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Abstract

We consider a manufacturer of complex machines that offers service contracts to her customers,

committing herself to repair failed spare parts throughout a fixed service period. The suppliers of spare

parts often discontinue the production of some parts as technology advances and ask the manufacturer

to place a final order. We address the problem of determining final orders for such spare parts. The

parts that we consider are repairable, but they are subject to the risk of condemnation. We build a

transient Markovian model to represent the problem for a repairable spare part with a certain repair

probability and repair lead time and we present some approximations that allow for further real life

characteristics to be included. Furthermore, an approximate model that can be computed more

efficiently is presented, and the sensitivity of the results obtained with respect to the problem

parameters for both of the models is discussed.

Ke;rwords: final order, repairable inventory theory, condemnation, spare parts management

1. Introduction and Motivation

In this paper we consider a manufacturer of complex machines that offers lasting service contracts to its

customers. In these contracts the manufacturer commits herself to repair failed machines and provide

spare parts for those machines at customers' sites throughout a fixed maximum contract service period.

Especially for complex technological machines, customers' interest in service contracts is apparent. The

maximum contract service period typically exceeds the production lifecycle of the machine by many years

, Corresponding author
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due to advances in technology. The period after ending the production of a machine is the last phase of

the product lifecycle and is often referred to as end-aI-life (service) period or final phase. This final phase

can give rise to unavoidable and undesirable issues for inventory management. Demand rates for spare

parts are declining towards the end of the product lifecycle and an estimation of remaining demand for

these parts is difficult to make due to technological improvements and external factors. Manufacturers are

concerned with minimizing stock levels of spare parts towards the end of life of a product. Suppliers are

also concerned with the management of this final phase with regard to their components. Suppliers may

choose to discontinue the production of the spare part considered and ask a manufacturer to place a final

order, or end-of-life buy, to cover for all demand in the remaining contract service period. As a

consequence, the manufacturer is forced to make a possibly large final purchase of spare parts under

uncertain future demand to form her spare parts pool, in order to be able to comply with the constraints

as laid down in service contracts. This is the case even if the spare part is repairable, since successful

repair is not always possible and repair lead times may be (too) long. Stocking large quantities of spare

parts with uncertain future demand is unfavorable for a manufacturer of complex machines, since

remaining inventory at the end of service period turns obsolete and is often scrapped. Cattani and Souza

(2003) report that scrapping of obsolete inventory can reduce profits by up to 1% of revenue each year.

The effect of inventory obsolescence is especially important for repairable items, since in general repairable

items are relatively expensive and the number of times the part can be repaired (and thus used) is

uncertain. In many supply systems for the maintenance of expensive high technology equipment, a large

portion of investment is tied up in the inventory of repairable spare parts. For example, both Schrady

(1967) and Sherbrooke (1971) report that repairable spare parts are responsible for over 50% of inventory

investment within the U.S. Air force and U.S. Navy. The repairable spare parts, upon failure, are sent

back to the supplier who attempts repair. Successful repairs are used for future replacements. Defective

spare parts that cannot be repaired or for which repair is no longer economically feasible are condemned.

In this paper we present a methodology to calculate final orders for repairable items, specifically taking the

effect of condemnation into account.

We implemented this methodology at a manufacturer of complex machines for nanotechnology markets in

Eindhoven, the Netherlands. The company produces several diagnosis and analysis tools which are used by

research institutes and production companies worldwide, often in clean room environments. The company

stocks several thousands of active spare parts and faces contract periods on systems of up to 25 years after

production stop of the system. Repairable spare parts are responsible for over 60% of spare part inventory

investment. Due to the high-technology nature of the company's products and long service periods, final

ordering and condemnation of repairable parts are important issues; condemnation rates ranging from 5%

to 30% typically. Besides final ordering, the company needs to adjust its estimate of excess spare parts

stock on a quarterly basis for its obsolescence reserve. To do so, the company needs a methodology to

calculate final orders as total demand estimate in the contract service period on a quarterly basis for all

repairable spare parts in inventory.
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The rest of this paper is organized as follows. In section 2, we review the related literature. In section 3,

we present a transient Markovian model, specifically incorporating lead-time effects. Section 4 presents the

analysis to obtain the optimal final order. In section 5 implementation issues are covered that were faced

during the mentioned implementation. In section 6 an approximate binomial model is presented that

considers the repairable equivalent of consumable demand. Numerical results comparing the Markovian

model and the binomial model with simulation results are presented in section 7. Finally, in section 8,

conclusions are drawn and some possible directions for future research are presented.

2. Related Literature

There exists a vast amount of literature on the management of spare parts inventories (both consumable

and repairable). We refer the reader to Kennedy et al. (2002) for an excellent review. In this section

however, we refine ourselves to literature that is more closely related to the problem of final ordering for

spare parts in general and repairable items and condemnation more specific.

