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Polling systems with regularly varying
service and/or switchover times

0.J. Boxma!, Q. Deng? and J.A.C. Resing

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We consider a polling system consisting of K queues and a single server S who visits
the quenes in a cyclic order. The polling discipline in each queue is the gated or exhaustive
service discipline. We investigate the tail behaviour of the waiting time distributions at the
various queues in the case that at least one of the service time or switchover time distributions
has a regularly varying tail.

1 Introduction

Cyclic polling systems are queueing systems in which a server visits several queues in cyclic order.
They have a wide range of applications in, e.g., computer communications, manufacturing and
traffic. The abundant literature on polling systems (see [31, 32]) contains the exact analysis of
polling systems for a large number of service disciplines, like the exhaustive and gated disciplines.

Tail probabilities, which are especially helpful in understanding the performance of differ-
ent polling disciplines, have received some attention in recent years. For models with Poisson
arrivals, general service time and switchover time distributions, and various service disciplines,
Choudhury and Whitt [14] have developed efficient iterative algorithms to compute the exact
tail behaviour of, for example, the steady-state waiting time W, with the form,

Pr{W >t} ~ atfe™™, t = oo, (1.1)

with 7 > 0 and « > 0. Here f(t) ~ g(t) for £ = oo stands for lim, f(£)/g(t) = 1. Such tail
behaviour occurs when the service time and switchover time distributions have finite moment
generating functions, i.e., there is some positive real number s such that fGx(—s) < oo and
ok(—s) < o0o; here f§;(-) and o () are the Laplace-Stieltjes transforms (LST) of the service time
and switchover time distributions at the k-th queue respectively. Motivated by [14], and using
analytic methods, Duffield [18] explores the relationship between the exponents 8 and 7 in (1.1)
and their dependence (and sometimes independence) on the service time and switchover time
distributions.

Recently it has become clear that delay and buffer content distributions in modern commu-
nication networks often do not exhibit such an exponential tail behaviour [4, 25, 34]. It appears
that input distributions like file size and transmission time distributions in many cases have
a t7¥ power tail behaviour, where v can be less than two — i.e., the variance is infinite. An
important and useful class of such heavy-tailed distributions is the class of regularly varying
distributions of index —v for 1 <v < 2, i.e.,

1-B(t) ~ L{t)t™, t— oo, (1.2)
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where L(t) is a slowly varying function [6]. ‘

A key issue in present-day performance analysis is the influence of such heavy-tailed input
distributions on the tail behaviour of the main performance measures, like waiting time and
workload. In the case that the service time distribution has a regularly varying tail as specified
in (1.2), the tail behaviour of the waiting time distribution has been investigated in queueing
models with various service disciplines. For the GI/G/1 queue with FCFS service discipline
(cf. [15])) and the M/G/1 queue with LCFS Nonpreemptive service discipline (cf. [10]), the
waiting time distribution has been proven to have a regularly varying tail of index 1 — v, which
is one degree higher than that of the service time. An intuitive explanation is that, in those
models, customers have to wait at least a residual service time — which has a regularly varying
tail of index 1 — v. For the M/G/1 queue with LCFS Preemptive Resume service discipline
[10] and with processor sharing [35, 36], the sojourn time distribution is regularly varying of
index —v, which is the same as that of the service time. In [1, 11], the M/G/1 queue with
two classes of customers and fixed priorities was studied. If at least one of the service time
distributions has a regularly varying tail, then the waiting time distribution of the low-priority
customers is regularly varying of index one higher than that of the service time distribution with
the heaviest tail. In the non-preemptive case, a similar result holds for the tail of the waiting
time distribution of the high-priority customers (in the preemptive-resume case, high-priority
customers are not affected by low-priority customers).

In view of the central role of polling in computer-communication networks, it is of importance
to study the effect of heavy-tailed service and/or switchover time distributions on waiting-time
tail behaviour in polling systems. That is the goal of the present paper. We consider waiting time
(and, briefly, workload) tail behaviour for cyclic polling systems with Poisson arrivals, general
independent service times, general independent switchover times, and the gated or exhaustive
service discipline. At each queue, customers are served in the order in which they arrive at each
queue. Our main result is the following. If at least one of the service time and/or switchover
time distributions has a regularly varying tail of index —v (v > 1) and the others have a lighter
tail, then the waiting time distribution at each queue is regularly varying of index 1 — v, i.e.,

Pr{W; > t} ~ ogt! ™V L(t), t— oo,

for ay > 0, where Wy is the steady-state waiting time at the k-th queue.

The rest of this paper is organized as follows. Section 2 contains the model description.
Section 3 presents an explicit formula for the LST of the waiting time distribution given in
[7, 8], that will be the starting-point of the tail investigation. This distribution is expressed in
the generating functions of particular queue length distributions; those are discussed in Section
4. The main theorems are provided in Section 5, in which the tail behaviour of the waiting time
distribution is given under the assumption that at least one of the service and/or switchover
time distributions is regularly varying. Section 6 is devoted to the proof of Theorem 5.1 which
describes the tail behaviour of the intervisit time distribution in the case of exhaustive service
and the tail behaviour of the cycle time distribution in the case of gated service. Section 7
contains some conclusions and suggestions for further research. Finally, Appendix A provides
preliminaries relating the asymptotic behaviour of a distribution function to the behaviour of its
LST near the origin (the proof of our main result heavily relies on this), and Appendix B gives
some results on the first moment matrix which play a key role in the proof of our main result.



2 Model description

We consider a polling system consisting of K (K > 2} queues, Q1, ..., @k, attended by a single
server S. Customers arrive at Qy, k£ = 1,..., K, according to a Poisson process with rate Ay and
require a generally distributed service time Bj having distribution function By(-), finite first
moment G and LST Bi(-). In the sequel, customers arriving at @y, are also referred to as type-k
customers.

The server visits the queues in a strictly cyclic order, i.e., @1,...,Qxk, @1, ..., @k, Q1,.... The
service policy at each queue is either gated or exhaustive; we do allow mixtures, like gated service
in 1 and @3 and exhaustive service in the other queues. In gated service, the server serves
at a queue exactly those customers that are present at the start of his visit of the queue. In
exhaustive service, the server continues to work at a queue until it becomes empty. In this paper
we consider both the model with and without switchover times. In the model with switchover
times, when moving from Q% to Qk+1, the server incurs a generally distributed switchover time
Sk, having distribution function Si(-) with finite first moment o and LST oy(-). Here, we use
the convention that Qi1 = 1. The server continues switching even when the whole system
is empty. In the model without switchover times, when the system becomes empty the server
makes a full cycle (i.e. passes all the queues at least once) and subsequently stops right before
1. When the first new customer arrives, S cycles along the queues to that new customer.

Let us denote by A := E,ﬁil Ar the total arrival intensity of customers, by py 1= Apf; the
traffic load at Q, and by p = E,If:l Pk, the total traffic load. As has been stated for example
by Eisenberg [19], Fricker & Jaibi [20] and Resing [27], the condition p < 1 is a necessary and
sufficient condition for ergodicity of a cyclic polling system with gated or exhaustive service.
From now on, we assume that this ergodicity condition is satisfied.

