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GENERALIZED FISCHER-FOCK SPACES 

by 

SJ.L. van Eijndhoven 

Summary 

This paper is on functional Hilbert spaces of entire analytic functions which extend the class of 

Fischer-Fock spaces. They are related with Bargmann's description of Schwarz' test space of 

rapidly decreasing Coo -functions and its dual the space oftempered distributions. 
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Preliminaries 

Let /P denote the collection of all entire analytic functions I for which all derivatives 

f n
) (0), n = 0,1,2, ... , in z = 0, are strictly positive. For each I E /P the function Kf on ex c 

defined by 

(0.1) 
00 An) (0) 

Klz,w)=I(zW) = L r, (riV)n, Z,W E C 
II~ n. 

is of positive type. To Kf there is associated precisely one functional Hilbert space H[f], cf. [Ar]. 

The Hilbert space H[f ] consists of all entire analytic functions <\I with the property that 

(0.2) 11<\1112 := i 1 <\I(n) (0) 12 < 00. 

f n~ n! f n ) (0) 

The functions <\I E H[f] satisfy the estimation 

(0.3) 1 <\I(Z) 12 S I(lzI 2 )1\<\IIIJ, z E C. 

[ 
fn) ]Ih 

The nonnalized monomials n ~O) zn establish an orthononnal basis in H[f]. 

In /P we introduce an order relation by 

(0.4) II :5 12 : ~ 31.>0 : 'Ah - II E /P . 

As one can readily check, II :5 12 implies that H[fd can be continuously injected into H[f2]' 

Further, the class /P is closed with respect to addition, II + 12, and joint multiplication, II h. In 

this connection we mention the following interesting result of Burbea, cf. [Bu]: 

Let <\Ij E H[fj], j = 1,2. Then <\11 <\l2 E H[fl 12] and 

II <\II <\l2l1fJ2 S \I <\II "fl \I <\l2 l1k 

In this paper we concentrate on the confluent hypergeometric functions Ia,b,c E /P, a,b,c > 0, 

defined by 

(0.5) 
00 (a)n (cz)n 

Ia,b,c(z) = L (b) -,-, z E C. 
n~ II n. 

r(r+n) 
(We use Pochhammer's symbol (r)n = r(r) ,r E R.) 

The functions Ia,b,c satisfy the order relation 

(0.6) Ia,b,c :5 Ia,b,c 

in case 



- 3 -

* 
* 

c < c and a,b,a and b arbitrary, 

c = c and a - a ~ b - b. 

The space H[fl , l,d is the classical Fischer-Fock space or Bargmann space, cf. [NeSh] and [Bal]. 

The functional Hilbert space H[fl,b,c] are introduced in [Bu], where they are called generalized 

(b,c)-Fischer spaces. So H[fa,b,c] may be called the generalized (a,b,c)-Fischer space. 

1. Generalized (a,b,c)-Fischer spaces 

For lC,1l E JR, let W 1(,11 denote the Whittaker function of the second kind which for ll-lC >-t 
satisfies 

W (t) = 1 tl1+~ exp(-1- t) ooJ e-s/ sl1-lC-+ (l +S)I1+lC-t ds 
lC,l1 ret +J.l.-lC) 2 0 ' 

cf. [MOS], p.313. So for each lC,J.l. E JR with ll-lC > -t the function W)('11 is positive on (0,00) . 

Consider the following integral relations, cf. [MOS], p. 316, 

(1.1) J tn+v-l exp(-t ct) W lC,l1(ct) dt = 
o 

r(- +J.l.+v+n) rel-J.l.+v+n) 1 [ ~l n+v = 2 2 
r(l-lC + na + n) 

We set 

G ( ) CV reb) v-l 1 
(1.2) a,b,c t = 1t rea) t exp(-2' ct) W lC,11(ct) 

with 

b-2a+2 b-1 b 
lC= , J.l.=--, 

2 2 
v=-

2' 

Then from (1.1) we deduce 

(1.3) 
ooJ n 1 (b)n n! 

t Go. b c(t) dt = - -() -, 
o ' , 1t a n cn 

n E lNo. 