While the final ordering problem for consumable spare parts (parts that leave the system permanently

after satisfying demand) is studied by a number of authors, the literature on the final ordering for

repairable spare parts is limited. Although some work exists that considers closed loop inventory systems

where repair is always successful, we are not aware of any work that considers the case of repairable items

under condemnation. We distinguish the literature into work on consumable final order theory and

repairable final order theory.

Literature on the final ordering problem for consumable spare parts at the beginning of a final phase is not

abundant. Moore (1971) develops a method to forecast the 'all-time requirement' of consumable service

parts in the motor-car industry. By plotting sales data on a logarithmic scale the author obtains three

families of curves to be common for 85% of the spare parts considered. Ritchie and Wilcox (1977) develop

a method to forecast all-time future demand for spare parts to time the moment of the final production

run using renewal theory. Hill et al. (1999) treat the more general problem of determining stock

replenishment policies for consumable spare parts for machines that are no longer manufactured. They use

a dynamic programming approach to derive optimal policies and they propose a newsboy approach to

determine the optimal replenishment size if there is just one opportunity to place a final order. Fortuin

(1980, 1981) describes the calculation of final orders or all-time requirement for consumable spare parts.

He assumes an exponentially decreasing demand pattern and uses normal approximation to derive

expressions for several curves that indicate the size of the needed final order to attain a certain service

level. Teunter and Fortuin (1999) and Teunter (1998) derive a dynamic programming algorithm for

calculating minimal costs and the size of the corresponding final order. The authors include costs for initial

provisioning, inventory holding, penalty costs per stockout and disposal cost and they present an

approximation by means of a newsboy model. The authors include the possibility of re-supply through
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some external channel but assume that it occurs at no extra cost and thus the re-supply is only used to

decrease the actual demand for spare parts. Teunter and Fortuin (1998) extend their work by presenting

an application of their work at the service organization of a large electronics manufacturer in the

Netherlands. Cattani and Souza (2003) study in their paper the effect of delaying a final purchase under

several scenarios of remaining demand. They contrast the manufacturer's benefit with the cost incurred by

the supplier to show that the supplier is likely to require an incentive to enact a delay of the final

purchase.

Although there is no work specifically aimed at the final ordering problem for repairable parts under

condemnation to the best of our knowledge, some general work that considers closed loop repairable

systems yield expressions for the desired pool size of a repairable item assuming perfect repair. Gross et al.

(1977) use queueing models to determine the optimal number of repair channels and spare parts needed to

support a finite population of items which break down at random times and require repair. Walker (1996)

presents a graphical aid to determine for a given number of machines, the needed repair pool to attain a

certain service level constraint based on the ratio of the mean lead-time to the mean failure-free operating

time. Rustenburg (2000) presents a multi-echelon approach to determine how many spare parts to buy

and at what echelon to locate them in order to maximize the availability of the complex equipment

supported by the repair pool.

Condemnation in general repairable inventory theory is studied extensively; however those works assume

that it is always possible to repurchase spare parts from an external supplying source when needed. The

work that is closest related to our problem is that of Inderfurth and Mukherjee (2006) who characterize

three possible options for organization of spare part acquisition after stopping regular production. These

options are a final order, performing extra production runs or remanufacturing to gain spare parts from

used products. They model and solve the problem by a decision tree and a stochastic dynamic

programming procedure. While remanufacturing is possible in their work, the authors do not specifically

consider condemnation of repairable parts but treat the option of remanufacturing of returned

(consumable) parts as source for future demand.

The combination of condemnation and the final order problem for repairable spare parts is to our

knowledge not covered in literature yet. The main contribution this paper makes is developing a

methodology for obtaining a final order for repairable spare parts taking condemnation specifically into

account. Besides an exact solution, some approximations to the base Markovian model are presented that

allow for further real life characteristics to be included. Furthermore, next to the Markovian model, a

binomial model that can be computed more efficiently is presented; which is shown to work well for

certain parameter ranges.
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3. Model, Assumptions and Definitions

We consider a final ordering situation for a single spare part that does not interact with other parts. We

model the problem as a continuous-time transient Markov chain, which we present in this section. Let qa"

denote the state transition rate from state a into state b. We denote the expected sojourn time in state a

given that the transition is into state bas T
R
". We denote the state space of the transient states as Q.,. and

that of the absorbing states as Q r • The total space set is then defined by Q =Q " u Q r •

The following assumptions to the model are made:

1. Failures of a spare part occur due to a Poisson process with known parameter A. In total there are

m systems featuring the spare part; the total yearly demand rate thus becomes mAo We assume

that each system m features only one spare part. The assumption of Poisson demand is a

reasonable assumption for demand for spare parts as discussed in general spare parts literature.

