

Foundations of compositional program refinement (second
version)
Citation for published version (APA):
Gerth, R. T. (1990). Foundations of compositional program refinement (second version). (Computing science
notes; Vol. 9003). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/0af0b662-80bb-4905-b48b-2510b0d3ee6c

Foundations of Compositional Program Refmement
(second version)

by

Rob Gerth

90/3

September, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Foundations of Compositional Program Refinement*
(second version)

Rob Gertht

Eindhoven University of Technologyl

September, 1990

Abstract

The aim of this paper is twofold: first is to formulate a foundation for refinement of parallel
programs that may synchronously communicate and/or share variables; programs rendered as 1st
order transition systems. The second aim is to bring closer and to show the relevance of the algebraic
theory of parallel processes to that of the refinement of such 1st order systems. We do this by first
developing a notion of refinement and a complete verification criterion for it for algebraic, uninterpreted
transition systems-basing ourselves on already existing theory. This refinement notion is sensitive to
both safety properties and absence of deadlock and divergence. Then we show how 1st order transition
systems can be translated-while preserving those aspects of their semantics that we are interested
in-into uninterpreted transition systems. Since this translation is canonical, it is used to lift the
algebraic refinement and verification criteria. to the level of 1st order systems. Specifica.lly, we show
that they yield assertional methods for refinement of such systems that resemble the methods used in
Z. Manna and A. Pnueli's temporal logic proof system. The results in this paper also apply to the
problem of proving refinement of systems based on trace inclusion.

Keywords: refinement, implementation, concurrency, compositionality, algebraic process the­
ory, transition system, simulation, assertional methods, inductive assertions, communication,
shared variables, completeness, safety, liveness, (pre-)congruence, behavior, full abstractness.

Contents

1 Introduction
2 Un interpreted transition systems
3 A refinement notion: failure refinement
4 A verification criterion: failure simulation
5 First order transition systems
6 Verifying first order refinement
7 Conclusions

2
6

13
16
21
25
34

... A first version of the paper appeared in the Proceedings of the NFl/REX workshop on Stepwise Refinement of Distributed
Systems: Models, Fonnalisms, Correctness; LNCS 430, pp. 777-808, Springer Verlag.

tThe author is currently working in and partially supported by ESPRIT project P3096: "Fonna! Methods and Tools for
the Development of Distributed and Real-Time Systems (SPEC),'.

1 Department of Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Nether­
lands. Email: wsinrobg@win.tue.nl.

1

1 Introduction
There are a number of reasons to use transition systems as a specification tool. One is their ease of use
and their intuitiveness. Many of the existing refinement and verification theories are based on transition
systems. Also, it seems hard to argue against the principle that the prime characteristics of any discrete
system are the states it can be in and the way the state evolves through the actions (transitions) that
the system executes or participates in; at least this seems true when one is interested in implementing
such systems. Transition systems concentrate on just these aspects of systems. They are the standard
tools for specifying and analyzing communication protocols [LSS4] and have been used to specify and
develop distributed algorithms [FLSS7, SdeR87, StoS9] and real-time controllers [JMSS, Lyn90]. The idea
generated Harel's statecharts [HarS7] and Berry'S Esterel [BCS5]. Also, it is the motivation for algebraic
process calculi such as CCS [MiISO, MilS9], CSP [Hoa85] and ACP [BKS4]

Dijkstra's stepwise development paradigm [Dij76] resurfaces in this area as program-refinement. It has
been used, e.g., in [WLLSS] on some quite complicated algorithms and of course by Chandy and Misra
in UNITY [CMSS, GPS9]. The most forceful and convincing proponent for its use in system specification
undoubtedly has been L. Lamport, who in a series of papers [LamS3, LarnS9, ALSS, AL90] has turned the
use of transition systems and of refinement into a practical specification method.

One important aspect of system design is missing in transition systems and that is the idea of compo­
sition of systems. For this reason, we introduce combinators with which (transition) systems, 11"0 and 1rl,

can be composed; the most important one being parallel composition: ,,0 II ,,1.
Most of the existing research and methods - algebraic process calculi excepted - use a notion of

refinement that is based on trace seman tics, and use a verification criterion that is based on Milner­
simulation [Mil71]; cf. refinement-mapping in [ALSS], possibility-function in [LTS7] and multi-valued pos­
sibility mapping in [Lyn90]. To us, the decision whether to use refinement based on trace semantics or
not cannot be made arbitrarily but, rather, should follow from an analysis of what properties refinement
should satisfy. Likewise, whether or not to use (a variant of) Milner simulation as a verification criterion
should depend on its suitability for the chosen notion of refinement.

At this point, the most vital question is

Exactly what should it mean that a system P refines another system Q: P;) Q?

To us, this question has two aspects. The first concerns the system properties that are of interest to us,
sometimes called the observable behavior, and that we want preserved. The second aspect concerns the
(meta) properties, such as transitivity, that we want refinement, ~, to satisfy. These questions we shall
discuss now.

System properties. There is consensus among researchers that P ;) Q at least should entail that the
computations of P are all allowed (i.e., also occur) in Q:

(1)

where -<>PQ-- denotes the set of computations or the observable behavior of P. Of course, there is still
room for different decisions as to what such behaviors make visible about a system's execution. Is it only
the start and terminal states of an execution that one can see or can one also observe intermediate states?
Even if so, maybe one should only be able to observe the values of the shared variables of the system.
Then again, shouldn't one be able to observe the actions that a system participates in; or at least its
communication actions?

There are no clearcut answers to these questions and rather than making a decision in these matters-a
decision that will have to be arbitrary-in this paper, on the one hand, we allow the complete state to be
visible at any point during execution as well as every action that the system executes but, on the other
hand, we also introduce operators that allow parts of states and actions to he 'hidden'; i.e., to be made
unobservable. Finally, we allow the fact that a system has terminated or is diverging to be observed.

Systems having infinitary behavior raise an additional issue. This is illustrated by the program P ==
b := true; '" := 0; *[b -> x := x + lOb -> b := false], where 0 denotes non-deterministic choice between

2

the branches and *[...] iterates until the guard of either branche is false. Obviously, P admits an infinite
computation; namely, the one in which the second branch is never selected. Let plan- be the program with
the same text as P but with the additional assumption that the choice between the branches should be
'fair' in the intuitive sense in which the infinite computation in P is not (i.e., the second branch can always
be chosen but never is). Should P be considered a refinement of plair? The answer seems obvious: no.
Yet, this paper takes the opposite view. The reason is the difference in techniques and methods between
those that deal with program properties that are determined by the finitary behavior of programs-the
so-called safety properties-and those, such as fairness, that do not-the so-called livenes properties.

In Leslie Lamport's intuitive characterization, safety properties state that along every computation
path a 'bad' thing does not happen where"" liveness properties state that along every computation path
some 'good' thing does happen. This description suggests invariants to describe safety properties ('a bad
thing has not happened yet') and well-foundedness arguments to deal with liveness properties ('it takes
less than that many more steps until the good thing happens'.

For this reason and for the fact that liveness arguments usually depend on safety arguments of the
system, this paper restricts itself to refinement w.r .t. safety properties and ignores liveness. We stress that
our refinement notion is sensitive to deadlock and divergence of systems.

Intuitively, the only difference between P and plair is the liveness property that every computation of
plair terminates (i.e., along every computation the good thing 'termination' happens). The 'bad' thing of
non-termination does not happen along every computation path of P. Hence, we shall have P ;;;) plair.

Technically speaking, safety properties can be characterized as those properties for which, given that
they hold for every finite, initial part of a computation, they also hold for the whole, possibly infinite,
computation; see also [AS85]. When we define the observable behavior of systems, we shall also include
such 'limits' of finite computations. The effect is that -.(>plair Q>- = -.(>PQ>-. Left to right inclusion is obvious.
Because, all initial parts of the infinite computation of P are in -9Pfair~, the infinite 'limit' computation
is included, too.

Meta properties. Next, what meta properties should;;;) satisfy? It seems obvious that;;;) should at
least be transitive: if Po refines PI and PI refines P2 then dearly Po should refine P2. As it seems quite
unreasonable not to allow a system to be a refinement of itself, this makes;! a pre order:

Po ;;;) PI , P, ;;;) P2 = Po ;J P,

P;;;)P
(2)

One should not expect;;;) to be a partial order: obviously, even if both Po refines PI and PI refines Po, it
does not follow that Po and PI are (syntactically) identical.

A second desirable meta property concerns the composition of systems. The advantage of system
composition is that one has the option to develop parts of a system independently and of integrating them
at a later stage. As refinement is the formalization of system development (at least in this paper) this
advantage implicitly constrains the notion of refinement that one uses: whenever parts of a system are
refined then if the refined parts are put together again, the resuiting system should be a refinement of the
original one. If ones refinement notion does not satisfy this constraint, then one can only develop a system
as a monolithic whole. Let C[·] stand for a system with a 'hole' in it (a context), into which another
system, P, can be plugged: C[P]. Then the above constraint is written as follows:

for every context C[·]: P;;;) Q = C[P] ;;;) C[Q] (3)

This makes ~ a pre congruence w.r.t. the program combinators; i.e., it makes ~ n !;: a congruence. In
the absence of other equally obvious requirements on a refinement relation, we let;! be determined by the
above properties 1, 2 and 3.

Perhaps this whole discussion seems a bit trite. After all, these principles and constraints all are
rather obvious. Still, it is worth stressing these points, since they very much constrain adequate notions
of refinement which often forces one to consider aspects of system behavior that, a priori, one was not
interested in. For example, in this paper it will force us to consider the precise deadlock behavior of

3

systems [HenS8]. Had we allowed communication action to time out-which we have not-even more
detailed behavior would have had to be known [GBS7].

The point of view embodied in the above discussion is not common in the area of program refinement.
On the other hand, it is the point of departure in algebraic process theory [MiISO, HenSS, Hoa85, BKS4].
There one starts with a (context free) programming language (or term algebra) and one looks for program­
ming equivalences or pre orders satisfying some properties that are congruences or pre congruences and
that are, if possible, fully abstract. A (pre) congruence is fully abstract w.r.t. some properties precisely if
it is the coarsest one satisfying these properties. Our stipulating that;;) be determined by equations (1),
(2) and (3), makes;;) fully abstract w.r.t. inclusion of observable behavior; in fact, it is equivalent with it.

Languages that allow synchronization have been investigated intensively in this area [DarS2, NHS4,
BHR84, BKOS6]; for an overview of various proposed congruences see [NicS7]. One conclusion of this
research is that if the observable behavior of a program allows tbe state of terminated (or maximal)
computations to be observed as such, then any (pre) congruence for such a language should be sensitive to
the precise way in whicb systems may deadlock. The standard example illustrating this (using a eSP-like
language) compares P:: [true -> R!l 0 true -> S!l] and Q:: [R!l -> skip 0 S!l -> skip]. Here, R!l
is a send command that waits until process R wants to receive a value and then sends the value 1. In
process Q send commands appear in the guards of the (i/O) guarded command. This means that process
Q will suspend until either R or S is ready to receive a value and then will execute the appropriate send
command. Although, intuitively, the computations of both programs are the same, there is a context,
namely C", (R:: x:= 0; 1x) II [.J, such that if we run P and Q within C, we do observe a difference (; 1"
is the program that waits until it receives a value and then assigns it to x): C[Q] does not have a maximal
computation that ends in a state in which x = 0 holds, whereas C[P] does; namely the one in which P
chooses tbe second branch and subsequently deadlocks.

The same research indicates that a (pre-)congruence should not be 'sensitive' to more than the compu­
tations of a program and its deadlock possibilities during execution. This is the testing pre-order of [NHS4],
the failure set semantics of [BHR84] and the fully observable congruence of [DarS2]. The refinement pre­
order that we develop in Section 3 will be based on this. In contrast with most researchers in this area, we
shall use (uninterpreted) transition systems (with parallel composition and renaming of actions) as pro­
gramming language instead if ees or TeSp. In this sense, our set up is closer in spirit to that of [BKOS6]:
their process graphs correspond to our uninterpreted transition systems.

Once the notion of refinement is elucidated (in Section 3), the next question is how to prove it.
Now, a transition system is specified in terms of vertices, edges and actions (associated with the edges).
Hence, a usable verification criterion should be cauched in terms of these primitives. In Section 4 we
develop such a criterion, called failure simulation and written as ~, by generalizing the notion of Milner­
simulation [Mil71]. This criterion is then proven sound and complete; i.e. we prove that

or, equivalently, that;;;! =~. There are some connections here with [Dar82J.

Upto this point we have looked at algebraic, un interpreted transition systems. The rest of the paper
concentrates on 1st order transition systems. If we want to use the results of the first part, we need
a correspondence between such 1st order systems and the uninterpreted ones. Section 5 defines such
a correspondence and also shows how various operators, such as parallel composition and the hiding of
variables, can be defined in terms of uninterpreted systems. This correspondence is, in fact, quite simple

x > 0 -> x := x + 1 :. .. C) , that corresponds to

x s: 0 -> SkiPl ----

••

and can be illustrated with the system 1r '"

4

the program while x > 0 do x := x-I od, and respectively" Do." and ".Do" are the initial and terminal
vertex. Now, 11" implicitly depends on a notion of state and on the meaning of the 'labels' on the transitions.
The translation makes these dependencies explicit. If we assume that x is the only variable, then we may
represent a state as just a value; namely, the value of :;t. Let us take the intuitive meaning of 7r and let us
assume that the system always starts in the state 3 (Le., in the state in which x has the value 3). Then
7I"'S translation would be

" (3, x := x-I, 2) o __ ~~ ______ ~~~~~o (2,x:=x-1,1) (1,x:=x-1,0)
~ O __ ~ ________ ~~~.~O

(0, skip, 0) l
0"

where now the labels on the edges record a state, an action and another state; each pair of states is
in the input-output relation of the corresponding action; and t1\" contains a vertex for every vertex-state
pair that can occur during an execution of 1r. Note that the labels in '1r are just that: labels; DO further
interpretation of them is necessary. The translation also unfolds the loop but this does not happen in
general: the translated system contains a cycle whenever it is possible to arrive more than once in the
same vertex with the same state.

Section 6 develops on the basis of this translation a verification criterion for 1st order systems. First
we define for 1st order systems, 1J"0 and 1J"1, 1J"0 ;! 7r1 to mean that t 7r0 ;! t7r 1 j i.e. a system refines another
one if its translation refines the other one's. If one accepts the translation as reasonable in the sense that
it preserves the meaning of a system, then this is the correct notion of refinement.

Now, suppose that 7r0 ;! 1J"1 where 1J"0 and 7r1 are 1st order systems. Then we know that t1J"0 f-..j. t1J"l,

by completeness of the criterion of Section 4. So, "all" that has to be done is to find some conditions
on 71"0 and 1J"1 that imply that t1J"o f-..j. t7r1 • This we do, using techniques from Floyd's inductive assertion
method [Fl067].

