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Abstract 

We consider a polling system consisting of K queues and a single server S who visits 
the queues in a cyclic order. The polling discipline in each queue is the gated or exhaustive 
service discipline. We investigate the tail behaviour of the waiting time distributions at the 
various queues in the case that at least one of the service time or switchover time distributions 
has a regularly varying tail. 

1 Introduction 

Cyclic polling systems are queueing systems in which a server visits several queues in cyclic order. 
They have a wide range of applications in, e.g., computer communications, manufacturing and 
traffic. The abundant literature on polling systems (see [31, 32]) contains the exact analysis of 
polling systems for a large number of service disciplines, like the exhaustive and gated disciplines. 

Tail probabilities, which are especially helpful in understanding the performance of differ
ent polling disciplines, have received some attention in recent years. For models with Poisson 
arrivals, general service time and switchover time distributions, and various service disciplines, 
Choudhury and Whitt [14] have developed efficient iterative algorithms to compute the exact 
tail behaviour of, for example, the steady-state waiting time W, with the form, 

Pr{W > t} rv at(3e- rtt, t -t 00, (1.1) 

with 71 > 0 and a > O. Here f(t) !'oJ g(t} for t -t 00 stands for limHoo f(t}jg(t) = 1. Such tail 
behaviour occurs when the service time and switchover time distributions have finite moment 
generating functions, i.e., there is some positive real number s such that fh{-s) < 00 and 
O"k(-S) < 00; here (3k(') and O"k(') are the Laplace-Stieltjes transforms (LST) of the service time 
and switchover time distributions at the k-th queue respectively. Motivated by [14], and using 
analytic methods, Duffield [18] explores the relationship between the exponents (3 and 71 in (1.1) 
and their dependence (and sometimes independence) on the service time and switchover time 
distri butions. 

Recently it has become clear that delay and buffer content distributions in modern commu
nication networks often do not exhibit such an exponential tail behaviour [4, 25, 34]. It appears 
that input distributions like file size and transmission time distributions in many cases have 
a ell power tail behaviour, where v can be less than two - i.e., the variance is infinite. An 
important and useful class of such heavy-tailed distributions is the class of regularly varying 
distributions of index -v for 1 < v < 2, i.e., 

1 B(t) '" L{t)CV
, t -t 00, (1.2) 
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1 



where L(t) is a slowly varying function [6]. 
A key issue in present-day performance analysis is the influence of such heavy-tailed input 

distributions on the tail behaviour of the main performance measures, like waiting time and 
workload. In the case that the service time distribution has a regularly varying tail as specified 
in (1.2), the tail behaviour of the waiting time distribution has been investigated in queueing 
models with various service disciplines. For the GI/G/l queue with FCFS service discipline 
(cf. [15]) and the M/G/1 queue with LCFS Nonpreemptive service discipline (cf. [10]), the 
waiting time distribution has been proven to have a regularly varying tail of index 1 - v, which 
is one degree higher than that of the service time. An intuitive explanation is that, in those 
models, customers have to wait at least a residual service time which has a regularly varying 
tail of index 1 - v. For the M / G /1 queue with LCFS Preemptive Resume service discipline 
[10] and with processor sharing [35, 36], the sojourn time distribution is regularly varying of 
index -v, which is the same as that of the service time. In [1, 11], the M/G/1 queue with 
two classes of customers and fixed priorities was studied. If at least one of the service time 
distributions has a regularly varying tail, then the waiting time distribution of the low-priority 
customers is regularly varying of index one higher than that of the service time distribution with 
the heaviest tail. In the non-preemptive case, a similar result holds for the tail of the waiting 
time distribution of the high-priority customers (in the preemptive-resume case, high-priority 
customers are not affected by low-priority customers). 

In view of the central role of polling in computer-communication networks, it is of importance 
to study the effect of heavy-tailed service and/or switchover time distributions on waiting-time 
tail behaviour in polling systems. That is the goal of the present paper. We consider waiting time 
(and, briefly, workload) tail behaviour for cyclic polling systems with Poisson arrivals, general 
independent service times, general independent switchover times, and the gated or exhaustive 
service discipline. At each queue, customers are served in the order in which they arrive at each 
queue. Our main result is the following. If at least one of the service time and/or switchover 
time distributions has a regularly varying tail of index -1/ (1/ > 1) and the others have a lighter 
tail, then the waiting time distribution at each queue is regularly varying of index 1 - v, i.e., 

Pr{Wk > t} '" aktl-II L(t), t -+ 00, 

for ak > 0, where Wk is the steady-state waiting time at the k-th queue. 
The rest of this paper is organized as follows. Section 2 contains the model description. 

Section 3 presents an explicit formula for the LST of the waiting time distribution given in 
[7, 8], that will be the starting-point of the tail investigation. This distribution is expressed in 
the generating functions of particular queue length distributions; those are discussed in Section 
4. The main theorems are provided in Section 5, in which the tail behaviour of the waiting time 
distribution is given under the assumption that at least one of the service and/or switchover 
time distributions is regularly varying. Section 6 is devoted to the proof of Theorem 5.1 which 
describes the tail behaviour of the intervisit time distribution in the case of exhaustive service 
and the tail behaviour of the cycle time distribution in the case of gated service. Section 7 
contains some conclusions and suggestions for further research. Finally, Appendix A provides 
preliminaries relating the asymptotic behaviour of a distribution function to the behaviour of its 
LST near the origin (the proof of our main result heavily relies on this), and Appendix B gives 
some results on the first moment matrix which playa key role in the proof of our main result. 
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2 Model description 

We consider a polling system consisting of K (K 2:: 2) queues, Ql, ... , QK, attended by a single 
server S. Customers arrive at Qk, k = 1, ... , K, according to a Poisson process with rate >"k and 
require a generally distributed service time Bk having distribution function BkO, finite first 
moment {:Jk and LST (:Jk(')' In the sequel, customers arriving at Qk are also referred to as type-k 
customers. 

The server visits the queues in a strictly cyclic order, i.e., Q1, ''', QK, Q1> ... , QK, Ql, .... The 
service policy at each queue is either gated or exhaustive; we do allow mixtures, like gated service 
in Ql and Q3 and exhaustive service in the other queues. In gated service, the server serves 
at a queue exactly those customers that are present at the start of his visit of the queue. In 
exhaustive service, the server continues to work at a queue until it becomes empty. In this paper 
we consider both the model with and without switchover times. In the model with switchover 
times, when moving from Qk to Qk+b the server incurs a generally distributed switchover time 
Sk, having distribution function SkO with finite first moment O'k and LST O'k(} Here, we use 
the convention that QK+l = Ql. The server continues switching even when the whole system 
is empty. In the model without switchover times, when the system becomes empty the server 
makes a full cycle (i.e. passes all the queues at least once) and subsequently stops right before 
Q1. When the first new customer arrives, S cycles along the queues to that new customer. 

Let us denote by >.. := rJf==1 >"k the total arrival intensity of customers, by Pk := >"k{:Jk the 
traffic load at Qk, and by p := 2:f:1 Pk, the total traffic load. As has been stated for example 
by Eisenberg [19], Fricker & Jaibi [20] and Resing [27], the condition P < 1 is a necessary and 
sufficient condition for ergodicity of a cyclic polling system with gated or exhaustive service. 
From now on, we assume that this ergodicity condition is satisfied. 

