

On-line dial-a-ride problems under a restricted information
model
Citation for published version (APA):
Lipmann, M., Lu, X., Paepe, de, W. E., Sitters, R. A., & Stougie, L. (2002). On-line dial-a-ride problems under a
restricted information model. (SPOR-Report : reports in statistics, probability and operations research; Vol.
200207). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/a776182d-85bc-40f2-a9d4-4df5ef2a7bc7

On-line dial-a-ride problems under a restricted

information model

M. Lipmann∗ X. Lu∗† W.E. de Paepe‡ R.A. Sitters∗

L. Stougie∗§

Abstract

In on-line dial-a-ride problems, servers are traveling in some metric space
to serve requests for rides which are presented over time. Each ride is
characterized by two points in the metric space, a source, the starting
point of the ride, and a destination, the end point of the ride. Usually it
is assumed that at the release of a request complete information about the
ride is known. We diverge from this by assuming that at the release of a
ride only information about the source is given. At visiting the source, the
information about the destination will be made available to the servers.
For many practical problems, our model is closer to reality. However, we
feel that the lack of information is often a choice, rather than inherent
to the problem: additional information can be obtained, but this requires
investments in information systems. In this paper we give mathematical
evidence that for the problem under study it pays to invest.

1 Prelude

In dial-a-ride problems servers are traveling in some metric space to serve re-
quests for rides. Each ride is characterized by two points in the metric space,
a source, the starting point of the ride, and a destination, the end point of the
ride. The problem is to design routes for the servers through the metric space,
such that all requested rides are made and some optimality criterion is met.

∗Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands. e-mail: {m.lipmann, x.lu, r.a.sitters,
l.stougie}@tue.nl.

†East China University of Science and Technology, Shanghai 200237, China. e-mail:
xwlu@ecust.edu.cn.

‡Department of Technology Management, Technische Universiteit Eindhoven, P.O.Box 513,
5600 MB Eindhoven, The Netherlands. e-mail: w.e.d.paepe@tm.tue.nl.

§CWI, P.O. Box 94079, 1090GB Amsterdam, The Netherlands. e-mail: stougie@cwi.nl.

1

Dial-a-ride problems have been studied extensively in the literature of op-
erations research, management science, and combinatorial optimization. Tra-
ditionally, such combinatorial optimization problems are studied under the as-
sumption that the input of the problem is known completely to the optimizer.

In a natural setting of dial-a-ride problems requests for rides are presented
over time while the servers are enroute serving other rides, making the prob-
lem an on-line optimization problem. Examples in practice are taxi and minibus
services, courier services, and elevators. In their on-line setting dial-a-ride prob-
lems have been studied in [1] and [5], where single server versions of the problem
are studied, as we will do here. These papers study the problem in which rides
are specified completely upon presentation, i.e., both source and destination of
the ride become known at the same time. We diverge from this setting here.

In many practical situations complete specification of rides is not realistic.
Think for example of the problem to schedule an elevator. Here, a ride is the
transportation of a person from one floor (the source) to another (the desti-
nation), and the release time of the ride is the moment the button on the wall
outside the elevator is pressed. The destination of the ride is revealed only when
the person enters the elevator and presses the button inside the elevator.

In this paper we study the on-line single server dial-a-ride problem in which
only the source of a ride is presented at the release time of the ride. The
destination of a ride is revealed at visiting its source. We call this model the
incomplete ride information model and refer to the model used in [1] and [5]
as the complete ride information model. As objective we minimize the time by
which the server has executed all the rides and returned to the origin.

In a MSc-thesis Seleson introduced the idea of rides with unknown destina-
tions within a multi-threaded on-line optimization setting. The idea dates back
to the mid-nineties and was proposed by her supervisor E. Feuerstein.

We distinguish two versions of the on-line dial-a-ride problem under the
incomplete ride information model. In the first version the preemptive version
the server is allowed to preempt any ride at any point, and proceed the ride
later. In particular the server is allowed to visit the source of a ride and learn
its destination without executing the ride immediately. In the second version,
the non-preemptive version, a ride has to be executed as soon as the ride has
been picked up in the source. We do allow the server to pass a source without
starting the ride, in which case he does not learn the destination of the ride
at passing the source. We study each version of the problem under various
capacities of the server. The capacity of a server is the number of rides the
server can execute simultaneously. Problems are defined formally in Section 2.

