EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A compositional proof theory for real-time distributed message
passing

Citation for published version (APA):
Hooman, J. J. M. (1986). A compositional proof theory for real-time distributed message passing. (Computing
science notes; Vol. 8610). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/8851e2d4-8246-4911-b6c4-a6c1e826dbbf

Faculteit der Wiskunde
uersicit @y Informatica

A Compositional Proof Theory for
Real-Time Distributed Message Passing

March 1987

J. Hooman

A Compositional Proof Theory for
Real-Time Distributed Message Passing

March 1987

J. Hooman

86.10

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University of Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not
T I iew.

Copies of these notes ‘are available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.0. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

ol O
»|| i
IO
-
D

European Strategic Programme of Research and Development in Information
Technology

" Project 937 : Debugging and Specification of Ada Real-Time Embedded Systems

Package 4 : Formal Semantics and Proof Systems for Real-Time Languages
Mail to
Doc. No. : TR. 4-1-1(1) \
Type : TR :
Title : A Compositional Proof Theory for Real-Time ‘

Distributed Message Passing |
Author : J. Hooman
Date : 12-1-86 Version 0

Replaces:

Document Status: Submitted

Confidentiality Level : Public-domain

GSI-TECSI

SYSTEAM KG

FOXBORO Netherlands NV

ELECTRONIQUE SERGE DASSAULT ... L
EINDHOVEN UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF STIRLING

ADCAD Ltid

.Copyright 1986 by the DESCARTES consortium formed by the companies and universities
listed above.

Permission to copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercial advantage, and that the DES-
CARTES copyright notice and the title of this document and date appear.

CONTENTS

L. INTFOQUCTION ciiiiriniiimeicrenneieneunmmaneesmersissssssmissssnnssesssssrsensesssnssssssesssesssssssssssssassessasersassassrane 2
2. SYNTAX ciicrrrccrinerrannnneirerssireeresaensemsesssessessnsssesssrsanssssesnsesens tereresrerersansarressseesasaestananssnanressssenane 5
2.1 Informal SEMAantiCs ..eceeeerrereeresoseesrecnnees eetheseaestsensarerassa st entssnensasae et s tenaart s e asasses 6
2.2 Syntactic reStriCtions ...cccceeewsesscenenonsens rerseernassssrnesennasens eesererennons rereseerennsterereetonarene 7
3. SEMANTICS tueervsrirserneiienennsrnsessssemmaneessessssssssssssancnsssssassssasssssasanes ettt st a et atesaesssessene 7
3.1 Our basic 5-1uples coceeererenersvenne S reresissnterat e st a i assssas s aeses R 8
3.2 Ordering ON tUPLES ..cveeeeeerecnensrienisininersssssmeiesmensesesseasesissssessmstssssssneonses e 9
3.3 Domain Of deNOTALIONS euecirrecssreernersssisssnssiessnnsssssssneesssmsasossanessassanssssenssaese veveenane 10
3.4 The function defining the SEMANTICS .evvrieencrrinsiriniveniinimieniesreseisssieisssssni 11
4. SpeCification JANZUAZE ..uceireiiimiiiieniininineiiiee e e s coat s e sbe s s aras s sesre s 17
4.1 Correctness fOormulae ...cvecrrmsinerinsinnneecinnineecnns sevreeee et aasetssraassseans 17
4.2 Assertion languageoeoeeisseseeresmnennns reeresane et essee b s s se bbb bessat e e srneons 18
4.3 Examples of specifications ..., sreemeete s naae s aatsans reesraeaessaanstens 19
4.4 Syntax of the assertion JANGUALEuceriurmniiieniineemmimeimasismimssionees 20
4.5 Restrictions on the asSertion lan@UAREcceeeerieermeriersrsrsueesasssssssnssssssssasssenans 21
4.6 Interpretation of @SSETiONS ..eiiiviiuiinniriiieiiineeioereeane s sessssanes cosvsessasennerans 22
4.7 Formal definition of a correctness fOrmula ... 23
5. PrOOT SYSTEIM wuiiiieiiniimcrersieneaturiinreeasessiiioneeisassstsmersesstssssmassssossssmssmnsssnsssssssssssssssssasssnns 24
5.1 Rules and axioms {Or atOmic STALEMENTS .uweirirmirrmecssecorrinesnnsenessosessesssssmessesns 24
5.2 Rules for composite CONSITUCTS ..ueecreneresnennne Cereseresmirsssnresssesentesrresinsesaaserarontasntans 27
5.3 General rules and AXIOMIS ..eiiceirnrinereisemuteninecssnsssaesseessesssessssmanssssesossnses veerrennene 32
5.4 SOUNANESS ciireviieriieeeiirerennirenieeecssstmeeasssnesstenenssmassnnressssssssasssessnsasssssssonssssasssnannsnns 33
5.5 EXamPle eiroviiviirinccnirsneeme e cesanaeasenes Ceaeetsete st enares bbb e s sn e st sebRe s st e aesessrantnens 33
6. Conclusion and future WOork ..., reserasseranaaraessenansran 35
AL APPENdiX .iivernnrriiiiinenessesssosscnns rresesssuiessnssnans cersretesertestaraatesbessrrssesanessseens sessersmrrenssness 30
A.l Soundness of the proof systemc... cetesetenre e e s aesnees vererrnenene veersennens 30

