the source. Similarly, let {Toff,m, m ;::: 1}
be the Off periods. Define three additional random variables T~n,o, T;ff,O' and I such that

TT !iTT TT !iTr don,O - on' off,O - off' an

p = JID{I = 1} = IE{Ton,d = 1 - JID{I = O}.
IE{Ton,d + IE{Toff,d

To obtain a stationary alternating renewal process, we define the delay random variable
Do by

Do = IT;n,O + (1 - I)(T;ff,o + Ton,o).
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Then the delayed renewal sequence

n

{Zn,n?: a} = {Do, Do + L(Toff,m + Ton,m),n ?: I}
m=l

is stationary.

Next, we define the process {J(t), t ?: a} as follows. J(t) is the indicator of the event that
the source is On at time t. Formally, we have

00

J(t) = I1{t<T:n,o} + (1 - I)1{T:ff,09<T:ff,o+Ton,o} + L 1{Zn+Toff,n+19<Zn+I}'
n=O

The On-Off process {J(t), t ?: a} is strictly stationary, see Theorem 2.1 ·of [25]. The
process {Y(t), t ?: a} is then defined by

Y(t) := r It

J(s)ds.

Note that the mean rate of Y(t) is given by p == pro
The next theorem, due to Jelenkovic & Lazar [27], provides the tail asymptotics for V~.

Theorem 2.2 If T~n E Sand p < c < r, then

JID{V~ > u} ""' (1 - p)-P-JID{T~n > _u_}.
c-p r-c

2.4 Instantaneous input

A similar result as in the previous subsection holds for the GIlGil queue where the input
is instantaneous instead of gradual. Let Y(t) be (a stationary version) of the input process
of a GIIG/1 queue with generic service time B and traffic intensity p. Then the following

result holds; see e.g. Pakes [38] and Veraverbeke [45].

Theorem 2.3 If B r E Sand p < c, then

JID{V~ > u} ""' -P-JID{Br > u}.
c-p

3 Reduced-load equivalence I: General results

In this section, we investigate under what conditions a reduced-load equivalence (RLE)
holds, as explained in the Introduction. Throughout the section, Y will play the role of
the dominant source. This question has been analyzed before in a number of specific cases,
in particular when Y is an On-Off source; see e.g. [2] and [28]. In the latter paper, the
case is considered where X has a regenerative structure (covering the case of compound
Poisson processes and On-Off processes) and Y is some process such that that the tail of
Vy is square-root insensitive, i.e.,

JID{V~ > u - vu} ""' JID{V~ > u}. (3.1)

A similar assumption is used in a related problem investigated in [4]. Note that we use
terminology from [28]. It is also not uncommon to phrase (3.1) as I[D{V~ > .} is flat for
-/X, d. [8].
It turns out that the condition (3.1) is implicitly based on the following two assumptions:
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• The (most probable) time for the process {Y(t) - ct} to reach a large level u is linear
mu.

• The variance of the process {X (u)} is linear in u. Thus, the expected deviation of
X(u) from its mean is O(VU).

The special cases examined before in [2, 28] show that these assumptions are satisfied if
both X and Y are On-Off processes. However, in the more general setting of the present
paper, these properties may not hold. If X is Gaussian, the variance function may not be
linear in u. Furthermore, the time to overflow of the process {Y(t) - ct} may be non-linear
in u as well. An example of sublinear time to overflow occurs if Y is compound Poisson;
see Asmussen & Kliippelberg [3]. An example of superlinear time to overflow is provided
in Section 7 of the present paper. If the most probable time to overflow is of the order
f (u), then the extended form of (3.1) is

JID{Vf > u - ax(J(u))} '"V JID{Vf > u}. (3.2)

(3.3)

In words, the tail distribution of Vf should be flat for ax(J(u)).

We now state and prove two theorems. The first theorem gives sufficient conditions for a
reduced-load equivalence (RLE) to hold. The second theorem states necessary conditions.
In order to demonstrate the importance of the covariance structure of X, we take X to
be a Gaussian process. We note however that this assumption is not essential. The only
place where this assumption is used is in Lemma 3.1 below. A similar result for a large
class of regenerative processes may be found in [28].

Theorem 3.1 (Sufficient conditions for RLE)

Let X (t) be a centered Gaussian process with stationary increments satisfying conditions

C1-C2 and let c > O. Assume that there exists an increasing positive function f and some

E > 0 such that ax(J(u)) = o(u), and

1
· l' JID{Vy-E[[lf(u), 00)] > u}
1m 1msup = O.

1-+00 u-+oo JID{Vf > u}

Furthermore, assume that

lP'{Vx> u} = o(lP'{Vf > u}),

and

JID{Vf > u -ax(J(u))} '"V JID{Vf > u}.

Then,

lP'{V{+y > u} '"V JID{Vf > u}.

(3.4)

(3.5)

(3.6)

Our main tool to control X(t) is the following inequality, which is proved in Subsection 8.1.

Lemma 3.1 If X(t) has stationary increments and satisfies conditions C1-C2, then there

exist constants K < 00, K, > 0, and q > 0 such that for every x and t,

JID{supX(s) > x}::; Ke-t>Cr;(t)-qf
s~t
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We also need the following lemma, whose proof may be found in Subsection 8.2.

Lemma 3.2 Let W be some non-negative random variable with Q(u) = -loglP'{W > u}.
Then, for a given 1 > 0, lP'{W > u - erx(lu)} '" lP'{W > u} implies Q(u) = o(ujerx(lu)).
Furthermore, the following statements are equivalent:

(i) lP'{W > u - erx(J(u))} '" lP'{W > u};

(ii) lP'{W > u - erx(lf(u))} '" lP'{W > u};

(iii) lP'{W > u - kerx(lf(u))} '" lP'{W > u}, k > 0;

(iv) IF'{W > u - Zerx(lf(u)) IZ> k} '" lP'{W > u}, k > 0,

with Z a random variable which has density K;lze-K2Z2.

We now provide a proof of Theorem 3.1. The proof is an extension of Theorem 2 in [28]
(with Lemma 3.1 playing the role of Proposition 1 of [28]).

Proof of Theorem 3.1

The proof consists of a lower and an upper bound. We will repeatedly use the equivalence
between (i), (ii), and (iii) in Lemma 3.2 without mention.
We start with the upper bound. Write

lP'{Vx +y > u} ::; lP'{Vx+y[O, If(u)] > u} + IF'{Vx+y[lf(u), 00] > u}.