We perform competitive analysis of deterministic algorithms for the problems
described above. Competitive analysis measures the performance quality of an
algorithm for an on-line problem by the competitive ratio, which is the worst-
case ratio over all possible input sequences of the objective value it produces
and the optimal off-line solution value. For detailed explanation of competitive
analysis and many examples we refer to [3]. For an overview of results on on-
line optimization problems we refer to [6]. Typically there are lower bounds on
the competitive ratio achievable by any algorithm (even allowing exponential

2

computing time). We derive such lower bounds for deterministic algorithms for
the various versions of the on-line dial-a-ride problem under the incomplete ride
information model. We also design and analyze algorithms for their solution.

In [2] a lower bound of 2 on the competitive ratio of any deterministic al-
gorithm is given for the on-line dial-a-ride problem under the complete ride
information model, independent of the capacity of the server, not allowing pre-
emption of rides. However, the bound is based on the on-line travelling salesman
problem, having rides with zero length, whence the bound also holds when allow-
ing preemption. In Section 3 we show that under the incomplete ride informa-
tion model no deterministic preemptive algorithm is better than 3-competitive
against an adversary that is not allowed to preempt. This is independent of the
capacity of the server. Hence, we have a lower bound of 3 for both the pre-
emptive and non-preemptive version. For the preemptive version, we design an
algorithm with competitive ratio matching the lower bound of 3, independent
of the capacity of the server.

If preemption is not allowed, we derive a lower bound of max{c, 1 + 3
2

√
2}

on the competitive ratio of any deterministic algorithm, where c is a given fixed
capacity of the server. We present a 2c + 2-competitive algorithm for the non-
preemptive version. These results are presented in Section 4.

We notice that there is no difference between the preemptive version and
the non-preemptive version of the problem if the server has infinite capacity,
whence we inherit the matching lower and upper bound of 3 of the preemptive
version for this case. An overview of the results is given in Table 1. For the
exposition we have omitted to refer to [5] for the first 2-competitive algorithm
for the problem with complete ride information and server capacity ∞. The
result in that paper follows from the results in [1].

capacity LB UB

complete ride information
preemption 1, c,∞ 2 [2] 2 [1]

no preemption 1, c,∞ 2 [2] 2 [1]

incomplete ride information
preemption 1, c,∞ 3 3

no preemption 1 1 + 3
2

√
2 4

c max{1 + 3
2

√
2, c} 2c + 2

∞ 3 3

Table 1: Overview of lower bounds (LB) and upper bounds (UB) on the com-
petitive ratio of deterministic algorithms for on-line dial-a-ride problems

Our results combined with those from [1] show the effect of having com-
plete knowledge about rides on worst-case performance for on-line dial-a-ride
problems. This is an important issue, since in practice complete information
is often lacking. Investments in information systems can help to obtain more
information. Mathematical support is essential in justifying such investments.
Our results concern minimizing the time by which the server has done all rides

3

and is back in the origin. It is interesting to see if similar results can be obtained
for other objectives.

We conclude by referring back to the elevator scheduling problem. The typ-
ical elevator with only a request button outside the elevator fits our incomplete
ride information model. In an alternative construction, the destination buttons
could be built outside the elevator, fitting the complete ride information model.
We disclaim though that minimizing the latest completion time is a natural
objective for an elevator.

2 Problem definition

An instance of the on-line single server dial-a-ride problem (OlDarp) is spec-
ified by a metric space M = (X, d) with a distinguished origin O ∈ X, a
sequence σ = σ1, . . . , σm of requests for rides, and a capacity for the server. A
server is located at the origin O at time 0 and can move at most at unit speed.
We assume that M has the property that for any pair of points {x, y} ∈ X
there is a continuous path p : [0, 1] → X in X with p(0) = x and p(1) = y of
length d(x, y) (see [2] for a thorough discussion of this model). Explicitly, we
add the assumption that d is symmetric and satisfies the triangle inequality for
those readers for whom this is not implicit in the definition of metric space.