2. A defective spare part is immediately attempted to be repaired upon its arrival to a repair shop or

supplier. A defective part can be repaired successfully with probability p and is condemned with

probability 1 - p. It may be the case that a repair attempt in reality can have more outcomes

than assumed here (e.g. imperfect repair at a lower quality level instead of either successful or

condemnation); however we assume that repair attempts which result in "less than perfect" quality

are not desirable and thus are considered as condemnation. Furthermore, imperfect repair might

lead to an increased failure rate of other components in the system, which we do not consider

here.

3. Repair lead times are exponentially distributed with a known repair rate of J1 parts per year per

repair channel independent of the number of parts in repair (we assume that there are ample

servers). This assumption can be justified by looking upon the repair lead times as delivery times

instead of the throughput of a queueing system. We note that our model can easily be adapted to

a situation where a finite number of servers is assumed. The repair leadtime consists of the time

between replacement of the part to the moment the repaired part is either returned as available

for use to the spare parts pool or condemned.

4. When a spare part fails, it is assumed to be replaced instantaneously, as long as there is a spare

part available. Otherwise, the customer waits until a spare part becomes available from repair.

The problem is modeled in this way, since in general the travel distance to a customer site and

associated costs are large enough to justify a one-stop-and-exchange policy. Furthermore, due to

technical reasons (e.g. dust, contamination or sanitation) it may be undesirable to work on a

system in two separate occasions.

5. A one-for-one repair policy is used (e.g. we assume no batching of repairs). This assumption is

justifiable for expensive parts; in general repairable parts are more expensive than consumable

parts.
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Let (1; J) denote a state where i represents the number of good parts on hand, with i ~ 0 representing an

on- hand quantity and i < 0 a backorder situation; and j represents the number of defective parts with 0 ::;

j::; N, the final order being N We have (i + j)::; N . Let (N, 0) be the starting state of the system. From

state (N, 0) the system enters state (N - 1, 1) with rate mAo indicating a failure of a system and thus

demand for a spare part. From this state three future states may be reached: (N, 0) with rate pp

indicating successful repair; (N - 1, 1) with rate p(l - p) indicating condemnation of a part and (N - 2, 2)

with rate mAo indicating another failure of a system and thus demand for a spare part before completion of

the part in repair. The transient behavior of the system continues until one of so-called 'absorbing states'

is reached. An absorbing state is defined as a state which, once entered, cannot be left and represents an

undesirable situation. We distinguish two absorbing states in our model. Firstly, the absorbing state (y,

0), y < 0, represents a situation where there are no parts on hand or in repair and there is (backlogged)

demand for a spare part which implies that service (in terms of supplying repaired parts) is no longer

possible. Note that the state (0, 0) is not considered an absorbing state in our model; only upon occurrence

of demand in that state the system reaches absorption through (y, 0). Secondly, the absorbing state (NS),

short for (No Service), represents an absorbing state that is introduced to limit the amount of backorders

in the system. Without a bound on the number of backorders, an extremely unfavorable situation can be

reached in terms of service (e.g. probability of eventually being able to supply all backordered demand can

become undesirably small or the time until delivery of backlogged demand can become undesirably long).

Therefore we let B denote the maximum number of allowed backorders (B ~ 0). B is assumed to be a

constant number independent of the number of parts in repair and reflects the above mentioned issues like

delivery time and likelihood of fulfilling all backordered demand. The state (NS) can be reached in case

any demand occurs and the model is in any of the maximum backordering states (-B, J). Determining B is

an important decision variable since it determines the state space of the model, which we will discuss later.

Once the model enters a backordering state, the customers' systems are not operational and they have to

wait for a part to return from repair as available for use. Note that modeling into two separate absorbing

states is only for illustrative purposes; modeling the system with one absorbing state combining the rates

into (NS) and (y, 0) is also possible.

When the probability of absorption in (NS) is high, the system will spend a relatively large amount of

time in a backordering state and it is likely that there will be some parts remaining in the repair pool at

the end. On the other hand, if the absorption probability of (y, 0) is relatively high, this indicates the

system is able to "cope" with the incoming flow of defective parts in general. It is in those instances that

the system is likely to end up with a very limited number of parts remaining in the repair pool. From a

practitioners viewpoint this last situation is favorable because there is no large write-off of repairable parts

due to absence of demand; the parts that are written-off are done so due to condemnation throughout the

contract service period.
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Having defined the state space and the behavior of the model, we can distinguish the possible transitions

and the according rates into seven categories, see Table 1:

condition from state to state event rate
i>O,j=O (i,O) (i -1, 1) failure mA.
i? 0, 1 <js. N (i, j) (i - 1, j+1) failure mA.