Our first step is to show that the second term can be neglected as u, 1 -+ 00. Note that

the assumption (3.3) implies that for each 'T/ > 0 there exist l7)' u7) such that, if 1~ l7) and

u ~ u7)' then

lP'{V;;-€[lf(u), 00] > u} ::; 'T/lP'{Vy > u}.

Now, write

lP'{Vx+y[lf(u), oo] > u}

< IF'{V;;-€[lf(u), 00] + V1 > u}

< IF'{V;;-€[lf(u - V1)), 00] > u - V1}

< lP'{V1 >u-u7)}+ l U

-

U

'f/IF'{V;;-€[lf(u-Z)),oo] >u-z}dlP'{V1 ::;z}

< IF'{V1 > u - u7)} + 'T/ l U

-

U

'f/ IF'{Vy > u - z}dlP'{V1 ::; z}

< lP'{V1 > u - u7)} + 'T/lP'{Vy + V1 > u}

= o(lP'{Vy > u - u7)} ) + 'T/lP'{Vy+ V1 > u}

'T/lP'{Vy > u},

(3.7)

where the last steps follows from Assumption (3.4) and the fact that Vy E £. This holds
for any 'T/ > O. Hence, we conclude

1
· l' lP'{Vx+y[lJ(u), oo] > u} 01m lmsup = .

l-too u-too ]jD{Vy > u}

8
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Thus, we can focus on analyzing W{Vx+y[O, If(u)]} for some large l. Using sample path

arguments, we obtain

W{Vx+y[O,lf(u)] > u}

W{ sup [X(t) + Y(t) - ct] > u}
09~1!(u)

< W{Vy > u - kay(lf(u))} + W{Vy :s; u - kay(lf(u)); Vy + Vl[O, If(u)] > u}.

We need to show that the second term can be asymptotically neglected. Write

r"x(lf(u)) 2
2KK, 1k ze-I;;Z W{Vy > u - ax(lf(u))z}dz

< K1W{Vy > u - ax(lf(u))Z; Z > k},

W{Vy :s; u - kax(lf(u)); Vy + Vl[O, If(u)] > u}
ru-kox(l!(u))

= 10 . W{Vl[O,lf(u)]>u-y}dW{Vy:S;y}

rU-kax(I!(u)) (U- y ) )2
< K 10 e-I;; "x(lf(u)) q dW{Vy:S; y}.

In the last step, we applied Lemma 3.1. Next, use integration by parts to get the upper

bound

. -I;; u2 lu-kaX(l!(U)) U_ Y (u- y )2
Ke "3c(lf(u)) + 2KK, Wfv,c > y} e-I;; "x(lf(u)) q dy.

o y a~(lf(u))

The first term can be neglected in view of the first part of Lemma 3.2 (or alternatively
in view of Assumption (3.4) combined with Proposition 2.1). Substituting z = (u
y)/ax(lf(u)), the second term can be rewritten as

u

where Z is a random variable with density proportional to ze-l;;z
2 and K 1 is some constant.

Using Lemma 3.2 (iv), we conclude that

1· W{Vy :s; u - kax(u); Vy + Vl[O, If(u)] > u} K 1TD{Z k}
1m sup {c } :s; IJr > .
u-too W Vy > u

The proof of the upper bound now follows by letting k -t 00.

We now turn to the lower bound. Using properties of the sup operator, we obtain

W{Vx +y > u} ~ W{Vy[O,lf(u)] - V~x[O,lf(u)] > u}.

Hence, for some k > l,

W{Vx +y > u} ~ W{Vy[O,lf(u)] > u+kax(f(u))}W{V~x[O,lf(u)]:s; kax(f(u))}.

Now, write

W{Vx+y > u}
>

W{Vy > u}
W{Vy[O, If(u)] > u + kax(f(u))} W{Vy > u + kax(f(u))}
----=-----==-:-::-:-=----:.---'-'------:--:-:--:'7-::-'---'-'~--=----:.'-------,------,------'--'-'-"- X

W{Vy > u + kax(f(u))} W{Vy > u}

W{V~x[O, If(u)] :s; kax(f(u))},

and take the lim inf of each of the three terms as u -t 00. The first term converges to a
limit U1(l), which, in view of Assumption (3.3) tends to 1 as 1-t 00. Since the first term
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(before taking u -+ 00) is non-decreasing in l, and OX(J(u)) = o(u), U1(l) is independent

of k. The second term tends to 1 in view of Assumption (3.5). The third term converges

to a limit U2(k, l), which has the property that U2(k, l) -+ 1, as k -+ 00 for every l, in view

of Lemma 3.1. Thus, the proof of the lower bound is completed by letting first u -+ 00,

then k -+ 00, and finally l -+ 00.

o

The next theorem provides corresponding necessary conditions for a RLE to hold.

Theorem 3.2 (Necessary conditions jor RLE)
Let X(t) be a centered Gaussian process satisfying conditions Cl - C2
Assume that there exists a junction g(.) such that

1
· . f lP'{Vy[g(u), 00] > u}
1mm > O.
u.-+oo lP'{Vy > u}

Furthermore, assume that

lP'{Vx+y > u} '" lP'{Vy > u}.

Then,

1
. lP'{Vy > u - o-x(g(u))}
1m. sup 1Tll{TTC} < 00.
U.-+OO Jr Vy > u

Proof
Write

and let c > O.

(3.9)

(3.10)

(3.11)

lP'{Vx+y > u} ~ lP'{Vx+y > u IVy > u - o-x(g(u))}lP'{Vy > u - OX(g(u))}. (3.12)

Denote the right-hand side as I(u)II(u). Define r(u) := inf{t : Y(t) - ct ~ u - o-x(g(u))}.
Then

I(u) > lP'{Vx+y > u;g(u) < r(u) < 00 I r(u) < oo}

> lP'{X(r(u)) > o-x(g(u));g(u) < r(u) < 00 I r(u) < oo}

> lP'{X(g(u)) > o-x(g(u));g(u) < T(U) < 00 I T(U) < oo}

= lP'{X(l) > l}lP'{g(u) < T(U) < oo},

where the third inequality follows from the fact that l(X(t) > o-x(g(u))) is stochastically

monotone in t. Hence, Assumption (3.9) implies that liminfu.-+oo I(u) > O. Combining

this with the fact that reduced-load equivalence is assumed to hold (Le. (3.10)) and (3.12),

the desired statement follows.
o

A similar result in the setting of [2] has been developed by Vincent Dumas (personal com

munication) .