B. References eserersearaarnsurseesersessireestanane eeteeeesverenrasrereneresnaonarens veenesens veesersresenaseserensnenns 47

A COMPOSITIONAL PROOF THEORY FOR REAL-TIME DISTRIBUTED MESSAGE PASSING

Jozef Hooman *

Department of Mathematics &
Computing Science
Eindhoven University of Technology
P.O. box 513
5600 MB Eindhoven
The Netherlands

March 1987

ABSTRACT

A compositional proof system is given for an OCCAM-like real-time programming
language for distributed computing with communication via synchronous message
passing. This proof system is based on specifications of processes which are
independent of the program text of these processes. These specifications state (1) the
assumptions of a process about the behaviour of its environment, and (2) the
commitments of that process towards that environment provided these assumptions
are met. The proof system is sound w.r.t a denotational semantics which incorporates
assumptions regarding actions of the environment, thereby closely approximating the
assumption/commitment style of reasoning on which the proof system is based.
Concurrency is modelled as "maximal parallelism"; that is, if a process can proceed it
will do so immediately. A process only waits when no local action is possible and no
partner is available for communication. This maximality property is imposed on the
domain of interpretation of assertions by postulating it as separate axiom. The timing
behaviour of a system is expressed from the viewpoint of a global external observer, so
there is a global notion of time. Time is not necessarily discrete.

* supported by Esprit Project 937: Debugging and Specification of Ada Real-Time
Embedded Systems (DESCARTES).
Electronic-mail address: mecvax'eutrc3!wsinjh.UUCP or wsdcih@heithe5.BITNET .

—1 -

1. INTRODUCTION

Recently attention has been drawn 10 the discrepancy between the growing number
of real-time applications - industrial process control, telecommunication, life support
systems in hospitals, avionics systems used for guidance and control, to mention but a
few - and the existing theoretical background for such systems. For concurrency and
hard time limits make the design and development of real-time embedded systems
very complex, and certainly testing is not sufficient to validate a program. Also, in
many real-time applications failure is very expensive and can have disastrous
consequences. So, especially in this area of real-time systems, there is a growing need
for formal specification and verification techniques in order to provide assistance in the
"lost world" of real-time software development (see [Glass]).

The ESPRIT project DESCARTES provides a context for investigating these
problems. A simple language akin to OCCAM ([OCC)) is considered for capturing the
essential features of real-time in the context of distributed message passing. It is based
on CSP (Communicating Sequential Processes [Hoarel), a language for concurrent
programs with communication via synchronous message-passing. Contrary to CSP,
where communicating partners explicitly name each other, here communication occurs
along unidirectional channels between pairs of processes. Added is the real-time
statement DELAY 4, which suspends the execution for the specified number of time
units. Such a DELLAY-statement may occur in the guard of an alternative command.
Together with the underlying execution model this gives the opportunity to program a
time-out. The execution model is that of "maximal parallelism®. That is, if a process
can proceed it will do so immediately. A process only waits when no local action is
possible and no partner is available for communication. As soon as an action becomes
possible execution must proceed.