The methods in Sections 3 and 6 also yield verification techniques for a notion of refinement based on
trace inclusion, as used, e.g., in [Lam89, Lyn90]. The necessary simpifications are indicated.

Finally, Section 7 contains some discussion.

We end the introduction with establishing some notation.

Notation.
Functions, I, unless stated otherwise, are partial and have domain, dom(f), and range, ran(f). Com­

position, 0, is defined by (fog)(x) = I(g(x)). Functions are sometimes defined as lists, like [1 >--+ 2,2 >--+ 3]
which denotes the (partial) function, I, such that l(l) = 2 and 1(2) = 3. Define I{alx}, a variant of
I, by 10 [x >--+ a]. In general, any function I is pointwise extended to 2 dQm(J): if V ~ 2dQm(f) then
I(V) = {I(v) I v E V}. The restriction of I to V, If V is the function with dom(f fV) = dome!) n V and
(ffV)(v) = I(v) for v E dom(ffV). Finally, I-l(w) = {v I I(v) = w}.

Relations over some set A are usually denoted by letters R, M, ... ~ A X A. Instead of (a,b) E R we
often write aRb. Also, the post jmage ofa under R, a R, is {b I aRb} and the pre jmage ofb under R,
R b, is {a I aRb}. This extends to the post image and pre image of sets. Instead of a R we occasionally
write R(a). We usually identify functions with the relations that they denote.

The class of ordinals is Ord. Letters lX, {3, .. . range over the ordinals; letters n, m, .. . range over the
finite ordinals (i.e., the natural numbers). As usual, w denotes the first transfinite ordinal.

If A is some set of symbols, then A+ is the set of finite, non empty sequences over A; A* is the set of
finite sequences over A; and AW the set of infinite such sequences. Then At = A* u AW. Sequences in At
are denoted by s, t, ... ; the elements of such an s are s, for i < lsi, the length of s (if s E AW then lsi = w);
hence, So is the first element of s. As alternative sequence notation, there is s = (Si)i<1 8 Ii hence, the empty
string, e, is {s')i<O (for any s). Write s --(t if lsi < It I and s = (t')«I'I' Any function h: A >--+ A extends
to At by having it act pointwise on sequences: h(s) = (h(sO)«I'I' Write A(s) for the set of symbols in s:
A(s) = {s, Ii < lsi}. As a matter of notation, Ax will stand for thesetAU{x,y,z, ... }.

5

There is a denumerable set of variables Var. If E is some signature or similarity type, then Tm(E)
and L(E) denote the set of terms and first order formulae over E (and Var). Elements of L(E) are usually
denoted by letters p, q, r; terms bye, t and variables by u, v, x, y, z. As usual, pre/xl (t[e/x]) stands for
the formula (term) obtained by substituting the term or expression e for every free occurrence of x in p (t).
The set of free variables of a formula or term ¢> is denoted by FV(¢».

E-structures or E-algebra's, A, are defined as usual and give interpretations of the symbols in E. Given
a E-structure A, states (f, T, V are total functions from Var into IAI, the universe of A. Let S be the set
of states.

The value of a term t in a state u, (T(t), and the truth-value or satisfaction of a formulap in a state (1",

(f 1= p or A, (f 1= p, are defined as usual. Write A 1= p if P E L(E) is valid in A, i.e., if A, (f 1= p holds for
every state (f; write (f 1= p if A, (f 1= p and A is clear from the context; and 1= p if p is valid, i.e., if A 1= p
holds for every E-structure A. As usual, any variable that appears free in some formula lives in the scope
of an implicit universal quantification (of that formula).

By convention, all super- and subscripts, bars, underscores etc. of composite objects are inherited by
the components: e.g., if J{ = (a, b) then r K, = (r"" r b1).

2 Un interpreted transition systems

In this section, the basic framework of uninterpreted transition systems is defined and the basic notation
established.

• There is some infinite, enumerable, alphabet, A of actions, which is partitioned into a set of local
actions, Al, and a set of global actions, AD. The intention is that local actions never synchronize with
actions in other systems, whereas global action may do so. To formalize the synchronization of global
actions, we interprete AU as the generator of the free, commutative semigroup denoted by (Ag, I). The
commutativity condition ensures that the parallel composition itself is commutative (see below). Unless
stated otherwise, AD stands for the semigroup it generates.

There are two special 'actions': 6 and t, which are not in A. The first one, 6, denotes the undoable
action; the second one, t, signifies divergence. Intuitively, t means that the system is engaged in an infinite,
internal or hidden computation that does not yield any visible behavior.

The domain of I is extended to A'l x A'l by mapping pairs of actions that are not in dom(l) to 6.
Instead of alb we shall often write abo

• A directed graph is an object (8" 8,: £ V), where

- V is a set of vertices,

- £ is a set of edges, and

- a8 , respectively, at is the function that associates each edge with a source, respectively, target vertex.

In the sequel we shall often write 'e instead of 8,(e) or 8,e, and e' instead of 8,(e) or 8,e. Moreover
this notation dualizes and we write' v for the set {e E £ I 'e = v} and v' for the set {e E £ I e' = v}.

• An uninterpreted transition system (uts) over alphabet A, 7(", is an object

(8,,8,:£,.... V,I,T,C:£ A,tl ,

where

- (8" 8,: £ ,.... V) is a directed graph,

- I ~ V is a set of initial vertices with I", 0,

6

- T ~ V is a set of terminal vertices, and

- C is a labelling function that associates actions with the edges.

The class of uts over an alphabet A is UTS .. or just UTSl
Notice that that there are no cardinality constraints on the vertex and edge sets of nts's and that any

uts has at least one initial vertex. Also note that an uts can express the occurrence of divergence and that
it may have disabled actions that will never occur.

Some notation: the canonical uts is denoted by .. and has components (0" Ot: [..... V,I, T,£: [..... A,r).
The alphabet, A(..), of .. is the set oflabels appearing on its edges: A(..) = ran(C). If V ~ V then V; .. is
the nts (0" Ot: [...... V, V, T, C: [...... A'r), with initial vertices in V. Finally, Cg (-) is the function C(.) n Ag.

• The set of sequences of 1r is

Seq(..) = {(v, (e;);<a) I a$w, v EI, a> O=?v = 'eo, '00 < i< ae'_1 = 'e;}

Hence, a sequence is a possibly infinite path in the underlying directed graph of .. that starts in an initial
vertex .

• The behavior or computations of an uts, 11", ~1I"4--0, consists of the maximal sequences of actions that
.. can perform together with an indication, j, 1 or 6, whether the system may diverge at that point, has
terminated or is stable. The letter p ranges over {j, L 6}.

First define for any v E V the predicates:

i(v) ¢=> tEC('v), 1(v) ¢=> vET and 6(v) ¢=> C('v)nAr=0&vliiT.

So, i(v) holds if v has an outgoing edge labelled with t-i.e., if v may diverge-; Hv) holds if v is a
terminal vertex; and 6(v) holds if v can neither diverge nor perform an action (in A) and is not terminal.
Write i(.. ,v), 1(.. , v) and 6(.. , v) if .. is not determined by the context. Now

-<> <>-0 _ { 1 3(v, (e;);<a) E Seq(..), a:5 w, s = (C(e;));<a EAt, P E {j, L 6},}
.. - sp a=w=?p=L a=O=?p(v), O<a<w=?p(e~_,) .

So, a finite sequence of actions is maximal if the corresponding path ends in a vertex from which it is
possible to diverge or which is terminal or which is stable.

If sp E -<> .. <>-0 then any s E A* with s ..(s is called a partial computation.

There is an alternative way to define the computations of an uts. Namely, by defining for every a EAr

a transition relation, ~ E UTS x UTS:

a _
.. _ .. ¢=> 3eE'Z C(e)=a&1i'=e'; ...

So, each uts defines, through its initial vertices, a set of actions that it can perform; namely those actions
that appear as label on an edge starting in an initial state: C(· I). Performing such an action transforms the
uts 1r by changing its set of initial vertices to the target vertex of the corresponding edge. This generalizes
and for s E A* we write:

.. ~ 1i' ¢=> Vi < lsi 3 .. ' E UTS .. 0 = .. , ... 1'1- 1 = 1i', '00 < i < Isl .. '-1 ~ .. ' .

Also, write 1r ~ if there is a 1f such that 11" ""!""'1f; if s E AW, 11" ~ has the obvious meaning. Finally,

.. 41i' and .. 4 stand for the negations of the above relations; .. + means .. 4, Va E A.

ITo be pedantic, it is the isomorphism class generated by uts that is of interest rather than the uts itseU. Isomorphism,
here, means graph isomorphism that maintains the edge labelling and initial vertices.

7

In this setup, the behavior of a " E UTS can be described by

~"<l-0 = {8p I 8EA*, 3ii'''~ii', 3vEl p(v)} U {8L 18 EAW
,

The observable behavior of" can now be defined by

S
~"<I- = ~"<l-0 U { 8L I s E A W

, Vii -< s " --> } ,

in accordance with the discussion of liveness in the introduction.
As a final piece of notation, define" after 8 (s E A*) by

S
1f after s = Vj 11", where V = {v 17r ----+ v; 1r} .

8
,,--> }

We shall often write expressions such as v E 11" after s instead of the formally correct statement that
" after s = V; " and v E V.

2.1 An algebra of unlabeled transition systems

Here the operators to compose uts's are defined: the parallel composition, ·11· ; the renaming, h(·) ; the
choice, . + . ; and the sequential composition operator, . ; ..

2.1.1 Parallel composition

For any ,,0, ,,' E UTS, the parallel composition

,,0 II'" = " E UTS

is the product of ,,0 and ,,' with the 'diagonals' filled in according to I. Formally, it is defined by'

- V = VO X V',

- £ = £0 X V' + £' x VO + £0 X £' (+ denotes disjoint union),

-I=IoxI',

- T= TO X T',

- for (e, v) E £' x V'-, o,(e, v) = (o:(e), v), o,(e, v) = (oi(e), v),
.c(e, v) = .c'(e) (i < 2) and

- for (eO,e') E £0 x £' o.(eO,e') = (o~(eo),o:(e')), o,(eO,e') = (07(eo),0;(e')),
.c(eO, e') = .co(eo)I.c'(e') .

2-1 EXAMPLE. If ,,0 = •• _--"a_ .. ,.~. and"'= •• ~ •

•
then ,,0 II'" = •• a

• •

~ a I~ .- 1:-' b alb

a
• ,. .

2Remember, it is the isomorphism class that is of interest.

8

In terms of transition relations, one has

,,0 11,,1 ~ 1fO 11,,1
a

if 1r0 _1fo ,

. ai .
if ,,' -----+ 1f' (i < 2) .

The three clauses correspond to the edges in £0 x V', £1 X VO and £0 x £'.

2.1.2 Renaming

Let T be some symbol not in A'T. Its meaning is explained below. The set of (renaming) homomorphisms,
1t, is

{h:A >-+ A'T I h(AI) ~ A~, } .

Any h E 1{ is extended to a total function on A'T by having heal = a for any a rt dom(h). Let 8 also
stand for the function [a ~ 6, a E AJ. Homomorphisms rename actions; except that local actions never
rename to global actions and that 8 and i rename to themselves. If heal = 8 (i.e., the symbol) this means
that the actions a can no longer occur in he,,). If heal = T this means that although a can still occur it
is no longer possible to observe this-the action is hidden. As expected, h acts pointwise on sequences of
actions, when T is interpreted as the empty sequence, c.

For 1f E UTS and h E 1{, the renamed system

h(1f) = " E UTS

is obtained by redefining the set of edges and of initial vertices: an edge in h(1f) is any finite path in 1f on
which precisely one non-erased action occurs or those infinite paths on which every action is erased. The
initial vertices are the original ones, together with those vertices that can be reached from an initial vertex
by a finite number of erased actions. Formally, it is defined by

- o.«(e;Ji<n) = a.(eo), O.«(ei)i<n) = a.(en),
O.«(e;Ji~W) = a.(eo), O.«(e;Ji~W) = a.(eo) (sic),

- 1= 7u { O,«(ei)i"n) 13v E7 (v, Cei)'"n) E Seq(1f), h«(lCei))'"n) =" },
- T=T,

- if e = (ei)i<n then C(e) = h«(lCe;J)i<n) and

if e = (ei)i<w then C(e) = r .

9

2-2 EXAMPLE. If'lr =

then h('Ir) =

b

••
~. c ~.

-~~
il~-~·~ c:; c •

i

c ...
and h = [b I-> T]

Although the construction of h('Ir) may seem overly complicated, it induces the following simple and
intuitive correspondence between the transitions in 7r ~nd those in h{1r):

a h('Ir) _ h(7f) if 38 E A~T 'Ir ~ 7f & h(8) = a E A'l and

h('Ir) -.l.. h(7f)
8 So

if 3s E AW 'Ir _ & h(s) = E: & 'Ir ----+7f .

Observe that the renaming in the above example yields two additional initial vertices. This is the
technical motivation for allowing sets of initial vertices.

2.1.3 Choice

For any two 1I"0! 1J"1 E UTS, with 1°· U [1. = 0, their choice composition,

'lr0 + 'Ir' = 'Ir E UTS,

is obtained by connecting all pairs of initial vertices. Formally it is given by

- V = VO \ 1° + V' \ II + 10 X II,

-I=IoxI',

- T = (TO + T' + yo X I' + T' x 1°) n V,

- £ = £0 \ • 10 + £1 \ • I' + £0 + £', with t =' Ii X II-i (i < 2),

- for e E £i \. Ii a,(e) = a:(e), a,(e) = aUe),

L(e) = Li(e) (i < 2) and

- for (e,v) E£i a,(e,v) = a;(e), a,(e,v) = 0; (e),

L(e, v) = Li(e) (i < 2)

10

to. 1>.
then .. o + .. 1 = 0!\ (i~

• • • • • •
If an UTS admits edges that are incident on its initial vertices, there is a complication: if we were to

apply the above construction to
•• b

.. 0 = U and .. 1 = •• --..,~~. then we would obtain the wrong

a

Do. b :!J.. p..~Oa
result 0 a mstead of the correct ~.

This is in fact a well-known problem with a well-known solution; see e.g., [BK84]. For the general
construction, first add fresh copies of '[; to IT; (hence, also fresh initial nodes) so as to defer cycles until
the initial choice has been made. Define for .. E UTS, u(lT) =1i' E UTS by

- V= V+I3 ,

-£=£+,1,

-7= I,
- T= T, and

- for e E 'I D,(e) = a:(;), Dt(e) = at(e),
lee) = L(e)

E.g., we have u COa)
For arbitrary 7J"0, 1rl E UTS, define

The induced transition relation is

Because there are no cardinality constraints on vertex and edge sets and because + is commutative, we
can easily define an infinitary version of choice composition on arbitrary sets of uts's.