Unfortunately, Theorems 3.1 and 3.2 do not provide a conclusive answer to the question

whether Property (3.2) is both necessary and sufficient for a RLE to hold, even if one is

allowed to choose J(u) = g(u). We conjecture that if

lP'{Vy > u + o-(X(J(u)))} '" 1]lP'{Vy > u},

with 0 < 1] < 1, a RLE will not hold.
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4 Reduced-load equivalence II: Applications

In this section, we apply the results of the previous section to the various processes men

tioned in the Introduction.

4.1 Gaussian processes

In case X and Yare both Gaussian, one would hope for simple conditions for (3.6) in terms

of the coefficients ax and ay. Unfortunately, it appears that the logarithmic asymptotics

of JP>{V{ > u} do not suffice to obtain such conditions. One must invoke additional
regularity assumptions:

Corollary 4.1 Let Y be Gaussian with stationary increments, and suppose that Y satis

fies conditions C1-C2.
(i) In addition, assume that Vy is in the maximum domain of attraction of the Gum

bel distribution with auxiliary function a(x). Then (3.6) holds if O"x(u) = o(a(u)). If

a(u) = o(O"x(u)), then (3.6) does not hold.

(ii) Assume in-addition that JP>{V{:> u},....., e-Q(u), with Q'(u) ultimately monotone. Then

(3.6) holds if ay > 1 + ax /2. If ay < 1 + ax /2, then (3.6) does not hold.

Proof
First of all, note that (see e.g. Corollary 6.1 below) one can take f(u) = g(u) = u.
Assertion (i) follows immediately from standard results in extreme-value theory, see e.g.

Balkema & De Haan [7J, Embrechts et al. [19J, or Goldie & Resnick [22J.
To establish the second assertion, note that, according to Proposition 2.1, Q(u) is regularly

varying of index 2- ay. In view of the monotone density theorem (see [9]), the derivative

of Q is regularly varying of index 1 - ay. Now, Assumption (3.5) can be written as

{U Q' (y)dy -+ O.
}u-crx(uJ

Since Q'(u) is both ultimately monotone and regularly varying, this integral behaves like

Q'(u)O"x(u), which is regularly varying of index ax/2 + 1- ay. This easily yields Asser
tion (ii).

o

In particular, we have the following corollary.

Corollary 4.2 IfY is FBM with ay > 1 and X(t) satisfies conditions C1-C2, then (3.6)

holds if ay > 1 + ax/2. If ay < 1 + ax/2, then (3.6) does not hold.

Proof
By Theorem 2.1, we can write

JP>{V{ > u} ,....., p(u)e-"Yu2
-

ay
,

with 'Y some constant and p(u) a power function. Hence, Q' (y) is ultimately monotone.
o

This result shows that the exact asymptotics of [26J can be extended to a class of non-self
similar Gaussian processes with covariance function t Q (1 + F(t)), with F(t) = o(t2(H-1J).

11



4.2 Processes with subexponential jumps

In the next example we assume that Y is an input process of a GI/G/l queue. This is
an important situation where f (u) and g(u) may be sublinear, as follows from a result
of Asmussen & Kliippelberg [3], which has -again- strong connections with extreme-value
theory.

Corollary 4.3 Let V~ be the stationary workload in a GI / G/1 queue such that the ser

vice time B is in the maximum domain of the Gumbel distribution. Then RLE holds if

Assumption (3.4) is satisfied.

Proof
Under the extreme-value assumption, Asmussen & Kliippelberg [3] have shown that f(u)

and g(u) can be chosen such that f(u) = g(u) = o(u). Thus, Assumption (3.5) is always

satisfied, and the desired statement follows from Theorem 3.1.
o

In the risk setting, this result has been proven by Schlegel [42].

4.3 On-Off processes

In the final example, we take Y to be an On-Off process.

Corollary 4.4 Let Y be an On-Off process with peak rate r > c; assume that u°JP>{T~n >
u} is ultimately decreasing for some 8 > °and that T~n E S. Then, the conditions

of Theorems 3.1 and 3.2 are satisfied with f(u) = g(u) = u. In particular, in case

JP>{T~n > u} f'.J i31u!32e- f3su(34, Assumption (3.6) is satisfied ifu!34-1ay(u) converges to 0,

and does not hold if this quantity tends to 00.

Proof
The condition that u°JP>{T~n > u} is ultimately decreasing, together with Theorem 2.2,
implies that Assumption (3.3) is satisfied with f(u) = u, see [28]. Furthermore, the time
to overflow is also at least linear, since Y(u) ~ ru. The' desired statement now easily
follows from Theorems 2.2 and 3.1.

o

Note that the above corollary relied on the assumption r > c. If this inequality does not
hold, then V~ == 0, implying that the asymptotics for Vx+y must be entirely different.
This is the subject of Sections 6 and 7. The next section considers the case that a RLE
does not hold when r > c.

5 Moderately heavy tails and moderate deviations

The necessary and sufficient conditions in the previous section show that the tail of V~
must be heavy enough for a RLE to apply. In the present section we consider a case

where the tail of V~ is still subexponential, but not heavy enough for a RLE to apply.
Following [4], we then call Vf moderately heavy tailed. In this case, the tail asymptotics

12



of Vx+y differ from those of Vy. This leaves the question of what the tail asymptotics
might be and how the process X contributes to these asymptotics. In the present section,

we focus on a specific case: we assume Y to be an On-Off source, and X to be a Brownian
motion. The independent increments of X allow us to treat this problem within the
regenerative framework of Asmussen et al. [6]: The increment process of {X(t)+Y(t)-ct}
is regenerative, with regeneration points being the ends of On periods.
In particular, the analysis consists of two steps. First, we investigate the tail behavior

of X(T) + (r - c)T, with T a subexponential random variable. After that, we apply the
results of the first step to obtain the tail behavior of Vx+y '

We expect that the results and techniques in this section hold under more general condi
tions on X; the main purpose of this section is to show how the process X may contribute

to large values of Vx+y '

We will often impose the following condition. A similar condition has been used by
Borovkov [10] to attack a related problem.

Tl The tail of the random variable T has the form JID{T > u} = e-L (u)u
t3

, with 0 < (3 < 1,

and L(u) slowly varying and twice differentiable. Moreover, L'(t) = o(L(t)jt) and L"(t) =

o(L(t)jt2 ).

The next result shows that T is indeed subexponential. In fact, one can show a slightly
stronger result:

Lemma 5.1 If T satisfies Tl, then T E S*. In particular, T, T r E S.

Proof
The hazard function Q and hazard rate q ofT are given by Q(u) = L(u)uf3 and

q(u) = (3L(u)uf3 - 1 + uf3 L' (u).