3 The waiting time distribution 

Let Wk denote the stationary waiting time of type-k customers, with distribution function Wk (.) 
and LST Wk{')' In this section we give an explicit formula for Wk(S), as provided by Borst and 
Boxma [8] (see also [30]). Let WkIM/G/llwith LST wkIM/G/l(')' denote the waiting time of an 
arbitrary customer in the 'corresponding' isolated M/G/l queue of Qk and let NkII' with pgf 
(probability generating function) nklIO, denote the queue length at Qk at an arbitrary epoch 
in a non-serving interval for Qk. The formula for Wk(S) is based on the following decomposition, 
cf. Keilson and Servi [24], 

Wk(S) = E[e-SWk ] = wkIM/G/l(s)nkII(1 S/>"k), Re S 2:: O. (3.1) 

By Pollaczek-Khinchine's formula, wkIM/G/l(S) is given by 

WkIM/G/l(S) = E[e-SWkIM/G/l] = 1- Pk 1 1-tlk(S) , 
-Pk~ 

Re S 2:: O. (3.2) 

Introduce Xk, the queue length at Qk at the beginning of a visit to Qk, and Yk, the queue length 
at Qk at the end of a visit to Qk. Borst and Boxma [8] represent nklI(1 S/>"k) as 

with 

Yk(S) - Xk(S) 
S(EXk - EYk)/>"k' 

3 

Re S 2:: 0, (3.3) 

(3.4) 



To get a better understanding of the function nklI(1 - S/Ak), we introduce the following 
random variables. For k = 1, ... , K, let Ok denote the cycle time of Qk, i.e. the time between 
two successive arrivals of the server to Qk, Dk the station time of Qk, i.e. the time between an 
arrival of the server to Qk and the next departure of the server from Qk, and Ik the intervisit 
time of Qk, i.e. the time between the departure of the server from Qk and his next arrival to 
Qk. The distribution functions of Ck,Dk and Ik are denoted by Ok('),Dk('),Ik(-) respectively. 
Furthermore, let lie be the residual intervisit time, with probability density function l-i;P). As 
has been pointed out in [2], the ergodicity condition implies the stationarity of the cycle times, 
the station times and the intervisit times. 

In the case of exhaustive service, apparently Yk = 0 and thus E[yYk] =1. On the other hand, 
the customers observed by the server at a visit beginning epoch must have arrived during the 
previous intervisit time. Since the arrival process at Qk is a Poisson process with rate Ak, the 
generating function of the distribution of the number of arrivals during the previous intervisit 
time is related to the LST of the intervisit time distribution function as follows: 

E[yXk] = E[e-Ak(l-y)Ik]. 

Thus it follows from the above relation and (3.4) that Xk(S) = E[e-sIk ], which in combination 
with (3.3) implies that nklI(1 S/Ak) = E[e-SIZ], i.e., nkII(1- S/Ak) is in fact the LST of the 

residual intervisit time. Furthermore, the following well-known result is implied by (3.1) ( g, 
denoting equality in distribution): 

(3.5) 

where Wk IM / G/ l and Ii are independent. 
In the case of gated service, using similar arguments as in [16], Xk and Yk can be considered 

as the number of arrivals during the time interval of length Ok and Dk, respectively, and thus 
Xk(S) = E[e-SCk ] and Yk(S) = E[e- sDk ]. It is readily seen that 

nklI(1 S/Ak) = E[e- SUk
], (3.6) 

for some non-negative random variable Uk with density function Digt~~1~) Thus it follows 
from (3.1) that 

d 
Wk = WkIM / G/ l + Uk, (3.7) 

where WkI M / G/ l and Uk are independent. The probabilistic meaning of Uk is: Uk = Dk + Ii, 
cf. [5] for the case of nonzero switchover times; it is the sum of the station time Dk and the 
subsequent excess intel'visit time Ii (that depends on Dk)' 

4 Joint queue length distribution 

In order to obtain an explicit expression for the LST Wk(S) of the waiting time distribution, we 
need an expression for the generating functions of the queue lengths Xk and Yk at the beginning 
and end, respectively, of a server visit to Qk (see (3.1) and (3.3)). We first concentrate on 
an expression for Fk(Z) and Gk(z), Z = (Zb ... , ZK )T, IZjl :5 1, j = 1, ... , K, the pgf of the joint 
queue length vector at visit beginning and visit completion epochs. Here, we follow the approach 
of Resing [27]. In fact, in [27] a more general class of service disciplines called Bernoulli-type 
service is considered, which contains the gated and exhaustive service disciplines. This class of 
service disciplines satisfies the following property. 
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Property 4.1 If the server arrives at Qk to find nk customers there, then during the course 
of the server's visit, each of these nk customers is effectively replaced in an i. i. d. manner by a 
random population having pgf hk (z). 

The gated and exhaustive service discipline both satisfy this property. In these cases the 
functions hk (z) are, respectively, given by 

K 

hk(z) f3k(2::: Aj(l- Zj)), (4.8) 
j=l 

which is the pgf of the joint distribution of the numbers of arrivals at all queues during one 
service time at Q k, and 

hk(z) = 'TJk{L: Aj{l- Zj)), (4.9) 
j# 

where 'TJk(-) denotes the LST of the length of a busy period in an isolated M/G/1 queue with 
arrival rate Ak and service time distribution Bk(')' In the case of exhaustive service, the function 
hk(z) represents the pgf of the joint distribution of the numbers of arrivals at all other queues 
during a busy period of Qk when this queue was in isolation. 

In the remainder of this section, we prefer to consider the queue length pgf for the class of 
service disciplines that satisfy Property 4.1; it may be worthwhile to investigate whether/how 
the results of the present paper can be generalized to the case of that general class. For service 
disciplines satisfying Property 4.1, the pgf's Gk(Z) (queue length at departure epochs of the 
server from Qk) can be nicely related to the pgf's Fk{Z) (queue length at arrival epochs of the 
server at Qk), for k = 1, ... ,K, by 

Gk(Z) = Fk(Z}, ... , Zk-l, hk(Z), zk+l, ... , ZK). 

Next, define for IZj I :::; 1, j 1, ... , K the functions 

f(z) := (h(z), ... , fK{Z))T, 

with 

fk(Z) := hk(zl, ... , Zk, fk+l(z), .. " fK(z)), 

and the iterates 

f(O)(z) ._ Z, 

f(i)(z) ._ f(f(i-l)(z)), i ~ 1. 

(4.10) 

(4.11) 

(4.12) 

In the following we distinguish between the case with and the case without switchover times. 

Zero switch over times 
In the sequel we add a superscript 0 for the case of zero switchover times, in order to distinguish 
its quantities from those for the case with switchover times. The pgf's F20 and G~_l (-) are 
related by 

F2(z) = GLl(Z), for k 2, ... ,K, (4.13) 

K 

Ff(z) = G~(z) - FP(O)(L: ;. (1 - Zj)), 
j=l 

(4.14) 
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where 0 stands for the K-dimensional vector with all components equal to zero. Equation (4.14) 
is obtained by using the special convention that when the system is empty at the start of a visit 
to Ql, the next visit does not take place until a customer has arrived. In fact Ff(z) satisfies the 
functional equation 

K 

F?(z) = F?(f(z)) - F?(O) I: ~ (1 - Zk), 
k=l 

(4.15) 

the solution of which is, after iteration, given by 

(4.16) 

with 

The infinite sum 2::~1 2::f=l Ak (1- f~i) (0)) is convergent when the ergodicity condition is fulfilled. 
Once we know FNz), we immediately get, by using (4.10) and (4.13), the pgf F~(z) ofthe joint 
queue length distribution at a visit beginning epoch, 

F~(z) = F~_I(Zl,,,,,Zk-2,hk-l(Z),Zkl,,,,ZK)' for k = 2, ... ,K. 