New in this paper is a compositional Hoare-style proof system for safety
properties of real-time distributed processes. The maximal parallelism constraint is
modeled as an axiom for the domain of interpretation of assertions which may be used
throughout the proof system. To obtain specifications of processes which are
independent of their program text, Hoare triples are extended with invariants which
should hold throughout program execution. This is needed in particular when
specifying the communication and timing behaviour of nonterminating processes - the
usual kind of processes when considering real-time - independent of their text. The
invariants do not refer 1o any internal state of the process during execution.

What should be the form of such an invariant?

In general, the behaviour of a process depends on its environment; for instance on
the values sent by the environment. Incorporating real-time makes this dependency
even greater. The timing behaviour of a process will now also depend on the time at
which the environment is ready to communicate, on how long a communication is
enabled by the environment, etc. Consequently, knowledge about the environment is
an important factor in the design of a real-time process. Therefore, we aim at
specifying processes within their environment, and in the resulting specifications the
knowledge abour that environment should be reflected by imposing suitable assumptions.

To allow process behaviour to be specified relative to such assumptions, we adopt
the assumption/commitment-style of reasoning as described in [ZBR,ZRE84], which is
based on [MC]. Using this formalism, the invariant of a process in our specifications
consists of two parts:
an assumption describing the expected behaviour of the environment, and
a commitment which is guaranteed by the process itself, as long as the environment
does not violate the assumption.

When two processes are composed in parallel, we then have to verify that the
assumptions of one process about joint communications correspond to the
commitments of the other process for these joint communications.

How can we adapt this assumption/commitment based formalism to deal with
real-time? In the formalism of [ZBR] an assumption describes the communication
behaviour of a process. Note that the communication behaviour of environment and
process is identical when restricting 1o joint communications, since a channel connects
exactly two processes and communication is synchronous. This simple picture changes
when dealing with real-time. In our proof system we must be able to make
assumptions concerning "wait actions” of the environment, e.g.:

- when is the environment ready to start a communication, when does it start
waiting,

- how long will the environment wait for a particular communication,

- when does the environment stop waiting for a communication.

Next observe that such wait actions concerning joint communications are different for

environment and process. For instance, regardless of maximal parallelism the waiting

period for the same communication, will in general differ for process and environment.

Consequently, we distinguish between wait actions of the process and wait actionsof -

the environment. This distinction is reflected in the proof system as follows. The
assumption of a process refers to the wait actions of the environment, whereas the
commitment refers to the wait actions of that process itself.

— 3

In our semantics wait actions are represented by so called wait records, which
denote the waiting period of a process for a communication. Because the assertions in
the specification will refer to wait actions of the environment, environment wait
records are included in the semantics, t00. By means of these environment records the
maximal parallelism constraint is imposed on every element of the semantic domain by
requiring that, for a particular channel, the waiting period denoted by a wait record
does not overlap with the waiting period denoted by an environment wait record.
Consequently, when processes are composed in parallel no explicit check on maximality
is needed. At parallel composition we only have to check additionally that the
‘assumptions made by one process concerning the wait records of the environment must
be fulfilled by the other process as far as it concerns their joint channels.

Characteristic of compositional proof systems for concurrency is the conjunctive
nature of their parallel composition rules, i.e. the parallel composition of two processes
satishes the conjunction of their specifications. Within our proof system this
conjunctive character is preserved, since the commitment of a network is, in principle,
the conjunction of the commitments of the components. This is the other reason why
environment wait records have been incorporated within our semantics. For their
presence allows the essentially complementary character of the maximal parallelism
constraint - when 1 wait you don’t - 10 become internalised within the specification of
a process by imposing maximal parallelism as a separate axiom. Therefore our parallel
composition rule requires no separate clause for checking maximal parallelism.