Each ride is a triple σi = (ti, si, di), where ti ∈ R+
0 is the time at which ride σi

is released, si ∈ X is the source of the ride, and di ∈ X is the destination of
the ride. Every ride σi ∈ σ has to be executed (served); that is, the server
has to visit the source, pick up the ride, and end it at the destination. The
capacity of the server is an upper bound on the number of rides the server can
execute simultaneously. We consider unit capacity, constant capacity c ≥ 2, and
infinite capacity for the server. The objective in the OlDarp is to minimize
the completion time of the server, which is the time when the server has served
all rides and returned to the origin.

We consider the preemptive and non-preemptive versions of the OlDarp,
under the incomplete ride information model for different capacities of the server.

Definition 2.1 Under the incomplete ride information model only the source
si of ride σi is revealed at time ti. The destination di of the ride becomes known
only at picking up the ride in the source.

We assume that the sequence σ = σ1, . . . , σm of rides is given in order of
non-decreasing release times, and that the on-line server has neither information
about the time when the last ride is released, nor about the total number of
rides. An on-line algorithm for the OlDarp must determine the behavior of
the server at any moment t based on the information obtained before t, whereas
the off-line algorithm knows the whole input sequence σ at time 0. A feasible
on-line/off-line solution is a route for the server that starts and ends in the
origin O and serves all requested rides regarding that each ride is picked up at
the source not earlier than the time it is released.

4

Let ALG(σ) denote the completion time of the server moved by algorithm ALG
on the sequence σ of rides and OPT(σ) denote the optimal off-line algorithm’s
completion time. The competitive ratio of algorithm ALG is

max
σ∈Σ

ALG(σ)
OPT(σ)

,

with Σ the class of all possible request sequences.

3 The preemptive version

We describe our algorithm SNIFFER, which preempts rides only immediately
at the source, just to learn the destinations of the rides: it “sniffs” the rides.
Upon visiting the source of a ride for the second time, the ride is completed
right away. The algorithm is an adaption of the 2-competitive algorithm for
the on-line traveling salesman problem (OlTsp) described in [2]. Any time
the server is in the origin O it starts an optimal TSP tour over all unvisited
sources, just to learn the destinations. If the server is back in O and there are
no unvisited sources, then it starts an optimal dial-a-ride (DAR) tour over all
rides that still have to be executed. The server ignores all new requests while
it is making a TSP or DAR tour. We add the restriction that the server does
not start a tour at a time t if the length of this tour is strictly larger then t.

Algorithm SNIFFER

(1) Wait in O until the set S of unvisited sources is non-empty.

(2) Compute an optimal TSP tour Ttsp(S) over the set S of unvisited sources.
If the current time is at least |Ttsp(S)| go to (3). Otherwise, wait either
until time |Ttsp(S)| and then go to (3) or until a new request is released,
then update S and start (2) anew.

(3) Execute Ttsp(S) without interruption. Sources visited are deleted from S
and the corresponding rides are added to R, whereas sources of requested
rides released during the tour are added to S. At the end of the tour,
being back in O, go to (4) if S = ∅, else go to (2).

(4) Compute an optimal DAR tour Tdar(R) over the set R of rides that still
have to executed. If the current time is at least |Tdar(R)| go to (5).
Otherwise, wait either until time |Tdar(R)| and then go to (5) or until a
new request is released, then update S and go to (2).

(5) Execute Tdar(R) without interruption, setting R = ∅. Sources of requested
rides released during the tour are added to S. At the end of the tour, being
back in O, go to (1) if S = ∅, else go to (2).

Theorem 1 SNIFFER is 3-competitive for the preemptive OlDarp under the
incomplete ride information model, independent of the capacity of the server.

5

Proof. Let S be the set of sources visited in the last TSP tour and let R be
the set of rides executed in the last DAR tour. We distinguish three cases.