2.1.4 Sequential composition

For lTo, lT l E UTS the sequential composition

lTo ; lTl = IT E UTS ,

is obtained, basically, by identifying the pairs in TO x [1. Formally, it is defined as

- V = VO \ TO + VI \ [1 + TO X [1,

3I.e., 1= {vi v E I}.

11

- £ = £0 \ ('TO U TO ') + £' \ (' I' U I' ') + t, where
t = ('TO UTOo) x I' + ('I' UI") x YO,

- 1= (I°Ulo x T')nV,

- T = (T' U yo x I') n V,

- for e E £n£i 8,(e) = 8!(e), 8,(e) = 8i(e),
C(e) = Ci(e) (i < 2) and

- for (e, v) E t, e E £i 8,(e, v) = 8:(e), 8,(e, v) = 8i(e),
C(e, v) = Ci(e) (i < 2)

2-4 EXAMPLE.
•• a

and IT' =

•• b

.. .

...
tben

a '3r.

11"0 j 11"1 =

a

The transition relation of 1r0 ; 7fl satisfies

a a
1r0 j 1Tl --+ 7fo ; 11"1 if 11"0 --+?fo

For future use, the set of environments or contexts, C, with typical element C[-], is defined as the
smallest set such that

- [.) E C ,

- hE 1t, 0 E {II, +, ;}, IT E UTS, C[.) E C = h(G[·)), IT 0 C[-), C[') 0 IT E C .

Hence, a context G[·) is a system with a 'hole' in it. Then, G[lT) is the system with IT plugged into the hole
so that G[lT) E UTS. Obviously,

G[·), C[') E C = G[G[·) J E C .

I.e., contexts compose.

12

3 A refinement notion: failure refinement

As argued in the introduction, the pre order, ;;!, should be determined by

~,,04- <; ~"I4- and

'VC[·J E C C["oJ ;;! C["IJ .
(4)

The second part of this condition implies that;! is a pre congruence w.r.t. the combinators with which
contexts can be constructed. The rest of the section develops an explicit characterization of d.

Based on (4), ;;! can be defined as a greatest fixed point: first let R = P(UTS x UTS)-the set of
relations over UTS. Define a functional :F: R ,.... R by

Then, we have

whence
;;! = U{R E R I R £:::F(R)} .

This characterizes;;! as the greatest fixed point, /I:F, in the standard lattice of relations (over UTS).
Obviously, :F is monotonic in this lattice so that the fixed point exists, indeed. Standard theory also
implies that

;;! = n :Fa(R),

aEOrd
where the approximants,:Fa , to the function :F are defined by

:F0 AX.X (Le., the identity function) and

:Fa = Ax.:F(n :FP(x)) for" > 0 .
p<a

We compute the first few approximants to ;;J, :Fa(R):

and

:F°(R) = R; :F'(R) = :F(:F°(R)) = {("O,,,I) I ~,,04- <; ~,,14-};

2 { ° I I() I ~,,04- C ~"I4-, }
:F (R)=:F(:FI(R)) (",,,)E:F R 'VC[·J EC(C["o],C["IJ) E:FI(R)

= {("O,,,I) I ~,,04- <; ~"I4-, 'VC['J E C ~C["oJ4- <; ~C["IJ4-}
= {(,,0, "I) I 'VC[·J E C ~C["oJ4- <; ~C["IJ4-} ,

since [.J E C and ["J = ". Finally, :F3 (R) = ;F2(R) because contexts can be composed.
From this we obtain a new characterization of~:

(5)

This shows that whether or not 7r0 ~ 7r 1 holds, depends not only on the observable behavior of the
components, 11"0 and 11"'1, themselves hut also on what a system in which they are embedded can 'sense'
about them.

The following is the standard example showing some of the nature of;;! as defined by (5):

'.
Let ,,0 =:r 'r b and "I = a! \ (a, bEAg). Clearly, ~,,04- <; ~"I4-. We claim that ,,0 ;11

• • ••
,,1 For this we must construct a context, C[.J such that ~C["oJ4- <;l; ~C["IJ4-: take C[·J = hoh l (" II [.J)

13

a
with 11" ="'.----.; .. ~. , ho = [a >-> 6, b >-> 6] and hi = 6{c/aa}.