(i + 1, j - 1) successful repair jf.lP
(i, j -1) condemnation jf.l(1 - p)

-B< i < 0, 1 < j 5, N (i, j) (i - 1, j) failure (m + i)A.
(i + 1, J) successful repair jf.lp
(i, j -1) condemnation jf.l(J - p)

i = -B, 1 < j 5, N (-B, j) (NS) failure, absorption (m - B)A.
(i - (i - 1+B), J) successful repair jf.lP
(i - (i+B), j - 1) condemnation j/.J(1 - p)

-B< i< 0, j = 1 (i, 1) (i - 1, 1) failure (m + i)A.
(i + 1, 0) successful repair f.lp
(y,0) condemnation, absorption f.l(1 - p)

i = -B,j = 1 (-B,1) (NS) failure, absorption (m - B)A.
(i - (i - 1+B), j) successful repair f.lp
(y,O) condemnation, absorption f.l(1- p)

i=O,j=O (0,0) (y,0) failure, absorption mA.

Table 1, Transaction Types and Corresponding Rates in the Markov Chain

Considering the above-mentioned assumptions, the Markov chain can now be composed with starting state

(N, 0), see Figure 1. Note that as a result of our assumption that failed parts will only be replaced upon

availability of a part, the maximum repair rate becomes Np while there may be up to N + B failed parts

in the system. Furthermore, observe that the total repair rate Np is divided in two separate rates; due to

the 'thinning-property' this results in two separate Poisson processes with rates Npp and Np(l - p). Due

to the assumption of instantaneous repair, the total demand rate equals m).. as long as there is no

backordered demand; in case demand is backlogged the total demand rate becomes smaller than 111..1. since

non-operating systems cannot generate demand for the spare part until they are operational again.

We are interested in finding the distribution of time until absorption into one of the defined absorbing

states. Our purpose is to find the optimal value of N using this Markov chain such that a pre-specified

contract service period, esp, for the spare part is met with a specified probability. The time until

absorption into one of the two absorbing states is defined as the remaining service period given a repair

pool of size N, RSPN. Observe that a larger value of Nwill result in a larger value of RSPN- The final order

N'is selected such that RSPN • is greater than or equal to esp with a specified probability. This specified

probability is referred to as the "service level", SL, and measures the probability of covering all arrivals in

the given eSp.

N* = Min{N : Prob{RSP,v ? esp} ? SL}
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We already mentioned that determining B is important in defining the state space of our model. We now

propose two methods to set B. Firstly, B may be set by defining a maximum time that is allowed to pass

until a backorder is delivered, Tdelim' The number of maximum backorders that in this case may occur can

be obtained by multiplying the maximum repair rate (N· f.J) by Tdeliven yielding the selection rule

Max{B : B :::; Tdelmr • N . f.J }

The B obtained in this way depends only on time. Another selection rule for B is dependent on the

possibility of fulfilling all backlogged demand. A decision maker may set a desired probability Pdehm such

that the probability of all of the B parts in backlog being repaired successfully, p 1B1 , is greater than or

equal to Pdeliver The probability pIB] can be calculated as follows: In case B ~ N, all B repairs must be
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successful; in case B < N, B or more repairs out of N parts in repair must be successful. This leads to the

following expression:

for B ~ N

f(N)pk(l_ p)N-k for B < N
k=B k

The largest value of B that still satisfies plBI ~ Pde]iv"," can be selected as the maximum number of allowed

backorders. These bounds on Busing Tdeliver and Pdehver may be used to obtain feasible values for the

situation specific circumstances. Although we consider a fixed B in the Markovian model, a dynamic

backorder level that depends on the size of the actual repair pool could also be used.

4. Analysis

We are interested in calculating the time until one of the absorbing states is reached, considering the

starting state. The analysis of this section follows the standard analysis of transient discrete Markov

chains. The reader is referred to Kemeny and Snell (1976) for an in-depth discussion and proof of the

transient Markovian analysis presented here.

To calculate the time until absorption, we translate the continuous-time Markov process into a discrete

time Markov chain. Let Pa" denote the state transition probability from state a into state b and let P

denote the matrix of state transition probabilities {p;,,,}. From transition rates, transition probabilities can

be calculated as

Pa" = '"L....d qad
qab for a,b EQ, a"* b and PH. = 0
qa

P can be rearranged into the canonical form which divides the matrix into four sub-matrices as depicted

below:

5 r

p=
Q I R

~

Within P, Q is an (s x s) matrix stating transitions to transient states; R is an (s x r) matrix stating

transitions from transient to absorbing states; 0 is an (r x s) matrix consisting of zeroes and ~ is an (r x

r) identity matrix. Note that we have r = 2 and s depends on Band N For a E Q, , define f. = f .•" with

probability Pa'" then the ll,h moment of sojourn time in a state a, E~ :], is defined as
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and