First assume that SNIFFER is waiting in O just before it starts the last
DAR tour. Then it starts this tour exactly at time |Tdar(R)|, whence the overall
completion time is 2|Tdar(R)| ≤ 2|Tdar(σ)|.

Secondly, assume SNIFFER does not wait before the last TSP tour, but it
does wait in O just before the last TSP tour. In this case it starts this tour
exactly at time |TTsp(S)|, whence the overall completion time is |TTsp(S)| +
|TTsp(S)|+ |Tdar(R)| ≤ 3|Tdar(σ)|.

Finally assume that SNIFFER waits neither before starting the last TSP
tour nor before starting the last DAR tour. Thus, some tour T has been made
before the last TSP tour, unless the last TSP tour started at time 0. In the
latter case both the TSP and the DAR tour must have length 0. In the former
case the tour T might be a TSP or a DAR tour. The set S of requests served
on the last TSP tour (and DAR tour) must have been released after the time,
t say, that SNIFFER started tour T . Let P be the length of the shortest path
through S and O. Then |Tdar(σ)| ≥ t + P . On the other hand |TTsp(S)| ≤ 2P
implying an overall completion time of

t + |T |+ |TTsp(S)|+ |Tdar(R)| ≤ 2t + 2P + |Tdar(R)| ≤ 3|Tdar(σ)|.

2

We show that SNIFFER is a best possible deterministic algorithm for the
preemptive version of the OlDarp, even though SNIFFER uses preemption
only at the source of rides.

Theorem 2 No deterministic algorithm can have a competitive ratio strictly
smaller than 3 for the OlDarp under the incomplete ride information model,
independent of the capacity of the server.

Proof. For the proof of this theorem we use a commonly applied setting of
a two-person game, with an adversary providing a sequence of rides, and an
on-line algorithm serving the rides (see [3]). Typically, the outcome of the
algorithm is compared with the solution value the adversary achieves himself on
the sequence, which is in our case the optimal off-line solution value. We consider
the OlDarp under the incomplete ride information model where the on-line
server has infinite capacity. Let ALG be a deterministic on-line algorithm for
this problem. We construct an adversarial sequence σ of requests for rides.
We restrict the adversary by giving his server capacity 1. We prove that ALG
cannot be strictly better than 3-competitive for this restricted adversary model.

The metric space M = (X, d) contains the set of points, or vertices,
{x1, x2, . . . , xn2} ∪ O and the distance function d, where d(O, xi) = 1 and
d(xi, xj) = 2 for all xi, xj . To facilitate the exposition we denote point xi

by i.

6

At time 0 there is one ride in each of the points in 1, 2, . . . , n2. If the on-line
server visits the source i of a ride at time t with t ≤ 2n2−1, then the destination
turns out to be i as well, and at time t + 1 a new ride with source i is released.

In this way, the situation remains basically the same for the on-line server
until time 2n2. We may assume that at some moment t∗, with 2n2 − 1 < t∗ ≤
2n2, there is exactly one ride σi = (ti, i, di) in each point i. Without loss of
generality we assume that the points are ordered such that t1 ≤ · · · ≤ tn2 .

Thus, at time t∗ the on-line server still has to complete exactly n2 rides.
We partition the set of n2 vertices into n sets: Ik = {(k − 1)n + 1, . . . , kn},
k = 1, . . . , n. Within each of these sets we order the vertices by the on-line
server’s first visit to them after time t∗. Let bkj , j ∈ {1, . . . , n} be the jth
vertex in this order in Ik. For all k ∈ {1, . . . , n} we define dbk1 = bk1 and
dbkj

= bk,j−1 for all j ∈ {2, . . . , n}. Notice that the destination of ride σi

only depends on the tour followed by the on-line server until he picks up the
ride to look at its destination. For the on-line server this means that n of
the n2 rides can be served immediately since the source equals the destination.
For the other n2 − n rides the server finds out that the destination of the
rides he just picked up is another point that he already visited after time t∗.
Therefore, n2 − n points will have to be visited by the on-line server at least
twice after time t∗. Hence, the completion time for the on-line server is at least
t∗ + 4(n2 − n)− 1 + 2n > 6n2 − 2n− 2.