Furthermore, by the Relations (4.13) and (4.14) we get an expression for GZ(z), 

GZ(z) F~+1 (z), for k = 1, ... , K 1, 

G~(z) = F?(z) + FP;O\tAj(l Zj)). 
j=1 

Non-zero switchover times 
In the case of non-zero switchover times, the following equations relate Fk (z) to G k-l (z): 

K 

Fk(Z) = Gk-l(z)ak-l(I:Aj(l Zj)), for k = 2, ... ,K, 
j=1 

K 

F1(z) = GK(Z)OX(I: Aj(l- Zj)). 
j=1 

Together with Equation (4.10) this leads to the functional equation 

F1(z) = Fdf(z))g(z), 

with 

KkK 

g(z) = II ak(I: Aj(l - Zj) + I: Aj(l - h(z)). 
k=l j=1 j=k+l 

6 
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(4.19) 

(4.20) 

(4.21) 

(4.22) 



The solution of (4.22) is given by 

00 

F1{z) = II g{f(i)(z)) 
i=l 

00 KkK 
= II II Gk(L Aj(l- fY)(z)) + L Aj{l- fJi+l)(Z))). (4.23) 

i=I k=l j=l j=k+l 

Again, the infinite product is convergent when the ergodicity condition is fulfilled. 
To make the obtained queue length pgf expressions suitable for the analysis of waiting time 

tail behaviour, we have to slightly rewrite them (we want to move from pgf asymptotics near 1 
to LST asymptotics near 0). 
Put r:= (TI' ... , TK)T, where 0 ~ Tk ~ Ak, and relate z to r by z = (1- TIIA!, ... , 1- TK/AK)T. 
If we define Fk(r) := Fk{z) and Gk(r) := Gk(Z), then it follows from (4.10) that 

with 

{ 

Ak(l - .Bk(I:f=l Tj)), 

Ak(l -1}k(I:j# Tj)), 

for gated service, 

for exhaustive service. 

Furthermore, we define similarly as in (4.11) and (4.12) the functions 

f(r):= (il(r), ... ,iK{r)f, 

with 

and the iterates 

f{O)(r) .- r, 

¥(i)(r) ._ f(f(i-l)(r)), i 2:: 1. 

(4.24) 

(4.25) 

( 4.26) 

In the following we distinguish again between the cases of zero switchover times and non-zero 
switchover times. 

Zero switchover times 
The following equations relate F~(r) to GLl(r). It follows from (4.13) and (4.14) that 

F~(r) G2_1(r), for i = 2, ... ,K, (4.27) 

-0 K 

Fp(r) = G~(r) - FIlA) L Tj, 
j=l 

(4.28) 

where A = (AI, ... , AK). Introduce, for 0 < rk < Ak, k 1, ... , K, 

00 K 

H(r) = L L i~i)(r), (4.29) 
i=l k=l 
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which is well-defined if the ergodicity condition is fulfilled. Then, by (4.16), we can write 

F?(r) := Ff(z) 1 - Pf(A)H(r)/)... (4.30) 

By using (4.24), (4.27) and (4.28), one can derive expressions for Pf(r) and G2(r), k = 1, , .. ,K. 

Non-zero switchover times 
It follows from (4.20) and (4.21) that 

Put 

K 
Fk(r) = Gk- 1(r)O"k-l{LTj), fork=2, ... ,K, 

j=l 

K 

GK{r)O"K(L Tj), 
j=l 

KkK 
g(r) := IT O"k(L Tj + L Jj(r)). 

k=l j=l j=k+l 

Replacing z = (1 TIl).. 1 , .. " 1 rK/)..K) into (4,23), we obtain 

00 

FHr) = IT g(f(i) (r)) 
i=1 
00 KkK 

= IT IT O"k(L J?)(r) + L J?+1)(r)), 
i=l k=l j=1 j=k+l 

(4,31) 

( 4.32) 

(4,33) 

the infinite product being convergent for 0::; rk ::; )..k, k = 1, .. " K, when the ergodicity condition 
is fulfilled. By using (4,24), (4.31) and (4.32), one can derive expressions for G'I(r), Ch(r), F'k(r) 
(k = 2, .. " K) immediately. 

Marginal queue length pgf 
As a final step towards the waiting time LST (see (3.1) and (3.3)), we now obtain the pgf of 
the marginal distributions of the queue lengths X k and Yk at the beginning and end of a server 
visit to Qk. For simplicity we define e = (1, .. " 1)T and for k = 1, ... , K, ek (0, .. " 0,1,0, , .. , O)T 
with the k-th component being 1. Taking r = ekS in (4.30) for the case of zero switchover times 
(add a superscript "0") or in (4.33) for the case of non-zero switchover times, we get 

(4.34) 

( 4.35) 

5 The main result 

In this section we shall present our main result: If at least one of the service and/or switchover 
times is regularly varying of index -v (v > 1) and the other service and/or switchover times 
have a lighter tail, then the waiting time distribution is regularly varying of index 1 - v. As a 
by-product, we also show that the intervisit time distribution at Qk (k 1, .'" K) in the case 

8 



of exhaustive service and the cycle time and station time distributions at Qk (k = 1, ... , K) in 
the case of gated service are all regularly varying of index -v. 

As pointed out in Section 3, Wk can be represented as the sum of two independent random 
variables WkI M/G/ i and Vk where Vk = Ik is the residual intervisit time in the case of exhaustive 
service and Vk = Uk where the LST of Uk is given by (3.6) in the case of gated service. The 
relation between 1 WkIM/G/l (t) and 1 - Bk(t) for t -+ 00 is already well known if the residual 
service time has a subexponential tail (this contains the case of a regularly varying tail), 

A tX) 
1- WkIM/G/1(t) '" 1- P }x=t(1- Bk(x))dx, t -+ 00, (5.1) 

cf. [26]. In the following we first investigate the tail behaviour of the distribution of Vk by 
analyzing the asymptotic behaviour of its LST nkll(1 - 8/ Ak) for 8 .} 0, and we subsequently 
derive the tail behaviour 1 - Wk(t) of the waiting time distribution for t -+ 00. 

Without loss of generality, we shall only analyze the explicit expression (3.3) of nkll(1 8/ Ak) 
for k = 1. Combining (4.24), (4.34) and (4.35) yields 

(5.2) 

If the asymptotic behaviour of Xl (s) for S .} 0 is known, we can obtain the asymptotic behaviour 
of VI(S) for s.} 0 immediately by using Lemma 8.3 in Appendix A. 