Next we introduce the space F a,b,c of all entire analytic functions cp for which the integral 

J '~x+iy) ,2 Ga,b,c(x2+y2)dxdy 
/R 2 

is finite. With the natural inner product ( • )a,b,co 
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(lj>,\jI)a,b,c= f lj>(x+iy)\jI(x+iy) Ga,b,c(X2+y2)dxdy , 
JRl 

F a,b,c is a Hilbert space, 

(1.4) Theorem. 

The Hilbert space Fa,h,c equals the functional Hilbert space H[fa,b,c]' i.e. 

* 

* 

Proof. 

\/WE C : lj>(w) = f lj>(z) IF I(a,b,cw z) Ga,b,c (Iz 1)2 dx dy, z =X + iy , 
JRl 

From relation 0.3) we deduce that the normalized monomials Un(a.b,e;Z)={ (a)n en}~ zn, 
(b)n n! 

z E C, establish an orthonormal set in Fa,b,c' Already we know that the un(a,b,c) establish an 

orthonormal basis in H[fa,b,c]' 

Now for lj> E Fa,b,c the series 

00 then) '0) L 'I' ~ zn 
n=O n! 

converges to cp uniformly on each disc Dr = {z Eel I z I $ r}. So we have 

then) (0) them) (0) 
f [L 'I' ,'t', (x+iy)n(x-iy)m]Ga,b,c(x2+y2)dxdy= 

D, n,m=O n . m . 

then) (0) them) (0) 
= L 'I' ,'I', f(x+iy)n(x-iy)mGa,b,C(x2+y2)dxdy= 

n,m=O n . m . D, 

00 [ I th(n) (0) 1]2 r 
= L 't', [7t f In Ga,b,c(t) dt ]. 

n=O n. 0 

Letting r -4 00 we obtain the identity 

00 Ilj>(n) (0) 12 (b)n 1 
1Ilj>1I~,b,c = L -- --

,.=0 n! (a)n en 

Thus the result follows. o 
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(1.5) Special cases. 

* a=b=l, c>O 

The space F l.l,e equals the Bargmann-Fock space with reproducing kernel 

il,l,e (z iii) = exp[-c z iii] 

* a = 1, b,c > 0 

The space Fl,b,e equals the generalized (b,c)-Fischer space with reproducing kernel 

* b = 1, a,c > 0 

where 

00 (a-I)II til 
LI--a(t)=L , " tE JR. 

II~ n. n. 

(1.6) Corollary. 

Let a,b,c > O. The functions cjl E Fa,b,e satisfy the following growth estimate 

I cjl(z) 1=0(1 z la-bexP(t c IzI2», I z I> 1. 

Proof. 

By (0.3) for each z E C we have 

2 Ih I cjl(Z) I $11 cjllla,b,e (IF I (a,b; c Iz I » . 

So the result follows from the asymptotics of the confluent hypergeometric functions for large 

values of the argument. 0 

(1.7) Corollary. 

Let a,b,c > O. Then cjl E Fa,b,e iff cjl is entire analytic and 
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Proof. 

Since the limit lim (n + l)a -b (b )" exists, the assertion is a consequence of the previous 
II -too (a)1I 

theorem. o 

(1.8) Corollary. 

Let c > 0 and let a,b,li,b > 0 with a -b = Ii -b. Then Fa,b,c = Fa,b,c as function spaces with 

equivalent inner products. 0 

On F a,b,c X F b,a,..!.. we introduce the sesquilinear fonn 

(1.9) 

c 

00 --,-<1>(_" )-..::..:(0:..<-) -L'I'(_" )-..::..:(0:..<-) 
< ell, 'I' > abc = L -

"11=0 n! 

which is well-defined because 

;,1 <1>(11) (0) '1'(11) (0) 1 $; II .... " II \1(" ..!... 
~ , 'I' a,b,c T b,a, 

11=0 n. c 

Since for each r > 0 

1 J 'I'(x+iy) <I>(x+iy) exp[-(x2+y2)] dxdy = 
1t 1.%+iyISr 

=
;, \1(11) (0) .... (11) (0) 1 r 
~ --,-.:r._~'1',----,----,- [- f til e-t dt] 

11=0 n! n! 0 

it follows letting r ~ 00 that 

2. Projective and inductive limits 

Let A denote the vector space of all entire analytic functions endowed with the Frechet topology 

generated by the nonns 

k" "<I>lIk = sUP '<1>(11) (0) , -. 
1IelNo n! 