We will now describe the tour made by the adversary. Given our definition
of t∗ we have that tn2 ≤ t∗ ≤ 2n2. Since the on-line server needs at least 2 time
units to move from a point i to another point i′, it follows that ti ≤ 2i, for all
i ∈ {1, . . . , n2}. The adversary waits until time 2n and then starts to serve the
rides σ1, . . . , σn, by visiting the sources in reversed order of b11, . . . , b1n. The
rides with equal source and destination are served immediately at arrival in the
point. This takes the adversary 2n time units. At time 4n the adversary starts
serving the rides σn+1, . . . , σ2n, and then at time 6n the rides σ2n+1, . . . , σ3n,
etc. Continuing like this the adversary completes at time 2n2 + 2n.

Hence, the competitive ratio is bounded from below by (6n2−2n−2)/(2n2+
2n), which can be made arbitrarily close to 3 by choosing n large enough. 2

4 The non-preemptive version

For the non-preemptive version we design an algorithm, called BOUNCER,
because the server “bounces” back to the source, once a ride is completed. The
algorithm uses an algorithm for the OlTsp problem to construct, on-line, a
TSP tour on the sources of the requests. The instance of the OlTsp problem
consists only of the sources with their release dates. BOUNCER follows exactly
this tour, but being in the source of a ride, it makes the ride and returns to
the source, where it proceeds on the TSP tour along all the sources. Since
the server in BOUNCER is always behind the OlTsp server this algorithm is

7

well-defined. In the analysis we assume that BOUNCER uses a (best possible)
2-competitive algorithm to construct the TSP tour, e.g. the algorithm from [2].

Algorithm BOUNCER

Perform the OlTsp algorithm on the sources of the rides, yielding a tour
T along the sources only. Follow T . At each source on T execute the ride,
and return to the source via the shortest path. Back at the source proceed
on T .

Theorem 3 BOUNCER is (2c + 2)-competitive for the OlDarp under the
incomplete ride information model, where c is the capacity of the server.

Proof. Consider any request sequence σ. Since all sources have to be visited
and the OlTsp algorithm is 2-competitive, OPT(σ) ≥ |T |/2. Another lower
bound is given by OPT(σ) ≥ D/c, where D is the sum of the lengths of all
rides. The completion time of BOUNCER is at most T + 2D ≤ 2OPT(σ) +
2cOPT(σ). 2

Corollary 4.1 BOUNCER is 4-competitive for the OlDarp under the in-
complete ride information model, if the capacity of the server is 1.

Theorem 4 No non-preemptive deterministic on-line algorithm can have a
competitive ratio strictly smaller than c for the OlDarp under the incomplete
ride information model, where c is the capacity of the server.

Proof. For our lower bound we use the star graph, as we did in the proof
of Theorem 2, with K >> c leaves at distance 1 from the origin O. At time
0, cK rides are released, all with their source in O, and each of the leaves
being destination of c rides, yielding K sets of c identical rides each. Hence the
instance has optimal solution value 2K.

Denote the leaves by 1, 2, . . . ,K. Since the on-line server can not distinguish
between the rides we may assume that the destinations of the rides picked up
by the on-line server are consecutively 1, 2, . . . ,K, 1, 2, Consider any of the
subsequences 1, . . . ,K. Before the server picks up the ride with destination K
it must have completed at least K − c of the last K − 1 rides that it picked up.
Therefore the completion time of the on-line server is at least 2c(K− c) and the
competitive ratio is bounded from below by 2c(K − c)/2K = c − c2/K, which
can be made arbitrarily close to c by choosing K large enough. 2

Together with Theorem 1 this theorem shows that for servers with capacity
greater than 3, the best possible deterministic on-line algorithm for the non-
preemptive version of the problem has a strictly higher competitive ratio than
SNIFFER for the preemptive problem. The following theorem shows that this
phenomenon also occurs for lower capacities of the server.

8

Theorem 5 No non-preemptive deterministic algorithm can have a compet-
itive ratio strictly smaller than 1 + 3

2

√
2 ≈ 3.12 for the OlDarp under the

incomplete ride information model, independent of the capacity of the server.