Hence, we have q(u) -+ 0, uq(u) -+ 00, and uq(u)jQ(u) -+ (3 E (0,1). According to
Corollary 3.9 of Goldie & Kliippelberg [24], this implies that T E S*, which in turn
implies T, T r E S.

o

5.1 Sampling a Brownian motion at a subexponential time

Let B(t), t ~ 0, be a standard Brownian motion, and define Bj1,(t) = B(t) + f1.t, t ~ O.
Suppose that T is a random variable which is long-tailed, and independent of {Bj1,(t)}.
Define also the running maximum Mj1,(t) = maxO<s<t Bj1,(s). The goal of this subsection
is to determine the tail behavior of Bj1,(T), when f1. > O.

The first step of our analysis is to show that Bj1,(T) and Mj1,(T) are tail equivalent. The
Jollowing lemma establishes this tail equivalence under minimal assumptions.

Lemma 5.2 If T E £, then Bj1,(T) , Mj1,(T) E £, and

JID{Bj1,(T) > u} '" JID{Mj1,(T) > u}.
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Proof
Let r(x) = inf{t: BJl(t) = x} and fix y. Note that r(x+y) 4 f(x) +f(y), with the latter
two random variables distributed as r(x) and r(y), but mutually independent. Write, for
some M and K,

IF{MJl(T) > x+y}
IF{MJl (T) > x}

IF{T > f(x) + f(y)}
IF{T> r(x)}

> IF{r() < M}lF{T > r(x) +M}
. Y IF{T> r(x)}

roo IF{T > z + y}
> IF{r(y)<M}JK IF{T>z} dlF{r(x)C:;z}.

Now, use the fact that T E £ and r(x) --t 00 a.s. Thus, for each E > 0, there exist
appropriately chosen M and K such that

IF{MJl(T) > x+y}
IF{MJl(T) > x}, ~ 1- E.

This shows that MJl(T) E £.
Next, observe that

IF{MJl(T) > x} < IF{BJ.L(T) ~ x - y} + IF{BJ.L(T) < x - Yi MJl(T) > x}

< IF{BJl(T) ~ x - y} + IF{r(x) < T; BJ.L(T) - BJl(r(x)) < -y}

< IF{BJ.L(T) ~ x - y} + IF{r(x) < T; inf [BJl(t) - BJl(r(x))] < -y}
t>r(x)

= IF{BJ.L(T) > x - y} + IF{MJl(T) > x}lF{V%o > y},

where the last inequality follows from the strong Markov property of BJl(t). We conclude
that

IF{BJ.L(T) > x - y} ~ IF{MJl(T) > x}lF{V%o c:; y}.

From this inequality, the obvious property IF{BJl(T) > x - y} c:; IF{MJ.L(T) > x - y}, and
the fact that MJl(T) E £, one obtains the tail equivalence of BJ.L(T) and MJ.L(T) , and in
particular the property BJl(T) E L

o

We now investigate the asymptotic behavior of IF{BJl (T) > u} in the moderately-heavy
tailed regime. A related problem has been investigated by Foss & Korhunov [20]: They

consider the random variable N(T), with N(·) a renewal process.
As their analysis shows, the computations in the moderately-heavy tailed regime are very
technical. We could apply a similar approach here (using explicit formulas for Brownian
motion and the Laplace method), but we will follow a different approach: we construct a
renewal process NJ.L(t) with the property

(5.13)

which, in view of Lemma 5.2, reduces the problem to the one studied in [20]. This approach
avoids a lot of tedious computations and may be of independent interest.
We construct NJ.L(t) as follows. Define a sequence of stopping times ri, i ~ 1, by

ri = inf{t : BJ.L(t) = i}.
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Then, define

NJ.l(t) = max{n: Tn ~ t}.

It is obvious that (5.13) holds. Moreover, NJ.l(t) is a renewal process, since Ti - Ti-l, i ;::: 1,
is an LLd. sequence. Define

A(x) = sup{xy -logJE.{eYT1 n.
Y

Let >.(x) be the optimizing point in the above supremum. Since

JE.{eYT1 } = eJ.l-JJ.l L 2y,

we have

f..L2 1
A(x) = 2 x - f..L+ 2x'

and

We now state the main result of this subsection.

Proposition 5.1 If T satisfies 1'1, then

with

H(t, u) = Q(t) + uA(t/u),

and t(u) a solution of

Q' (t) = ->.(t/u).

Proof
Assumption T1 implies that Q(u) = -logW{T > u} is twice differentiable and that
uQ"(u) --7 O. This allows us to apply Theorem 5.1 of [20] to obtain the tail behavior of
NJ1.(T). The remaining assertions follow from Lemma 5.2 and (5.13).

o

1fT has a Weibullian tail, Le., Q(u) = uf3 ,O < (3 < 1, then Lemma 6.3 of [20] implies

(5.14)

This indicates that a large value of BJ.l(T) is caused by a realization of T which is about
u/f..L - (3uf3 /-Ll-f3. This implies that BJ1.(u) - f..LU must be of the order uf3 •

Hence, if 1/2 < (3 < 1 (in which case the asymptotic equivalence W{BJ.l(T) > u} '" W{f..LT >
u} does not hold), BJ.l(u) - f..LU contributes to the asymptotics by means of its moderate

deviations.

We finish this subsection with another question, namely whether or not the tail distribution
of BJ.l(T) is subexponential. This is of crucial importance in the next subsection.
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Proposition 5.2 1fT satisfies TI, then BJ.L(T) E S*.

Proof

Define an auxiliary random variable X such that

lP'{X > u} = e-H(t(u),u).

First, we show that X E S*. Since S* is closed under tail equivalence, this implies that

BJ.L(T) and MJ.L(T) are in S* as well. According to Corollary 3.9 in [24], it suffices to show
that the hazard rate of qx(u) of X is regularly varying of index E (-1,0). In fact, we will

prove that qx(u) = d~H(t(u), u) is regularly varying of index f3 -1. From the expression

for H(t(u), u) we obtain

qx(u) = t'(u)Q'(t(u)) + ~2 t'(u) - P, + t(:) - ~ t(:)2 t'(u),

where t' (u) satisfies

2

Q"(t(u)t'(u) = t(~)2 - t(:)3 t'(U).

From this equation, one can show using TI, that there exists a constant K, such that

t'(u) = .!. + (K, + o(I))L(u)u~-l.
p,

From a similar computation (see also [20]), one can show that

t(u) = ~ - f3p,l-~u~L(u)(1 + 0(1)).
P,

Combining the above equations, one obtains after a tedious but straightforward compu

tation that qx(u) is indeed regularly varying of index f3 - 1.
Thus, we conclude that X E S*. By Proposition 5.1, BJ.L(T) and X are tail equivalent.