Assume that the tail behaviour of the service time and switchover time distributions is such 
that, for k 1, ... ,K: 

1 Bk(t) = [bk + o(l)]e ll L(t), t -+ 00, 

1 Sk(t) [Sk + 0(1)]e ll L(t), t -+ 00, 

(5.3) 

(5.4) 

where bk, Sk 2:: 0 and L(·) is a slowly varying function; such a distribution is called regularly 
varying in case the constant (bk or Sk) is positive. For ease of presentation, we take the same 
function L(-) for all distributions, but one can easily change this into different slowly varying 
functions for different distributions. Note that the possibility that bk = 0 or Sk = 0 implies 
that we do allow the possibility that some of the service and/or switchover time distributions 
have an exponential tail, or a regularly varying tail that is less heavy than ell. According to 
Lemma 8.1, the tail behaviour of the service time and switchover time distributions as given in 
(5.3) and (5.4) is equivalent with the following behaviour of their LSTs PI (S), ... , PK(S) (of the 
service time distributions) and Ul(S), ... , UK(S) (of the switchover time distributions): 

m 

1- Pk(S) = 2)-1)J+lPk,jsj + (-1)mpk,lIsIIL(1/s) +0(sIIL{1/s)), k = 1, ... ,K, (5.5) 
j=l 

m 

1 Uk(S) = :l)-1)J+1uk,jsj + (_l)'muk,lIs IIL(l/s) + 0(8 I1 L(1/8)), k = 1, ... ,K, (5.6) 
j=l 

where m < v < m+ 1, Pk,j > 0, Pk,1I 2:: 0, Uk,j > 0 and Uk,1I 2:: 0 for j 1, ... , m, k = 1, .,', K, Note 
that Pk,l = Pk, Pk,1I = (-l)mr(1 v)bk, Uk,l = Uk and Uk,1I = (-1)mr(1 V)Sk for k 1, ... , K, 
and Uk (8) 1 if the switchover time is zero. In order to simplify the proof of Theorem 5.1 below 
in Section 6, we assume, without loss of generality, that sIIL(1/s) is a non-decreasing function 
for 8 > O. 
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It follows from the main result of [17], that the asymptotic behaviour of the LST 17k (s) of 
the length of the busy period in the 'corresponding' isolated M/G/l queue of Qk is given by 

m 

1 17k(S) = I) -l)j+l17k,jsj + (-l)m17k,vSv L{I/s) + O(SV L(I/s)), k = 1, ... , K, (5.7) 
j=l 

where 17k,l = f3k/(1 - Pk) and 17k,v = f3k,v/(I - Pk)" and 17k,j > 0 for j = 1, ... , m. 

Theorem 5.1 If Relations {5.5} and (5.6) hold, then 

m 

Xl(S) = 2:)-I)jxl,jSj + (-I)m+lXl,vsVL(I/s) +o(sVL(I/s)), (5.8) 
j=O 

where XI,j 2:: 0 for j = 1, ... , m and Xl,v 2:: O. Moreover, Xl,v = 0 if and only if~f!=1 (f3k,v+ak,v) = 
o. 

Proof. See Section 6. 0 

The next corollary, which follows immediately from Theorem 5.1 and Relation (5.2) by using 
Lemma 8.3 in Appendix A, characterizes the asymptotic behaviour of Yl (s) for s .J.. 0 in the gated 
case. Remember that Yl (s) == 1 if the service discipline at Ql is exhaustive. 

Corollary 5.1 In the case of gated service at Ql, if {5.5} and (5.6) hold, then 

m 

Yl(S) I:(-l)jYl,jsj + (-l)m+lYl,vsVL(I/s) + 0(8V L(I/s)), 
j=O 

where Yl,j 2:: 0 for j = 1, ... , m and Yl,v 2:: o. Moreover, Yl,v = xl,1f31,v + Xl,vpt· 

It is now easy to give the asymptotic expansion of n111(1 - S/)..l) for s.J.. O. 

Corollary 5.2 If (5.5) and {5.6} hold, then 

m-l 

n1jl{I - s/)..t} = I: (-I)jnlll,jsj + (_1)mnllI,vsv L(l/ 8) + 0(8V L(l/ 8)), 
j=l 

(5.9) 

(5.10) 

where nIlI,j > 0 for j = 1, ... , m - 1 and nlll,v 2:: O. Moreover, if ~f!=l (f3k,v + ak,v) > 0, then 
nljI,v > O. 

Proof. By (3.3), (5.8) and (5.9), (5.10) follows. As shown in Section 3, nlII(1- S/)..l) is the 
LST of some non-negative random variable. Thus nIII,j > 0, n1jl,v 2:: 0 in (5.10). Again by 
(3.3), nIII,v Al(XI,v - Yl,v)/(EXI EYd where Yl,v = xl,1f31,v + Xl,vpt. By using Formula 
(6.5) from the next section for the case of zero switchover time or Formula (6.40) for the case 
of non-zero switchover time, we can prove that nllI,v > 0 if ~f!=l(f3k,v + ak,v) > O. 0 

Applying Lemma 8.1 in Appendix A, we get the following theorem on the relation between 
the tail behaviour of the service time distribution and that of the intervisit time, cycle time, 
station time and waiting time distributions from the above results. 
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Theorem 5.2 Suppose the tail behaviour of the service time and switchover time distributions 
is such that 

1 - Bk(t) = [bk + o(l)]CV L(t), t -7 00, 

1 - Sk(t) = [Sk + o(l)]rV L(t), t -7 00, 

(5.11) 

(5.12) 

where bk, Sk ~ 0, LO is a slowly varying function and k = 1, ... , K. Then in the case of 
exhaustive service at Ql, the tail behaviour of the intervisit time and waiting time at Ql satisfies 
the following relations: 

1 - h(t} [Cl + o(l)]rV L(t), t -7 00, (5.13) 

1- W1(t) = [C2 + 0(1)Jt1
-

V L(t), t -7 00; (5.14) 

in the case of gated service at Ql, the tail behaviour of the cycle time, station time, Ul with LST 
given by {3.6} and waiting time at Ql is given by 

1 C1 (t) = [C3 + o(l)]rV L(t), t -7 00, (5.15) 

[C4 + o(l)]t-V L(t), t -+ 00, (5.16) 

[C5 + 0(1)Jt1
-

V L(t), t -700, (5.17) 

1 - Wl(t) = [ct; + 0(1)]t1
-

V L(t), t -7 00, (5.18) 

where Cr are nonnegative constants for r 1, ... ,6. Moreover, if I:f=l (bk + Sk) = 0, then Cr = ° 
for r = 1, ... , 6; if I:f;;;:;;1 (bk + Sk) > 0, then Cr > 0 for r = 1, ... , 6. 

Proof. In the case of exhaustive service at Ql, applying Theorem 5.1 and Lemma 8.1 in 
Appendix A, (5.13) follows immediately. Combining (3.5), (5.1), (5.13) and using Lemma 7.7 in 
[12] yields (5.14) where 

Albl Cl 

C2 (1 - pt}(v - 1) + Ell(v 1)' 

In the case of gated service at Ql, Relations (5.15) and (5.16) follow immediately from Theorem 
5.1, Corollary 5.1 and Lemma 8.1 in Appendix A. Relation (5.17) follows from Corollary 5.2. 
Combining (3.5), (5.1), (5.13) and using Lemma 7.7 in [12] yields (5.14) where 

Albl C5 
..,-----~=----:- + --
(I Pl)(v-1) v-I' 

It is easy to see that if I:f=l (bk + Sk) = 0, then Cr 0 for r 1, ... , 6; if I:f==1 (bk + Sk) > 0, 
then Cr > a for r = 1, ... ,6. 0 

By symmetry, Theorem 5.1 and Corollaries 5.1, 5.2 hold not just for Ql but for each queue. 
Thus Theorem 5.2 also holds for each queue. 