3 The waiting time distribution

Let Wy, denote the stationary waiting time of type-k customers, with distribution function W (-)
and LST wg(-). In this section we give an explicit formula for wg(s), as provided by Borst and
Boxma [8] (see also [30]). Let Wijn/q/1, with LST wyjar/c/1(-), denote the waiting time of an
arbitrary customer in the ‘corresponding’ isolated M/G/1 queue of @y and let Ny, with pgf
(probability generating function) ny;(-), denote the queue length at Q4 at an arbitrary epoch
in a non-serving interval for Jx. The formula for wy(s) is based on the following decomposition,
cf. Keilson and Servi [24],

wi(s) = Ele™"¢] = wy ey (s)ng (1 — s/), Res > 0. (3.1)
By Pollaczek-Khinchine’s formula, wyar/g/1(s) is given by
1—
wk[M/Gj’I(S) - E[e»—ku\M/G/l] = "ﬁ%@? Re s > 0. (3.2)
L= pe=5

Introduce X}, the queue length at @ at the beginning of a visit to Qj, and Y}, the queue length
at Qx at the end of a visit to Q. Borst and Boxma [8] represent ny;(1 — s/A) as

mga(1 = 5/%e) = B{(1 = s/ o] = =2t ez (33)
with
ak(s) == El(1— s/M)%*],  ge(s) = Bl(1 — s/M0)¥]. (3.4)



To get a better understanding of the function ng (1 — s/Ax), we introduce the following
random variables. For k = 1,..., K, let C) denote the cycle time of Qy, i.e. the time between
two successive arrivals of the server to @4, Dy the station time of Qi, i.e. the time between an
arrival of the server to QJx and the next departure of the server from @, and I the intervisit
time of Qf, i.e. the time between the departure of the server from @} and his next arrival to
Qk. The distribution functions of Ci, Dy and I are denoted by Ck(-), Dr(-), Ix(-) respectively.
Furthermore, let I be the residual intervisit time, with probability density function %{Q As
has been pointed out in [2], the ergodicity condition implies the stationarity of the cycle times,
the station times and the intervisit times.

In the case of exhaustive service, apparently Y; = 0 and thus E[y**] =1. On the other hand,
the customers observed by the server at a visit beginning epoch must have arrived during the
previous intervisit time. Since the arrival process at @ is a Poisson process with rate Ay, the
generating function of the distribution of the number of arrivals during the previous intervisit
time is related to the LST of the intervisit time distribution function as follows:

Efy**] = E[e—kk(1~y)fk]_
Thus it follows from the above relation and (3.4) that zi(s) = E[e~**], which in combination
with (3.3) implies that ng;(1 — s/A\) = Ele —sIi], ie., ngyr(1 — s/A) is in fact the LST of the

residual intervisit time. Furthermore, the following well-known result is implied by (3.1) ( =
denoting equality in distribution): :

Wy < Wenyan + Ik, (3.5)

where Wi g1 and I} are independent.

In the case of gated service, using similar arguments as in [16], X and Y% can be considered
as the number of arrivals during the time interval of length Cy and Dy, respectively, and thus
zx(s) = E[e™*%*] and y;(s) = E[e *P*]. It is readily seen that

ng (1 — s/A) = E[e™*%¥), (3.6)
for some non-negative random variable Uy with density function %g%%&tl. Thus it follows
from (3.1) that

d
Wi = Wiy + U, (3.7

where Wy ps/i/1 and Uy are independent. The probabilistic meaning of Uy is: Uy = Dy + I,
cf. [5] for the case of nonzero switchover times; it is the sum of the station time Dy and the
subsequent excess intervisit time I} (that depends on Dy).

4 Joint queue length distribution

In order to obtain an explicit expression for the LST wy(s) of the waiting time distribution, we
need an expression for the generating functions of the queue lengths X}, and Y}, at the beginning
and end, respectively, of a server visit to Qg (see (3.1) and (3.3)). We first concentrate on
an expression for Fi(z) and Gg(z), z = (z1,...,2x)7, |2;] < 1, j = 1,...,, K, the pgf of the joint
queue length vector at visit beginning and visit completion epochs. Here, we follow the approach
of Resing [27]. In fact, in [27] a more general class of service disciplines called Bernoulli-type
service is considered, which contains the gated and exhaustive service disciplines. This class of
service disciplines satisfies the following property.



Property 4.1 If the server arrives at Qi to find ny customers there, then during the course
of the server’s visit, each of these ny customers is effectively replaced in an i.i.d. manner by a
random population having pgf hi(z).

The gated and exhaustive service discipline both satisfy this property. In these cases the
functions hy(z) are, respectively, given by

K
hi(z) = B3 A1 — 2), (4.8)
i=1 ‘
which is the pgf of the joint distribution of the numbers of arrivals at all queues during one
service time at @, and

hie(2) = me(D Ai(1 — 25)), (4.9)
J#k
where 7;(-) denotes the LST of the length of a busy period in an isolated M/G/1 queue with
arrival rate A\; and service time distribution By(-). In the case of exhaustive service, the function
hy(z) represents the pgf of the joint distribution of the numbers of arrivals at all other queues
during a busy period of (J; when this queue was in isolation.

In the remainder of this section, we prefer to consider the queue length pgf for the class of
service disciplines that satisfy Property 4.1; it may be worthwhile to investigate whether/how
the results of the present paper can be generalized to the case of that general class. For service
disciplines satisfying Property 4.1, the pgf’s Gi(z) (queue length at departure epochs of the
server from Qi) can be nicely related to the pgf’s Fi(z) (queue length at arrival epochs of the
server at Qi), for k=1,.., K, by

Gi(z) = Fi(z1, .y 2k—1, hi(2), Zk41,5 vy 2K). (4.10)
Next, define for |2;| < 1,7 = 1,..., K the functions
£(z) := (f1(2), -, fx (2))7, (4.11)
with
Fe(2) = he(z1, s 2k, fra1(2), ., f (), (4.12)
and the iterates
f(o)(z) =z,
fO(z) = fEE-(z)), i>1.

In the following we distinguish between the case with and the case without switchover times.