Since S* is closed under tail equivalence, we conclude that BJ.L(T) E S*.
o

5.2 Workload asymptotics

In this subsection, we aply the results of the previous subsection to obtain tail asymp

totics of the workload distribution. As mentioned before, we will follow the framework of
Asmussen et al. [6]; See also Foss & Zachary [21] for more recent work in this direction.

Recall that the increment process associated with {X(t) + Y(t) - ct} (with X(t) = B(t))
is regenerative w.r.t. the delayed renewal process {Zn, n ~ O} defined in Subsection 2.3.

Thus, we consider the embedded process

Sn = X(Zn) + Y(Zn) - cZn =: Uo + Ui + ... + Un'

Note that Sn - So, n ~ 1, is a random walk. Furthermore, define

Mo = sup [X(t) + Y(t) - ct],
O<t<Zo

Mn = sup [X(t) + Y(t) - ct - Sn-i].
Zn-l<t<Zn

In order to obtain the asymptotics of Vx+y , we will apply the results of Section 3.2 of [6].
To check the assumptions stated there, we need the asymptotic behavior of the random
variables Uo, Ui, Mo, and Mi. This is covered by the following lemma.
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Lemma 5.3 (i) If T~n satisfies TI, then Uo, Mo E 5, and

P{Uo >u} ""' P{Mo > u} ""' pP{Br-c(T~n) > u}.

(ii) If Ton satisfies TI, then Ul , M l E 5, and

Proof
We only prove the statement for Uo and Mo (the proof for Ul and M l is similar, but
easier). Recall the construction of the On-Off process given in Subsection 2.3. With a

slight abuse of notation we can write

In this expression, all components are independent. Since B-c(Toff) ~ SUPt>o B_c(t), this
random variable is light-tailed. Secondly, since Ton E £, we have P{Ton > x} = o(P{T~n >
x}). This implies, using Lemma 5.2,

P{Br-c(Ton ) > u} P{Mr-c(Ton ) > u}

= P{Ton > T(U)}

= o(P{T~n > T(U)})

= o(P{Mr-c(T~n) > u})

= o(P{Br-c(T~n) > u}).

Thus, using standard properties of subexponential distributions, we conclude that

P{Uo > u} = pP{Br-c(T~n) > u} + (1- p)P{B-c(Toff) + Br-c(Ton ) > u}

""' pP{Br-cCI;n) > u}.

To show the tail behavior of Mo, note that (with a slight abuse of notation)

Mo ~ IMr-c(T:n) + (1 - I)(supB-c(t) + Mr-c(Ton ))'
t>o

Hence, using a similar argument as above, we obtain

The asymptotic lower bound is trivial, since Mo ~ Uo.
o

Informally, Lemma 5.3 states that Ui is not much smaller than Mi. Thus, it is no surprise

that sUPn2:0 Sn is not much smaller than Vx+y ' In fact, we have

Theorem 5.1 Suppose that Y is an On-Off process with peak rate r > c, that Ton, T~n
satisfy T1, and that X is a standard Brownian motion. Then

Trn{VC } { (r ) } p lE{Mr-c(Ton )} 1lD{M (T.)r }
Jr- X+Y > u ""' pP Mr- c Ton > U +-- lE{ } Jr- r-c on > U .

C - P Ton
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We prefer to present the asymptotics in terms of Mr-cO, rather than Br-cO, the rea
son being that the random variable Br-c(TonY is not well-defined. The asymptotics for
Mr-c(T:n) and Mr-c(TonY are given in Proposition 5.1. Note that if JID{T > x} = e-x

{3,

then T and T r satisfy Tl.

Proof
Lemma 5.3 allows us to apply Corollary 3.2 (ii) of [6], which yields

JID{V{+y > u} '" JID{Uo > u} + JID{supSn - So> u}.
n2:1

The first term is covered by Lemma 5.3 and the assumption that T:n satisfies Tl. To deal

with the second term, note that [Un+ %= [Br-c(Ton )+ B-c(Toff )]+ E S, since Ton satisfies
TI, and Lemmas 5.2 and 5.3. This implies, using Veraverbeke's Theorem [45],

JID{sup Sn - So > u}
n>l

Finally, using the formulas

lE{Ton }p - ---'-----=:._-

- lE{Ton + TOff}'

we conclude that

p=rp,

{ } p lE{Mr-c(Ton )} r ) }
JID sup Sn - So > u '" -- lE{T.} JID{ Mr_c(Ton > u ,

n2:1 c - p on

which completes the proof of the theorem.
o

There are several questions that remain. First of all, it is not clear whether BJ.l(TY and
BJ.l(Tr) are tail equivalent. (This would simplify the theorem.) One could try to verify
this using the sequential approximation of H((t(u), u) given in Section 7 of [20], but it
may be better to look for a more direct proof. Another question is whether the class of
distributions that satisfy TI is closed under the operation T -7 T r

. We conjecture that.
this is the case (for Weibull the proof is tedious, but straightforward). Finally, we expect
that similar results will hold if we replace Brownian motion by a Levy process or more

general processes, satisfying a moderate deviations principle.
We leave all these questions as a topic for future research.

6 Large deviations: Reduced-peak equivalence

In this section we consider the case that X is Gaussian and Y is an On-Off process with
peak rate r < c. We assume that the tail of V{J, p < d < r, is heavier than that of Vi.

18



Under these conditions, it is clear that a reduced-load equivalence (which is covered by
Corollary 4.4) cannot hold. Informally, one can observe that X(t) cannot be replaced by
its mean (0), since Vy =: 0, nor can Y(t) be replaced by its mean, since it has heavier tails
than X(t).
In fact, the next theorem shows that both X(t) and Y(t) need to behave atypically in
order for the process {X (t) + Y (t) - et} to reach a large value.

Theorem 6.1 Suppose that X(t) has stationary increments, and that X(t) satisfies con

ditions C1-C2. Furthermore, let Y(t) be an On-Off process with T~n regularly varying,

and r < c. Then

JP>{Vx+y > u} '" pJP>{Vl- r > u}JP>{T:n > _l CY_u}.
e-r2-cy

The above theorem may be combined with the results in [26] or [14] to obtain an explicit
expression for the asymptotic behavior of JP>{Vx+y > u}.

Remark
We expect the result to extend to a larger class of subexponential On periods. A proof
would require different methods than the ones used here, and one might possibly need to
impose additional assumptions on X(t). Note that, if X(t) is long-range dependent, then
the asymptotics may have the form of the product of two Weibullian tails. We leave this
as a subject for future research.