Let M be the diagonal matrix (E& JE& 21 ... ,E& ..D and J be the (8 x 8) identity matrix. For

a, b E tJ define Lah as the total time in state b before absorption, given starting state a. Then

L = {E[Labn= (J - Qt 1M is the (8 x 8) matrix giving the total expected time in transient states. The

mean times to absorption, provided that the process started in any of the Q s states, are given by V(l):

with, a column vector of length s consisting entirely of ones. The 1st element of V(l gives the first

moment of time to absorption for RSPN, denoted by PN' Let furthermore R(2, be a column vector

(E[,~1E[,;1...,E[,: DT (where a T stands for a transposed) and for a, b E Q.< let M' be the matrix

{PHhE['ahD. The second moment of time to absorption, given the process started in any of the Q" states,

is denoted by V(2) :

The 1,t element of V(2; gives the second moment of time to absorption for RSp"., from which the standard

deviation of the time to absorption, UN, can be calculated. The probability of ending up in absorbing state

r (r EQJ, given the process started in transient state 8 (s EQ..) is given by Pab.• (r). These probabilities

are given in Tv, the resulting matrix of multiplication of Land R:

W=LR

The distribution of the time to absorption is of phase-type. From the known first and second moment, an

approximating distribution can be obtained. Let Cry be the coefficient of variation of time to absorption. In

case 0 < CN < 1, a mixture of two Erlang distributions with scale parameters k-1 and k, Erlangk-l,h is a

common approximation; and in case clI'?:. 1 a hyperexponential distribution can be used (Tijms, 1994),

Finally, we note that the SL service measure is very conservative, since it is concerned with the

probability that all arrivals are met. Therefore we define the "actual" service level, ASL, that the

customers perceive, as the percentage of failures where the failed spare part is replaced during the esp,

either directly from the available pool or after some time when a repaired part has become available for

use. Under the assumption that the arrival rate remains unchanged after the servicing stops, this service

level is equal to the percentage of the time that spare parts are delivered during the esp, which can be

formulated as

C8P

ASL = f rSPN dF(rsPII') + Pr{RSP" ~ eSP}
esp

o
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where F(rsPNJ is the distribution function of RSPN In case this assumption is significantly violated, the

above expression becomes an approximation. Under ASL as the service measure, the final order N"

should be selected as the smallest N which assures that ASL is greater than or equal to a pre-specified

level.

5. Implementation Issues

In what follows we discuss some implementation issues which we faced during our earlier mentioned

application.

5.1 Including changes in demand rate

The assumption of a constant installed base size, m, and failure rate, A, may be weak assumptions

considering real life characteristics. Typically, towards the end of the final phase, more and more

customers will replace their machines with newer, more advanced machines. On the other hand, due to

aging effects, failure rates of spare parts might increase over time. To overcome these shortcomings in the

Markovian model, we present an approximation procedure here that uses a weighting factor to incorporate

demand changes in the remaining service period of the spare part. In this approximation we consider

discrete time periods. We let m t denote the number of systems featuring the spare part in period t, t = 1,

2, ... and let m o represent the current number of systems. The failure rate of the part per system in period

t is denoted by At> with Ao representing the current failure rate. The weighting factor, wi, weighs the

demand based on failure rate and number of systems in CSP (denoted by Ar:,,,, and mes? respectively) and

can be calculated as

,,'=(:,'1'A tm ,
f mcspA csp h 1 L..'-l

W =_:":::"'---==--, W ere I\, C,'1' = -==,,"::7t_--;c.msp-,;---
mol 0 L..t=l m t

~t=C.''1' m
and L..t=1 t

mC''1' = CSP

Thus, instead of using the initial demand rate, a weighted average demand rate is used in this

approximation. By introducing wi, in fact an adjusted but constant demand rate is assumed throughout

the contract service period which is a weighted average of non-stationary demand rates. In reality, the

interval between demand occurrences changes during the CSP. In this approximation we assume a

constant interval between demands throughout the CSP which causes the mean value of time to

absorption to remain unchanged. The variance term however will become different and although it still

can be computed, it will not be the same as the actual variance term, as observed during our application.

As a result the obtained pool size may be inflated by adding an "inflation factor" to obtain the desired SL.

Since towards the end of the contract service period typically a small number of operating systems are

expected to be actively in use, inflating the repair pool size with a very limited number of parts already

leads to a relatively large improvement in SL. We obtained the inflation factor by means of simulation.

During simulation in our application we obtained values for wI < 0.50 and corresponding inflation factors

between 5% and 30% of )lN' depending on )ls, to obtain the desired confidence level set by the company
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decision makers. In this application we asked decision makers to indicate the expected behavior of m and A

during the remaining service period and obtained m t and At accordingly. Instead of using one expected

behavior of m and A, one may use several scenarios to obtain a weighted expected behavior based on the

likelihood of any of the scenarios.