Zero switchover times

In the sequel we add a superscript 0 for the case of zero switchover times, in order to distinguish
its quantities from those for the case with switchover times. The pgf’s F2(-) and GY_,(-) are
related by

Fl(z) = GY_,(z), fork=2,..,K, (4.13)
K s

F(z) = G(z)-F0)(} -f—(l—-zj)), (4.14)
j=1



where 0 stands for the K-dimensional vector with all components equal to zero. Equation (4.14)
is obtained by using the special convention that when the system is empty at the start of a visit
to @1, the next visit does not take place until a customer has arrived. In fact F}(z) satisfies the
functional equation

K
F{(z) = F{ (f(2)) - Z 7’“ (1~ z), (4.15)

the solution of which is, after iteration, given by

0) &

F(z) =1~ -4 ZZA,C (1 - (), (4.16)
i=1 k=1
with
1& X !
F)(0 XZZ k(i—f;g‘}(ﬂ

The infinite sum 2%, K | A (1— sz) (0)) is convergent when the ergodicity condition is fulfilled.
Once we know F(z), we immediately get, by using (4.10) and (4.13), the pgf F{(z) of the joint
queue length distribution at a visit beginning epoch,

ng(z) = Fg—l(zla "')Zk—Zahk—l(z)azkz°°'azK)7 fork=2,..,K. (417)

Furthermore, by the Relations (4.13) and (4.14) we get an expression for G}(z),

Gi(z) = Fl(z), fork=1,..,K—1, (4.18)
.

et = Fm+ 2005505 (419
7=1

Non-zero switchover times
In the case of non-zero switchover times, the following equations relate Fi(z) to Gi—1(z):

Fi(z) = Gr-1(z)or— 12/\(1«-«;53 fork=2,... K, (4.20)
j=1
F(z) = GK(z)aK(Z,\j(l—zj)). (4.21)
i=1

Together with Equation (4.10) this leads to the functional equation

Fi(a) = Fi(£(s))g(2), & (422
with
K k
g(z) = H Uk(z }\3 (1- Z} Z Aj (1 - f](z))
k=1 =1 j=k+1



The solution of (4.22) is given by

Fi(z) = []et9(=)
i=1

o« K k . K )
= T8 -2@) + 3 30 - 15 0@). (4.23)

i=1 k=1 J=1 Fk+1
Again, the infinite product is convergent when the ergodicity condition is fulfilled.

To make the obtained queue length pgf expressions suitable for the analysis of waiting time
tail behaviour, we have to slightly rewrite them (we want to move from pgf asymptotics near 1
to LST asymptotics near Q).

Put r:= (ry,...,rx)7, where 0 < 1y < Mg, and relate z to r by z = (1 — ry /A1, ..., 1 — rx/Ag)7.
If we define Fy(r) := Fi(z) and Gi(r) := Gi(z), then it follows from (4.10) that

ék(r) = Fk(rla ey Th—14 Ek(r)a Tht1y vy rK)a (424)
with

hp(r) = M(1 = he(z))

Me(L = Be(Thoi 7)), for gated service,

= (4.25)
Ak(l = me(2;2675)), for exhaustive service.
Furthermore, we define similarly as in (4.11) and (4.12) the functions
£(r) := (fi(r), o, Fc ()T,
with
Fe(r) = hig(r1, ooy iy fiog1 (1), oy Fr (1)), (4.26)
and the iterates
fO@r) = r,
fO@) = FECD(r), i>1.

In the following we distinguish again between the cases of zero switchover times and non-zero
switchover times.

Zero switchover times 3 :
The following equations relate FQ(r) to G3_,(r). It follows from (4.13) and (4.14) that

Fr) = &% /(x), fori=2,.. K, (4.27)
. x F(A) &
() = &%) - -%nglrj’ (4.28)
where A = (Mg, ..., Ax). Introduce, for 0 < rp < A, k=1,..., K,
co K .
Hr) =YY /0, (4.29)
i=1k=1



which is well-defined if the ergodicity condition is fulfilled. Then, by (4.16), we can write
F(r) := F)(z) =1 — F)(A)H(r)/. (4.30)
By using (4.24), (4.27) and (4.28), one can derive expressions for F{(r) and G(r), k = 1,..., K.

Non-zero switchover times
It follows from (4.20) and (4.21) that

Fi(r) = Gk 1(r)ok— 1(2?"3) fork=2,..,K, (4.31)
i=1
R B K
Fl(r) = GK(F)O‘[{(ZTj). (4.32)
j=1

Put

j[—[cr;c Zr]—’r— Z f](r

F=k+1

Replacing z = (1 — r1 /A1, ..., 1 — g /Ak) into (4.23), we obtain

Aw = T[aE0w)

o0 k . K .
= HH (P + S ), (4.33)
i=1 Jj=1

j=k+1

the infinite product being convergent for 0 < rp < Mg, k = 1, ..., K, when the eggodicit}/ condition
is fulfilled. By using (4.24), (4.31) and (4.32), one can derive expressions for G1(r), Gg(r), Fi(r)
(k =2,...,K) immediately.

Marginal gqueue length pgf

As a final step towards the waiting time LST (see (3.1) and (3.3)), we now obtain the pgf of
the marginal distributions of the queue lengths Xy and Y} at the beginning and end of a server
visit to Q. For simplicity we define e = (1,...,1)T and for k = 1,.., K, e; = (0, ...,0,1,0, ...,0)
with the k-th component being 1. Taking r = egs in (4.30) for the case of zero switchover times
(add a superscript 70”) or in (4.33) for the case of non-zero switchover times, we get

zi(s) = EBl(1—s/A)**] = Fr(exs), (4.34)
ye(s) = E[(1 = s/ )"*] = Grlexs). (4.35)

5 The main result

In this section we shall present our main result: If at least one of the service and/or switchover
times is regularly varying of index —v (v > 1) and the other service and/or switchover times
have a lighter tail, then the waiting time distribution is regularly varying of index 1 —v. As a
by-product, we also show that the intervisit time distribution at @y (k = 1,..., K) in the case



of exhaustive service and the cycle time and station time distributions at Qx (k = 1,...,K) in
the case of gated service are all regularly varying of index —v.

As pointed out in Section 3, Wi can be represented as the sum of two independent random
variables Wy ar7c/1 and Vi where Vi = I} is the residual intervisit time in the case of exhaustive
service and Vg = U, where the LST of Uy is given by (3.6) in the case of gated service. The
relation between 1 — Wy ar/¢/1(t) and 1 — Bi(2) for t — oo is already well known if the residual
service time has a subexponential tail (this contains the case of a regularly varying tail),

o0
L= Winen(®) ~ 72— [~ (1= Bu@)da, 1o, (51)
cf. [26]. In the following we first investigate the tail behaviour of the distribution of Vg by
analyzing the asymptotic behaviour of its LST ny;(1 — 5/Ax) for s | 0, and we subsequently
derive the tail behaviour 1 — Wi (t) of the waiting time distribution for ¢t — .

Without loss of generality, we shall only analyze the explicit expression (3.3) of ng (1 —5/As)
for k = 1. Combining (4.24), (4.34) and (4.35) yields

y1(s) = z1(hy(e15)). (5.2)

If the asymptotic behaviour of z1(s) for s | 0 is known, we can obtain the asymptotic behaviour
of y;(s) for s | 0 immediately by using Lemma 8.3 in Appendix A.