Remark 5.1. In order to get explicit expressions for Cr in the above theorem in terms of bk 
and Sk for k 1, ... , K, one can refer to Relation (6.5) in the case of zero switchover time or 

11 



Relation (6.40) in the case of non-zero switchover time. 

Remark 5.2. Consider the M /G /1 queue with repeated vacations. The server continues serving 
until the system has become empty, and then takes a vacation V. If the system is still empty 
after this vacation, then he takes another vacation, etc.; successive vacations are independent 
and identically distributed. Fuhrmann and Cooper [21] have proven the following decomposition 
result: 

Wwith = WMIG/I + V*, (5.19) 

where Wwith (WMIG/l) denotes waiting time in the model with (without) vacations and V* has 
the equilibrium {residual lifetime) distribution of Vi W MIG/1 and V* are independent. 
This vacation queue is a special case of the polling model with switchover times and exhaustive 
service; take N = 1. Asmussen et aI. [3] have proven the following result, for the M/G/l vacation 
queue with residual vacation or residual service time distributions that belong to the class S of 
subexponential distributions (which contains the class of regularly varying distributions): 
(i) If the equilibrium service time S* E S and if P(V* > x) = o(P(S* > x)) as x -+ 00, then 

P(Wwith > x) f'.J -1 p P(S* > x), x -+ 00; 
-p 

(ii) If the equilibrium vacation time V* E S and if P(S* > x) = o(P(V* > x)) as x -+ 00, then 

P(Wwith > x) f'.J P(V* > x), x -+ 00; 

(iii) If the equilibrium service time S* E S and if P(V* > x) ,..., cP(S* > x) as x -+ 00 for some 
c;::::: 0, then 

P(Wwith > x) rv (c + -1 p )P(S* > x), x -+ 00. 
-p 

In the polling model one might also try to prove that the waiting time distribution is subexpo
nential in the case of subexponential service and/or switchover time distributions. However, at 
least in the case of exhaustive service at some queue Qk, this requires solution of the following 
open problem, that seems quite hard (cf. [3]): Is the busy period distribution of M/G/l queue 
Qk in isolation sub exponential, when its service time distribution is sub exponential? (Notice 
that the busy period distribution of Qk appears prominently in hk{Z) and Jk(r), cf. (4.9) and 
(4.26)). 

Remark 5.3. In the present paper we have concentrated on the tails of the waiting time 
distributions. It is slightly easier to study the tail behaviour of the total workload distribution 
in a polling system. Boxma and Groenendijk [13] (cf. also Boxma [9] for generalizations) have 
proven the following workload decomposition for a broad category of multiclass queueing systems 
with Poisson arrivals and server vacations a category that includes cyclic polling systems with 
switchover times: 

U = UMIG/l + Z, (5.20) 

UMIG/l and Z being independent. Here U is the steady-state workload in the system, UMIG/l 
is the steady-state workload in the corresponding M/G/l queue to which the multiclass system 
reduces when there are no switchovers, and Z is the steady-state workload at an arbitrary time 
during a vacation. Takagi et aI. [33J provide an expression for the LST of the distribution of Z, 
in the case of either exhaustive or gated service at all queues. Using that expression and the 
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above decomposition result, one can apply the technique in Section 6 of this paper to obtain 
similar tail behaviour results for the workload as for the individual waiting times. 

Remark 5.4. In the M / G /1 FCFS queue, if the service time distribution is regularly varying of 
index - v (v > 1), then the waiting time distribution is regularly varying of index 1 v. However, 
the M/G/l queue with the LCFS preemptive resume discipline has the attractive feature that 
the waiting time distribution is regularly varying of index -v only [10]. In the polling system 
with a LCFS preemptive resume discipline within a queue visit of the server, customers may 
have to wait a residual cycle time (in the case of gated service) or a residual intervisit time (in 
the case of exhaustive service), and these are regularly varying of index 1 v. Thus one cannot 
expect to get a 'better' index than 1 v by providing LCFS preemptive resume service within 
a queue visit of the server. 

6 Proof of Theorem 5.1 

We shall prove the cases of zero and non-zero switchover times separately. We restrict ourselves 
mainly to the cases in which all queues are served according to the same discipline (gated, or 
exhaustive) j the proofs require only minor adaptations in the case of mixtures of these disciplines. 

1. The case of zero switchover times 
Using (4.30) and (4.34) we have 

Xl{S) = pp(els) = 1- Pp(A)H(els)/>'. (6.1) 

In the following we concentrate on determining the asymptotic behaviour of H(els) for s .J.. o. 
We shall prove that 

m 

H(els) = ~HI,jsj + (-I)mHI,vsvL(I/s) +o(sVL(I/s)), s.J.. 0, (6.2) 
j=l 

for some constants HI,i where j = 1, ... , m and HI,v 2:: O. The proof of Relation (6.2) is divided 
into three steps. In the first step, we construct a new function P(·) which has a similar structure 
as H(·). In the second step, we shall show that the asymptotic expansion of this function is 
given by 

m 

P(els) ~Pl,jsi+O(sm+1), fors.J..O. 
j=l 

Finally, in the third step we will show that 

lim H(els) - P(els) = (_I)m H 
8,/.0 SV L(I/ s) l,v, 

(6.3) 

(6.4) 

for some non-negative constant H 1,v. Clearly, Relation (6.2) follows by combining (6.3) and 
(6.4). Once we have proven (6.2), the proof of Theorem 5.1 is almost completed. Substituting 
(6.2) into (6.1) and noting that Xl(S) is the LST of some non-negative random variable (cycle 
time if the service discipline at Q1 is gated service or intervisit time if the service discipline at 
Ql is exhaustive service) yields Formula (5.8) of Theorem 5.1, where 

(6.5) 
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Step 1: Similarly as we constructed the function HO in Section 4, we now construct the 
function PC). So, define (cf. (4.25), and notice that we take Ak times the first m terms in the 
righthand sides of (5.5) and (5.7)): 

and 

with 

{ 

AkL~1(-1)j+I,Bk,j(Ef=lri)j, for gated service, 
~k(r} := 

m '+1 ' Ak Lj=1 (-1)) 1Jk,j(Li# riP, for exhaustive service, 

and the iterates 

p(O) (r) ._ r, 

p(i)(r) := p(p(i-l)(r)), i;::: 1. 

The function P(·) is defined by 

00 K 

P(r) := L LP1i)(r). 
i=l k=1 

(6.6) 

{6.7} 

(6.8) 

In Lemma 6.2 we shall prove that the infinite sum in (6.8) is well-defined. Before we can 
do that we first need to prove Lemma 6.1. In the following we make the convention that 
Ivl = (lvII, ... , JvnDT where v is an n-dimensional vector and v::; u if and only if Vk ::; Uk for all 
k 1, ... , n. For the definition of M, we refer to Appendix B. 

Lemma 6.1 There exists a 01 > 0 such that p(r) ::; Mr for 0::; r ::; Ole. 

Proof. For k = 1, ... , K, it is easy to check that 

d {[1S Ak (1 ,Bk(s))L=o Pk, 
-~k(els) ::; 

ds [1sAk(1 -1Jk(s))L=o = 1 ~kpk 

for gated service, 

for exhaustive service, 

for 0 < s < 01 where 01 is some positive constant. Therefore, we have 

< {Pk[r1 + ... + rk + Pk+I(r) + ... + PK{r)]' 

~[rl + ... + rk-l + Pk+l(r) + ... + PK{r)], 
1- Pk 

Rewriting the above inequalities in terms of matrices, 

p(r) ::; Br + Ap(r), 
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where the matrices A and B are given by (8.8) and (8.9) respectively in Appendix B, it follows 
from the fact that (I - A)-l is a nonnegative matrix that 

p(r) ~ (I - A)-lBr = Mr. 