5.2 An alternative solution using regression

Although the matrix (1 - Q) is block upper-triangular, which is therefore relatively easier to invert, the

computation of V(l) and V(2, can still take a significant amount of time due to the matrix inversion

operation, as repair pool size and therewith the state space increases. Nevertheless, during a number of

test runs we observed that PN can be approximated well as a linear function of N as long as N> 5, where

the intercept and the slope of the linear relationship depend on the problem parameters. Accordingly, PN

for large pool sizes can be calculated by extrapolating those of the smaller ones, which are computed as

explained in Section 4. However, (IN exhibits a concave increasing pattern and this needs to be taken into

account in computing N*.

6. An Approximate Model

As discussed in Section 5.2, the matrix inversion operation may become prohibitive in applying the

proposed method for large pool sizes. In this section we present a simple approximate solution method

that may be used for computing N*, which also enables inclusion of some characteristics such as changing

demand patterns.

Especially for large pool sizes (e.g. multiples of mean annual demand) the decision on the size of the final

order can be based mainly on the expected number of parts that are condemned during the remaining

contract service period. Due to the size of the needed repair pool in that case, repair lead time will become

an issue only towards the end of the contract service period, since there will be sufficient spare parts in the

pool until then. Using this observation, one may consider a surrogate model that considers consumable

spare parts that stand for the "consumable equivalent" of repairable spare parts. For such a model, the

number of times a spare part is expected to be used until condemnation needs to be made use of, together

with the expected total number of failures during CSP. Let r denote the expected number of times a

repairable part can be used, until further repair proves to be impossible or economically infeasible. A part

can be used as new, and repaired n times successfully with probability plJ , resulting in the geometric series

r = 1 + pl + p2 + p3 + p4 + ... if an infinite number of repair attempts is assumed. This series is equal to

2:'" n 1r= p =---.
n=O 1- p

Note that this is an approximation for r, since the maximum number of repairs will actually be limited as

long as CSP is finite. Consequently, if N" is the needed "consumable" spare pool size, then
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N" = Ne/r = N e(1- p) rounded up becomes the needed spare pool size in the repairable model, since the

repair lead time issue is ignored.

We now discuss how to find Ne, using a periodic model. During our application, the available approaches

in literature did not reflect the reality at the company very well (e.g. not all demand patterns were

declining over time due to the possibility of increasing failure rates per spare part). As a result we present

a binomial model for consumable demand, similar to the model of Kelle & Silver (1989) which is developed

for reusable items (e.g. containers or crates) in the field of reverse logistics. We define a probability, p"

that a spare part in one system out of installed base of m, systems will fail in period t. The values of m,

and Pt may be estimated based on the available information and expert opinion by the decision makers.

For example, the current failure probability Po could be estimated as do / mil> where do denotes (possibly

weighted) average of the number of observed failures originating from all systems in the installed base in

the periods prior to the final order. Having defined the probability Pt, each part that is installed in a

system may produce two outcomes in a (future) period t: failure (and thus demand for a spare part) or

not. This can be seen as a Bernoulli experiment with probability Pt of 'failure' and 1 - Pt of 'continuing

operation' and m, the number of trials (systems in the installed base) containing the part in period t.

Then, the number of failures in each period t has a binomial distribution with parameters m, and p,. The

length of a period should be selected in such a way that P, is reasonably small; otherwise the binomial

model's accuracy deteriorates, since the part can fail at most once in a period. The resulting distribution of

demand in the entire contract service period, Drs!'> assuming independent demands between periods, has

an approximate normal distribution with mean PG,'P and variance rr~wp due to central limit theorem, where

csp

J1.esp = I intPt
'=1

and
c'.'>'P

(J ~sP = Iint pt(l- p t ).
1=]

Then, the pool size that will cover all of the demand m CSP with probability SL can be calculated as

Nc = Ilcsp + <1>-1 (SL) 0' esp, where <t> denotes the distribution function of standard normal distribution.

Similar to the discussion in Section 4, if ASL is used as the service measure, then

{ } "'J Nt ( ) (Nt - IlC'ip) [i;1 ]ASL = Pr Dcsp ::;; Nt +. ---n- dF dr.~p = <t> • + N,. . E D Dcsp ~ Nt '
.\'" asp (J"csp csp

where F(de.,p) is the distribution function of Des!'> which is Normal(pcw!'> c1csp). The last expectation term

above can be calculated numerically, and the smallest N, should be selected which assures that ASL is

greater than or equal to a pre-specified level.