Assume that the tail behaviour of the service time and switchover time distributions is such
that, fork=1,...,K: ‘

1~ By(t) = [bx + o(DJtL(t), ¢ — oo, (5.3)
1 — Sp(t) = [sk +o(D]t™VL(t), - oo, (5.4)

where bg, s > 0 and L(-) is a slowly varying function; such a distribution is called regularly
varying in case the constant (b or sp) is positive. For ease of presentation, we take the same
function L(-) for all distributions, but one can easily change this into different slowly varying
functions for different distributions. Note that the possibility that b, = 0 or s = 0 implies
that we do allow the possibility that some of the service and/or switchover time distributions
have an exponential tail, or a regularly varying tail that is less heavy than 7. According to
Lemma 8.1, the tail behaviour of the service time and switchover time distributions as given in
(5.3) and (5.4) is equivalent with the following behaviour of their LSTs f;(s), ..., Bk (s) (of the
service time distributions) and oy(s),..., 0x (s) (of the switchover time distributions):

1— Bils) = i(-l)ﬂ‘“ﬁk,jsf + (=1)™B,8"L(1/s) + o(s*L(1/s)), k=1,.., K, (5.5)
j=1

1—ox(s) = Em:(—l)j“ak,jsj + (-1)‘mak,,,s"L(1/s) +o(s"L(1/s)), k=1,.,K, (5.6)
7=1

that 81 = B, By = (—=1)™T(1 — v)by, 0k1 = 0k and oy, = (-1)"T(1 —v)sp for k =1,..., K,
and og(s) = 1 if the switchover time is zero. In order to simplify the proof of Theorem 5.1 below
in Section 6, we assume, without loss of generality, that s“L(1/s) is a non-decreasing function
for s > 0.

wherem <v <m+1, B ; > 0,8k, 20,015 >0and o, >0forj=1,..,mk=1,.,K. Note



It follows from the main result of [17], that the asymptotic behaviour of the LST 7,(s) of
the length of the busy period in the ‘corresponding’ isolated M/G/1 queue of @y is given by
m
1 me(s) = 3 (~17 o0 + (~)" " L(1/s) + 0" L(L/8)), k=1, K,  (5.7)
—

S

where ng 1 = B /(1 — pr) and 9 = Br /(1 — pi)” and 1 ; >0 for j=1,...,m.

Theorem 5.1 If Relations (5.5) and (5.6) hold, then

21(5) = (1167 + (—1)™H iy s L(1/s) + ofsL(1/s), (5.8)
§=0

where xy ; > 0 for j = 1,...,m and z1, > 0. Moreover, x1, = 0 if and only ilei{ﬁ(ﬁk,y—}-ak,,,) =
0.

Proof. See Section 6. o

The next corollary, which follows immediately from Theorem 5.1 and Relation (5.2) by using
Lemma 8.3 in Appendix A, characterizes the asymptotic behaviour of y1(s) for s | 0 in the gated
case. Remember that y;(s) = 1 if the service discipline at @ is exhaustive.

Corollary 5.1 In the case of gated service at Qy, if (5.5) and (5.6) hold, then

m

yi(s) = D _(=1y,z8" + (1) yrus"L(1/s) + o(s"L(1/s)), (5.9)
j=0

where yy ; > 0 for j =1,...,m and y1,, > 0. Moreover, y1, = 211510 + T1,,07-
It is now easy to give the asymptotic expansion of nyj;(1 — s/A;) for s | 0.

Corollary 5.2 If (5.5) and (5.6) hold, then

m

-1
nyr(1—s/A1) = > (=1 nqy ;87 + (=1)™nqr,” L(1/s) + o(s”L(1/s)), (5.10)
F=1

where nyr; > 0 for j = 1,...,m — 1 and ny, > 0. Moreover, if Z;If:l(ﬁk,,, + oky) > 0, then
n”;’y > 0.

Proof. By (3.3), (5.8) and (5.9), (5.10) follows. As shown in Section 3, nyj1(1 — s/A1) is the
LST of some non-negative random variable. Thus ny7; > 0, ny, > 0 in (5.10). Again by
(3.3), nyry = M(z1p — y1,)/(EXy — EY1) where y1, = 211614 + Z1,00{. By using Formula
(6.5) from the next section for the case of zero switchover time or Formula (6.40) for the case
of non-zero switchover time, we can prove that ny, > 0 if SK (Bry +oky) > 0. ]

Applying Lemma 8.1 in Appendix A, we get the following theorem on the relation between
the tail behaviour of the service time distribution and that of the intervisit time, cycle time,
station time and waiting time distributions from the above results.
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Theorem 5.2 Suppose the tail behaviour of the service time and switchover time distributions
is such that

1 — Bg(t) = [by + o(1)]t7VL(t), t— oo, (5.11)
1~ Sk(t) =[sx +o(V)tTYL(E), t— oo, (5.12)

where bg,sp > 0, L(-) is a slowly varying function and k = 1,...,K. Then in the case of

ezhaustive service at Q1, the tail behaviour of the intervisit time and wailing time at Q, satisfies
the following relations:

1-I(t) = [e+o(V)]t™L{t), t- o0, (5.13)

1-Wi(t) = [ez +o(D)JtIVL(t), t— oo (5.14)

in the case of gated service at Q1, the tail behaviour of the cycle time, station time, Uy with LST
given by (3.6) and waiting time at Q is given by

1-Ci(t) = [es+o()t L{t), t— oo, (5.15)
1-Di(t) = [ca+o(t L), t— oo, (5.16)
1=Uy(t) = [es+o(D)]HVL(t), t— oo, (5.17)
1—-Wi(t) = [es+ o(l)]tl""L(tL t — o0, (5.18)

where ¢, are nonnegative constants for r = 1,...,6. Moreover, if Y5 (b + sx) = 0, then ¢, =0
Jorr=1,..6; if °K (b + ) >0, then ¢, >0 forr=1,...,6.

Proof. In the case of exhaustive service at @, applying Theorem 5.1 and Lemma 8.1 in
Appendix A, (5.13) follows immediately. Combining (3.5), (5.1), (5.13) and using Lemma 7.7 in
[12] yields (5.14) where

’\lbl + Ci
1-p)v-1) EL{-1)
In the case of gated service at @1, Relations (5.15) and (5.16) follow immediately from Theorem

5.1, Corollary 5.1 and Lemma 8.1 in Appendix A. Relation (5.17) follows from Corollary 5.2.
Combining (3.5), (5.1}, (5.13) and using Lemma 7.7 in [12] yields (5.14) where

. )\1()1 + Cs
(l-p)lv-1 v-1

Tt is easy to see that if K (b 4+ sx) = 0, then ¢, = 0 for r = 1,...,6; if =K (b + s¢) > 0,
thene, >0forr=1,...,6. a

By symmetry, Theorem 5.1 and Corollaries 5.1, 5.2 hold not just for @J; but for each queue.
Thus Theorem 5.2 also holds for each queue.

Cy ==

Ce

Remark 5.1. In order to get explicit expressions for ¢, in the above theorem in terms of by
and sg for k = 1,..., K, one can refer to Relation (6.5) in the case of zero switchover time or
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Relation (6.40) in the case of non-zero switchover time.

Remark 5.2. Consider the M/G/1 queue with repeated vacations. The server continues serving
until the system has become empty, and then takes a vacation V. If the system is still empty
after this vacation, then he takes another vacation, etc.; successive vacations are independent
and identically distributed. Fuhrmann and Cooper [21] have proven the following decomposition
result:

Wuwith = Wayen +V7, (5.19)

where Wy, (Wag/g1) denotes waiting time in the model with (without) vacations and V* has
the equilibrium (residual lifetime) distribution of V'; Wyy/q/1 and V* are independent.