The introduction of wait records raises the question whether it is possible to

characterise real-time distributed message passing in a compositional fashion wizhour
such records. If termination, communication along channels, and the time
communication takes place are the observables of a process, the answer to this question
is no. Specifically, the full abstraction result of [HGR] implies that if wait records - or
something equivalent - are not included in the denotational semantics, then it is
possible to give two programs with the same semantics, butl observably different
behaviour. So, given our specific observables, without waitl records the semantics
would be unsound.
The semantics given in [KSRGA] served as starting point for our semantics, and it has
been changed to come as close as possible 1o that of [ZRE]. The global notion of time
used in [KSRGAJ] is maintained in our semantics. This is justified because we want to
express the timing behaviour of a system from the viewpoint of a global external
observer with his own clock. So, at the level of reasoning there is a conceptual global
clock. New is that, in deviation of [KSRGA], time is not necessarily discrete.

This paper is structured as {. ollows. Chapter 2 contains the syntax of the language
considered and its intuitive semantics. In chapter 3 a denotational semantics is defined.
The correctness formula and the assertion language are described in chapter 4. The

—4 —

main chapter is chapter 5, where a compositional proof system is given for our real-
time programming language for distributed computing with communication via
synchronous message passing. The conclusion can be found in chapter 6, together with
a discussion of future work. Finally, in the appendix the proof system of chapter 5 is
proven sound w.r.t. the semantics of chapter 3.

ACKNOWLEDGEMENTS

The author thanks the members of the EUT-team involved in ESPRIT project Descartes
for clarifying discussions. Especially Willem-Paul de Roever and Rob Gerth provided
many useful comments and valuable advice; in fact they rewrote the paper after
having been presented with my draft. Amir Pnueli provided stimulation by his
interest and suggestions. All this, however, would have been of no use hadn’t it been
for the work of Job Zwiers on compositionality of proof systems for concurrent
networks, and the insight in their intricacies which he shared with the author.

2. SYNTAX

In this chapter we give the syntax of a real-time programming language for
distributed synchronous message-passing. This language is essentially OCCAM
([OCC)). Communication takes place through unidirectional channels which connect
exactly two processes. There is a delay-slatement1. which may appear in the guard of
an alternative statement, 10o. Such a delay-branch causes a time-out if no
communications were offered during the delay period. We separate the concepts of
parallel composition and hiding of internal communications by introducing an explicit
hiding operator {..].

In the syntax below D will stand for a channel name, d and e for expressions, & for a
boolean expression, and x for a program variable.

Language construction

L ==SIN

Satement .
S u=x:=e |SKIP IO I DELAY d |5;:S,1[N]11 A 1*A

Alternative

ny L na
A o= [lel — Si lel l; DELA), di - Si ! D bi ”;]Ol — Si “]
i= i= i=1

—5-

Input/Output
10 == D'e | D?x

Network

N = 8,18,

A boolean expression b, or b, " is omitted if it is TRUE.

2.1 Informal semantics

- SAIP

- D?x

skip: only affects the execution time.
assignment: the value of expression e is assigned to the variable x .

output: send the value of expression e through channel D ; this action
synchronizes with a corresponding input command.

input: receive via channel D a value and assign this value 1o the
variable x ; this action synchronizes with a corresponding
output command.

- DELAY d delay: suspends the execution for (the value of) d time units.

- S];Sz

A delay statement with a negative value is equivalent 1o a delay
statement with a zero value.

sequential composition: execute S, after having executed §,.

hiding: the internal communications of network N are no longer
visible.

alternative:

A guard is open if the boolean part evaluates to true. Following
[KSRGA] we give priority to purely boolean guards. So if at least one of
the b; is true then select non-deterministically one of the open purely
boolean guards and execute the corresponding branch. If none of the
purely boolean guards is open and none of the other guards is open
execution aborts. Otherwise, let mindelay be the minimum of the
delay-values of the open delay-guards (infinite if there are no open
delay-guards). If within mindelay time units at least one I0-command
of the open 10-guards can be executed, select non-deterministically one
of them and execute the guard and the corresponding branch.
Otherwise, if no 10-guard can be taken within mindelay time units, one
of the open delay-guards with delay value equal to mindelay is selected.