In what follows we demonstrate that errors in estimation of the parameters In t and PI through the history

of failures have a limited effect on the results of this approximate model. It may be possible that the

information as to the size of the installed base is not accurate. Assume that the actual number of systems

in the installed base is IllO = n . m o' where 11 > 1 (we consider the case that Ill, ~ m t because during our

application records of the systems that actually failed were available and thus the actual installed base
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could only be larger than the recorded installed base). Then, considering the case that Po is estimated by

do / mo> the actual current failure probability, Po , becomes:

, do 1
Po =--=-Po'

n·mo n

This means that in case the total number of installed bases is underestimated, then the failure probability

is overestimated. But then, the actual expected number of failures in the current period, Ii 0 , is

, " 1
/<0 =mopo =n·mo-po =mopo =/<0'

n

which is the same as the expected number based on the incorrect parameters mo and Prr There is a

difference in the variance term though. The actual variance of the number of failures in the current period,

'2 "( ') 1 ( 1 ) 2 n-l 2
(J 0 = mopo 1- Po =n· m o - Po 1- - Po = (}o +--maPa

n n n

which is positive for n > 1 (and negative if n < 1). This means that in case the actual number of active

systems in the installed base is underestimated, then the variance of the number of failures is also

underestimated. As a consequence, failing to recognize this underestimation will result in a lower final

order than needed to meet the specified service measure (and thus to an increased likelihood of stock outs

at the end of the aSP). In case m t is overestimated -due to systems that are not active anymore- variance

is also overestimated. Although the mean value is again the same, the calculation based on the estimate is

on the conservative side this time. In case of an overestimation of m" the condition P, < n must hold, so

that Pt $1.

7. Numerical Results

To indicate the influence of the model parameters on the resulting final order values, we performed a

numerical comparison between the final order sizes that are obtained by the Markovian model (N) and the

approximate model (N) on one hand, and the optimal one obtained through simulation (N,"m) on the

other hand. The results are presented in Table. We used initial demand rates mA of 2 and 5 (where we

kept A constant at 0.02 and changed m accordingly); P values ~f 90% and 75%, p values of 2, 10 and 25

and B values of 1 and 4. Furthermore we used a remaining service periods of 10 years and also calculated

the long run absorption probabilities in either of the two absorbing states. In Table , one parameter is

changed at a time in each instance and three actual service levels of 90%, 95% and 99% are presented. We

present the smallest pool size that results in an ASL that is greater than or equal to the presented value.

The selected parameter values cover a wide range of feasible parameters as found during our application.
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parameters, RSP 10 yrs
.m,l. p p B A5'L N."im N N ASL Nsim N N ASL N."fm N N p(y,O) p(NS)
2 90% 2 1 99% 5 7 3 95% 4 5 3 90% 4 5 2 11% 89%
2 90% 2 4 99% 5 6 3 95% 4 4 3 90% 3 4 2 97% 3%
2 90% 10 1 99% 5 6 3 95% 4 4 3 90% 3 3 2 77% 23%
2 90% 10 4 99% 5 5 3 95% 4 4 3 90% 3 3 2 100% 0%
2 90% 25 1 99% 5 5 3 95% 4 4 3 90% 3 3 2 95% 5%
2 90% 25 4 99% 5 5 3 95% 4 4 3 90% 3 3 2 100% 0%
2 75% 2 1 99% 8 10 7 95% 7 8 6 90% 6 7 5 29% 71%
2 75% 2 4 99% 8 9 7 95% 7 7 6 90% 6 6 5 79% 21%
2 75% 10 1 99% 8 9 7 95% 7 7 6 90% 6 6 5 89% 11%
2 75% 10 4 99% 8 9 7 95% 7 7 6 90% 6 6 5 100% 0%
2 75% 25 1 99% 8 9 7 95% 7 7 6 90% 6 6 5 98% 2%
2 75% 25 4 99% 8 9 7 95% 7 7 6 90% 6 6 5 100% 0%
5 90% 2 1 99% 10 13 6 95% 9 11 5 90% 8 10 5 0% 100%
5 90% 2 4 99% 10 11 6 95% 8 9 5 90% 7 8 5 6% 94%
5 90% 10 1 99% 9 10 6 95% 7 8 5 90% 6 7 5 37% 63%
5 90% 10 4 99% 9 9 6 95% 7 7 5 90% 6 6 5 93% 7%
5 90% 25 1 99% 9 10 6 95% 7 8 5 90% 6 7 5 77% 23%
5 90% 25 4 99% 9 9 6 95% 7 7 5 90% 6 6 5 100% 0%
5 75% 2 1 99% 18 20 14 95% 15 17 13 90% 14 15 12 3% 97%
5 75% 2 4 99% 17 18 14 95% 14 15 13 90% 13 13 12 21% 79%
5 75% 10 1 99% 17 18 14 95% 14 15 13 90% 13 13 12 61% 39%
5 75% 10 4 99% 17 18 14 95% 14 15 13 90% 13 13 12 97% 3%
5 75% 25 1 99% 17 18 14 95% 14 15 13 90% 13 13 12 89% 11%
5 75% 25 4 99% 17 18 14 95% 14 15 13 90% 13 13 12 100% 0%