a
~~~-------~ .. 
~ a I~ 

b .- 6 !b-· 
.---~a~----~ ... 

and 

Thus we see that ;;J depends on the actions that a system may refuse to do at some point in a 
computation. A context tests this by offering synchronization and disabling the (non-synchronized) actions. 
This construction is canonical and, granting this, it implies impossibility of such a test in case the tested 
system can still do a local action-as these do not synchronize--or the system can diverge-as this cannot 
be prevented. 

Sequential composition allows additional differentiations. Consider 
Do.Do a :a-. 

11"0 = and 11"1 = 
Do. b lIL. 

~t> a ~. _ 
and take a context C[·] = C[ [.] ;". a ".] (C[·] is the context of the previous example). 

1>.1>- b 310. 

Then 06 E ..(>C[".O]<1-- and 06 ¢ ..(>C[".I]<1-- so that ".0 ;1! ".1 although ..(>".0<1-- = ..(>,,1<1--. 
Before offering an explicit characterization of ~ we need some definitions. 

3-1 DEFINITION. Let". E UTS, v E V and F ~ AU U {l}. Then 

• stable(v) <=? C('v) ~ A~ ; write stable("., v) if". is not determined by the context, 

• ".faiisF <=? 3v E I stable(v), FnC('v) = 0 & L E F ~ ~Hv) . 

So, a node, v, in 11" is stable if it cannot diverge and there are no transitions with a local action out of it. It 
means that a suitable context can control the behavior of 7r if it is "at" v. In particular, 7r can be caused 
to deadlock and, more precisely, can be caused to fail certain global actions; namely, any set of actions 
FE Ag that satisfies". fails F. 

Now we can state 

3-2 THEOREM. Define the relation !; ~ UTS X UTS by 

".0 !; ".1 <=? ..(>".0 <1-- ~ ..(>11"1 <1-- & 

'Is E A*, F ~ AU ".0 after s fails F ~ ".1 after s fails F . 

Then ;;J = !;. 

The proof, which is given in the appendix, is by showing two-sided inclusion. The case ;;J ~ !; is 
proved by assuming that ".0 ~ ".1 and then constructing a context, C[·] E C, that makes this explicit: 
..(>C[".O]<1-- C1 ..(>C[".I]<1-- (whence ".0 ;1! ".1). The case ..(>".0<1-- C1 ..(>,,'<1-- is trivial. Otherwise, for some 
s E A* and F ~ Af, we have ".0 after s fails F but not ".1 after s fails F. Let a E F \ {l} if L E F and let 

14 



'" = 6 otherwise. Take a set A = {x, y, z} UA with A = {ill a E A(B)} such that An (A( .. O) UA( .. I)) = 0. 

Construct a context 

f>.~X 
V Ix C[·] = hoh,h2 V 
C>.~. 

W Y 

, with ho = [a >-+ 6, a rt AU {z}], 

• 
h, = [a >-+il, a E A(B) n A'] and h2 = 60 [(a, x) >-+il, a E A(s) nAg; (a, y) >-+ z, a E F \ {!}]. We have 
86 E --(>C[ .. O]<1>- but 86 rt --(>C["']<1>-. 

The proof of the other direction, k; ~ ~, uses induction on the structure of contexts and is an easy 
corollary of four lemma's which express the behaviors and failure possibilities of .. 0 II .. ', h( .. 0), .. 0 + .. ' 
and 11"0 j 11"1 in terms of the behaviors of, respectively, 11"0 and 11"1. 

First define for notational ease 

[ .. ] = --(> .. <1>- U {(s, F) I" aftors fails F} . 

Obviously, (0, F) E [ .. ] and F <;; F imply that (B, F) E [ .. ]. 
We may interprete [ . ] as the semantics corresponding to J;;; we have .. 0 J;; .. ' ~ [ .. 0] <;; [ .. I]. In 

fact, the lemma's below show that [. ] is compositional. 

3-3 LEMMA. 

(hence, pO II p' is partial), 

- ,0 II " is defined as follows: 
Let h = 60 [aIX,.... a, a E A] with X rt A(sO) UA(ol); let. E 1l be given by .(X) = T. 
Then 

In the definition of 0° II 0
' 

we should be able to modify sO and 0 ' into 8° and 8 ' (of equal length) by 
inserting X-actions (si = ecsi)). An X-action in sO should signify a non-synchronized action in 8 1 and vice 
versa, which is ensured by having s E (A \ {X})! so that s does not contain any X-action. The parallel 
composition fails any action, a, that both components fail (a E FO n F') except if a obtains from the 
synchronization of actions in the component (a rt (Ag \ FO)I(Ag \ F'll. 

3-4 LEMMA . 

• [h( .. )] = {h(s)p I 'P E --(> .. <I>-} U 

{h(s)j 1st E --(> .. <1>-, s E AW, h(s) E A*} U 

{h(s)613F<;;Ag (s,FUm) E [ .. ], Ag\F<;; h-I(6)}U 

{ () 
1

3FEA9(0,F)U"], } 
(h s , F) h-I(A~) nAg <;; F ,F <;; (h(F) U h-I(6) U h-I(T) \ h-'(Ag)) nAg} . 

So, h(1r) acquires additional divergence possibilities whenever an infinite sequence is renamed to a 
finite one; it acquires additional (maximal) computations in case all successor actions of a stable vertex 
are disabled; and it fails a global action, a, only if h( .. ) remains stable (h-I(A~) nAg <;; F) and either 
a is the renaming of an action that .. fails (a E h(F)) or a is disabled (h( a) = 6) or a is erased and not 
introduced again by a renaming (a E h-I(T) \ h-I(Ag)). 

15 



3-5 LEMMA . 

• [".0 + ".1] = ([".0] U [".1]) n (At x {j,J,6}UA+ x 2"'1) U 
{(e, FO n F') I (e, Fi) E [".i] (i < 2)} 

After the initial choice has been made ".0 + ".1 behaves as one of the components; before this has 
happened, only actions that both components may fail can fail in the choice. 

3-6 LEMMA . 

• [".0; ".1] = [".0] n (A* X {i, 6} uAW X {!} UA* X 2Al) U 
{sOs'p'ls0! E [".0], Isol <W, S'p' E [".l]}U 
{(sOsl,F') I SO! E [".0], Isol <w, (sl,F') E [".1], s'l'e}U 
{(sO,FOnF') I SO! E [".0], (e,F'lE [".1]} 

As for the last clause: if (SO, FO) corresponds to a computation in 7r0 ending at a terminal node v 
(which is stable in ".0), then ".0 ;".1 can fail the actions that both ".0 can fail at v (FO) and ".' can fail at 
some initial node (F'). In case there is no such correspondence, (sO,FO) E [".0; ".1] by the first clause, 
whence we already have (sO, FO n F') E [".0 ;".1] as FO n F' ~ FO 

The proofs of these lemma's are tedious but not really difficult. They follow from the corresponding 
uts constructions. 

4 A verification criterion: failure simulation 

For refinement of 1st order transition systems-usually taken to be inclusion of behaviors~the paradigm 
of a verification criterion is that of Milner simulation [Mil71]. 

The idea behind this is that in order to prove that ~1T0<>-- ~ ~7rlc>- one sets up a relation between the 
nodes of ".0 and ".1, such that every initial node of ".0 is related to an initial node of ".1. Such a relation 
should be inductive in the sense that if any two nodes vo and v, are related (vi E Vi) then for every 
possible transition out of Vo there must be a corresponding one out of VI (i,e" having the same effect) such 
that both reach nodes that again are related: 

A Milner simulation from ".0 to".' (both in UTS) is a relation M <;; VO X V' satisfying for every 
Vo E VO, V1 E V" eo E £0, a E A: 

1. Vo E 1° = 3V1 E l' Vo M V1, 

2. 'eo M V1, CO(eo) = a = 3e, E 'V1 e~ M e1 & C1(e,) = a, and 

3. Vo M v, = i(vo) =} i(V1) & !(vu) =} HV1) & 6(vo) =} 6(V1) . 

Clause (3) is not part of the usual definition of Milner simulation but is needed by our particular choice 
of behavior. The second clause is illustrated in the following picture: 

M 

a 
.---------------------------------------------~. 

e, ~ 

" . a 
.----------------------~--------------------------. 

16 

\ 
\ 

'M 
J 

J 
I 

r 



where the dotted parts are the things that have to be found. 
Alternatively, if we assume that the transition relation of an uts 1r can be interpreted as a set of 

relations, (Ta)aEA on V x V, by 

v Ta W = 3e E'v n w· C(e) = a 4 , 

then a Milner simulation, M, from 1("0 to 11'1 can be defined "relationally" by 

I' 10 ~ l' MT, 

2' MT Tg ~ T! MT, and 

3' as (3). 

Viewed in this way, it is more natural to consider relations on VI X Vo. 

If such a simulation can be set up, then this allows one to construct with every behavior of KO a 
corresponding one in 1I"1-this is the essence of the inductiveness condition. In other words, the criterion 
is sound. 

Even if -()1I"D4-- ~ -¢1I"14>-, such a simulation need not always exist. The standard example is 11"0 = 

• 
a ~ and 11"1 = I>.~. , for which there is no Milner simulation from 11"0 to 7r1 : whatever .. /'"" 
~ .. ~ . 

• 
initial vertices are related, either the a or the b-transition of?r° cannot be mirrored. In other words, the 
criterion is incomplete. 

This is well-known; as is well-known that if 11"1 is deterministic, there is always a Milner simulation 
between ?r0 and ?r1 • The so-called subset construction is the classical way to turn an uts 11" into a deter­
ministic one, d 1r , such that ~1r€t>- = -¢ld 1rt:>-: vertices of d 1r are the subsets of ?r's vertices; d1r 's initial state 
is I; and two sets are related by an edge in d ... , labelled a, if the second set comprises all the states that 
can be reached via an a-labelled transition in ... from some state in the first set [EiI74]. 

The idea behind failure simulation, which will turn out to be a sound and complete criterion for failure 
refinement, is to combine the idea of Milner simulation with the above subset construction to render the uts 
(sufficiently) deterministic. First we define a special case of failure simulation (which, incidently, already 
is complete): 

4-1 DEFINITION. Let ... o, ... ' E UTS. A simple failure simulation from ... 0 to ... ' is a relation R E VO x 2v ' 
such that for every eo E £0, vo E VO, V, ~ V' , a E A: 

1. vo E 10 = 3V, ~ l' Vo R V" 

3. vo R V, = 3V1 E V, Hvo) => HV1) & Hvo) => HV1) & 6(vo) => 6(v,) & 
3V1 E V, stable(vo) => (stable(v,) & C~('v,) ~ C~('vo) & ltv,) => 1(vo))5 

The second clause can be illustrated thus: 

4 Hence, if we assume that I'v n w' n C l(a)l:5 1 for any v,w E V and a E A. 
5By (2) and (3): V, # 0. 

17 



• 

R 

. ----

... -- ....... a / , 
-----------------------------~---->. 

/ 
/ 

I 
a I 

----------------------------;--~ . 
\ / , / , / 

...... -- ... ~ 
\ 
\ 

, 
\ 
I 
I 

I 
/ 

) R 
/ 

/ 

a ~ 
.------------------------~------------------------~~ . 

E' I 

Note that EI may be chosen a proper subset of VI n' £-I(a). I.e., not every a-labelled edge out of VI need 
be included in E I. This contrasts with the subset construction which would demand EI = VI n' £-I(a). 

The third clause checks, in addition, that the deadlock and non termination possibilities "at" Va are 
allowed at some node VI E VI: £~('v.) <; £~('vo) & l(v.) =? 1{vo); in accordance with Theorem 3-2. 

A more relational definition would render clause (2) as 

2' RT T~ <; ,IT; RT, where, I is the embedding relation on Vi X VL V, I W iff V <; W . 

The other clauses would stay the same. 

This notion of simulation can be weakened without losing completeness which has the advantage of 
offering more layway in proving refinement. It can also be made more symmetrical, relating subsets to 
subsets of nodes. This we will define now and it is what we will use in the rest of the paper. 

4-2 DEFINITION. Let".o,,,.1 E UTS. 

• A failure simulation from 7l'0 to 7l'1 is a relation R E 2vo 
X 2V1 such that for every Eo ~ £0, Vo ~ Va, 

VI <; VI, a E A: 

1. 3(V,0)i<a <; dom(R) 10 = Ui<a v,0 & Vi < ,,3VI <; 11 

2. 'Eo R V., 0", Eo <; Eo n £0 -I(a), E~ E dom(R) ~ 

v,°RVI, 

3EI <; 'VI E~ RE; & 
£°(Eo) = £I{EI) , 

'tvo E Vo 3vI E VI Hvo) =? HVI) & 1(vo) =? 1{v.) & 6(vo) =? 6(v.) & 
3vI E VI stable(vo) =? (stable(v.) & C~('v.) <; £~('vo) & 1(v.) =? 1(vo)) 

4. 'Eo E dom(R) ~ 3Vo ... Vn E dom(R) (Eo n £0 -I (a))' = Vo U··· U Vn 

• write 11"0 C.--+R 11"1 if R is a failure simulation from 'iTo to 11"1, 

• write 11"0 ~ 1rl if 3R ~ 2vo x 2Vl 11"0 C-j.R 1rl . 

Clause (1) says that every initial vertex of 1r0 should occur in some set of initial vertices and that every 
such set is related to a set of initial vertices of 1rl. Clause (2) is a direct generalization of the corresponding 
one in Definition 4-1: instead of a simple vertex, ·eo E dom(R), there is a set of vertices, • Eo E dom(R), 
and a set of edges, Eo <; Eo, out of it, every edge in Eo labelled with a, Eo <; £0 -I (a), and E~ E dom(R). 
This is pictured as follows: 

18 



R 

'Eo 

... -- ... 
a ,," " 

------------------------------~. , 
I I 

• ______________________________ ,' _____ >. 1 

a I / E; 
I I 
\ I • ________________________________ "lrr...,.... " , / 

a '--""", 

If 
a 

----~------------------------------------~/~~~. 
I , 
I 

• ___ -f'-________ a ___________ \->-o~. " 
'--" 

\ 

\R 
I 

\ 
I 
I , -, 

I Eo 
I 

The additional clause (4) ensures that for every a E A the vertices reachable by an a-labelled edge from 
• Eo are covered by sets in dom(R). This is vital since we must construct for every computation in 11"0 an 
equivalent one in 11"1. 

Relationally, clause (2) would be expressed as 

2' RT ,oT2 <; ,IT'; RT . 

As the other clauses would stay the same, the relational view is not really worthwhile in this context. 

The freedom to use simulation relations that are not functional is quite essential. In the example below, 
the only simulation relation, R, that can be set up between the two (trace) equivalent systems, is the one 
shown. 

y,--4,~ y.\~ 
1>-. \ \ • \ .~. 
I~ \ \ ./,.............. \ ~I\ a 1 

I b~ \ ....<a I ~....:r: 1 \ 1 
I r~r I I T ,a I \ I 
I I t I I I I I \ I 
I I I I I I I I \ I 
I I I I I I I I I I I 
I I I I I . I a I I I 

\ h./·~ I iY.~.~ I 
~./ ! ,:' I a I , ~' 

............... I .~~' I / 
a~,,/ b.'.~ 

• a ~. 

"I _ 

11"0 = 

The two indicated positions show that neither R nor RT is functional. 
Note that R is a Milner simulation as well. This shows that the counter example is not a quirck of the 

particular simulation notion that we have shown. 

The rest of the section gives the soundness and completeness proofs to show that ~ = c.......;.. Fix some 
,,0, "I E UTS and let R <; 2Y" x 2Y'. 

4;1 Soundness 

The proof is based on the following auxiliary 

19 



4-3 LEMMA, Suppose 1['0 ~R 1['1, Then, for any s E A* and Vo E 1['0 after s there are Vo ~ 1l'0 after s, 
V, <;:; .. ' after s such that Vo E Vo and Vo R V,. 

PROOF. Induction on the length of s. 

s = 0) .. 0 after 0 = JO, hence clause (1) in the definition of failure simulation supplies a Vo <;:; [0 with 
Vo E Vo and V, <;:; [' such that Vo R V,. 

a 
s = sa) Vo E 1l'0 after s implies there is a vo E VO such that vo E 1l'0 after sand vo; 71'0 _ Va; 71'0, 

Induction gives a Vo <;:; VO and V, <;:; V' withvo E Vo and Vo RV,. Let Eo E 'VoandEo = Eon.co-'(a). 
By assumption, Eo # 0 and so Eo # 0. Since' Eo E dom(R), clause (4) gives a Vo E dom(R) and 
Vo E Vo <;:; E~. Let Eo = Eo n Va'. Clause (2) implies existence of a set E, <;:; 'V, snch that E; R E; and 
.c'(E') = {a}. So, define Vo = E~ and V, = E;. Then Vo E Vo <;:; .. 0 after s, V, <;:; .. ' after sand Vo R V,. 0 

4-4 THEOREM (Soundness). ~ <;:; ;;J. 

PROOF. Choose ... ~R .. '. First take some 8p E ..(> .. o~. If s E A*, then there is some Vo E VO and 