Before giving a proof of Theorem 6.1, we first provide a heuristic explanation of the result.
We refer to [11] for similar results and a more detailed discussion for the case where X(t)
has light tails.

Recall that Vx+y = sup[X(t) +Y(t) - et]. The most probable way for the process {X(t) +
t>o

Y(t) - et} to reach a large level u may be described as follows .

• The Gaussian process X(t) shows similar abnormal behavior as is the typical cause
of overflow in an isolated system with drain rate e - r.

• During that period, of length tu = c~r 2~Q u, the On-Off process Y(t) constantly
produces traffic at the maximum rate r, leaving a rate e - r available for the pro
cess X(t).

Thus, roughly speaking, Vx+y behaves like Vl- r
, i.e., the drain rate c is reduced by the

peak rate r of Y(t), hence the term 'reduced-peak equivalence'.

We now state some auxiliary results whose proofs may be found in Subsections 8.3 and 8.4.

Lemma 6.1 Let tu = *2~Qu. If X(t) satisfies conditions C1-C3, then for every c E

(0,1) and A > 0,

(i)

M ()
< . (u + eAt)2

x AU'" mIn ,
, t~(l+E)tu 2ai-(t)
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(ii)

M ()
< . (u + cAt) 2

X A u rv mIn
, t:S(1-c)tu 2(}~(t)

As a consequence of Lemma 6.1, we have the following corollary.

Corollary 6.1 Let tu = *2~Q U. If X(t) satisfies conditions C1-C3, then for every
c E (0,1) and A > 0,
(i)

lim JPl{vj([O, (1 - c)tu ]) > u} =° or equivalently, JPl{Vj([(1 - c)tu , 00)) > u} rv JPl{vj > u},
u-+oo JPl{Vj > u} ,

(ii)

. JPl{Vj([(1 + E)tu , 00)) > u} . A [ A
hm . . {A} = 0, or equivalently, JPl{Vx (0, (1 + E)tu ]) > u} rv JPl{Vx > u}.

u-+oo JPl Vx > u

We are now ready to provide a proof of Theorem 6.1.

Proof of Theorem 6.1
Let tu = c~r 2~Q U and c E (0,00) be given. The proof consists of a lower and an upper
bound. To obtain a lower bound, note that

JPl{Vx+Y > u}

= JPl{supX(t) + Y(t) - ct > u}
t~O

> JPl{ sup X(t) + Y(t) - ct > u}
t:S(l+c)tu

> JPl{ sup X(t) + Y(t) - ct > uIY((1 + c)tu ) = r(1 + E)tu }
t:S(l+c)tu

xJPl{Y((1 + E)tu ) = r(1 + c)tu }

= JPl{ sup X(t) + Y(t) - ct > uIY(t) = rt for all t :::; (1 + E)tu }
t:S(l+c)tu

xpJPl{T:n > (1 + E)tu }

= JPl{ sup X(t) - (c - r)t > u}pJPl{T:n > (1 + E)tu }
t:S(l+c)tu

= JPl{Vx-r([O, (1 + c)tu ]) > u}pJPl{T:n > (1 + E)tu }.

Using Corollary 6.1, we have

JPl{Vx-r([O, (1 + c)tu ]) > u} JPl{T~n > (1 + c)tu }

JPl(Vx - r > u) JPl{T6n > tu }

> JPl{T~n > (1 + E)tu }
N

JPl{T6n > tu }

Letting c .j.. °and using the fact that T~n is regularly varying then completes the proof of
the lower bound.
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<
N

To obtain a matching upper bound we proceed as follows. For every c5 E (0,00) and

( E (0,00) we have

JID{Vx+y > u}

JID{supX(t) + Y(t) - ct > u}
t2:0

< JID{ sup X(t) + Y(t) - ct > u} + JID{ sup X(t) + Y(t) - ct > u}
t:S (1-0 )t" t2:(1-o )t"

< JID{ sup X(t) - (c - r)t > u}
t:S (1-0 )t"

+ JID{ sup X(t) + Y(t) - ct > ulV;:-O([(l - f)tU1 00)) ~ O}JID{V;:-O([(l - f)tU1 00)) ~ O}
t2:(1-o)t"

+ JID{ sup X(t) + Y(t) - ct > ulV;:-O([(l - f)tU1 00)) > O}JID{V;:-O([(l - f)tU1 00)) > O}
t2:(l-o)t"

< JID{V~-r([O, (1 - f)tu ]) > u} + JID{ sup X(t) - (c - r + c5)t > u}
t2:(l-o)t"

+ P{ sup X(t) - (c - r)t > u}P{ sup Y(t) - (r - c5 - ()t > ((1- f)tu }
t2:(l-o)t" t2:(1-o)t"

< p{v~-r([o, (1 - f)tu ]) > u} + p{v~-r+o > u} + P{Vx> u}P{V;-O-( > ((1- f)tu }.

According to Theorem 2.2,

P{V;-O-( > ((1 - f)tu } '" P . ~ - P P{T;n > r ( r (1 - f)t u }.
r- -(-p v+."

Using Corollary 6.1, we thus obtain

P{Vx+y > u}

p{v~-r > u}P{Tb"n > tu }

1 p{V~-r([O, (1 -.f)tu ]) > u} 1 JID{v~-r+o > u}
< JID{Tb"n > tu } p{v~-r > u} + P{Tb"n > tu } p{v~-r > u}

r - p P{T~n > k(1 - f)tu }

+ r - c5 - ( - p P{Tb"n > tu }

r - p JID{T~n > k(l - f)t u }

r - c5 - ( - p P{T;n > tu }

Letting c5 +0 and then ( +0, f +0, and using the fact that T~n is regularly varying
completes the proof of the upper bound.

o

7 Oscillatory behavior

As in the previous section, we consider the case that X is Gaussian and Y is an On-Off

process with peak rate r. The central assumption of this section is that r = c. Under this

critical condition, the process S(t) = X(t) + Y(t) - et will oscillate during the On periods
of Y(t).
The next theorem presents the main result of this section.

Theorem 7.1 If X(t) has stationary increments and satisfies conditions CI-C2, and Ton
is regularly varying of index -v < -1 such that JID{T~n > x} = L(x)x1

-
V, then

P{Vx+y > u} '" plE{B;;(V-l)}P{ax(T;n) > u},
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with H = a/2 and BH = sup BH(S). In particular, Vx+y is regularly varying of index
0:::89

(1 - 1/)/H.