Table 2, Comparison ofMarkovian model and Approximate model, RSP = 10 years

For the optimal solution of the problem, on top of the self-explanatory results, we observe the following:

1. Adding relatively few spare parts to the pool improves ASL significantly, due to relatively high

repair probabilities,

2. Improving repair probability is more favorable compared to reduction in repair leadtimes, since a

higher repair probability has economically more value for the parameter range that we consider.

3. To attain a certain service level as the demand rate increases, the rate of increase in the required

pool size is less than that of the demand rate, due to variability pooling.

4. The optimal pool size is sensitive to changes in B only when the system intensity is high.

We observe that in most cases N is close to N'Jln> and in all cases N? N"im' The Markovian model is over

sensitive to reduction in B and it performs relatively poor in that case, as well as the case where there is a

high absorption probability of the state (NS). The latter case indicates that the system is slow in repairing

parts compared to the arrival of new defective parts, and therefore significantly more parts are needed in

that case due to long repair lead times. Furthermore, for lower B values absorption through (NS) is more

likely. The difference between the results of these two models in those instances can be explained by two

reasons. First of all, the coefficient of variation is higher for lower B values and higher (NS) probabilities,

which deteriorates the performance of the Erlang approximation. Secondly, we assume in our definition of

ASL that the arrival rate remains unchanged after the servicing stops, whereas the arrival rate will

actually become smaller as machines malfunction and not turn operational again. Nevertheless, we do not
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claim that N? N.<;jm necessarily needs to be the case for all possible problem instances; because all arrivals

before absorption or before the end of CSP are assumed to be met for the computation of ASL in the

Markovian model, which does not necessarily hold.

As for the approximate (binomial) model, we first note that its performance is in general poorer than that

of the Markovian model, as expected, since the calculated final order does not depend on p and B.

Consequently, the binomial model performs poorly in systems with higher intensity -i.e. when the arrival

rate is significantly larger than the repair rate-, because it only accounts for condemnation of non

repairable parts and does not consider repair lead time effects, and in systems where higher B values are

not allowed. We also observe that that N < N.<;jm in all cases considered, and in general the difference N"im 

N increases as ASL increases. This is mainly because of the underestimation of the variability by the

normal approximation.

Since the pool size obtained by using the Markovian model appears to serve as an upper bound to the

optimal pool size, and that by the approximate model as a lower bound, one might use a correction factor

that inflates or deflates the pool sizes to reach the desired service level; such as a correction factor (for the

approximate model) of + 1 for ASL = 90% and +2 for ASL = 95% for the results that we presented in

Table 2. Another possibility is to use a weighted average of the two, where the weights depend on the

problem parameters. In the results that we present in Table 2, even a simple average (rounded up) finds

the optimal pool size in all of the 24 cases for ASL=90%, and the difference is never more than 1 in any of

the 72 cases considered.

8. Conclusions and Future Work

In this paper we build a model which makes it possible to calculate final orders for a repairable spare part

considering a predefined service level and explicitly taking condemnation into account. These final orders

typically occur during the final phase of the lifecycle of the product that is supported by the spare part.

The problem is modeled as a transient Markov chain to calculate the first and second moment of the time

until absorption, resulting in an approximate distribution of the time until absorption. Accordingly, a final

order size is obtained that guarantees a certain service level during the contract service period. We find

out that a linear relationship between the pool size and the remaining service period exists for relatively

large pool sizes. This property is useful, considering significant computer effort that is required to solve the

Markovian model for larger repair pool sizes. Furthermore, we discuss how to incorporate some real-life

characteristics we encountered during the implementation of this methodology at a manufacturer of

complex technological machines in the Netherlands. We also present an approximate model that calculates

a final order based on "consumable" equivalent demand for the spare parts, considering the expected

number of possible repairs before the part is condemned. The approximate model requires limited

computer effort and we include several real-life characteristics in this approximate model, as well. We
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discuss the sensitivity of the results obtained with respect to the problem parameters for both of the

models.

Our work could be extended in several ways. An extension that considers batching of repair jobs could be

useful for some environments. The model could also be extended by a cost approach that includes the

possibility of another order later at a high cost. Finally, considering different customer classes would be an

interesting extension, where the classification may be due to different service contracts, criticality of the

customer, etc. In such a system the customers that belong to certain classes would not be served in certain

states of the system, so that a reservation for higher class customers takes place.
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