.. 0 ~vo; .. o withp(vo) true. By Lemma 4-3, there are V; <;:; .. ;afters (i$l) with Vo E 110 and Vo RV,. 

By clause (3) of the definition of failure simulation, p( v,) holds for some v, E V,; whence sp E ..(> .. '~o. 
If s E AW then for every s -< s (by definition s E A*) there is avo E .. 0 after s and again by the previous 
Lemma, .. ' after sol 0. Hence, 81 E ..(> .. '~. 

Next, let 8 E A* and F <;:; Ai. Assume that .. 0 after 8 fails F holds. This implies a Vo E"o after 8 such 
that stable(vo) holds and F n .c~('vo) = 0. The same argument as above gives a v, E .. ' after s, also with 
stable(v,) being true, F n .c}('v,) = 0 and ~1(v,) if ! E F. I.e., .. ' after s fails F holds, too. 0 

4-5 COROLLARY. If there is a simple failure relation from .. 0 to .. ', then .. 0 ;;J .. '. 

PROOF. If R is such a simple failure relation, then .. 0 "->R .. ' holds with 

R = {({vo}, V,) 1 (vo, V,) E R} . 

4.2 Completeness 

Completeness can be proved directly and we state: 

4-6 THEOREM (Completeness). ;;J <;:; ~. 

PROOF. Let .. o ;;J .. ' and define R <;:; 2v' x 2v' by 

R= {({vo},V,) 13s EA* .. o ~vo; .. o & .. ' afters= v,; .. '} 

We show that .. 0 ~R'" holds: 

1. By taking s = 0 we immediately obtain that {vol E dom(R) and {vol R I' for all Vo E 10. 

o 

2. Let' Eo R V" Eo <;:; Eo n.c° -'(a) and E~ E dom(R). By definition of R, we must have Eo = Eo = 
o 0 sao . - 1 1 -. -. {eo} and .c (eol = a. Also, .. ---+ 'eo;"o --> e~; .. ; whence, If EI = 'VI n.c - (a), Eo R EI and 

.c°(Eo) = .c'(E'). 

20 



, 
3. Vo R V, implies Vo = {vo}. Choose an , E A* such that ".0 ----> vo;".o and ".' after, = V,; ".1. 

If p(vo) is true then 'P E ..(>".0<1>-; whence, by assumption 'P E ..(>".1<1>-, which in its turn implies that , 
p( VI) holds for some VI E V, (because ".1 ----> Vl;".l => V, E VI). 

Next, if 'table( vol holds, F n C~('vo) = 0 for some F <;; AI and ~l(vo) if 1 E F, then ".0 after ,fails F is 
true and, again by assumption, so is ".lafter,failsF. From this conclude that stable(vI) holds, FnC~('v,) = 
o and ~l(v,) if 1 E F for some V, E V,. 

4. Let' Eo E dom(R) and 0 oF Eo = EonCo -lea). Hence, Eo = {eo}, CO(eo) = a and for some s E A*: 

".0 ~ 'eo;"'o -.':.. e~; ".0. This implies that {e~} E dom(R). 0 

4-7 COROLLARY. If 71"0 ~ 71"1 then there is a simple failure simulation from 71"0 to '11"1, 

PROOF. If R is the relation as defined in the proof of the completeness theorem, then 

R = {(vo, vI) I ({vo}, V,) E R} 

is a simple failure relation from 71"0 to 71"1. o 

So, both failure simulation and simple failure simulation are sound and complete verification criteria 
for proving failure refinement. Note that if in clause (3) of either definition we ignore the part concerning 
stability and the next possible moves, the resulting simulations are sound and complete criteria for trace 
refinement: ~1l'0Q>- ~ ~7rlQ>-. This is an easy consequence of the above soundness and completeness 
proofs. 

5 First order transition systems 

In a first order transition system, there is an implicit notion of state and edge labels now denote tests and 
actions that depend on, respectively, update the state. 

• Given a signature ~, let Act(~) = gact(~) U Cact(~) be some set of action over ~ partitioned into 
gact(~)-the global actions-and Cact(~)-the local actions. The 'actions' 6 and t do not appear in 
Act(~). The precise form of these actions does not matter at this moment. We do need that given a 

~-structure, A, there is a function, [ . ]A: Act(~h ..... 2sxs that gives the input-output behavior of the 

actions. We (arbitrarily) assume that [I]A = Ids. For the rest of the section, fix some ~-structure, A. 

• The class of 1st order transition systems over Act (E) is TSAo'(E) (TSE or just TS) and is defined as 

{ (8" 8,: & ..... V, I, T, C: t: ..... L(~) x Act(~),T) 11&1 and IVI are finite} . 

So, a 1st order transition system (ts), also denoted by 1(', is a transition system whose underlying graph is 
finite and each of whose edges is labelled with a test from L(~) and an action from Act(~). Write Ct(e), 
respectively, £a(e) for the test, respectively, action associated with e. 

• As for the meaning of a 1(' E TS, we can define, like for uts's, transition relations, ~J for a E Act(:E)j 

this time as relations over TS x S: 

".,U-.':..1f,U ¢=} 3eE'I A,uI=Ct(e), (u,u)E[C(e)]A, 1f=e';".. (6) 

21 



These relations fix the behavior of a 1st order system, as they do for uts's. 

• The next step is to associate with every 7r E TS an uts t7r which has the same behavior as 7r. 

The transition relation defined above gives the general idea: the vertex set of t7r will also record the 
statej an edge label in tIT will also include the state-transformation. 

Given 11" E TS .. d(E), define '11" E UTSsx .. ,'(E)xS by 

- 'V = V x S, 

- 'E = S x E x S, 

- '8,(0-,e,O') = ('e,o-) and '8,(0-,e,O') = (e' ,0') iff A,o- F= .c'(e) and (0-,0') E [.ca(e)]A, 

-'I=IxS, 

-'T=TxS,and 

- '.c(o-,e,O') = (O",£a(e),O'). 

Hence, we shall have Al = S x .caet(E) x Sand Ag = S x .cae/(E) x S. 

• The following easy to prove correspondence holds between 11" and '11": 

a __ ,(o-,a,O') 
IT, u ----+ IT, (j {:::::? IT -----+1 t1f . 

As to the adequacy of the translation, we can state the following. 

First note that ~ as defined by (6) is a relation on TS x S. We define bisimulation, "', on TS x S 

as follows: 

11"0 '" 11"' iff there is an R C;; (TS X S)2 such that for every 0-°,0-' E S: (11"°,0-°) R (11"',0-') and 

3. (11"°,0-°) R (11",,0-') => 0-° = 0-' & I/vo E 1° p(vo,o-°) => 3v, E I' p(v"o-') 

Since this definition does not depend on the cardinality of ts's, it also defines bisimulation on UTS ('?! 
UTS x H). 

Now we have 

So, tIT indeed is the 'correct' translation of 7r. With this correspondence, we can have ....pIT4- = ....pL,r4-

for 7r E TS. Also, we can define refinement for first order systems simply by 

(7) 

It would be better to write A 1= ITo ~ ITI instead of ITo ;J 7r 1 so as to stress the dependence of the definition 
on the structure A. 

This canonical translation, t.: TS ......... UTS, can be used to formulate a notion of simulation that is 
defined in terms of the vertices and edges of first order systems. This is the subject of the next section. 

The above gives a general, abstract set-up to deal with (refinement of) first order systems. The key 
step is the translation' .. This allows the principles developed for uts's to be 'lifted' to first order systems. 

22 



The definition embodied in (7), which is based on it, implies that ;;J will be a pre-congruence for any 
program combinator on ts's, C(., ... , .), such that 

C( n n) a C(-n =") - ~ 'C(._n, ... , ._n) 7r , ... ,7r ,(1'----+ 11" , ••• ,7r ,(1' -...... II " 
(O',a,O') , 'C(.-o '=") 

11" , ••• , 7r , 

where • C is defined using the combinators of the uts algebra. 
The remainder of the section gives some examples. We instantiate Act(E) so as to have assignments 

to local and shared variables and to have synchronous communication actions. We then define a parallel 
composition, ·11" an encapsulation, Enc(., enc), and a hiding operator, Hide(., V), for such ts's. Encapsu­
lation turns shared variables into local ones as specified by the function ene: Svar ........ Pvar; hiding makes 
the values of the private variables in V ~ Pvar unobservable. 

So, first partition Var into Pvar and Svar. Pvar is the set of private variables that can be accessed 
by at most one process; Svar is the set of shared variables. Also introduce a set, Chan, of channel names: 
communication will occur along channels between exactly two transition systems. Then, we define Cact(E) 
and gact(E) by 

Cact(E) = {" := e I " E Pvar, e E Tm(E)} U 
{C : " := e I x E Pvar, e E Tm(E), C E Chan} 

gact(E) = {C!e ICE Chan, e E Tm(E)} U 
{C?" ICE Chan, '" E Pvar} U 
{w : x := e I WE {E, S}, x E Svar, e E Tm(E)} 

We shall also use Pvar, Svar and Chan as functions: Pvar(,,) ~ Pvar is the set of private variables 
that appear in 11", etc .. 

The intention is that x := e is an ordinary assignment to a private variable; C : z := e denotes a com­
munication along channel C, causing x to obtain the value of e; C!e, respectively, C?x denotes the action 
of sending the value of e along channel C, respectively, receiving a value along channel C and assigning 
it to the variable Xj and W : :c := e is an assignment to a shared variable where W indicates whether the 
assignment originated in the system, W = S, or whether the system's environment is responsible for it, 
W :; E. The latter type of action needs some elaboration. 

As a comparison, first look at communication bet ween processes. If C is a channel between two 
processes 11"0 and 1J"1 then 11"0 should only be able to perform a C?x-transition if 11"1 simultaneously executes 
a C!e-transition and vice versa. Hence, ,,0 11,,1 will be defined as hohl('"O II .,,1), where hI, among other 
things, maps C?xIC!e onto C : x := e, denoting a successful communication, while the renaming function 
ho, among other things, renames C?x and C!e to 6 to enforce synchronous communication. 

Now, if we look at assignments to a shared variable, x E Svar, occurring in 11"0 then, in principle, 
,,0 does not control when its environment assigns to x. Yet, in a program Enc("O II "I,[x >-+ yJ), in 
which x has been made a private variable (y) of ,,0 II "I, we must make sure that every assignment to 
" originates in either ,,0 or "I. The way this is solved here is by explicitly indicating from where an 
assignment to a shared variable originates: in the system, S, or in its environment, E. In the definition of 
,,°11,,1, hohl('"o 11·,,1), hi in combination with ho will also map S: x:= eIE:,,:= e into S: x:= e and 
E: x:= elE: x:= e into E:" := e. The former pair indicates that an update by "is (i ~ 1) environment 
is in fact performed by 1I"1-i; the latter pair indicates that the update originates in the environment of 
both 71"0 and 11"1, Also, ho maps any "unmatched" S : x := e and E : x := e into () to enforce consistency. 
With this set-up, encapsulating x in 11"0 IJ 71"1 then means, among other things, that actions E : x := e are 
renamed to (), since 71"0 and 71"1 now are the only processes that can assign to z. This way of modelling 
shared variables was already used in [BKP84]. 

23 



• Next, we must define the semantics of the actions. This is straightforward: 

[x :=e]A = [W: x :=e]A = {(O",O') 10'= O"{O"(e)/x}} , WE {C,S,E}, 

[Cle]A = Ids, 

[C?x]A = {(O",O"{v/x}) I v E IAI} . 

Now we are ready to define the program combinators. The strategy will be to first define the required 
behavior by transition relations and then constructing a translation that will generate this behavior. We 
shall not give proofs of our claims below. 

• Parallel composition. Given".o,,,.' E TS, ".0 II"" is defined if Pvar(".') n Var(".'-') = 0 for i ::; I. 
Define Chan(".o II ".') = (Chan( ".0) U Chan(".')) \ (Chan( ".0) n Chan(".'). We want ".0 II ".' to behave as 
follows: 

- ".0,0"~7i'0,0' =} "'°II"",O"~7i'°II"",O' ifaE.cact(~), 

Cle 
11'0, U ----+ 1f0 , U 

C?x _,_ 
C: x :=e . 

=} ".0 II ".',0" '7i'0 117i'''0' 'fO'(x) = O"(e) and C E Chan(".,) 
111' ,U 

E: x:= e -0-
11r,U 

W:x:=e 
=} 

W:x:=e 
".°11,,',0" , 7i'0 117i'''0' for WE {S,E}, 

1rl, (1 ------+1 1rl, U 

- . II . is commutative. 

So, in particular one sees that an update of a shared variable must be 'allowed' by all components. One 
should not interpret this as a system specifying its environment, but rather as a system that makes certain 
assumptions about how its environment behaves. Apart from obtaining a simple transition relation, this 
has the additional advantage of giving a program some control over access to a shared variable. E.g., a 

S:x:= 1 program to. :s. (a: E Svar) effectively says that it has exclusive access to x because it does 
not include any environment steps. 

In order to construct '(".0 II ".') so that 

a (0" a 0') 
,,0 1I".',O"----+7i'0117i",O' ¢=} '(".011".') " "(7i'°Il7i"), 

we first define for 0"0,0"' E S such that 0"0 r V = 0"' r V where V = (Var( ".0) n Var( ",)) U V \ Var( ,,0 II ".' )6: 

(0"0 + O"')(x) = {O"O(X), if x E ~ar("O) . 
O"'(x), otherWISe 

Al ' bEg t(") + b {W: x:= e, if {a,b} = {E: x:= e, W: x:= e} and WE {E,S} 
so, .or a, ac "': a = C.' x .'= e, if {a, b} = {Cle, C?x} 

Now we set '(,,0 II ,,') = hoh, (',,0 II '".') where 

- h, = 60 [(O"°,a,uD)I(O"',b,O") >--> (0"0 +O"',a+b,uD+O")] and 

- ho(O", W : x := e,O') = (0", W : x := e, 0') for W E {S, E}, 
ho(O", W: x := e,O')) = 6 for WE {S, E}, 
ho(O", C?x, 0') = h( 0", Cle, 0') = 6 if C E Chan( ".0) n Chan( "'). 

6 Fonnally, we should define what Var(1r° 1111"1) means: it means Var(~) U Var(1r1 ). Such trivial extensions of Var(.) and 
the other syntactic functions, however, should be clear. 

24 



It is not difficult to see that' (,,0 II ,,1) behaves as suggested. 

• Encapsulation. Given" E TS and ene: Svar ...... Pvar, in the system Ene(", ene) the variables in 
dome enc) are no longer shared with 71"'8 environment and are renamed to private variables. Obviously, 
Ene(", ene) is only defined if ene is injective and ran(ene) n Pvar(,,) = 0. 

For an action a let ene(a) be the action obtained by renaming the variables (if any) according to ene. 
_ _ {U(ine- 1(X)) if x E ran( ene) 

Also, for a state u let ene(u) be the state u such that: u(x) = () , th· . u x , 0 erWLSe 

Then, Ene(", ene) should behave as follows: 

a _ _ ene(a) 
- ", u ---+ ", U =? Ene(", ene), ene(u) , Ene(if, ene), if provided 

a"'E:x:=e~"rf.dom(ene)andu(x)= '''. 
_ {ene(u)(x) if x d dom(ene) 

u(x), otherWISe 

The translation, 'Ene(", ene), is given by h(',,) where 

- h(u au)) _ {5, 
" - (ene(u), h(a), if), 

and if is defined as above. 

Again we have 

if a", E:,,:= e and" E dom(ene) 
otherwise 

a (u,a,u) 
Ene(", ene),u ---+ Ene(1i, ene),u <==} 'Ene(", ene) -----." Ene(1i, ene) . 

• Hiding. Given" E TS and V ~ Pvar, Hide(", V), makes the private variables in V unobservable. 
We want Hide ( ", V) to behave as follows: 

a __ 
- 7I",U ---+ 7r,U Hide( '" V), u ~ Hide( ", V), if , 

Then 'Hide(", V) = h('''), with 

- h(u,a,if)) = (u,a,u), where if is defined as above. 

It is straightforward to prove that 

where if(x) = {~(x), 
o-(x), 

if x E V 
otherwise 

Hide(", V),u ~ Hide(1f, V),if <==} 'Hide(", V) 
( 0- a if) 

" 'H·d ( V) I J e 71", • 

As we already stated, these are only examples of composition operators for 1st order systems. One can 