—6 —

- *A iteration: repeated execution of alternative A as long as
at least one of the guards is open.
When none of the guards is open execution terminates.

- 8§;01'S, network: parallel execution of §, and S,, based on the maximal
parallelism model; no process ever waitls unnecessarily,
if execution can proceed it will do so immediately.

2.2 Symzactic restrictions :

First some definitions:
var (L) denotes the program variables occurring in language construction L,
chan (L) denotes the set of channel names in language construction L, and
1vpe (10) denotes the channel of the 10-command.

In a network S, I S, the concurrent processes S, and S, are not allowed to have shared
variables. Thus var (S,)N var(S,)= @.

Channels are unidirectional and connect exactly two processes.

For S; I S, we require that S, and S, do not have joint input channels or joint output
channels. So the joint channels of S; 11 S,, i.e. chan (S;)N chan (S,), are exactly those
channels through which §; and S, may communicate with each other.

Throughout this paper we use = to denote syntactic equality.

3. SEMANTICS

In [KSRGA] a denotational semantics has been given for CSP-R, a language similar
to that of the previous chapter but with communication by means of process naming
instead of channels. That semantics is based on the linear history semantics for CSP of

~ [FLP]. The basic domain consists of non-empty prefix-closed sets of pairs of states and

(finite) histories. To characterise maximal parallelism, such a history contains besides
"communication records”, which denote actual communications, also "no-match records"
1o denote that a process is waiting for a communication. Furthermore, the length of a
trace represents the time. In view of the desired proof system, which should be based
on the assumption/commitment type of correctness formula from [ZBR,ZRE84], we

_—

.

reformulate this semantics. The new semantics should be as close as possible to the
semantics described in [ZRE], which is formulated in terms of trace-state pairs, where a
Irace is defined as a sequence of communication records only.

We extend a trace-state pair to a 5-tuple, consisting of components for the
communication trace, the set of wait records of the process, the set of wait records of
the environment, the state and the time. Wair records denote the waiting of a process
for a communication. In our proof system we want to express assumptions concerning
wait actions of the environment, so the semantics contains also a set of environment
wait records. These environment wait records are used to model maximal parallelism,
by -requiring that for every tuple in the semantic domain the set of wait records and
the set of environment wait records satisfy this maximality constraint. That is, for a
particular channel there is no overlap of the waiting periods denoted by a wait record
and an environment wait record.

We take the same global notion of time as in [KSRGA): however, we do not assume
discreteness of time.

In the next section we describe 5-tuples, which form the basis of our semantic
domain of denotations. In section 3.2 an ordering on these tuples is defined, which is
used for a formal definition of correctness formulae in chapter 4, and which is needed
to obtain, in section 3.3, a complete partial order as domain of denotations. Finally,
the particular function defining the semantics is given in section 3.4.

3.1 Qur basic 5-tuples

In this section we define our basic S-tuples, which form the basis of the semantic
domain.
Assume a given time domain 7/ME, and a domain VAL for values of identifiers. To
avoid an elaborate distinction between the types 7/ME and VAL, e.g. the distinction
between TJ/ME-expressions and VAL -expressions, we choose VAL such that
VAL = TIME. Furthermore we assume that 0e VAL, and v+w, v<w, v=w are
defined in VAL .

The basic domain of denotations for the semantics of a process consists of sets of tuples
(7,W W€ 0,«), where:

- 7 is a communication trace; a sequence of communication records (z,D,v), with
teTIME, D a channel name and v eVAL. Informal meaning: at time 7 a
communication via channel D starts and v is the communicated value.

- W is a set of wait records of that process; a wait record has the form ({ .u,D),
with [,u €TIME and D a channel name. Informal meaning: wait from time { up
10 time ¥ for a communication via channe] D.

- WF¢ is a set of wait records of the environment.

- 0 is a state; a mapping from identifiers to values (o0 € STATE) or
1, indicating an unfinished computation.

- «a€eTIMEU{Ll}.