This vacation queue is a special case of the polling model with switchover times and exhaustive
service; take N = 1. Asmussen et al. [3] have proven the following result, for the M/G/1 vacation
queue with residual vacation or residual service time distributions that belong to the class S of
subexponential distributions (which contains the class of regularly varying distributions):

(i) If the equilibrium service time S* € § and if P(V* > z) = o(P(S* > z)) as £ — o0, then

P(Weyith > x) ~ 1%QjP(S* >2z), T oo

(ii) If the equilibrium vacation time V* € § and if P(S* > z) = o(P(V* > z)) as  — oo, then
P(Wyith > z) ~P(V* > z), z — oc;

(iii) If the equilibrium service time S* € S and if P(V* > z) ~ ¢P(S* > z) as  — oo for some
¢ > 0, then

P(Wuin >2) ~ (e + TEP(S" > 0), o= 00

In the polling model one might also try to prove that the waiting time distribution is subezpo-
nential in the case of subexponential service and/or switchover time distributions. However, at
least in the case of exhaustive service at some queue @, this requires solution of the following
open problem, that seems quite hard (cf. [3]): Is the busy period distribution of M/G/1 queue
@y in isolation subexponential, when its service time distribution is subexponential? (Notice
that the busy period distribution of Q) appears prominently in hg(z) and fi(r), cf. (4.9) and
(4.26)).

Remark 5.3. In the present paper we have concentrated on the tails of the waiting time
distributions. It is slightly easier to study the tail behaviour of the total workload distribution
in a polling system. Boxma and Groenendijk [13] (cf. also Boxma [9] for generalizations) have
proven the following workload decomposition for a broad category of multiclass queueing systems
with Poisson arrivals and server vacations - a category that includes cyclic polling systems with
switchover times:

U=Unjcn + 2, (5.20)

Unygn and Z being independent. Here U is the steady-state workload in the system, Upz/q/1
is the steady-state workload in the corresponding M/G/1 queue to which the multiclass system
reduces when there are no switchovers, and Z is the steady-state workload at an arbitrary time
during a vacation. Takagi et al. [33] provide an expression for the LST of the distribution of Z,
in the case of either exhaustive or gated service at all queues. Using that expression and the
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above decomposition result, one can apply the technique in Section 6 of this paper to obtain
similar tail behaviour results for the workload as for the individual waiting times.

Remark 5.4. In the M/G/1 FCFS queue, if the service time distribution is regularly varying of
index —v (v > 1), then the waiting time distribution is regularly varying of index 1—v. However,
the M/G/1 queue with the LCFS preemptive resume discipline has the attractive feature that
the waiting time distribution is regularly varying of index —v only [10]. In the polling system
with a LCFS preemptive resume discipline within a queue visit of the server, customers may
have to wait a residual cycle time (in the case of gated service) or a residual intervisit time (in
the case of exhaustive service), and these are regularly varying of index 1 — v. Thus one cannot
expect to get a ‘better’ index than 1 — v by providing LCFS preemptive resume service within
a queue visit of the server.

6 Proof of Theorem 5.1

We shall prove the cases of zero and non-zero switchover times separately. We restrict ourselves
mainly to the cases in which all queues are served according to the same discipline (gated, or
exhaustive); the proofs require only minor adaptations in the case of mixtures of these disciplines.

1. The case of zero switchover times
Using (4.30) and (4.34) we have

z1(s) = F(e1s) =1 — FY(A)H(eys)/ ). (6.1)

In the following we concentrate on determining the asymptotic behaviour of H(e;s) for s | 0.
We shall prove that

H(eys) = iHLjsj +(—1)"H,,s"L(1/s) + o(s"L(1/s)), s{0, (6.2)
j=1

for some constants Hy ; where j = 1,...,m and H;, > 0. The proof of Relation (6.2) is divided
into three steps. In the first step, we construct a new function P(-) which has a similar structure
as H(-). In the second step, we shall show that the asymptotic expansion of this function is
given by

m
Ples) = ZPl,jsj +O(s™), forslo. (6.3)
j=1
Finally, in the third step we will show that

H(els) - P(els)
slff)l s¥L(1/s)

= (“UmHl,u; (64)

for some non-negative constant Hj,. Clearly, Relation (6.2) follows by combining (6.3) and
{(6.4). Once we have proven (6.2), the proof of Theorem 5.1 is almost completed. Substituting
(6.2) into (6.1) and noting that z1(s) is the LST of some non-negative random variable (cycle
time if the service discipline at @ is gated service or intervisit time if the service discipline at
Q1 is exhaustive service) yields Formula (5.8) of Theorem 5.1, where

-'51,1 = F{)(A)Pl)l/)\, :C]_’V == _?(A)Hl,y/}t. (65)
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Step 1: Similarly as we constructed the function H(-) in Section 4, we now construct the
function P(-). So, define (cf. (4.25), and notice that we take Ay times the first m terms in the
righthand sides of (5.5} and (5.7)):

Ae 2T (1)1 B G(XF ), for gated service,
€i(r) == (6.6)

Ak ;?‘:1(—1)1'"“1;:&3(2,;# r;), for exhaustive service,

and

p(r) = (pl (r)t ~sPK (r))T> (67)
with

pk(r) = 6&:(7"13 mee :’rk,pk-l-l(r): s apK(r))?

and the iterates

pO) = r,

p(r) = p" (), i>L
The function P(-) is defined by

oo K .
P(r):=3" Y P (x). (6.8)

=1 k=1

In Lemma 6.2 we shall prove that the infinite sum in (6.8) is well-defined. Before we can
do that we first need to prove Lemma 6.1. In the following we make the convention that
[vl = (Jv1], ..., |un|)¥ where v is an n-dimensional vector and v < u if and only if v; < u; for all
k=1, ...,n. For the definition of M, we refer to Appendix B.

Lemma 6.1 There exists a §; > 0 such that p(r) < Mr for 0 <t < de.
Proof. For k = 1,..., K, it is easy to check that

. (£ = Be()] _ =pr  for gated service,
35k(e1s) < ) o
(1l — Uk(s))] =0 1= o for exhaustive service,

for 0 < s < §; where 4, is some positive constant. Therefore, we have

pe(r) = &(rey o Ths Prer(r),, oy P (T))

prlry + oo + 7k + prya(r) + o + pr(T)], for gated service,

- Pk
1—pi

[r1+ o + 1 + pryi(r) + ... + pr(r)], for exhaustive service.

Rewriting the above inequalities in terms of matrices,

p(r) < Br + Ap(r), (6.9)
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where the matrices A and B are given by (8.8) and (8.9) respectively in Appendix B, it follows
from the fact that (I — A)~! is a nonnegative matrix that

p(r) < (I—A)"'Br = Mr.

Now we are able to prove that the infinite sum in (6.8) is well-defined.
Lemma 6.2 There exists a 6; > 0 such that P(e;s) < oo for 0 < s < 4;.
Proof. It follows from Lemma 6.1 that there exists §; > 0 such that for 0 < s < 63,
p(ers) < Me;s. (6.10)
Iterating (6.10) leads to
p(i)(els) < M'es, i=1,2,...