Proof. First we consider the problem when the on-line server has capacity 1.
Then we will sketch how to extend the proof for any capacity c.

The metric space is defined by the edges of a star graph on 2n + 1 vertices.
The leaves, denoted by ai (i = 1 . . . n), and bi (i = 1 . . . n), have distance 1 to
the center (origin) O. On each edge (O, ai) (i = 1, . . . , n) we add a point a′i at
a distance α from ai. The constant α is chosen appropriately later.

a 2
a ' n a ' 1

a ' 2

b n a 1
b 1

a n

b 2
O

Figure 1: Lower bound instance. Each leaf contains three sources.

The adversary provides the following sequence σ of rides. At time zero there
are three rides in each point ai and bi, i = 1, . . . , n. If the on-line server visits
a source, then the destination turns out to be the same as the source. Rides of
this kind are called empty rides. One time unit after an empty ride has been
executed the ride is replaced by a new ride with the same source. Every source
that is visited by the on-line server strictly before time 4n − 3 meets the same
fate. Sources visited after this time are not replaced. We refer to the three rides
that were executed last in a leaf as the decisive rides and specify them later.

Since it takes at least two time units to travel between two leaves, the on-line
server can visit at most 2n − 2 leaves during the half-open interval [0, 4n − 3).
This leaves two leaves unvisited, which the adversary manipulates to be a1 and
b1. The adversary will execute the rides in these points first. Similarly, during
the interval [4, 4n−3) only 2n−4 leaves can be visited by the on-line server. This
leaves two other leaves unvisited after time 4, which the adversary manipulates
to be a2 and b2. The rides in these points are executed by the adversary after
the rides in a1 and b1. This receipt is iterated: in each interval [4(i− 1), 4n− 3)
there are two leaves that are left unvisited from among those that could have
been visited during [4(i− 2), 4n− 3), which the adversary manipulates to be ai

and bi. Since after time 4(i− 1) no more rides are given with sources in ai and
bi, the adversary executes all rides (including the decisive rides), first the ones

9

related to the pair a1, b1, then to the pair a2, b2, etc., starting at time 0. The
on-line server, however, does not pick up any decisive ride before time 4n− 3.

We now specify the decisive rides. In each point bi two of the decisive rides
are empty and one has destination ai. In point ai one of the decisive rides is
empty, one has destination a′i, and one is either empty or has destination O,
depending on the actions taken by the on-line server. Without loss of generality
we may assume that, from time 4n− 3, the on-line server visits point ai before
point bi, since before this time he has seen only empty rides and therefore is
unable to distinguish between a- and b-leaves. The adversary chooses the rides
such that the first ride that the on-line server picks up in point ai is the ride to
a′i. The first ride the server picks up in point bi is the ride to ai. We distinguish
between two cases.
Case 1. The on-line server executes the ride from bi to ai before it picks up the
second ride in ai. In this case the second ride in ai is a ride to the origin. The
on-line server needs at least 10 time units (from O to O) to serve all the decisive
rides connected to the pair ai, bi. The adversary serves empty rides at no extra
cost and therefore all rides in only 4 + 2α time units (from O to O).
Case 2. The on-line server picks up the second ride in ai before moving to bi.
In this case the second ride picked up in ai is empty. The on-line server needs at
least 8 + 2α time units to pick up all rides connected to the pair ai, bi, whereas
the adversary needs only 4.

Starting from O, the on-line server cannot start the decisive rides until time
4n − 4. Let k be the number of pairs ai, bi that is served as in case 1. The
completion time for the on-line server is at least

4n− 4 + 10k + (8 + 2α)(n− k),

and the optimal off-line completion time is

(4 + 2α)k + 4(n− k).

Standard calculus tells us that, for fixed α, the ratio between these two values
is minimized for k = 0 or for k = n. Hence, the competitive ratio is at least

min
{

4n− 4 + 10n

(4 + 2α)n
,
4n− 4 + (8 + 2α)n

4n

}
,

which tends to

min
{

14
4 + 2α

,
12 + 2α

4

}
, as n →∞.