The above theorem shows that the heaviness of the tail of Vx+y is a combined effect of
the heaviness of Tim and the degree of dependence in X.
Informally, if r = c, then a large value of Vx+y is most likely caused by a single long On
period which started at time O. During this long On period the net input process has zero
drift. This implies that the net input process at time t is O(ax(t)). Hence, in order to
reach level u, we need an On period of length O(ai1(u)).
In the proof of Theorem 7.1, we make these heuristics precise. We use the following
auxiliary lemma, which is the main result of [17].

Lemma 7.1 Under the conditions of Theorem 7.1, we have

- H(IJ 1)lP'{ sup X(t) > u} ,..., E{BH - }lP'{ax(T:n) > u}.
09$T.in

The main idea of the proof of Theorem 7.1 is to separate the processes X and Y by
adding and subtracting non-linear perturbations. To handle such perturbations, we need
an auxiliary lemma, whose proof may be found in Subsection 8.5.

Lemma 7.2 Let X(t) be a centered Gaussian process satisfying conditions C1-C2. If
'T/ > a/2, then

(u+dt1J )2
log lP'{sup X(t) - dt1J > u} ,..., min 2 ( )

t~O t~O 2ax t

Proof of Theorem 7.1
The lower bound is trivial, in view of Lemma 7.1 and the construction of the process Y(t)
given in Section 2.

For the upper bound, write for some, E (0,1),

lP'{supS(t) > u} ~ lP'{sup S(t) > (1- ,)u} + lP'{sup S(t) - S(Zo) > ,u}.
t~O t$Zo t>Zo

We need to show that the second term can be asymptotically neglected. Using sample
path arguments, we have

lP'{ sup S(t) - S(Zo) > ,u}
t>Zo

= lP'{sup[X(t) - X(Zo) + Y(t) - Y(Zo) - r(t - Zo)] > ,u}
t>zo

< lP'{ sup [Y(t) - Y(Zo) - r(t - Zo) + d(t - Zo)1J] > ,u/2} +
t>Zo

lP'{ sup [X(t) - X(Zo) - d(t - ZoYI] > ,u/2}
t>Zo

= I + II,

where we take 1 > 'T/ > a/2 and d small.
We first deal with term 1. Observe that

n

d(Zn - Zo)1J ~ d2)Zi - Zi_1)1J,
i==l
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from which it follows that

I::; JlD{sup Sn > "(u/2},
n2:1

where Sn is a random walk with generic step size U = dT:ln + dT0f- rToff .
We can choose d small enough such that U has negative mean. Noting that dT~ff - rToff
is bounded from above, we conclude that the right tail of U is regularly varying. This

allows us to apply Veraverbeke's Theorem [45], yielding

1 100

I::; JlD{sup Sn > ,,(u/2} '" -lE{U} JlD{U > y}dy,
n2: 1 'Yu / 2

which is regularly varying of index 1 - 1/'fJ. We can choose 'fJ such that 1 - 1/'fJ > (1- I/)H
(i.e. 'fJ < H + l~H).

We now turn to term II. This term is somewhat easier: since X(t) has stationary incre
ments, we have

II = JlD{sup[X(t) - df7] > x}.
t>o .

This probability is decreasing faster than any polynomial, in view of Lemma 7.2.
Thus, we can conclude that, for any "( > 0

<JlD{supS(t) > u} N JlD{sup S(t) > (1- "()u}.
t2:0 t::;zo

(7.15)

We determine the probability on the right-hand side by conditioning upon the state of the
On-Off source at time O.

JlD{ sup S(t) > (1 - "()u} =
t::;zo

pJlD{ sup X(t) > (l-"()u}
t::;TJn

+ (1 - p)JlD{ sup [Y(t) + X(t) - rt] > (1 - "()u}.
t<T:ff+Ton

Using similar methods as above, it is straightforward to show that the second term is
regularly varying of index -1//H. From the proof of the lower bound, we already know that

the first term is regularly varying with index (1 - I/)/H. Hence, we conclude from (7.15)
and Lemma 7.1,

JlD{supS(t) > u}
lim sup _ t>O ::; (1 _ "()-(l-v)/H
u~oo pJE{B;(V-l)}JlD{T~n> ax(u)}

for all "( > o.
o

Corollary 7.1 In addition to the assumptions of Theorem 7.1, assume that X(t), t ~ 0

has stationary increments, and satisfies conditions C1-C2 with 0: = 1. Then,

Proof
Follows straightforwadrly from Theorem 7.1, combined with Proposition 2.1 in [17].

o
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8 Additional proofs

8.1 Proof of Lemma 3.1

Using the Borell inequality (Theorem D.1 in [40]), we obtain

TID{ sup X(s) > u}::; 2e-C';(t l - Qf,
OSs9

with q chosen such that

1
TID{ sup X(s) > qax(t)} ::; -,

OSs$t 2

for every t; we must show that such a choice of q is possible.

Define Xt(s) = X(st)/ax(s). From Lemma 4.2 in [17], we have that the process {Xt(s), 0 ::;

s ::; 1} converges to {BH(S), °::; s ::; 1} in C([O, 1]) as t ~ 00, with H = a/2. Since the
sup operator is continuous in C([O, 1]), we conclude that

TID{ sup X(s) > qax(t)} ::; TID{ sup Xt(s) > q} ~ JID{ sup BH(S) > q},
0$s9 O$s$1 O$s$l

as t ~ 00. This makes a proper choice of q obvious.
o

8.2 Proof of Lemma 3.2

Note that TID{X > x - ay(lx)} I'V TID{X > x - ay(lx)} implies that, for every E > 0, there

exists an x€ such that Q(x + ay(lx)) ::; Q(x) + E. Using the monotonicity of Q(.) and

iterating this bound n times we obtain, for Xo > x€,

Q(XO + nay(lx)) ::; Q(xo) + nE.

Taking n = (x - Xo)/E, we have

x
Q(x) ::; Q(xo) + Eay(lx)

Hence,

limsupay(lx)Q(x)/x ::; E
x~oo

for any E > 0. This gives the first assertion.
We proceed to prove that statements (i)-(iv) are all equivalent. The equivalence be

tween (ii) and (iii) is trivial. The equivalence between (i) and (ii) follows from the equiv

alence between (i) and (iii), combined with the bounds

(for suitable choices of (31, (32), which follow from Potter's theorem.
To prove that (i) implies (iv), we write, for some large M,

TID{W > x - Zay(lx) I Z > k}

< TID{X > x - Mkay(lx)} + roo z"Ye-z2/2ell:k2TID{W > x - zay(lx)}dz.
lMk

24



To bound the integral, we note that, by a similar argument as above, we have the bound

JlD{W > x - zoy(lx)} ~ efZJlD{W > x}.