also define a hiding operator to hide actions or channels. As with encapsulation and hiding of variables, 
here too, this is a question of defining the appropriate renaming operator. We stress again that our notion 
of (1st order) refinement by definition is a pre-congruence for all such operators. 

6 Verifying first order refinement 

The intent, here, is not to find any old translation of failure simulation to first order systems, but rather to 
formulate it in terms of more or less standard assertional methods for transition systems: Floyd's inductive 
assertion method [Fl067]. For the remainder of the section, fix some ,,0, ,,, E TSA<t(E) such that ,,0 ;;) ,,, 
and a !:-structure A. 

We need to define '-OR ~ TSA,'(E) x TSA,,(E) and conditions on '-OR so that ,,0 '->R ,,, iff ',,0 '->'R ,,,, 
for an appropriate 'translation' of R. The first thing is to decide how to represent a failure simulation, R, in 

25 



terms of assertions. Obviously, R, too, will relate sets of vertices with each other and t R will be a relation 
over 2voxs X 2",1 xs, since Vi X S is the vertex set of t1l"i. Now, in an inductive assertion proof, the assertion 
associated with a vertex intends to describe the states with which the system can reach that vertex. This 
suggests to associate assertjons wjth sets of vertices and to relate such sets if the corresponding assertions 
allow both sets to be reached with the same state. We also know from the completeness proof that which 
sets are related is also based on the (partial) computations. Hence, we use an assertion language, As, 
in which history variables may occur that have (partial) computations as value; Le., that are of type 
llis = (8 x Act(I;) x 8)*. Note that these history variables are additions to the assertion language and, 
hence, differ from what some researchers [AL88] call history variables. These are auxiliary variables that 
are added to a program and to which one assigns values so as to encode information about the computation 
history. There are some further conditions on As that we shall need later on: As will be a (weak monadic) 
second order language in which we allow quantification over sets of vertices and allow membership tests 
for vertices, edges and actions (which means that there are variables of the respective types: V, v, e and 
a). Also, the signature of As includes functions'., .', .c'O and .c'O with the obvious interpretation. 
Since we need to relate two ts's with each other, sub and superscripts are used in As to keep them apart: 
i.e., 3Vo\feo E 'Vo CO '(eo) E Cact(I;) expresses the existence of a set vertices in ... 0 such that the outgoing 
edges of any vertex in this set is labelled with a local action. Any quantification over vertices, edges, and 
vertex sets is implicitly restricted by the ts to which these items belong. Since, these ts's are finite, such 
quantifications can always be replaced by finite con- and disjunctions. 

Assume that assertions all use the history variable, h. Its value is neither changed by an action in 
Act(I;) nor does an action depend on the value; also, h does not appear in any test in the label of any 

transition in any ta ... : \fa E Act(I;), s E llis (0',0') E [aDA => O'(h) =O'(h) & (O'{s/h},O'{s/h}) E [aDA 
and \f¢ E C'(£) h rf- FV(¢). 

6-1 DEFINITION. Let ... , ... 0, ... ' E TS. 

• A set labelling of ... is a (partial) function A: 2v """' As; by convention, let 0' ~ A(V) for every 0' E 8 
if V rf- dome),), 

• Given set labellings AD and A' of ... o and 11", the relation [AD, A'] <;; 2v' x 2v' is defined by 

= U [AO, A'l. and 

{(V0,v,) 13s E llis O'{s/h} 1= AO(Vo) /d'(V,)} 

• Given a relation [AO,A'], define its translation by 

'[AD, A'] U {(Vo x {u}, V, x {O'}) 1 (Vo, V,) E [AD,)"].} 
.ES 

The intention is that AD and A' describe the states and histories with which the vertex sets in their domains 
can be reached. 

Now we ask: what conditions should be imposed on [AD, A'] so that '[AD, A'] is a failure simulation 
from t1l"0 to t1l"1? Note that the particular representation influences such conditions and other choices are 
possible. This is discussed at the end of the section. 

In tackling this, we first concentrate on clause (2) of Definition 4-2, formulated below for ' ... 0 and '11" 

where R stands for [AD, ),']: 

3'E, C "\I" 'E' 'R 'E' & _ ° , (8) 

'CO('Eo) = 'C'('E,) , 

26 



Let ., Eo = 'V0
7 . Now, 'Vo 'R 'V, implies there are Vo ~ Vo, V, ~ Vi and a u E S such that 

'V; = V; x {u} and Vo R. Vi. The action, a, is of the form (u,a,O') for some a E Act(E) and 0' E S. 
By assumption, there is a set of edges' Eo ~ 'Eo, all labelled with a. So, 'E~ = Vo x {O'} for some 
Vo E dorn(R".). 

- - -.-. 
We need to find a set of edges 'EI, also labelled with a and such that 'E I ~ "VI and 'Eo 'R 'E I . If 

- -e -
we have such a set, there is a VI E ran(R".) such that 'EI = VI X {O'}. The following figure sketches the 
situation: 

(u,O') E [a] 

Vi x {u} 

Vox{u} 

.... -~---
/ \ 

I I 
I I 

'R 

, / 

.... --:::: 

-----
a _____ - - - - - - - - - - -/:;~ -"", ----

/ I 
I \ 
I I 
I I 

VI X {O'} 
\ I 
, I 

------------- '/ 
--------------~~~ 

\ 
\ , 

I 

a 

\ 
I'R 
I 

Vox{O'} 

Again, the dotted parts have to be constructed. 
Now, Vo E dorn(R.) means that u{slh} 1= .\O(Vo) for some s E His. Likewise, Vo E dom(R".) is 

equivalent with O'{slh} 1= .\°(170) for an s E His. One would expect s = sa but this does not follow from 
the definition of R. This expectation is based on the implicit assumption that if some set of vertices Vo is 
reachable by some history s and state u, then actually u{slh} 1= .\O(Vo) should hold. Not unreasonable 
and we define 

6-2 DEFINITION (safe labelling). Given" E TS and a set labelling.\ if" . 

• The labelling.\ is safe for" iffor any V E dom(.\), s E His, u E S: 

V x {u} ~ 'ufter s ==? u{slh} 1= '\(V) . 

So, let us assume now that 

.\° is a safe set labelling for ,,0 . (9) 

Also, assume w.l.o.g. that Vo x {u} ~ ',,0 after s. Now we have Vox {O'} ~ ',,0 after sa and, hence, 
O'{salh} 1= .\°(170). Next, consider the 'VI that we need to construct. We must have Vo R". VI and, 
therefore,O'{salh} 1= .\1(17d. Well, not exactly: we know that there has to be a common computation 
with which both 'V ° and 'V I are reachable but we do not know that sa is the one. Still, this too is a 
reasonable assumption and we demand that 

A 1= .\O(Vo) --> 3Vi .\1(Vi) . (10) 

27 



Now, we can take a VI such that O'{salh} F AI(V\). If we can show that 'V; ~ "Vi n CI-I(a) we 
are done. Why should this be? Well, basically from the idea that since V I x {O'} is reachable in ' .. I via 
a computation sa, it has to pass through VI x {u} since that set is reachable via s. Again, two implicit 
assumptions have been made here: the first is that because O'{salh} F AI(II't), these vertexes are in fact 
reachable via sa; the second assumption is that therefore the computations have to pass through Vi x {u}. 

Let us define 

6-3 DEFINITION (sure and history determined (hd) labelling). Given .. E TS and a set labelling A if ... 

• The labelIing A is sure for .. iffor any V E dom(A), s E His, u E S: 

u{slh} F A(V) => V x {u} ~ ' .. after s , 

• The labelling A is history determined (hd) if for any V E dom(A) and sa E His with a = (u, G, 0'): 

O'{salh} F ACV) 

We demand that 

=> there is a V E dom(A) such that u{slh} F A(V) and 

for all such V: V x {O'} ~ ('(V x {u})nCa-l(a»' 

Al is a sure set labelling for .. I and is hd . (11) 

Then, because Al is sure, O'{salh} F AICVI) implies that VI x {O'} ~ ' .. I after sa. We also have, by 
assumption, that u{slh} F AI(Vd. Hence, history determinedness of Al gives that 'V; ~ "VI. 

We have shown that if AO and AI satisfy conditions (9), (10) and (11), then '[AO, All satisfies (8). 
This derivation clearly show the different roles played by the set labellings of .. 0 and of .. I. As .. o is 
the implementation, we must make sure that every computation of it is also a computation of 7r 1. If 
computations are characterized using assertions, then it is essential that such assertions hold along every 
computation of 11'"0. Otherwise, not every computation of 11"0 is mapped onto one of 11"1. So, such assertions 
may 'err' on the safe side by being satisfied along computations that are not generated by 11"0. Of course 
we may not be able to prove refinement because of this, but that is a different issue. By the same token, 
assertions characterizing computations in 1rl, the system that is to be implemented, must be sure in the 
sense that they should never hold on computations that do not occur in 71"1, Otherwise, some computation 
of 71"0 might be mapped onto a computation that does not occur in 11"1, Hence, these assertions may 'err' 
on the sure side by being invalid along certain computations of 11"1, 

The other conditions of failure simulation are easier to satisfy. Clause (1) reads 

3('V;0)i<a ~ dom('R) '[0 = U 'v;o & Vi <" 3'VI ~'[I 'v;o 'R 'VI. (12) 

We have' [0 = [0 x S and it seems natural to find a covering Vo
o, ... , V,:' of [0 and to have V;O x {u} E 

dom('R) for any u E Sand i ~ n (; remember that .. 0 E TS so that [0 is finite). Similarly for the 1';1. So, 
let us demand that 

3Voo ... V,:' E dom(AO) [0 = Voo u··· u V.!' & 3VI E dom(AI) VI ~ [I & 
VVI E dom(AI) VI ~ [I ~ A F h = <> -> AI(VI) 

where <> stands for the empty sequence; i.e., u{elhrF h = <>. 

(13) 

Choose a u E S and consider V;O x {u} for any i ~ n. As V;O ~ [0, we have that V;O x {u} ~ ' .. 0 after e 
and so by safeness of AO that u{elh} F AO(V;O). There is a VI E dom(AI) such that VI ~ J1 and (hence) 
u{elh} F AI(VI). This means that 1';0 E dom(R.) and that V;O R. Vl Hence, 

'[0 = U{V;O x {u} I i~ n, uES} and 

Vi ~ n,u E S,3VI E dom(AI) VI x {u} ~ '[I & 1';0 x {u} 'R VI x {u}, 

28 



so that (12) holds. 

Next, clause (3): 

'Va 'R 'VI ==? V'vo E 'Va 3'vi E 'v, Ifp E {j, L 6} p('vo) :;. p('vd & 
3'vi E 'VI stable('vo):;' (stable('vd & '.c~("VI) ~ '.c~(otvo) & 1('vd :;.1('vo») . 

We want to check H·), etc. on the level of the first order systems. So we define them as auxiliary 
predicates in As: 

6-4 DEFINITION. Let -;r E TS, v E V and IT E S. 

• IT 1= l(v) ilf IT 1= 3e E 'v .c'(e) 1\ .ca(e) = j, 

• lTl=1(v)ilfvET, 

.0" 1=6(v) ilfO" I=lfe E 'v .c'(e) _.ca(e) =61\v 'leT, 

• 0" 1= stable(v) ilfO" 1= Ife E 'v .c'(e) _ .ca(e) E gact(~)" 

• 0" 1= enabled(v) = E ilfO" I=lfe E£ e E E <-+ ('e=vl\.c'(e». 

There is a straightforward correspondence between these predicates in As and their informal coun­
terparts for '-;r. For -;r E TS and v E V we have '0" 1= p(v) iff p(v,O"») (in '-;r)' for p E {L t,6} and 
'0" 1= stable(v) iff stable(v,O")) (in '-;r)'. For the function enabledO we have that '0" 1= enabled(v) = E iff 
'(v, 0") ~ {O"} x E x S'. This, too, follows directly from the construction of '-;r. 

Hence, we demand that the following holds: 

A 1= ,\O(Vo) 1\ ,\1(Vd - Ifvo E Va (3vI E VI Ifp E {U,6} p(vo):;. P(VI) 1\ 
3vI E VI stable( va) - (stable( vd 1\ .c;( enabled(vI) ~ .c~( enabled(vo) 1\ !(vd --> !(vo))) 

The only moot point concerns the test .c~( enabled(vl) ~ .c~( enabled(vo). Choose some IT with 0" 1= 
,\0 (Va) 1\,\1 (Vd; take some va E Va and let VI be the picked vertex in VI; let IT 1= stable( va). We must prove 
that '.ci('(VI, 0") £ '.c~('(vo, 0") holds. Let 0" 1= enabled(vi) = Ei (i = 0, 1). Then, by the construction of 
t 11": 

'(Vi, 0") = {(IT, ei,O') lei E Ei, (0",0') E [.ca(ei)]A} . 

Now, take an edge 'el = (O",el,O') E '(VI'O") with .cla(ed = a. Then, '.cl('ed = (O",a,O') and (0",0') E 

[aDA. As el EEl, there is an edge eo E Eo with .c0a(eo) = a, whence 'eo = (O",eo,O') E '(va, 0") and 
'.c°('eo) = (0", a, 0'). 

Finally, clause (4): 

3" Eo E dom('R) ==? 3'Vo .. .'Vn E dom('R) ('Eo n '.co -I(a»' = 'Va U ... U 'Vn . (14) 

We define 

6-5 DEFINITION (cover). Let'\ be a set labeling for 7r. 

• ,\ covers -;r if for any V E dom('\), a E Act(~) and IT E S: 

0" 1= ,\(V) 3Vo, ... , Vn E dom(,\) If 0' E I[a]A(O") O'{Sq/h} 1= 1\ '\(11;) & 
i:$n 

0" 1= v E U 11; <-+ 3e E 'V n v' .c'(e) 1\ .ca(e) = a, 
i:$n 

where Sq = IT(h)~(O", a, 0') . 

29 



Assume that 
A 0 covers 11"0 • 

Take some" Eo = 'Vo E dom('R); let 'Vo = (' Eo n 'Co -'(a))', 'Vo = Vo >< {O"} and 'Vo = Vo >< {O'}. 
Hence, a = (0",11,0') for some 11 E Act(E) and (0",0') E [[a]A. Then we have 0" 1= A O(Vo). Because A ° covers 
,,0, there are Voo, ... , V~ E dom(AO) such that 

O'{O"(h)ajh} 1= II AO(V.0) and 
i:5 n 

O"I=VEU v.° ..... 3eoEEonv· CO'(eo)I\CO a(eo) =11 . 
i.:5 n 

Let 'v.0 = v.0 x {O'} (i :0; n). Then 'V~ .. tv~ E dom('R) since Voo ... V~ E dom(R;;} Finally, ('Eo n 
'Co -'(a))' = {(e~, 0') I eo E Eo, 0" 1= Co '(eo), CO a(eo) = 11} and (14) follows. 

We have derived a proof rule to establish refinement of first order transition systems. Note that we 
have split up clause (13) among the premisses of the rule: 

FO- REF 

Given ,,0, ,,' E TS with set labellings AO and AL 

1. AO is safe for ,,0 and covers ,,0, 3Voo ... V~ E dom(AO) IO = Vo° U ... u V~, 
2. A' is sure for ,,' and is hd, 3V' E dom(A') V' <;; I" 

VV, E dom(A') V' <;; I' => A 1= h = <> _ "'(V'), 

3. A 1= "O(Vo) - 3V, ,,'(V,), 
,\,°(Vo) i\'\" (V,) --> Vvo E Vo (3v, E V, Vp E {t, 1, 6} p(vo) => p(v,) i\ 

4. A 1= 
3v, E VI stable(vo) --> (stable(v,) 1\ C~( enabled(v,)) <;; C~( enab/ed(vo)) 1\ Hv,) - Hvo))) 

Note that removing the last premiss gives a rule for proving trace inclusion. Write f-FO-REF ,,0 ;;J ,,' if 
A 1= ,,0 ;;J ,,' can be derived using the rule. 

The derivation of the rule establishes soundness. Completeness depends-as usual--on the expressive­
ness of the assertion language. Specifically, we make the following assumption: 

For any" E TS and V <;; V, there is a formula COMP(", V) E As, such that for any 0" E S and 
s E 1iis 

O"{sjh} 1= COMP(", V) <==> V x {O"} = 'uft.rs. 

Note that 1T and V are not parameters of the formula. I.e., we do not need a formula uniformly in 7J" and 
V. Existence of such formulae means that the semantics of the actions should be definable in As and that 
it must be possible to describe the ith record (in S x Act(E) x S) of a sequence for any i. 

Now, define set labellings for ,,0 and ,,' as follows: 

AO = [{vo} ...... V{COMP("O, Vol I Vo E Vo <;; V°}, Vo E IO] , 

A' [V, ...... COMP(,,', V,), V, <;; V'] . 

Observe that 

["O,A'Ja= {({vo, V.}) /3SE1liS ',,0 ~(vo,O");'''o, ',,'afters= V, x {u}}. 

30 



Hence, [A 0 , A'] is precisely the failure simulation (from '".0 to '".1) used in the proof of the completeness 