Such a S-tuple indicates a "point" in a computation, i.e., il reflects the state of
affairs in a computation at a certain point of time.
A tuple (7,W ,W¢,0,a) with 0 L, o= 1 models a finished computation, which
terminates at time « in state o, with trace 7 and set of wait records W produced
during the computation. W¢® represents the assumption about the wait actions
performed by the environment up 10 and including termination time o.
Tuples (7,W ,W*¢,0,«) with 0=, and o= 1, modeling unfinished computations, are
needed 1o obtain prefix closed sets of 5-tuples, and 1o model! infinite computations
through an infinite chain of approximations.

‘3.2 Ordering on tuples

In this section we extend the usual prefix ordering for sequences to our 5-tuples.
In the sequel s will stand for the tuple (7,W W¢0,a), and similar
s'= (W' We 00, § = (FW We5.,6) etc

‘We define the ordering < on tuples as follows. Let s'Ss denote that either s'=s, or
s' precedes s in a computation. In the latter case, s’ represents an unfinished
computation, thus 6'=1 and ao’=_1. Moreover, if s’ precedes s in a computation
then trace 7’ should be a prefix of 7, W' a subset of W, and W*" a subset of W¢. The i
following example shows that we have to take care that s’ really represents a point of
lime in a computation leading to s.

€X. :
(<@...,.009,....0> {(14,.01e,L 1) € (<(8...,.),09,..)> {14,.),78,)}e,.L,L),
_because the left tuple can not represent a point of time in a computation leading to the
right tuple; the wait record (7,8,..) has not yet been added to the left tuple, although I
the communication record (9,..,..), which corresponds 1o a later point of time, is already
present. So if we remove this record (9,..,..) from the left tuple, we obtain !

(<(3,..)>41.4,202,1.1)< (<(3,.,.),09,...)> {(1,4,.),(7.8.)2,1 ,.1).

—9

Furthermore (<> {(1,4,.0}2,1,1) € (<(3,..,.).09.....0> {(1,4,.),(7,8..)}e,L ,1).
since the left tuple contains wait record (1,4,..), whereas communication record (3,..,..)
has not yet been added. But then then the left tuple can not represent a tuple in a
computation leading to the right tuple, since wait records are added in the semantics
when the waiting finishes. In this example (1,4,..) is added at time 4, so also (3,..,..)
should be included in the left tuple.

DO

Let <> denote the empty trace, then (<> ,2,8,1 ,1) represents the situation where
nothing has happened yet. It denotes the start of every computation, so
(<>2,2,1,1)<s forevery tuple s.

These considerations lead to the following, informal, definition of s '<s:

s'isequal tos, or

s’ represents an unfinished computation at a certain point of time, say &, where, 7', W'
and W€" are the restriction of 7, W and W€, resp., to &, or

s ' denotes the initial tuple of a computation (<>,2,2,1,1).

To formalise this, define the restriction, 7la, of a trace 7 10 a lime o as the initial
prefix of 7 for which the following holds: (z,D,v)erla 2 (.Dyv)er A 1<€a.
The restriction, W l«, of a set of wait records W to time « is defined as follows:
Wla={{lu,D)eW lu<a }.

Then the ordering on tuples, s'S s, is defined by

s'=5s V{e=1L no=1L Adélr=7rl& AW=W]& AWe=W[a] v
s'=(<>0e2,1l.,1)

3.3 Domain of denotations

In this section the tuples and their ordering are used to define the semantic domain
of denotations. (We assume the reader to be familiar with complete partial orderings,
see [deBl.) This semantic domain ID is restricted to those tuples that satisfy the
maximal parallelism constraint, that is, never two processes both wait for the same
communication. For the wait records in a tuple s this means that W and W€ never
contain wait records for the same communication that overlap in time.

Let [.....> denote a left closed, right open interval, and let W and W' be sets of wait
records. Then we formulate this constraint as follows:

MP(W, W) Vlu,D)eW Y'u' D)eW' [l u>N{l'u>=9]
Furthermore, traces occurring in tuples of the semantic domain will always be
time-ordered : for a trace 7, predicate time —ordered (7) is true iff the sequence of time

stamps in the records of 7 is non-decreasing.
So in the sequel we restrict us to the following set of tuples:

— 10 -

B = {{r, WW¢ 0,0) | MP(W W¢) Atime —ordered (7)).