Summing up the above relations, we get
Zp z)(els < (I ) 1M818

which implies that

P(eys) ZZ;} )(els <el(I- M) 'Me;s < . (6.11)
k=11i=1

Actually, dividing by s in (6.10) and taking the limit for s | 0, we obtain

d -
[—p(els)] = Me;.
8 §=0

Equality is seen to hold because the first inequality in the proof of Lemma 6.1 also reduces to
an equality for s | 0. By using similar arguments as in the proof of Lemma 6.2, it is easy to
derive from (6.11) that

Pl,l = eT(I - 1\71)"11{er1. (6.12)
This relation is used in the proof of Corollary 5.2.

Step 2: The asymptotic expansion (6.3) is proved in the following lemma.

Lemma 6.3 The function P(e1s) defined by (6.8) has the following expansion in the neighbour-
hood of the origin,

Pe1s) =Y Py;s’ +O(s™1), for s 0. (6.13)
=1
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Proof. First, we observe that for all k = 1,..., K and all i = 1,2, ..., the functions pk)(els) are
polynomials in s, i.e.,

(e1s) = Z p(l)

where ng} = m&i=%+1 1t remains to prove that

K nk
>3 Ipyls’ < oo, (6.14)

i]e

for 0 < s < . Because, if equation (6.14) holds, we can interchange the order of summation
below,

x K nk . o0 .
Plers) =3 > Zp(z) Z Z Z PW sl = Z P, ;s?, (6.15)
g1 ke 1.7"’ -1 k=1 {LRS)ZJ} j=l

for 0 < s < d3. Therefore, the expansion (6.13) follows from (6.15) immediately.
In order to prove (6.14), we define a function q : Rg — Ry,

q(r) = (Q}(r), ey QK(r))T:
(6.16)

dk (I') = _gk(_rla ey 7Tk, —'Q/i:—H.(r)v ey 4K (I‘)),
and its iterates

@) = r,

q9(r) = q@ V), i>1.

Next we show that the infinite sum 32, YK q( )( ) converges in a neighbourhood of the
origin. By the definition of g(r), using similar arguments as in the proof of Lemma, 6.1, it follows
that for any € > 0, there exists §; > 0 such that, for 0 < r < d;e,

0 < q(r) < (1 +€¢)Mr,

where the entries of M are given by (8.5). Let amax < 1 be the maximal eigenvalue of M.
Taking € = (1/amax — 1)/2, then the maximal eigenvalue of (1 + €)M is also less than 1. Thus,
applying similar arguments as in the proof of Lemma 6.2, it follows that

oo K . .
Y e (r) < oo, (6.17)

i=1 k=1

for 0 < r < dqe for some 63 > 0. Similar as was observed for p( )(els), we see that also the
functions q,(c )(els), for all £ and #, are polynomials in s, i.e.,

e 1 S Z q,(:;.)7
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Furthermore, from the definition of qff) (e18), it is easy to see that
b < ¢, (6.18)
fork=1,..,K,i=1,2,..andj = 1,..,n{". So, finally, (6.14) follows from (6.17) and (6.18). O

Step 3: Having proven (6.3), we must now prove (6.4). For this we need the following lemma.
Lemma 6.4 For any € > 0, there exists 6; > 0 such that for 0 <r,u < de,

[f(u) — p(r)] < @ — A)"Y(D + €l)d + Mju — 1], (6.19)
where A 1is given by (8.8) below, and

D =diag()\1€1"', Ak By

saey

” ) (6.20)
P Pr

d = ((¢1)"L(1/¢1), -, (5 )" L(1/ i), (6.21)

with ¢y, being the k-th component of Mu (k=1,..., K).

Proof. We only prove the case of gated service. By similar arguments, one can obtain the
result for exhaustive service. For k = 1,..., K, recall that hi(-) and & (-) are defined by (4.25)
and (6.6) respectively. Then we have, for 0 < u,r < §;e where J; is some positive constant,

|fi(1) = i (r)]

..<_ }i’bk-(ﬂl, ceey Uk f}s—kl(u); '“afK(u)) - ék(ulv "'7uk)fk+l(u)a a2 fK(u))l
€k (11 eens ity Frt1 (W), ooy F (W) = (1, ooy Ty Prp1 (), o PR (T))
AkBrey . . ,
< (*;z—' + €)(pruy + ... + prug + pefrpr(u) + ..+ prfx (u)

L(1/(prur + ... + prug + prfra1(u) + ... + ppfr(u))) + plur — 71

oo+ prlu — 7|+ ol fer1 () — pera ()] + - + il frc (u) — P (x)], (6.22)
where the last inequality in (6.22) follows from the fact that, cf. (5.5),
m
1= Br(s) = 2 (=1)7%' B 8’| < Brws”L(1/s), 0<s <6,
=1

¢ being a positive constant. By similar arguments as in the proof of Lemma 6.1, one can easily
prove that, for 0 < u < de,

f(u) < Mu.
Thus, it follows that

Bu+ Af(u) <Bu+ AMu=(B+A(I-A)"'Bju= (I- A)"'Bu=Mu,
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which implies that
prut + ... + pruk + ppfer1(w) + o + prfr(u) < o (6.23)
Rewriting the inequality (6.22) in terms of matrices and combining with (6.23), we obtain
f(u) — p(r)| < (D + el)d + Blu — r| + A[f(u) — p(r)], (6.24)

D and d being given by (6.20) and (6.21) respectively. Since (I— A)~! is a nonnegative matrix,
(6.19) follows from (6.24) immediately. o

Lemma 6.5 There exists a nonnegative constant Hy, such that

5 H(eis) — P(ei1s)
s svL(1/s)

= (~=1)"Hap. (6.25)

The constant Hy , = 0 if and only if YR B = 0.

Proof. To simplify the notation, denote by r;; the k-th component of the vector Miel, put
vi(s) := ((rins)*L(1/ri18), ..., (rixe $)" L(1 /rixcs)) T, (6.26)

and let vy (s) denote the k-th component of v;(s) where k = 1,..., K, ¢« = 1,2,.... By Lemma
6.4 it follows that

£ (e1s) — p(e1s)] < (1— A)™H(D + el)vi(s) + MIF* " VD(ers) —pl~V(ers)l,  (6.27)
for i =1,2,.... Tterating the above relations, we get for : =1,2,...,

i
£ (e1s) — pP(ers)| < > M (I — A)~H(D + el)v;(s). (6.28)
j=1

Summing up the above inequalities yields

52, [FD(ers) — p@ (ers)| 0 rini g v;(s)
SL/S) < ;;M 11— A)HD +€l) L(l/)
C OSOSUREI(I— A)ND 4 )
= ;;M II-A)"'(D+ I)s”L(l/s)
= I-M)"1I-A)"D +€l) f: (6.29)
]=1

where the last identity follows from (8.10) in Appendix B.
Next we prove that the infinite sum Y52, v;(s)/(s*L(1/s)) converges. By using Potter’s
theorem (cf. Theorem 1.5.6 in [6]), it follows from the fact that _l_i)m r;p =0fork =1,...,K that
1—00
ri L (1 rigs)
L(1/s)
fori >Ny, k=1,...,K,
vik(s)
WA
sV L(1/s) =

converges to 0 uniformly in s for s > 0 as 4 — oo. Thus there exists Ng such that
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By the definition of v;(s) and r;x, we have for k = 1,..., K, 0 < s < § where ¢ is some positive
constant,

> Z SL0/) 18/)s) <3 Z”*‘c <> ka = ZeTM’“el =e’(I-M)™'Me; < co.