theorem 4-6. 

We show that AO and Al satisfy the premisses of FO - REF, in case ".0 ;J ".1 holds. 

By definition, AO and A' are both safe and sure. 

To establish that AO covers ".0, take some Vo E VO, a E Act(~) and t7 E S with t71= AO(vo). Define 

{vg, ... , v~} = {eo I eo E 'vo, t71=.c0 '(eo) i\.c0 O(eo) = a} 

and let 0' E [a]A(u). By definition of AO we have O'{s/h} 1= A<n AO(v?) where s = t7(h)(u,ll,O'). The 
second part of the definition of covering, (6-5), immediately follo;s from the definition of {vg, ... , v~}. 

For history determinedness of AI, take some V, E dom(AI) such that O'{sa/h} 1= AI(V,) with s E 1f.is 
and a = (t7,1l,0'). By definition of A', this means that VI x {O'} = '".1 after sa. Let V, x {u} = '".1 afters. 
Then u{s/h} 1= A'(Vt) holds and VI is the unique set with that property. Moreover, ('(VI x {t7}) n 
.co-I(a))' = V, x {t7} 

If II = {vg, ... ,v~}, then {vn E dom(AO) for i:5 n. Also, II E dom(AI) and A 1= h =<>- A'(II) 
by definition of Al Finally, note that VI E dom(A') and V, <; II implies that VI = I'. 

To show the third premiss, take some t7{s/h} 1= AO(vo). This means that Vo X {u} <; '".0 after sand, 
since ~''''0<l- <; ~'''''<l-, that u{s/h} 1= A'(VI) with '".' after s = V, X {u}. 

Finally, the fourth premiss. Take a t7 E S, s E 1f.is and assume that t7{s/h} 1= AO(vo) i\ A'(Vt) for 
some Vo E VO and V, <; VI Hence, (Vo,t7) E '".0 after s and V, x {t7} E '".' after s. As '".0 ;J '".1 
there is a VI E V, such that p«Vo,U)) =? p«V"U)) for p E {l, t,6} and such that stable«vo,u)) =? 

(stable«vI,t7)) & '.c}('(VI,t7)) <; '.c~('(Vo,U)) & 1(v"u) =? 1(vo,u). This immediately implies that 

u 1= stable(vo) =? (stable(v,) & '.c~('v,) <; '.c~('vo) & 1(v,) =? 1(vo) . 

We have obtained the following 

6-6 THEOREM (Soundness and completeness of FO - REF). Let".o,,,.' E TS, then 

A 1=".0 ;:;J".I iff f--FO-REF ".0 ;:;J ".' . 

We get a sound and complete rule for trace refinement of 1st order systems if the fourth premiss of 
FO-REF is dropped. 

It remains to show how to prove safeness, sureness, covering and history determinedness of labellings. 
The next two subsections address, respectively, verifying safeness+covering and sureness+history deter­
minedness of labellings. The intention is to show how the proof of these properties can be reduced to 
verifying properties of (sets of) transitions. As such, these proof principles are formulated on a level 
analogous to that of Floyd's inductive assertion method and Manna and Pnueli's temporal logic proof 
rules [MP81, MP84]. 

6.1 Proving safeness and covering 

Proving safeness is a straightforward generalization of proving so-called local correctness of a (Floyd) 
labelling in an inductive assertion proof. A Floyd labelling, .p, associates assertions, .p(v) to the vertices, 
v, of a transition system". E TS. Local correctness of a labelling entails (in our notation) that (v, u) E 
'". after s =? u 1= .p(v) for all s E 1f.is and u E S. It is proved by showing that 

1. v E I =? A 1= .p(v) & 2. Ve E t: u 1= .p(e') i\ .c'(e) & 0' E [.co(e)]A(t7) =? 0' 1= .p('e) . 

Property (2) is also called "a leads from .p('e) to .p(e')" and is written .p('e)::..... .p(e') (if a = .c(e)). 
Our case is more complicated because we deal with set labellings and we have history variables; however, 

the principle is the same. By convention, bold face letters, V, ... will stand for sets of sets of vertices. 

31 



6-7 DEFINITION (leads to). Let 7r E TS and let>. be a set labelling for 7r. Take some V E dom(>.) and 
V o, ... , Vn C; dom(>.). Assume that 0 # E = 'V n c· -lea) and E' = UUisn Vi . 

• V ~ Vo, ... ,Vn (a leads from V toVo, ... ,Vn) iffor all (u,u) E[a)A, s E1iis: 

u{s/h} F >'(V) II V{C'(e) leE E} ~ 

3i::; n u{s/h} F v E UVi .... 3e E E v = e'IIC'(e) & u{s(CT,a,u)/h} F /\{>.(i7) I V E V;}. 

As a convention, V ~ V o, ... , Vn holds vacuously if either V It dom(>'), or Vi 11: dom(>.) for some 
i::; n, or E = 0, or E' # UUi<n Vi' 

We have the following prool principle: 

SA CO 

Given 7r E TS and a set labelling>. for it: 

\IV E dom(>.) V C; I =? A F h =<>-+ >'(V), 
\la E Act(I;), V E dom(>.) 3Vo, ... , V n C; dom(>.) (V n C· -1 (a))' = UUi<n Vi & 

a -
VVo, ... ,Vn ~ V V.............+ VOlo",Vn 

A is safe for 11" and covers 11" 

The proof rule needs one assumption concerning the vertex sets with which assertions are associated 
in order to be sound: 

\la E Act(I;) \IV E dom(>.): \IV E V a E C·('v) =? 3V E dom(>.) ('V n C· -lea))' = V . (15) 

So, if some set of vertices in dom(>.) is reachable by a-transitions, then there must be another set in dom(>.) 
from which every vertex in the former set is reachable by an a-transition. 

Now we can prove 

6-8 THEOREM. SA CO is complete. Also, if 3Vo, ... , Vn E dom(A) 1= Vo u·· . U Vn and>' satisfies (15), 
then SACO is sound. 

PROOF. 

Completeness Take some V E dom(>.) and a E Act(I;). If V C; I then safeness gives A F h =<>-+ 
>'(V) since V x {CT} C; ',,"ftero holds for every CT E S. Next, let E = 'V nCo -1 (a). Because>. covers 7r, there 
are Vo, ... , Vm E dom(>.) for every CT ESandv EUi<m Vi ilfforsome e E'vnEwehaveCT FC'(e). Since, 
7r is finite, there are only a finite number of such coverings. Let V o, ... ,Vn be these coverings. Clearly, 
E' =UUi<n Vi and Vi C; damp.) for i::; n. Now, take some (CT,U) E [a]withCT{s/h} F>'(V)IIV{C'(e) I 
e E E}. By-construction there is an i::; n such that CT F v E U Vi .... 3e E 'V n v' C'(e). As h It FV(7r) 
this formula is also valid in CT{s/h}. By the same token, U{u(h)(CT,a,u)/h} F /\{>.(i7) I V E Vi}. Hence, 

a V......,....... VO,o .. ,Vn . 

Soundness That >. covers 7r is clear. Safeness of >. is proven with induction on the length of the 
computation, s. 

8 = ,,) Since V x {CT} C; '7r after" =? V C; I, this case is covered by the first premiss and the condition 
in the theorem. 

s = sa) Let a = (CT,a,lt) and let Vx{lt} C; '?rafters with V E dom(>.) (and hence V # 0). By(15), there 
isa VE dom(A) such that'VnC·-l(a) = V'. By definition, VX{CT} C; '7rafters, whenceCT{s/h} F>'(V) 

32 



by induction. Let E = 'Vnca-I(a). Then, the second premiss gives Vo, ... ,Vn <:;: dom(A) such that 
E' = UUi<n Vi and if O'{s/h} 1= V{C'(e) leE E}, there is an i :,; n such that O'{s/h} 1= v E UVi +-+ 

3e E E v = -e' /I C'(e). W.l.o.g. we may assume that V E Vi. Hence, we obtain that O'{s/h} 1= A{V). 0 

Note that the condition in Theorem 6-8 is one of the premisses of FO - REF. Assumption (15) is 
satisfied by the set labelling A 0 used in the completeness proof. 

As we know that the existence of a simple failure simulation, too, is necessary for failure refinement, the 
rule can be simplified (by requiring that the labelling is a Floyd labelling). Thus, covering would not need 
to be checked. We mention without proof, that for Floyd-type labellings (i.e., labellings whose domain 
only contain singleton sets) the above proof rule simplifies to 

Given Jr E TS and a Floyd labelling q, for it: 

Ifv E I: A 1= h =<> - q,({v}), 

Ife E e, (0',0') E [ca(e)]A, hE ?tis: O'{s/h} 1= q,({'e}) /lC'(e) ~ 
O'{s(O',ca(e),O')/h} 1= q,({e'}) 

fjJ is safe for 1J' and covers 11" 

I.e., one just proves local correctness! 

6.2 Proving sureness and history determinedness 

The property of sureness is dual to that of safeness. Therefore it should not come as a surprise that the 
proof rule below is based on a notion "comes from" (the dual of "leads to"). 

6-9 DEFINITION (comes from). Let" E TS and let A be a set labelling for Jr. Take some V E dom(A) 
and V <:;: dom(A). Let E = 'V n ca -I(a) . 

• V ~ V (a comes from V to V) if either E = 0 or' E = UV and for all (0',0') E [aDA and s E ?tis 

O'{s(O',a,O')/h} 1= A{V) = 3V E V O'{s/a} 1= A(V) & 'IV E dom(A) 
O'{s/h} 1= A(V) /I (lfe e E V' - 3v E V 'e = v /I C'(e)) . 

We have the following proof principle: 

SUHD 

Let Jr E TS and let A be a set labelling for it: 

'IV E dom(A): O'{t/h} 1= A(V) ~ V <:;: I, 
- - a Ifa E Act(E), V E dom(A): 3V <:;: dom(A) V <--'" V 

A is sure for 1J' and is hd 

33 



6-10 THEOREM. SUHD is sound and complete. 

PROOF. 

Soundness History determinedness is obvious. Sureness is proved by an induction on the length of 
the computation sequence) s. 

s = ,,) This case follows from the first premiss. 
s = sa) Let a = (0', ii, u) and take some V E dam().). Suppose that u{s} 1= A(V). History determined­

ness implies that' V n Co -1 (a) # 0. By the second premiss of the rule, there is a set V C; dam( A) and a 
set V E V such that O'{sjh} 1= A(V). By induction this means that V x {O'} C; '1f after s. We also have 
that 0' 1= e E V· --> 3v E V v = • e /\ C' (e) because h does not appear in any test in 1f. This immediately 
implies that V x {u} C; '1f after s. 

Completeness The first premiss directly follows from sureness of A. For the second premiss, take an 
a E Act(E) and some V E dam().) such that 0 # 'V nCO -l(a). As A is history determined, for every s E 

'His and (0', u) E [aDA such that u{ s(O', a, ujh} 1= A(V) there is a V E dam(A) with O'{ sjh} 1= A(V) and for 
any such V: V X {u} C; ('(V x {O'} )n'C-l«O', a, 0')))'. Because V is finite there are only finitely many such 

V E dam(A). Collect them in the set V. We claim that V ~V. So, take some (O',u) E [aDA ands E'His 
such that u{s(O',ii,u)jh} 1= A(V). By construction there is a V E V such that O'{sjh} 1= A(V). Finally, 
V x {u} C; ('(V x {O'})n'C-l«O',a,O'))), is equivalent with O'{sjh} 1= 'Ie e E V· --> 3v E V'e = v/\C'(e) 
(; remember that h does not appear free in 1f). 0 

In this section we have lifted failure refinement to 1st order systems by first defining a way to describe 
a failure simulation in terms of (set) labellings: [AO,Al]. Then we translated the conditions of failure 
simulation in Definition 4-2 to that of conditions on the 1st order systems, using the translation, '., 
defined in Section 5. The resulting rule FO - REF was formulated in terms of a number of primitive 
notions: safeness, sureness, covers and hd. The last two subsections developed proof principles to prove 
these properties. 

We stress again that the resulting proof rules depend on the particular choice of representing the 
simulation relation. Here, we decided to use pairs of set labelings and other choices are possible. One is to 
use labelings of type A: VO X VI >--> As. This would allow a very direct lifting of the conditions, which would 
become easier to state. On the other hand, our use of set labelings is more modular and in a refinement 
sequence 71'"0 ~ 11"1 ~ 71"2 allows 71"1 's labeling to be reused. 

7 Conclusions 

We have developed a theory of refinement for 1st order programs that is grounded in algebraic process 
theory. This allowed us to make use of existing results and-by virtue of a canonical embedding of 1st order 
transition systems into uninterpreted ones-then lift these results to 1st order systems. In the formulation 
of the 1st order verification criteria, we have tried to stay close to the spirit of the inductive assertion 
method. 

This paper has laid some foundations, but there remains a lot to be done. The existing framework 
falls short of a refinement calculus. E.g., it is not possible to directly prove that A 1= 1fo II1fl ;) 1f, with 
7I"0,7I"1,1r E TS, because 71" is not a parallel composition. This would require a special proof rule that 
basically expresses how 1r0 [[11"1 can be seen as a 1st order transition systemj e.g., a location in 71"0 /I 71"1 

would be given by a pair of vertices, one in 11"0 and one in 71"1, 

Also, process algebra suggests to try and lift axiomatizations of the algebraic pre order to the interpreted 
level. 

The 1st order systems that we introduced are still one step away from a usable specification language. 
Instead of explicitly describing the underlying directed (control) graph, one would like to specify the 

34 



behavior of the actions and have these specifications implicitly define the control graph. This is the 
approach taken by Lamport [Lam83, Lam89]. 

This brings us to another issue: the comparison with other verification techniques for program refine­
ment. For example) in [AL88, Mer90] it is shown how Milner simulation becomes a complete criterion 
for trace refinement if one allows programs to be augmented with various types of auxiliary variables. It 
should be investigated how these ideas relate to the methods of this paper. 

Finally, the paper provides a solid basis to investigate the refinement of general liveness properties, 
e.g., using w-automata [EiI74]. 

Acknowledgments 

I thank Willem P. de Roever for his comments on previous versions of the paper and also the participants 
of the EUT-Weizmann DESCARTES seminar for their indulgence of my strive for perfect obfuscation. 

References 

[AL88] M. ABADI, L. LAMPORT (1988), "The Existence of Refinement Mappings", Proc. 3d IEEE 
Conr. on Logic in Computer Science (LICS), pp. 165-175. 

[AL90] M. ABADI, L. LAMPORT (1990), "Composing Specifications", Proc. of the NFl/REX workshop 
on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, LNCS 430, 
pp. 1-42, Springer Verlag. 

[AS85] B. ALPERN, F.B. SCHNEIDER (1985), Defining Liveness, Information Processing Letters, 
Vol. 21, No.4, pp. 181-185. 

[BC85] G. BERRY, L. COSSERAT (1985), The Synchronous Programming Language ESTEREL and its 
Mathematical Semantics, LNCS 197, pp. 389-449, Springer Verlag. 

[BHR84] S. BROOKES, C.A.R. HOARE, A. ROSCOE (1984), A Theory of Communicating Sequential 
Processes, Journal of the ACM, Vol. 31, No.7, pp. 560-599. 

[BK84] J. BERGSTRA, J.W. KLOP (1984), Process Algebra for Synchronous Communication, Informa­
tion and Computation, Vol. 60, pp. 109-137. 

[BK086] J. BERGSTRA, J .W. KLOP, E.-R. OLDEROG (1986), "Failure semantics with fair abstraction", 
Report CS-R8609, Center for Mathematics and Computer Science (CWI), Amsterdam. 

[BKP84] H. BARRINGER, R. KUIPER, A. PNUELl (1984), Now You May Compose Temporal Logic 
Specifications, Proc. of the 16th Annual ACM Symposium on Theory of Computing (STOC), 
pp. 51-64, ACM. 

[CM88] K.M. CRANDY, J. MISRA (1988), Parallel Program Design, Addison-Wesley. 

[Dar82] PH. DARONDEAU (1982), "An Enlarged Definition and Complete Axiomatization of Observa-
tional Congruence of Finite Processes", LNCS 137, pp. 47-62, Springer Verlag. 

[Dij76] E.W. DIJKSTRA (1976), A Discipline of Programming, Prentice-Hall. 

[EiI74] S. ElLENBERG (1974), Automata, Languages and Machines, Volume A, Academic Press. 