For α = 3
√

2− 4 this limit is equal to 1 + 3
2

√
2.

If the capacity of the server is c, c > 1, we give c copies of the same sequence
σ simultaneously. An on-line server cannot benefit from this extra capacity in
combining rides from different pairs ai, bi. The on-line server will have to do the
rides in a point in the same order as before. For example the first c rides that

10

the on-line server picks up in ai are rides to a′i. Hence, the completion time for
the on-line server cannot be smaller than in the unit capacity case. The off-line
server can complete in exactly the same time. 2

Corollary 4.2 No non-preemptive deterministic algorithm can have a compet-
itive ratio strictly smaller than max{1 + 3

2

√
2, c} for the OlDarp under the

incomplete ride information model, where c is the capacity of the server.

5 Postlude

In [1] and [5] the competitive ratio measures the cost of having no information
about the release times of future rides. We conclude this paper by discussing
below how we can measure the cost of having no information about the desti-
nations of the rides through the competitive ratio.

Suppose that at time 0 the release times and the location of the sources of
the rides are given, but the information about the destinations is again revealed
only at visiting the sources. Both SNIFFER and BOUNCER use the on-line
algorithm of Aussiello et al. [2] for a Tsp tour along the sources. In case all
sources of the rides and the release times are known, an optimal Tsp tour over
the sources, that satisfies the release time constraints, can be computed (disre-
garding complexity issues). In this way SNIFFER and BOUNCER gain an
additive factor of 1 on their competitive ratio, making SNIFFER 2-competitive
and BOUNCER 2c + 1-competitive.

Notice that the lower bound on the competitive ratio for the non-preemptive
problem in Theorem 4 is obtained through a sequence of rides all with release
time 0. Thus, this lower bound is completely due to the lack of information
about the destinations of the rides.

The rides in the sequence giving the lower bound of 1 + 3
2

√
2 for the non-

preemptive problem in Theorem 5 have release times no larger than 4n − 5.
Taking the unserved rides at time 4n− 5 as an instance given at time 0, shows
that the competitive ratio is at least min{ 10

4+2α , 8+2α
4 }. Optimizing over α yields

a lower bound of 1
2 + 1

2

√
11 ≈ 2, 15. Thus, due to the lack of information about

destinations only, any algorithm will not be able to attain a ratio of strictly less
than max{ 1

2 + 1
2

√
11, c}.

In the lower bound construction for the preemptive problem in Theorem 2
the adversary stops giving requests at time 2n2. Take the set of rides unserved by
any on-line algorithm at that time as an instance with release time 0. Following
the proof of Theorem 2 any on-line algorithm will need 4n2 − 2n, whereas an
optimal tour takes 2n2, yielding a lower bound of 2.

Notice that the above lower bounds are established on sequences where all
rides have release time 0. For the preemptive version of the problem this is suf-
ficient since the performance of SNIFFER matches the lower bound. However,
for the non-preemptive version higher lower bounds might be obtained using
diverse release times of rides.

11

References

[1] N. Ascheuer, S.O. Krumke, and J. Rambau, Online dial-a-ride problems:
Minimizing the completion time, Proceedings of the 17th International Sym-
posium on Theoretical Aspects of Computer Science, Lecture Notes in Com-
puter Science, vol. 1770, Springer, Berlin, 2000, pp. 639–650.

[2] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo, Algo-
rithms for the on-line traveling salesman, Algorithmica 29 (2001), 560–581.

[3] A. Borodin and R. El-Yaniv, Online computation and competitive analysis,
Cambridge University Press, Cambridge, 1998.

[4] M. Seleson, On-line multi-threaded dial-a-ride, MSc-thesis, Universidad de
Buenos Aires, Facultad de Ciencias y Naturales, 1997.

[5] E. Feuerstein and L. Stougie, On-line single server dial-a-ride problems,
Theoretical Computer Science 268(1) (2001), 91–105.

[6] A. Fiat and G.J. Woeginger (eds.), Online algorithms: The state of the art,
Lecture Notes in Computer Science, vol. 1442, Springer, Berlin, 1998.

12