Now we are able to prove that the infinite sum in (6.8) is well-defined. 

Lemma 6.2 There exists a 01 > 0 such that P(els) < 00 for 0 < S < 01. 

Proof. It follows from Lemma 6.1 that there exists 0'1 > 0 such that for 0 < S < 01, 

p(e1S} ~ Mels, 

Iterating (6.10) leads to 

p(i)(els) ~ Mie1s, i = 1,2, .... 

Summing up the above relations, we get 

00 

L p(i)(els) ~ (I 
i=l 

which implies that 

K 00 

L LP~)(els) ~ eT(1 
k=l i=l 

Actually, dividing by s in (6.10) and taking the limit for s ../.. 0, we obtain 

[~p(els)] = Mel. 
s 8=0 

o 

(6.10) 

(6.11) 

o 

Equality is seen to hold because the first inequality in the proof of Lemma 6.1 also reduces to 
an equality for s ../.. O. By using similar arguments as in the proof of Lemma 6.2, it is easy to 
derive from (6.11) that 

T - -1-
PI,1 = e (I -:- M) Mel. (6.12) 

This relation is used in the proof of Corollary 5.2. 

Step 2: The asymptotic expansion (6.3) is proved in the following lemma. 

Lemma 6.3 The function P(els) defined by {6.8} has the following expansion in the neighbour
hood of the origin, 

m 

P(e1s) = L Pl,jsj + O(sm+l), for s../.. O. 
j=l 
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Proof. First, we observe that for all k = 1, "" K and all i = 1,2, ,." the functions p~i)(els} are 
polynomials in s, Le., 

( i) n k 

"p(i).si L-- k,) , 
j=l 

where n~i) = mKi-k+l. It remains to prove that 

(6.14) 

for ° ~ s ~ 62 . Because, if equation (6.14) holds, we can interchange the order of summation 
below, 

for ° ~ s ~ 62 . Therefore, the expansion (6.13) follows from (6.15) immediately. 
In order to prove (6.14), we define a function q : RK H- RK, 

and its iterates 

q(i)(r) := q(q(i-l){r)), i 2:: 1. 

(6.15) 

(6.16) 

Next we show that the infinite sum I:~l I:f=l qii)(r) converges in a neighbourhood of the 
origin. By the definition of q(r), using similar arguments as in the proof of Lemma 6.1, it follows 
that for any E > 0, there exists 61 > 0 such that, for 0 ~ r ~ 61 e, 

o ~ q(r) ~ (1 + E)Mr, 

where the entries of M are given by (8.5). Let amax < 1 be the maximal eigenvalue of M. 
Taking E = {1/amax - 1)/2, then the maximal eigenvalue of (1 + E)M is also less than 1. Thus, 
applying similar arguments as in the proof of Lemma 6.2, it follows that 

00 K 
L Lqii)(r) < 00, (6.17) 
i=l k=l 

for 0 ~ r ~ 62e for some 62 > O. Similar as was observed for p~i)(e1s), we see that also the 

functions qii) (el s), for all k and i, are polynomials in s, i.e., 
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Furthermore, from the definition of qii) ( e1S ), it is easy to see that 

( i) (i) 
IPk,jl ~ qk,j' (6.18) 

for k = 1, ... , K, i = 1,2, ... and j = 1, ... , nii). So, finall;, (6.14) follows from {6.17} and {6.18}. 0 

Step 3: Having proven (6.3), we must now prove (6.4). For this we need the following lemma. 

Lemma 6.4 For any € > 0, there exists 81 > 0 such that for 0 ~ r, u ~ 01 e, 

If(u) - p{r)1 ~ (I - A)-l{D + d)d + Mlu r\, {6.19} 

where A is given by (8.8) below, and 

D =d' (A1f31,v AKf3K,v) lag v' ... , V , 

PI PK 
(6.20) 

(6.21) 

with ¢k being the k-th component of Mu (k = 1, ... , K). 

Proof. We only prove the case of gated service. By similar arguments, one can obtain the 
result for exhaustive service. For k 1, ... , K, recall that hk(-) and ~k(-) are defined by (4.25) 
and {6.6} respectively. Then we have, for 0 < u,r < 81e where 81 is some positive constant, 

where the last inequality in (6.22) follows from the fact that, cf. (5.5), 

m 

11- f3k(S) - I:(-1)i+1f3k,jsj\ ~ f3k,vsVL(l/s), 0 < s < 8, 
j=l 

8 being a positive constant. By similar arguments as in the proof of Lemma 6.1, one can easily 
prove that, for 0 < u < O'e, 

f(u) ~ Mu. 

Thus, it follows that 

Bu + Af(u) ~ Bu + AMu = (B + A(I - A)-lB)u = (1 -1 -A) Bu=Mu, 
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which implies that 

(6.23) 

Rewriting the inequality (6.22) in terms of matrices and combining with (6.23), we obtain 

If(u) - p(r)1 ::; (D + d)d + Blu - rl + Alf(u) - p(r)l, (6.24) 

D and d being given by (6.20) and (6.21) respectively. Since (I - A)-l is a nonnegative matrix, 
(6.19) follows from (6.24) immediately. 0 

Lemma 6.5 There exists a nonnegative constant H1,v such that 

lim H(els) - P(els) = (_l)m H . 
s-t.o sVL(l/s) l,v 

The constant H1,v = 0 if and only if 'Lff=l f3k,v = o. 

(6.25) 

Proof. To simplify the notation, denote by rik the k-th component of the vector Miel, put 

(6.26) 

and let Vik(S) denote the k-th component'ofvi(s) where k = 1, ... ,K, i = 1,2, .... By Lemma 
6.4 it follows that 

for i = 1,2, .... Iterating the above relations, we get for i = 1,2, ... , 

i 

If(i) (els) - p(i) (els) I ::; l: Mi-j (I - A)-l (D + d)vj (s). (6.28) 
j=l 

Summing up the above inequalities yields 

'L~l If(i)(els) - p(i)(els)1 < f t Mi-j (I _ A)-l(D + d) Vj(s) 
sVL(l/s) i=lj=l sVL(l/s) 

f: f: Mi-j (I - A)-l(D + d) Vj(s) 
j=li=j sVL(l/s) 

= (I - M)-l(1 - A)-l(D + d) f: vVj(S), (6.29) 
j=l S L(l/s) 

where the last identity follows from (8.10) in Appendix B. 
Next we prove that the infinite sum 'L~l Vi(S)/(SV L(l/s)) converges. By using Potter's 

theorem (cf. Theorem 1.5.6 in [6]), it follows from the fact that .lim rik = 0 for k = 1, ... , K that 
t-too 

rrk-
1 
L(l/riks) .£ . Th h . 7IT h h L(l/s) converges to 0 um ormly in s for s > 0 as ~ -+ 00. us t ere eXIsts 1Vo sue t at 

for i 2': No, k = 1, ... , K, 
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By the definition of Vik(S) and fik, we have for k = 1, ... ,K, 0 < S < 0 where 0 is some positive 
constant, 