Dual to A is the vector space E of all entire analytic functions of exponential type. So 'I' E E if 

there are K > 0 and c > 0 such that 
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I ",(Z) I ~ K exp(c I z I). 

The space E is a countable inductive limit of Banach spaces. To be more specific, 

00 

where Ek is the subspace of E consisting of all '" E E with the property that 

sup I ",(n) (0) I k-n < 00. 

nE 7N 

The spaces E and A are each other's strong duals where the duality is established by the sesquil

inearform 

00 ",(n) (0) cjl(n) (0) 
< ""cjl > = L , ' 'If E E, cjl E A. 

n=O n. 

As in (1.10) we have 

The spaces E, Fl.l,l and A constitute a Gelfand triple, 

(2.1) E ~ FI,I,I ~ A 

where <""cjl> = (""cjl)I,I,1 for all ",e E and cjlE FI,I,I, cf. [AnVa]. The space E is about the 

smallest space that contains the coherent states ew , ew(z) = exp(w z). So for all cjl e A 

cjl(W) = <ew,cjl> , WE C. 

The following lemma indicates that the Fa,b,c give rise to continuous scales of Hilbert spaces. 

(2.2) Lemma. 

The continuous and dense inclusion Fa,b,c ~ Fa,b,c holds true in the following cases 

* 
* 

c < c and a,b,a and b arbitrary, 

c =c and a-a~ b-b. 

Proof. 
Cf. assertion (0.6) of the preliminaries. o 

Clearly all functional Hilbert spaces Fa,b,c are contained in A and contain E as a dense subspace. 

The triple (2.1) extends in the following obvious way 

E~Fa,b,c ~Fa,b,c ~Fl,l,1 ~Fb,a,-b- ~Fb,a,.l... ~A. 
c c 

Here each space on the left hand side is in duality with a space on the right hand side, where the 
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duality is established by the fonn 

n 

The monomials Un (z) = ~ ~ fonn an orthonormal basis in F) I ), consisting of eigenfunctions of .... n' ' , n. 

the differential operator R = z ! + 1 with eigenvalues n + 1 , n e IN o. In the next lemma we 

describe the relation between the spaces F a,b,c and the self-adjoint operator R. 

(2.3) Lemma. 

* Let 0 < c < 1 and let a,b > 0 

Fa be = Rt (a-b) exp[.!... (log c)R] (F) ) I)' , , 2 I , 

* Letb ~ a > 0 

* Let a> b > 0 

Fa,b,l is the completion of FI,l,) with respect to the nonn cp H II Rt(b-a) CPU),),I' 

cpe Fa,b,l' 

* Let C > 1 and let a, b > 0 

Fa,b,c is the completion of FI,l,I with respect to the nonn 

cp H IIRt(b-a)exp[-.!...(logc)R]cplllll,cpe Fabc' 2 I I I I 

Proof. 

For each cp e FI,l,l we have 

00 cp(n) (0) 
cp = L ~ r:- Un· 

n=O .... n! 

So the assertions are consequences of Corollary (1.7) and the spectral theorem for self-adjoint 

operators. 0 

We consider the following chains of Hilbert spaces 

{Fa,l,l I a>O}, {FI,b,1 I b>O}, {FI,I,c I c>O}. 

They yield the following inductive / projective limits, which fit in the general set up of the paper 

[EGK]. 
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* The projective limit () FI ,b, I which is in strong duality with the inductive limit 
b>O 

U Fa,I,I. 
a >0 

* The inductive limit U Fl,l,c which is in strong duality with the projective limit 
O<c<1 

U FI,I,c. 
c > I 

(2.4) Lemma. 

* 

* 

The projective limit () F l,b,l equals the space of all Coo -vectors of the operator R, i.e. 
b>O 

00 

DOO(R) := () D(R") = () FI,b,l. 
11=1 b>O 

The inductive limit U F 1,I,c equals the space of all analytic vectors of the operator R, 
O<c<1 

i.e. 