[FLS87] A. FEKETE, N. LYNCH, L. SHRIRA (1987), "A Modular Proof of Correctness for a Network Syn­
chronizer" , Proc. 2nd International Workshop on Distributed Algorithms, LNCS 312, Springer 
Verlag. 

35 



[GB87] 

[GP89] 

[Fl067] 

[Har87] 

[Hen88] 

[Hoa85] 

[JM88] 

[Lam83] 

[Lam89] 

[Lyn90] 

[LS84] 

[LT87] 

[Mer90] 

[Mil71] 

[Mil80] 

[MiI83] 

[MiI89] 

[MP81] 

[MP84] 

[Nic87] 

R. GERTH, A. BOUCHER (1987), "A Timed Failures Model for Extended Communicating 
Processes", Proc. 14th ICALP, LNCS 267, pp. 95-115, Springer Verlag. 

R. GERTH, A. PNUELI (1989), "Rooting UNITY", Proc. 5th IEEE International Workshop on 
Software Specification and Design, pp. 11-19. 

R. FLOYD (1967), "Assigning Meaning to Programs", Proc. Sympos. in Appl. Math. 19, pp.19-
32, American Mathematical Society. 

D. HAREL (1987), Statecharts: a visual approach to complex systems, Science of Computer 
Programming, Vol. 8, No.3. 

M. HENNESY (1988), Algebraic Theory of Processes, The MIT press. 

C.A.R. HOARE (1985), Communicating Sequential Processes, Prentice-Hall. 

F. JAHANIAN, A. MOK (1988), Modecharts: a specification language for real-time systems, 
IEEE Transactions on Software Engineering, to appear. 

L. LAMPORT (1983), Specifying concurrent program modules, ACM Transactions on Program­
ming Languages and Systems, Vol. 5, No.2, pp. 190-222. 

L. LAMPORT (1989), A simple approach to specifying concurrent systems, Communications of 
the ACM, Vol. 32, No.1, pp.32-45. 

N. LYNCH (1990), "Multivalued Possibilities Mappings", Proc. of the NFl/REX workshop on 
Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, LNCS 430, 
pp. 51!f-544, Springer Verlag. 

S.S. LAM, A.V. SHANKAR (1984), Protocol verification via projection, IEEE Transactions on 
Software Engineering, Vol. 10, No.4, pp. 325-342. 

N. LYNCH, M. TUTTLE (1987), "Hierarchical correctness proofs for distributed algorithms", 
Proc. 6th ACM Sympos. Principles of Distributed Computing (PODC), pp. 137-151, ACM. 

M. MERRIT (1990), "Completeness Theorems for Automata", Proc. of the NFl/REX workshop 
on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, LNCS 430, 
pp. 544-561, Springer Verlag. 

R. MILNER (1971), "An algebraic definition of simulation between programs", Proc. 2nd Joint 
Conf. on Artificial Intelligence, British Computer Society, pp. 481-489. Also as Report No. CS-
205, Computer Science Department, Stanford University. 

R. MILNER (1980), A Calculus of Communicating Systems, LNCS 94, Springer-Verlag, 
New York. 

R. MILNER (1983), Calculi for Synchrony and Asynchrony, Theoretical Computer Science, Vol. 
25, pp. 267-310. 

R. MILNER (1989), Communication and Concurrency, Prentice Hall. 

Z. MANNA, A. PNUELI (1981), "Verification of Concurrent Programs: The Temporal Frame­
work", The Correctness Problem in Computer Science (R. S. Boyer, J. S. Moore, eds.), pp. 215-
274, Academic Press. 

Z. MANNA, A. PNUELI (1984), Adequate Proof Principles for Invariance and Liveness Proper­
ties of Concurrent Programs, Science of Computer Programming, Vol. 4, pp. 257-289. 

R. DE NICOLA (1987), Extensional Equivalences for Transition Systems, Acta Informatica, Vol. 
24, pp. 211-237. 

36 



[NH84] R. DE NICOLA, M. HENNESSY (1984), Testing Equivalences for Processes, Theoretical Com­
puter Science, Vol. 34, pp. 83-133. 

[SdeR87] F. STOMP, W.P. DE ROEVER (1987), "A correctness proof of a distributed minimum-weight 
spanning tree algorithm", Proe. 7th IEEE International Conference on Distributed Computer 
Systems (ICDCS), pp. 440-448. 

[St089] F. STOMP (1989), Design and Verification of Distributed Network Algorithms: Foundations 
and Applications, Ph.D. thesis, Eindhoven University of Technology. 

[WLL88] J. WELCH, L. LAMPORT, N. LYNCH (1988), "A lattice-structured proof of a minimum spanning 
tree algorithm", Proc. ACM Symposium on Principles of Distributed Computing (PODC). 

37 

--



Index of notation 

dom(.) 5 
ran(.) 5 
f{a/x} 5 
A+ 5 
A* 5 
AW 5 
At 5 
. -< . 5 
A(·) 5, 7 
Axyz ... 5 
Var 6 
E6 
Tm(E) 6 
L(E) 6 
pre/x]) 6 
FV06 
A6 
S6 
u(t) 6 
A,u F= P 6 
A6 
A' 6 
Ag 6 
(Ag, I) 6 
86 
t 6 
V6 
£6 
ii, (.) 6 
8,(.) 6 
'. 6, 21 
.' 6, 21 
" 6,21 
16 
T7 
L6 
" 6, 17 
UTS 6 
V;" 7 
LgO 7 
Seq(.) 7 
behavior 7 
computation 7 
p7 
to 7, 29 
107,29 
807,9 
-(> . <1>-0 7 
partial computation 7 

38 

a 
---> 7, 21 
-(> . <I>- 8 
. after· 8 
·11· 8 
T9 
H9 
h(.) 9 
·+·10 
·;·11 
C 12 
;;) 13, 22 
stableO 14, 29 
. fails· 14 
J:; 14 
'-->R 18 
'-+ 18 
Aet(E) 21 
gaet(E) 21, 23 
Laet(E) 21, 23 

[.]A 21 
TS 21 
L'O 21, 26 
La(-) 21, 26 
'. 22 
A F= ,,0 ;;) ,,1 22 
Pvar 23 
Svar 23 
Chan 23 

·11· 24 
Ene(-, ene) 25 
Hide(., V) 25 
As 26 
His 26 
h 26 
set labelling 26 
A 26 
[AD, A1]26 
[AO, A1]. 26 
'[AD, AI] 26 
safe 27 
sure 28 
history determined 28 
enabled(.) 29 
cover 29 
FO - REF 30 

I-FO-REF 30 
local correctness 31 
leads to 32 
SACO 32 



In this series appeared : 

No. Author(s) 

85/01 RH. Mak 

85/02 W.M.C.1. van Overveld 

85/03 W.J.M. Lemmens 

85/04 T. Verhoeff 
H.M.L.J.Schols 

86/01 R. Koymans 

86/02 G.A. Bussing 
K.M. van Hee 
M. Voorhoeve 

86/03 Rob Hoogerwoord 

86/04 G.J. Houben 
1. Paredaens 
K.M. van Hee 

86/05 J.L.G. Dietz 
K.M. van Hee 

86/06 Tom Verhoeff 

86/07 R. Gerth 
L. Shira 

86/08 R. Koymans 
R.K. Shyamasundar 
W.P. de Roever 
R. Gerth 
S. Arun Kumar 

86/09 C. Huizing 
R. Gerth 
W.P. de Roever 

86/lO J. Hooman 

86/11 W.P. de Roever 

86/12 A. Boucher 
R. Gerth 

86/13 R. Gerth 
W.P. de Roever 

Title 

The formal specification and derivation of CMOS-circuits. 

On arithmetic operations with M-out-of-N-codes. 

Use of a computer for evaluation of flow films. 

Delay insensitive directed trace structures satisfy the foam 
the foam rubber wrapper postulate. 

Specifying message passing and real-time systems. 

ELISA, A language for formal speCification of 
information systems. 

Some reflections on the implementation of trace structures. 

The partition of an information system in several 
systems. 

A framework for the conceptual modeling of 
discrete dynamic systems. 

Nondeterminism and divergence created by 
concealment in CSP. 

On proving communication closedness of distributed 
layers. 

Compositional semantics for real-time distributed 
computing (Inf.&Control 1987). 

Full abstraction of a real-time denotational 
semantics for an OCCAM-like language. 

A compositional proof theory for real-time 
distributed message passing. 

Questions to Robin Milner - A responder's 
commentary (IFlP86). 

A timed failures model for extended communicating 
processes. 

Proving monitors revisited: a first step towards 
tXFify.ing object oriented systems (Fund. Informatica 



86/14 R. Koymans 

87/01 R. Gerth 

87/02 Simon J. Klaver 
Chris F.M. Verbeme 

87/03 G.J. Houben 
J.Paredaens 

87/04 T.Verhoeff 

87/05 RKuiper 

87/06 RKoymans 

87/07 RKoymans 

87/08 H.M.J.L. Scho1s 

87/09 J. Kalisvaart 
L.R.A. Kessener 
W.J.M. Lemmens 
M.L.P. van Lierop 
F.J. Peters 
H.MM. van de Wetering 

87/10 T.Verhoeff 

87/11 P.Lemmens 

87/12 K.M. van Hee and 
A.Lapinski 

87/13 J.C.S.P. van der Woude 

87/14 J. Hooman 

87/15 C. Huizing 
R Gerth 
W.P. de Roever 

87/16 H.M.M. ten Eikelder 
J.C.F. Wihnont 

87/17 K.M. van Hee 
G.-J.Houben 
J.L.G. Dietz 

Specifying passing systems requires extending 
temporal logic. 

On the existence of sound and complete axiomati 
zations of the monitor concept. 

Federatieve Databases. 

A formal approach to distributed information 
systems. 

Delay-insensitive codes - An overview. 

Enforcing non-determinism via linear time temporal logic 
specification. 

Temporele logica specificatie van message 
passing en real-time systemen (in Dutch). 

Specifying message passing and real-time 
systems with real-time tempora110gic. 

Tbe maximum number of states after projection. 

Language extensions to study structures for raster 
graphics. 

Three families of maximally nondeterministic 
automata. 

Eldorado ins and outs. Specifications of a data base manage­
ment toolkit according to the functional model. 

OR and AI approaches to decision support systems. 

Playing with patterns - searching for strings. 

A compositional proof system for an occam-like 
real-time language. 

A compositional semantics for statecharts. 

Normal forms for a class of formulas. 

Modelling of discrete dynamic systems 
framework and examples. 



87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved 
surfaces. 

87/19 A.J.Seebregts Optimalisering van fIle allocatie in 
gedistribueerde database system en. 

87/20 G.J. Houben The R2 -Algebra: An extension of an algebra 
J. Paredaens for nested relations. 

87/21 R. Gerth Fully abstract denotational semantics for concurrent 
M. Codish PROLOG. 
Y. Lichtenstein 
E. Shapiro 

88/01 T. Verhoeff A Parallel Program That Generates the Mllbius Sequence. 

88/02 K.M. van Hee Executable Specification for Information Systems. 
G.J. Houben 
LJ. Somers 
M. Voorhoeve 

88/03 T. Verhoeff Settling a Question about Pythagorean Triples. 

88/04 G.J. Houben The Nested Relational Algebra: A Tool to Handle 
J .Paredaens Structured Information. 
D.Tahon 

88/05 K.M. van Hee Executable Specifications for Information Systems. 
G.J. Houben 
L.J. Somers 
M. V oorhoeve 

88/06 H.M.J .L. Schols Notes on Delay-Insensitive Communication. 

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract 
R. Gerth way. 
W.P. de Roever 

88/08 K.M. van Hee A Formal model for System Specification. 
G.J. Houben 
L.J. Somers 
M. V oorhoeve 

88/09 A.T.M. Aerts A Tutorial for Data Modelling. 
K.M. van Hee 

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits. 

88/11 G.J. Houben A graphical interface formalism: specifying nested 
J .Paredaens relational databases. 

88/12 A.E. Eiben Abstract theory of planning. 

88/13 A. Bij1sma A unified approach to sequences, bags, and trees. 

88114 H.M.M. ten Eikelder Langnage theory of a lambda-calculus with 
R.H. Mak recursive types. 



88/15 R. Bos 
C. Hemerik 

88/16 C.Hemerik 
J.P.Katoen 

88/17 K.M. van Hee 
G.J. Houben 
L.J. Somers 
M. Voorhoeve 

88/18 K.M. van Hee 
P.M.P. Rambags 

88/19 D.K. Hammer 
K.M. van Hee 

88/20 K.M. van Hee 
L. Somers 
M.Voorhoeve 

89/1 E.Zs.Lepoeter-Molnar 

89/2 R.H. Mak 
P.struik 

89/3 H.M.M. Ten Eikelder 
C. Hemerik 

89/4 J .Zwiers 
W.P. de Roever 

89/5 Wei Chen 
T.Verhoeff 
J.T.Udding 

89/6 T. Verhoeff 

89n P.Struik 

89/8 E.HL.Aarts 
A.E.Eiben 
K.M. van Hee 

89/9 K.M. van Hee 
P.M.P. Rambags 

89/10 S.Ramesh 

89/11 S.Ramesh 

89/12 A.T.M.Aerts 
K.M. van Hee 

An introduction to the category theoretic solution 
of recursive domain equations. 

Bottom-up tree acceptors. 

Executable specifications for discrete event systems. 

Discrete event systems: concepts and basic results. 

Fasering en documentatie in software engineering. 

EXSPECT, the functional part. 

Reconstruction of a 3-D surface from its normal vectors. 

A systolic design for dynamic programming. 

Some category theoretical properties related to 
a model for a polymorphic lambda-calculus. 

Compositionality and modularity in process 
specification and design: A trace-state based 
approach. 

Networks of Communicating Processes and their 
(De-)Composition. 

Characterizations of Delay-Insensitive 
Communication Protocols. 

A systematic design of a paralell program for 
Dirichlet convolution. 

A general theory of genetic algorithms. 

Discrete evem systems: Dynamic versus static 
topology. 

A new efficiem implementation of CSP with output guards. 

Algebraic specification and implememation of infinite 
processes. 

A concise formal framework for data modeling. 



89/13 

89/14 

89/15 

89/16 

89/17 

90/1 

90(2. 

90/3 

90/4 

90/5 

90/6 

90n 

90/8 

90/9 

90/10 

90/11 

90/12 

90/13 

90/14 

90/15 

A.T.M.Aerts 
K.M. van Hee 
M.W.H. Hesen 

H.C.Haesen 

J.S.C.P. van der Woude 

AT.M.Aerts 
K.M. van Hee 

M.J. van Diepen 
K.M. van Hee 

W.P.de Roever-H.Barringer 
C.Courcoubetis-D.Gabbay 
R.Gerth-B.Jonsson-APnueli 
M.Reed-J.Sifakis-J.Vytopil 
P.Wolper 

K.M. van Hee 
P.M.P. Rambags 

R. Gerth 

A Peeters 

J.A. Brzozowski 
J.C. Ebergen 

A.I.I.M. Marcelis 

A.I.I.M. Marcelis 

M.B. Iosephs 

AT.M. Aerts 
P.M.E. De Bra 
K.M. van Hee 

M.I. van Diepen 
K.M. van Hee 

P. America 
F.S. de Boer 

P.America 
F.S. de Boer 

K.R. Apt 
F.S. de Boer 
E.R. Olderog 

F.S. de Boer 

F.S. de Boer 

A program generator for simulated annealing 
problems. 

ELDA, data manipulatie taal. 

Optimal segmentations. 

Towards a frameworlc for comparing data models. 

A formal semantics for Z and the link between 
Z and the relational algebra. 

Formal methods and tools for the development of 
distributed and real time systems, pp. 17. 

Dynamic process creation in high-level Petri nets, 
pp. 19. 

Foundations of Compositional Program Refinement 
- safety properties - , p. 38. 

Decomposition of delay-insensitive circuits, p. 25. 

On the delay-sensitivity of gate networks, p. 23. 

Typed inference systems : a reference document, p. 17. 

A logic for one-pass, one-attributed grammars, p. 14. 

Receptive Process Theory, p. 16. 

Combining the functional and the relational model, 
p. 15. 

A formal semantics for Z and the link between Z and the 
relational algebra, p. 30. (Revised version of CSNotes 89/17). 

A proof system for process creation, p. 84. 

A proof theory for a sequential version of POOL, p. llO. 

Proving termination of Parallel Programs, p. 7. 

A proof system for the language POOL, p. 70. 

Compositionality in the temporal logic of concurrent systems, 
p. 17. 



90/16 F.S. de Boer 
C. Palamidessi 

90/17 F.S. de Boer 
C. Palamidessi 

90/18 J.Coenen 
E. v .d.Sluis 
E.v.d.Velden 

90/19 M.M. de Brouwer 
P.A.C. Verkoulen 

A fully abstract model for concurrent logic languages, p. 23. 

On the asynchronous nature of communication in concurrent 
logic languages: a fully abstract model based on sequences, 
p.29. 

Design and implementation aspects of remote procedure calls, 
p. 15. 

Two Case Studies in ExSpect, p. 24. 


	Abstract
	Contents
	1. Introduction
	2. Uninterpreted transition systems
	2.1 An algebra of unlabeled transition systems
	2.1.1 Parallel composition
	2.1.2 Renaming
	2.1.3 Choice
	2.1.4 Sequential composition
	3. A refinement notion: failure refinement
	4. A verification criterion: failure simulation
	4.1 Soundness
	4.2 Completeness
	5. First order transition systems
	6. Verifying first order refinement
	6.1 Proving safeness and covering
	6.2 Proving sureness and history determinedness
	7. Conclusions
	References