00 K () 00 KooK 00 
~ ~ Vik s ~ ~ ~ ~ ~ T - k T - 1-
i~ot:isVL(l/s) :::;i~ot:irik:::;~t:ifik=~e M el=e (I-M)- Mel <00. 

Hence, applying the Dominated Convergence Theorem, it follows that 

00 

(-l)meT (I - M)-l(I - A)-In Llli < 00, (6.30) 
i=l 

where 

(6.31) 

and the last identity follows from Lemma 8.2. Put 
00 

H1,v = eT(I M)-l(I A)-In LUi, (6.32) 
i=l 

and subsequently (6.25) follows. Noticing that n = 0 if and only if 'L,{f=1 f3k,v = 0, we conclude 
that H1,v 0 if and only if 'L,{f=1 f3k,v = O. 0 

2. The case of non-zero switchover time 
Again we wish to prove (5.8) for XI(S), As shown in Section 4, XI(S) = P't(eIs) where FH·) is 
given by (4.33). Put 

1 0 0 0 0 1 1 1 
1 1 0 0 0 0 1 1 

e·-.- G'-.- (6.33) 

1 1 1 0 0 0 0 1 
1 1 1 1 0 0 0 0 

and subsequently we define 

f(i) (r) .- er(i)(r) + Gr{i+l) (r), i = 1,2, ... , 

00 K 

F(r) .- L L In(ak(j~i)(r))); (6.34) 
i=l k=l 

with j~ i) (r) being the k-th component of f{ i) (r) for k = 1, ... , K. So we may rewrite (4.33) as 

F(r) = exp{F(rH, 

where F(r) is given by (6.34). To prove (5.8), it is sufficient to show that 
m 

F(els) = L Fl,jsj + (_l)m+1 Fl,vSv L(l/ s) + o(SV L(l/ s)), S {. O. 
j=l 
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We shall use similar arguments as in the proof for zero switchover times to obtain (6.36). We 
have again divided the proof into three steps. In the first step, we construct a new function 
P(r) which has similar structure as F(r}. In the second step, we shall use similar arguments as 
in the proof of zero switchover time to show that 

m 

P(els) = LA,jsj + (-1)m+1P1,vsVL(1/s) +o(sVL(l/s)), (6.37) 
j=1 

where A,j are some constants for j = 0, ... , m and P1,v 2: O. Moreover, PI,v = 0 if and only if 
Ef[=l ak,v = O. In the third step, we shall verify that 

lim F(els) - P(el s) = (_l)m+l (6.38) 
s.j,.O sVL(l/s) 91,v, 

where 91,v 2: O. Moreover, 91,v = 0 if and only if Ef[=l({3k,v + ak,v) O. Obviously, combining 
(6.37) and (6.38) yields (6.36) where 

(6.39) 

with PI,v and 91,v being given by (6.48) and (6.51). Then applying Lemma 8.3 in Appendix 
A, and noting that XI(S) i't(els} is the LST of some non-negative random variable, Formula 
(5.8) of Theorem 5.1 follows from (6.35) and (6.36) with 

A,l and F1,v being given by (6.44) and (6.39) respectively. 
Step 1: Define: 

p(i)(r) := Cp(i)(r} + Gp(i+1) (r), i = 1,2, ... , 

00 K 
P(r) .- L L In(akCp~)(r))), 

i=l k=1 

(6.40) 

(6.41) 

(6.42) 

p(il(.) being given by (6.7) and p~\) denoting the k-th component of p(i)(.). By Lemma 6.1, 
we have 

- i - i+1 < CM el s + G M el s 

- - i = (C + GM)M elS, (6.43) 

where the above inequality follows from (6.10). Using the fact that In(ak(x)) < (J'kX for small 
x, one can easily prove that P(r) is well-defined in some neighbourhood of the origin. It is not 
difficult to see that 

lim dd p(i)(els) = (C + GM)Miel' 
s.j,.O S 

It follows that 

PI,1 = eTH(C + GM)(I - M)-IMel' (6.44) 
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Step 2: We shall prove (6.37) by using similar arguments as in the proof for the case with zero 
switchover time. We omit some of the details here. Firstly by using Lemma 8.3, we may write 

m 

In{O"k(x)) = L ak,jXj + (_I)m+lak,vxv L(I/x) + o(XV L(I/x)), x 4- 0, (6.45) 
j=1 

with ak,v = O"k,v· Applying similar arguments as in the proof of Lemma 6.3, we can easily verify 
that 

00 K m 00 

A{s) := L L L ak,j(P1i
) (els))j = L Ajsj. (6.46) 

i=lk=1j=1 j=l 

For any € > 0, there exists a 0 > 0 such that for 0 < S < 0, 

!F(els) A(s)1 < f: t (ak,v + €)(p~)(els)t L(I/(p1
i
) (els))) 

sVL(I/s} i=!k=l sVL(I/s} 

< f: t (ak,v + €)(aiks}V L(I/aiks) < 00 

i=lk=l sVL(I/s) , 
(6.47) 

- - i aik denoting the k-th component of the vector (C + GM)M el. By the Dominated Convergence 
Theorem, it can be shown that 

lim F(els) - A(s) = (_l)m+l F (6.48) 
s-!-O sVL(I/s) 1,v, 

with 
00 K 

Fl,v L L ak,vaik' 
i=l k=l 

Notice that F1,v = 0 if and only if L;f[=1 ak,v = O. Combining (6.48) and (6.46) leads to (6.37). 

Step 3: The proof of (6.38) is similar to that of Lemma 6.5. Here we omit some of the details. 
For simplicity, define 

H diag(al, ... ,aK)' 

By the definitions of F(els) and F(els), we have 

IF(els) - F(els)1 

00 K 
L L !In(ak(Pii)(els))) In(O"k(Jki

) (els)))1 
i=l k=l 
00 K 

< L L O"k!Pki ) (els) iki )(e1s)1 
i=l k=l 
00 K k K 

< L L(ak L !lli) (els) Pki
) (e1s)1 + ak L Illi+1)(e1s) - Pki+l) (e1s)1) 

i=l k=l j=1 j=k+l 
00 

L eTH(Cjf(i) (els) - p(i)(els)1 + G!f(i+1) (e1s) - p{i+1)(e1s)l) 
i=1 

00 

< eTH(C + G) L If(i) (els) p(i)(els)!, 
i=1 
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which in combination with (6.29) yields 

IF(els) - F(els)1 
sVL(l/s) 

< eTH(C + G)(I - M)-I(I - A)-I(D + d) ~ svig;s) < 00, (6.50) 

where VieS) is defined by (6.26). Again, using the Dominated Convergence Theorem, we obtain 

lim F(els) - F(els) = (_l)m+l 
s.j.O SV L(l/ s) 91,v, 

with 
00 

A)-ID LUi, (6.51) 
i=l 

where Ui is given in (6.31). Notice that H = D = 0 if and only if 'L,ff=1 (f3k,v + O'k,v) = 0, thus 
91,v 0 if and only if 'L,ff=l (f3k,v + O'k,v) = o. 