1=Ng k=1 i=Ng k=1 i=1 k=1

Hence, applying the Dominated Convergence Theorem, it follows that

_ H(eis)—Pleis) & eT(f0)(e;s) — pP(e;s))
G R S D VL (VY

~ . . vi(s)
= (-1)mef@-M)"}{1-A)" 1DZI¢0W

:(%WJﬂ—ﬁWﬂ~M*DZm<w, (6.30)
2=1
where
;= (71, Tk (6.31)
and the last identity follows from Lemma 8.2. Put
o0
Hiy=e"@I-M){1-A)"'DY u,, (6.32)
=1

and subsequently (6.25) follows. Noticing that D = 0 if and only if ¥X , Bi = 0, we conclude
that Hy, = 0 if and only if X , 8., = 0. m]

2. The case of non-zero switchover time 3 ~
Again we wish to prove (5.8) for z;(s). As shown in Section 4, z1(s) = Fi(e1s) where Fi(-) is
given by (4.33). Put

10 ..00 01 11
11 .00 00 ..11

Co=|: : 1 1 |, Ge=) 1 0 1 @1, (6.33)
11 ..10 00 01
11 .11 0 0 00

and subsequently we define

fO(r) = CO(r)+ G, i=1,2, ..,

R o K

F(r) := ZZ o (6.34)

i=1k
with f}gi)(r) being the k-th component of £ (r) for k = 1,..., K. So we may rewrite (4.33) as
F(r) = exp{F(r)}, (6.35)
where F(r) is given by (6.34). To prove (5.8), it is sufficient to show that

Fles) = iﬁl,jsf’ + (=)™ Fy sV L(1/s) + o(s”L(1/s)), 0. (6.36)
=1
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We shall use similar arguments as in the proof for zero switchover times to obtain (6.36). We
have again divided the proof into three steps. In the first step, we construct a new function
P(r) which has similar structure as F(r). In the second step, we shall use similar arguments as
in the proof of zero switchover time to show that

Pleys) = if’l,jsj + (=1)™+ P sV L(1/s) + o(s” L(1/s)), (6.37)
7j=1

where 13‘1,;,- are some constants for j = 0,...,m and }31,,, > 0. Moreover, 131,,, = 0 if and only if
S K 10k, = 0. In the third step, we shall verify that

where gy, > 0. Moreover, gy, = 0 if and only if >/ (8, + 0%,) = 0. Obviously, combining
(6.37) and (6.38) yields (6.36) where

Fiy=P+a, (6.39)

with 131,,, and g, being given by (6.48) and (6.51). Then applying Lemma 8.3 in Appendix
A, and noting that z;(s) = Fj(e;s) is the LST of some non-negative random variable, Formula
(5.8) of Theorem 5.1 follows from (6.35) and (6.36) with

11 =Py, m1, = Fy, (6.40)

Py and 13‘1),, being given by (6.44) and (6.39) respectively.
Step 1: Define:

pP() = Cp¥(r)+Gptir), i=12,.., (6.41)
~ K “
Pr) = 35 Ino(P (1)), (6.42)
=1 k=1

p@ () being given by (6.7) and ﬁg)(-) denoting the k-th component of p¥ (). By Lemma, 6.1,
we have

pP(eis) = CpW(es)+ Gplite;s)
< Cﬁiiels + Gl\-/IiHels

= (C+GM)M'eys, (6.43)

where the above inequality follows from (6.10). Using the fact that In{ok(z)) < oz for small
z, one can easily prove that P(r) is well-defined in some neighbourhood of the origin. It is not
difficult to see that ‘

d ~ o~
4 o) _ i
l;igl dsp (e1s) = (C+GM)M e;.

It follows that
Py = eTH(C + GM)(I — M) ' Mey. (6.44)
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Step 2: We shall prove (6.37) by using similar arguments as in the proof for the case with zero
switchover time. We omit some of the details here. Firstly by using Lemma 8.3, we may write

In{ok(z)) = f: agjz’ + (=1)™ag 2V L(1/z) + o(z”L(1/x)), =40, (6.45)

with ag , = o, Applymg similar arguments as in the proof of Lemma 6.3, we can easily verify
that

cw K m ) o0 .
A(s) : Z }: Z agj k els))J = Z A8l (6.46)
i=1 k=1 j=1 3=1

For any € > 0, there exists a § > 0 such that for 0 < s < 4,

|Plers) — Als)] _ if(%we)(ﬁ( (1) L1/ (3 (e15)))

s*L(1/s) T gS&a s¥L{1/s)
s (Okw + €)(airs)” L(1/augs)
< ;kzl WL(/5) < o0, (6.47)

a;x, denoting the k-th component of the vector (C + GK/I)I\-/Izel. By the Dominated Convergence
Theorem, it can be shown that

P(ers) — A(s)
a0 svL(1])s)
with

= (=)™ P, (6.48)

) oo K
P, = z Z Ok Q-

i=1k=1
Notice that }SU, =0 if and only if K , ok = 0. Combining (6.48) and (6.46) leads to (6.37).

Step 3: The proof of (6.38) is similar to that of Lemma 6.5. Here we omit some of the details.
For simplicity, define

H := diag{oy,...,0x).
By the definitions of F'(e;s) and P(e;s), we have
Iﬁ(els) —~ P(eys)|

| n(ox (8 (e15))) — In(ox(F (e15)))]

I
M
M=

fi
r—
o
i

okl (e1s) — f ,Si)(els)l

IA
s
M=

=1 k=1
2 1 (i4+1)

< Zzakzu Vers) - p) (e1s)| + o z 1 (ers) — i (ers))
i=lk=1  j=1 Ge=k+1

eTH(C[f (e,5) — p¥(e15)| + G[F+ D (e15) — pV (e19)])

I
Mg

)
1l
—

oo
e"H(C +G) Y [f)(e1s) — p¥(e19)], (6.49)
i=1

IA
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which in combination with (6.29) yields

|F(e1s) — Pleys)]
s*L(1/s)

< eTH(C+G)(I-M)"1I-A)(D + ) fj 3%55/)?) < o0, (6.50)
i=1

where v;(s) is defined by (6.26). Again, using the Dominated Convergence Theorem, we obtain

F(eys) — P(ers)

I _ m+1 .
;gl SVL(]./S) ( 1) gl, 3
with
g1, = eTH(C+ GM)(I - M) (I-A)"'DY u, (6.51)

i=1

where u; is given in (6.31). Notice that H = D = 0 if and only if K (8, + 0x,) = 0, thus
g1,» = 0 if and only if EkK=1(ﬁk,u +og,) =0.