Substituting this bound in the integral and invoking (i) then easily yields (iv). The reverse
implication is trivial.

o

8.3 Proof of Lemma 6.1

We only present the proof of (i). The proof of (ii) is analogous.
Let E E (0,1) be given. First, we note that Theorem 1.5.3(ii) in [9] implies that

(u + cAt)2 (u + A(1 + E)tu)2
min "" -'-----;:----'---'----'--

t2:(1 +e )tu 2cr].r (t) 2cr].r ((1 + E)tu )

since cr].r(t) is regularly varying of index ax < 2.
Hence, it suffices to show that

1
. Mx A(U)
1m ' < 1.

u-+oo (u+A(l+e)tu)2
20-Jc (( l+e )tu )

Using the fact that cr].r(t) is regularly varying, we have

lim MX,A(U) = 4(1 + E)Q =' (a) < 1
u-+oo (U+A(l+e)tu )2 (2 + Ea)2 . gf ,

20-Jc((l+e)tu)

since 9f (a) is strictly increasing in a and equals 1 if a = 2.

o

8.4 Proof of Corollary 6.1

By Proposition 2.1,

log(JlD{V1 > u}) "" -MX,A(U),

By Lemma 6.1,

M ()
< . (u + cAt)2

XAU"" mm .
, t2:(l-e)tu 2cr].r(t)

Let Xu(t) = ::2t. Using the Borell inequality (Adler [1]' p. 43), we obtain, for all U >°
JlD{V1([0, (1 - E)tuD > u} = JlD{ sup Xu(t) > 1}

tE[O,(l-e)tu]

(
. (u + CAt)2)< 2exp -(1 - JE{sup Xu(t)} f mIll 2 2 ( ) .

t2:0 t~(l-e)tu crX t

Since lim JE{sup Xu(t)} =°by Lemma 2.2 in D~bicki [13], we have
u-+oo t2:0

A <. (u + cAt)2
log(JlD{Vx ([0, (1 - E)tuD > u}) N - mm 2 ( )

. t~(l-e)tu 2crx t

Hence, log(JlD{V1([0, (1- E)tuD > u}) ,:S log(JlD{V1 > u}), which completes the proof of (i).
The proof of (ii) is analogous.

o
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8.5 Proof of Lemma 7.2

The proof relies on Theorem 3.1 in D~bicki [13], which states that it suffices to check that

TID{sup[X(t) - dt71 ] > u} -+ 0.
t>o

Sin~e o-i(t) is regularly varying at °with index (3, there exists aT> °such that

o-i(t) ~ o-i(1)t~,

and

Ii

(
Ii) t2exp -t2 ~ 1- 2

for every t E [0, T]. Moreover, let ko EN be such that o-i(t) ~ o-i(l) for every t ~ koT.
Now, for every 8 >°and u > 0,

(8.16)

00

TID{vl > u} < TID{ SUp X(t) - 8t > u} + L TID{ SUp X(t) .;... dt71 > U}
tE[O,koT] k=ko tE[kT,(k+1)T]

< TID{ SUp X(t) > U}
tE[O,koT]

~ Tm{ X(t) U + d(kT)71 }
+~.ll SUp --> .

k=ko tE[kT,(k+1)T] o-X(t) o-x((k + l)T)

Since lim TID ( sup X(t) > u) = 0, it suffices to bound the sum in (8.16).
u-+oo tE[O,koT]

Let Z(t) be a centered stationary Gaussian process with covariance function Cov{Z(s +
t), Z(s)} = exp (-t~). Note that for every s, t E [kT, (k + l)T] (k ~ ko),

o-i(t) + o-i(s) - o-i(lt - sl)
20-x (t)o-x (s)

> 1 _ o-i(lt - sl)
20-x (t)o-x (s)

> 1 _ o-i(lt - sl)
20-i(1)

Ii
> 1 _ It - sl2

2

> exp (-It - sl~)

= Cov{Z(s), Z(t)}.

Thus, for every k ~ ko and u ~ CT := lE{ sup Z(t)}
tE[O,T]

(8.18)

(8.17)
(

u + d(kT)71 )
< TID t:~j] Z(t) > o-x((k + l)T)

< 2 expHc,:~:~~i;) -CTn
where (8.17) follows from the Slepian inequality (Theorem C.1 in Piterbarg [40]), and
(8.18) is due to the Borell inequality (Theorem 2.1 in Adler [1]).

Tm{ X(t) U + d(kT)71 }
.ll sup -- > ----:---'-----'---,-

tE[kT,(k+1)T] o-x(t) o-x((k + l)T)
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Combining (8.16) with (8.18), we obtain

(

(
u+d(kT)'1 )2)

0011Jl X(t) u + d(kT)'fJ 00 2 lTx((k+l)T) - CT
Jr sup -- > < exp-k~' CElkT,lk+1171 ax(t) ax((k + l)T)) - k~" 2

as u ~ 00, since 7J > a/2. This completes the proof.

9 Conclusion

~o

We have analyzed the tail asymptotics of a fluid model fed by two stochastic processes,
of which at least one has subexponential characteristics. The results show that (i) the

question whether or not a RLE holds is determined by a number of structural properties

(ii) a wide variety of different asymptotics may arise when a RLE does not hold.

Several interesting questions remain to be explored. In particular, a restrictive assumption

that we made is that, in all cases, the tail of V~ is heavier than that of VX-. For example, the

case of two identical On-Off processes has only been treated for the case of regularly varying

On periods, see [46]. In case the On periods are Weibullian, the results are expected to be

fundamentally different; we refer to Likhanov et al. [34] for some interesting asymptotic
lower and upper bounds.

An exception is when X and Yare identical Gaussian processes, in particular, when both

X and Y are fractional Brownian motions (FBM). In that case, the process X(t) + Y(t)

is a fractional Brownian motion as well, and we have, due to the scaling property,

JlD{Vx+y > u} = JlD{Vi > u},

with C= c{1/2)1/2H.

Thus, JlD{ Vx+y > u} /JlD{Vx > u} ~ 00 for any value of c. We expect that the cor
responding case of identical On-Off processes with Weibullian On periods will lead to

fundamentally different results, depending on the value of the peak rate r.

Nevertheless, we believe that the similarities between Gaussian and On-Off processes

treated in this paper hold more generally. For example, we conjecture that the asymptotics

given in Section 5 remain the same when the On-Off process is replaced by a Gaussian

process, for example a FBM with Hurst parameter H E (~, i).
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