DQ'(R) := U e-tR(FI,I,I) = U FI,I,c. 
1>0 O<c<1 

The operator R is unitarily equivalent to the positive self-adjoint operator H in L2(JR) defined by 

H = ~ (- d
2

2 +x2 + 1). Indeed, let 'I'll , n = 0,1,2, . . . , denote the n-th Hennite function defined 
2 dx 

by the fonnula 

II []" 

(-1) l.x2 d _x2 

'l'1I(X) =...r;; 2n Ih e 2 dx (e ). 
(1tn!2) 

The functions 'I'll establish an orthononnal basis in L2(JR). They are eigenfunctions of the self

adjoint operator H with 

Now the linear operator A on L2(1R) defined by 

where 

(A f) (z) = J A (z,x) f(x) dx 
IR 

A(z,x) = 1t-1I4 exp[-t (z2 +x2) + --J2 z x] , 

maps L 2(JR) unitarily onto Fl,l,I. In particular, 
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A '1'" = U", n = 0,1,2, ... 

and 

AHA* =R. 

The Hennite functions are also eigenfunctions of the Fourier transfonnation IF on L2UR), viz. 

IF '1'" = (0" '1'". Thus in a natural way Fourier invariant test- and distribution spaces arise from 

series expansions with respect to the Hennite functions. We mention Schwarz' test space S of 

Coo -functions of rapid decrease and the Gelfand-Shilov spaces S~, a2: 112. Namely, the following 

characterizations are valid. 

(2.5) Lemma. 

* 

* 

The space S consists of precisely all square integrable functions <1> for which 

(<1>,'I'"k
2 
= O(n-k

) for all k E IN. 

For each a2: 1/2, the space S~ consists of precisely all square integrable functions <1> for 

which (<1>,'1',,) = o (exp(-n 1-2u t» for some t > O. In particular, 

S:~ =D(&)(H) = U e-tH(L2(1R». 
1>0 

Proof. 
Cf. lSi] and [Go]. o 

Consequently, we have the following results. 

(2.6) Corollary. 

* For each b > 0 the image of H-b (L2UR» under A equals F I•b+I•I . In particular, 

A(S) = (l FI.b+I.I. 
b>O 

* For each t > 0 the image of e-1H(L 2(1R» under A equals FI.I.e-l. In particular 

* For each a> 0, let Ha (L 2(1R.» denote the completion of L2(1R.) with respect to the nonn 

f H II H-Q fIlL2(1R)' Then A extends to Ha (L2(1R.» with A (H a (L 2(1R.») = Fa+l,l,l. In par-

ticular,A(S')= U Fa,l,l-
a>O 

Remark. These results are in correspondence with the results stated in [Ba]. 



- 11 -

References 

[AnVa] Antoine, J.P., and M. Vause, Partial inner product spaces of entire functions, Ann. Inst. 

Henri Poincare XXXV, (3) 1981, pp. 195-224. 

[Ar] Aronszajn, N., Theory of reproducing kernels, Trans. A.M.S., 68 (1950), pp. 337-404. 

[Ba] Bargmann, V., On a Hilbert space of analytic functions and an associated integral 

transform, Part 1+11, Comm. Pure Appl. Math., 14 (961), pp. 187-214,20 (1967), pp. 

1-101. 

[Bu] Burbea, J., Inequalities for reproducing kernel spaces, m. J. Math. 27 0), 1983, pp. 

130-137. 

[EGK] Eijndhoven, S.J.L. van, J. de Graaf and P. Kruszynski, Dual systems of inductive

projective limits of Hilbert spaces originating from self-adjoint operators, Proc. 

K.N.A.W. A(88) 3 (985), pp. 277-297. 

[Go] Gong, Z.Z., Theory of distributions of S type and pansions, Chin. Math. (2) 4 (1963), 

pp.211-221. 

[MOS] Magnus, W., F. Oberhettinger and R.P. Soni, Formulas and theorems for the special 

functions of mathematical physics, Die Grundlehren ... , Band 52, 3e edition, Springer, 

Berlin etc., 1966. 

[NeSh] Newman, DJ. and H.S. Shapiro, Certain Hilbert spaces of entire functions, Bull. 

A.M.S., 72 (1966), pp. 971-977. 

[Si] Simon, B., Distributions and their Hermite expansions, J. of Math. Phys. (12) pp. 141-

147. 