7 Conclusions

In this paper we have investigated the tail behaviour of the waiting time distributions in cyclic
polling systems with gated or exhaustive service. Under the assumption that at least one of the
service or switchover time distributions has a regularly varying tail, the waiting time distributions
at all queues are shown to be regularly varying at infinity, of index one higher than the heaviest
tail of the service and switchover time distributions. This result gives important insight into the
effect of heavy-tailed service or switchover time distributions on the performance of a large class
of polling systems. We expect the same result to be true for non-cyclic polling systems, and
for a larger class of arrival processes and service disciplines. For the class of service disciplines
satisfying Property 4.1, it may be possible to prove this along similar lines as in the present
paper. For almost all polling systems in which the service discipline in at least one queue does
not satisfy Property 4.1, no explicit expression for the waiting time LST’s is known, so that the
approach via Lemma 8.1 does not work. An exception is provided by the 2-queue polling system
with exhaustive service at @; and 1-limited service at Jg; for this model, a simple explicit
expression for the waiting time LST’s is known (see, e.g., [23]), which can be used to prove the
above predicted result for the waiting time tails.

8 Appendix

Appendix A: Preliminaries
In this appendix we shall introduce some basic results relating the tail behaviour of probability
distributions to the asymptotic behaviour of their LSTs near the origin. Regularly varying
distributions receive special attention.

The following lemma (cf. Lemma 2.2 in [12]), which is an extension of Theorem 8.1.6 in [6],
links the regularly varying tail behaviour of Pr{X > ¢} for t — oo to the behaviour of its LST
f(s) for s | 0. It plays a key role in the proof of our main result. First introduce, for an LST

22



f(s) of the probability distribution of a non-negative random variable with finite j-th moment

v, J=0,1,...,n
), s> 0.

Lemma 8.1 Let X be a random variable with LST f(s), L(t) e slowly varying function, v €
(n,n+1) (n € N) and C > 0. Then the following are equivalent:

(i) Pr{X >t} = [C + o(1)]L(t)/t", t — .

(#) E{X"} < 00 and fp(s) = (=1)"T(1 — v)[C + o(1)]L(1/s)s¥, s | 0.

fals) i= (~1y (f(s) R
=0

The next lemma (cf. Lemma 5 in [11]) characterizes a property of slowly varying functions.

Lemma 8.2 Let L(z) be a slowly varying function, and t(z) a positive function such that
limg oo t(z) /2 = a where 0 < a < oo. Then for a constant v (v € R),

o {@YLeE) _

T—00 ¥ L{z) -

The key formulas of the present study involve iterated functions (see, e.g., (4.16), (4.23) and
(5.2)). The following result is useful in this respect; it is a consequence of Lemma 8.2.

Lemma 8.3 Suppose ¢(:), ¥(-) can be written as

d(z) = Zqﬁixi + ¢,V L(1/z) + o(z¥ L(1/x)}, for z 10, (8.1)
f=]

P(z) = i’l/)iiﬁi + 2" L(1/z) + o(z¥ L{1/x)), for z 10, (8.2)
i=1

where ¢1,91 > 0, n < v < n+1 and L(-) is a slowly varying function. Then the asymptotic
expansion of the function ¢(p(x)) at point 0 is given by

o(((z)) = Zé‘@xi + (n1oy + dup] )" L(1/z) + o(z”L(1/x)), for z 0. (8.3)

i=1

Proof. For 1 <i < n, there exist polynomials p;(z) and ¢; j(z) (j = 1,...,i) such that (y(z))*
can be written as

@) = pia) + Y@ L) aig(2) + ol (1),

J=1

where

pi(z) = () ¢zl),
7=1

gij(z) = ( ; ) (), j=1,..,i
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Note that g; 1(x) are all equal to 0 if z = 0 for 2 < i < n. Therefore, we have

2 6i((@)) = Y aja’ + dipa” L(1/x) + o(z" L(1/2)), (8.4)
i=1

J=1

for some real numbers a; (j = 1,...,n). Since lim; g ¢ (z)/z = ¢, it follows from Lemma 8.2
that

@) L/))
z}0 z¥L(1/z)

= "/){)
which in combination with (8.1) and (8.4) leads to the conclusion. 0O

Remark 7.1. It should be noted that, despite the symmetry in (8.1) and (8.2), it is possible
that ¢(z) refers to a heavier-tailed function than 1(z) (or vice versa); for example, 1, might be
equal to zero.

Appendix B: On the first moment matrix
Consider the mean matrix M = (my; : k,j = 1, ..., K), where

= 9%k

Mgy : 82'3 (13'“3 1)}

is the mean number of type-j customers that are descendants of a single type-k customer. As
proved in [27], M plays an essential role in proving that p < 1 is sufficient for ergodicity in
the case of gated or exhaustive service. In this appendix we shall derive some properties of the
matrix M = (Mg 1 k,j=1,...K), where

- O f

The following lemma relates the eigenvalues and eigenvectors of M and M.

Lemma 8.4 The eigenvalues of M and M are identical. Moreover, if v = (vy,...,vk)7 is a
right eigenvector of M w.r.t. eigenvalue a, then u = (A1vy, ..., Mur)T is a right eigenvector of
M w.r.t. a.

Proof. Elementary, using the fact that

- A
Mi; = Xj“_mkj; (8.6)

which follows from the relation (see {4.12), (4.25) and (4.26))
Felr) = Me(1 = fa(2))-

Furthermore, we can derive an explicit formula for M. It follows from (4.26) that

M =B+ AM, (8.7)
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where

dh dhy dh
0 F2(0) .. T (0) 8—{;;(0)
8h 8
0 0 . 20 Z2(0)
A= : , (8.8)
Bhge
0 0 0 8:};{’ (0)
0 0 0 0
oh
([ u0) 0 0 0
Z2(0)  F0) 0
B= : : : : : (8.9)
Bh Shyc Shy—
6?1 L(0) 3;, L(0) .. __-8r§_; (0} ) 0
oh ah oh ok
F50)  FE(0) .. - (0) FX(0)
For the case of gated service at all queues, A and B are given by
0 P11 - P Pl [431 0 0 0
0 0 .. pp p 2 pz .. O 0
Agat = oL : s Bgat = : : : : ’
0 0 .. 0 pr PK-1 PE-1 - PEK-1 O
0 0 ... 0 0 PK PK -~ PK PK
and for the case of exhaustive service at all queues, A and B are given by
0 0 .. 2 & v 0
Aexh = : : aBexh = : . :
— PK-1 PK-1
0o o0 .. 0 T-f-‘g-x—‘z T pie l_p§_1 (3{ 0
60 0 .. O 0 —Eﬁ—l,pK —"’—-l_px —9——1_pK 0

From equation (8.7) we get that
M= (I-A)!B.

If p < 1 then the largest eigenvalue amax < 1 (see [27]) and it can be readily shown that
limp_0o M™ = 0. Thus, applying Lemma B.1 in [28], we have

(I-M)™* = iﬁ/ﬁ, (8.10)
1=0

which is a nonnegative matrix.
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