7 Conclusions 

In this paper we have investigated the tail behaviour of the waiting time distributions in cyclic 
polling systems with gated or exhaustive service. Under the assumption that at least one of the 
service or switchover time distributions has a regularly varying tail, the waiting time distributions 
at all queues are shown to be regularly varying at infinity, of index one higher than the heaviest 
tail of the service and switchover time distributions. This result gives important insight into the 
effect of heavy-tailed service or switchover time distributions on the performance of a large class 
of polling systems. We expect the same result to be true for non-cyclic polling systems, and 
for a larger class of arrival processes and service disciplines. For the class of service disciplines 
satisfying Property 4.1, it may be possible to prove this along similar lines as in the present 
paper. For almost all polling systems in which the service discipline in at least one queue does 
not satisfy Property 4.1, no explicit expression for the waiting time LST's is known, so that the 
approach via Lemma 8.1 does not work. An exception is provided by the 2-queue polling system 
with exhaustive service at Ql and I-limited service at Q2; for this model, a simple explicit 
expression for the waiting time LST's is known (see, e.g., [23]), which can be used to prove the 
above predicted result for the waiting time tails. 

8 Appendix 

Appendix A: Preliminaries 
In this appendix we shall introduce some basic results relating the tail behaviour of probability 
distributions to the asymptotic behaviour of their LSTs near the origin. Regularly varying 
distributions receive special attention. 

The following lemma (cf. Lemma 2.2 in [12]), which is an extension of Theorem 8.1.6 in [6], 
links the regularly varying tail behaviour of Pr{X > t} for t -+ 00 to the behaviour of its LST 
f (s) for s -l- o. It plays a key role in the proof of our main result. First introduce, for an LST 
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f(s) of the probability distribution of a non·negative random variable with finite j·th moment 
Ij, j = 0,1, ... ,n: 

fn(s) := (_1)n+1 (f(S) - t Ij (-.~)j), s ~ O. 
j=o J. 

Lemma 8.1 Let X be a random variable with LST f(s), L(t) a slowly varying function, v E 
(n, n + 1) (n EN) and C 2 O. Then the following are equivalent: 
(i) Pr{X > t} = [C + o(l)]L(t)/tV, t -t 00. 

(ii) E{xn} < 00 and fn(s) = (-1)nr(l-v)[C + o(I)]L(I/s)sV, s.j.. O. 

The next lemma (cf. Lemma 5 in [11]) characterizes a property of slowly varying functions. 

Lemma 8.2 Let L(x) be a slowly varying function, and t(x) a positive function such that 
limx-+oo t(x)/x = a where 0 < a < 00. Then for a constant l/ (l/ E R), 

lim {t(x}y L(t(x)) = aVo 
x-+oo xVL(x) 

The key formulas of the present study involve iterated functions (see, e.g., (4.16), (4.23) and 
(5.2)). The following result is useful in this respect; it is a consequence of Lemma 8.2. 

Lemma 8.3 Suppose 1>(,), 'IjJ(.) can be written as 

n 

1>(x) = I:1>ixi+1>vxVL(l/x)+o(xVL(I/x)), forx.j..O, (8.1) 
i=1 

n 

'IjJ(x) = I:'ljJixi+'ljJvxVL(l/x)+o(xVL(l/x)), forx.j..O, (8.2) 
i=1 

where 1>1, 'ljJ1 > 0, n < l/ < n + 1 and L(·) is a slowly varying function. Then the asymptotic 
expansion of the function 1>( 'IjJ( x)) at point 0 is given by 

n 

1>( 'IjJ( (x)) = I: Oixi + (1)1 'ljJv + 1>v 'ljJJ.) XV L(I/x) + o(XV L(l/x)), for x .j.. O. (8.3) 
i=l 

Proof. For 1::; i::; n, there exist polynomialsPi(x) and qi,j(X} (j = 1, ... ,i) such that ('IjJ(x))i 
can be written as 

i 

('IjJ(x))i = Pi(X) + I:(XV L(l/x))jqi,j(X) + o(XV L(l/x)), 
j=1 

where 
n 

pi(X) (I:'ljJjxj)i, 
j=l 
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Note that Qi,1 (x) are all equal to 0 if x = 0 for 2 ~ i ~ n. Therefore, we have 

n n 

I: ¢i(1j;(x))i = I: ajxj + ¢l1j;lIxll L(l/x) + o(xll L(l/x)), (8.4) 
i=l j=l 

for some real numbers aj (j = 1, ... , n). Since limx./.o 1j;(x}/x = 1j;I, it follows from Lemma 8.2 
that 

lim (1j;(x)t L{l/1j;(x)) = 1j;1I 
x./.O xIlL(l/x) l' 

which in combination with (8.1) and (8.4) leads to the conclusion. o 

Remark 7.1. It should be noted that, despite the symmetry in (8.1) and {8.2}, it is possible 
that ¢(x) refers to a heavier-tailed function than 1j;(x) (or vice versa); for example, 1j;1I might be 
equal to zero. 

Appendix B: On the first moment matrix 
Consider the mean matrix M (mkj: k,j = 1, ... , K), where 

81k 
mkj:= ~(l) ... ,l), 

UZj 

is the mean number of type-j customers that are descendants of a single type-k customer. As 
proved in [27], M plays an essential role in proving that p < 1 is sufficient for ergodicity in 
the case of gated or exhaustive service. In this appendix we shall derive some properties of the 
matrix M = (mkj : k,j = 1, ... K), where 

mkj := 8f)ik (0, ... ,0). 
rj 

The following lemma relates the eigenvalues and eigenvectors of M and M. 

(8.5) 

Lemma 8.4 The eigenvalues of M and M are identical. Moreover, if v = (VI, ..• , VK)T is a 
right eigenvector of M w. r. t. eigenvalue a, then u = (AI VI, ... , AkV K)T is a right eigenvector of 
M w.r.t. a. 

Proof. Elementary, using the fact that 

- Ak 
mkj = >:mki' 

J 

which follows from the relation (see (4.12), (4.25) and (4.26)) 

A(T) = Ak{l - fk{Z)). 

Furthermore, we can derive an explicit formula for M. It follows from (4.26) that 

M=B+AM, 

24 

(8.6) 

o 

(8.7) 



where 

0 fu(O) &rz ~(O) 
orK-l 

oh! (0) 
arK 

0 0 ~(O) orK_I 
ohz (0) 
orK 

A= (8.8) 

0 0 0 (0) 
0 0 0 0 

~(O) 0 0 0 

~(O) ~(O) 0 0 orz 

B (8.9) 

8hK-l (0) 
orl 

OhK-l (0) 
orz 

OhK_l (0) 
&rK-l 

0 

&hK (0) 
orl 

OhK (0) 
8r z 8~Z~1 (O) OhK (0) 

arK 

For the case of gated service at all queues, A and B are given by 

0 PI PI PI PI 0 0 0 
0 0 P2 P2 P2 P2 0 0 

Agat = , B gat = 

0 0 0 PK-I PK-I PK-I PK-I 0 
0 0 0 0 PK PK PK PK 

and for the case of exhaustive service at all queues, A and B are given by 

0 ...P.L ...P.L ...P.L 0 0 0 0 
I-PI I-PI I-PI 

0 0 -1!:L -1!:L -1!:L 0 0 0 
I-P2 I-pz I-P2 

Aexh ,Bexh = 
0 0 0 PK-I PK-l PK-I 0 0 

I-PK-l I-PK-l I-PK-l 

0 0 0 0 --P.lS- --P.lS- --P.lS- 0 
I-PK I-PK I-PK 

From equation (8.7) we get that 

M = {I - A)-lB. 

If P < 1 then the largest eigenvalue amax < 1 (see [27]) and it can be readily shown that 
limn-too Mn = O. Thus, applying Lemma B.l in [28], we have 

00 

(I - M)-l = 2: Mi, (8.10) 
i=O 

which is a nonnegative matrix. 
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