Let U be a set of tuples. The prefix closure of U is defined as
PFC(U J)={s'ls"< s ,selU |
U is called prefix closed iff PFC(U)= U.

The basic domain of denotations is the set of all nonempty, prefix closed subsets of BB,
ID={DIDCB AD=2 APFC(D)=D}

Next we define the, so called, Hoare order on ID (letV W eID):
VLW 2 VseVI3s'eWls <5,

which corresponds to the usual set inclusion order:

VEy W 2 VOCW, forallV.WelD.

So (ID,S) is a complete partial order, with the singleton set {{<> 22,1 ,1)} as least
element.

3.4 The function defining the semantics

Finally the particular function defhning the semantics is given.
Assume a function 7 has been given, which assigns to every atomic statement S (i.e.
skip, assignment, io, delay) and state o an interval 7,(S), such that the execution
time of this statement in this state is an element of the given interval. For the
alternative statement A, 7,{A) denotes the overhead needed to execute this statement
(e.g. evaluation of boolean guards, selection of an open guard, etc.). We assume that
there is no overhead for the other composite constructs.

Assume the existence of semantic functions [..J] for VAL expressions e and boolean
expressions & : [[e]]o , [Ib]]o .

Let WAIT = {{,u,D)VlueTIME,!<u}and
WAIT, = {1 u.D)eWAIT tu<rt} fort eTIME.

The variant of a state 0 = 1, o[/}, is defined as
ol'Alx)=~
ol'Aly)=0(y), if y=x.

~ The semantics is now defined as a function M which maps a language construction L, ~

given an initial state (= 1) and starting time, to an element of ID:
M: 1L o (STATEXTIME — ID).

—11 -

skip

The semantics of the skip statement shows that the time component is updated with
the execution time of this statement; all possible execution times between the bounds
given by the 7 -function are included. Furthermore the environment may add a set of
waitl records E£. Again all possibilities are included with the restriction that the upper
bound of these records should be less then or equal to the actual time, i.e. «+7. When
processes are composed in parallel it is checked that for joint communications the set of
environment wait records of one process equals the actual wait records of the other
process.

By taking the prefix closure we obtain an element of ID.

M(SKIP)(o,a)= PFC ({(<>,2,E,0,a+1) |
ESWAIT,,, At eTs(SKIP)})

assignment :
The assignment statement has a similar semantics, now also the state is updated.

M(x:=e)(o,a)= PFC ({(<>,2,E, o[lV/], a+1) |
ES WAIT ., AIéTo(x:=e)})

delay

The delay statement updates the time component o with the specified time given by
the T -function. This 7 -function should be such that 7 €T (DELAY d) implies
r2[d]o. Since a negative delay value yields a zero delay, the function nonneg,
dehned below, is applied to the delay value.

0 if v <(,

nonneg (v) = | if v=0.

M(DELAY d)(o,a)= PFC ({(<>,2,E, 0, a+nonneg(r) |
ECWAIT g 4 nommeg 1 A 1 €To(DELAY d)})

output

For the owzpur command we include a communication record in the semantics. Assume
the process has to wait w time units, then the actual communication starts at point of
time a+w.

Waiting for w time units is denoted by wait record (a,a+w ,D). Since waiting time
w depends on the other process, we take all possible values for w.

The maximal parallelism constraint imposes a restriction on the wait records of the
environment. These environment wait records must not overlap with the just added
wait record of the process itself, so these overlapping records are excluded.

—12 -

<

MD) (o, a)= PFC ({(<(a+w,D[elo)>, {(a.a+w DI E, 0, a4+w+1)]
weTIME Aw20 AteTg(Dte) A
ECSWAIT . vu; NMP(E {a,a+vw.D)}) })

input

The semantics of the inpur statement is similar to the output command, now the value
received is not known, and we include all possible values. Again environment wait
records which overlap with the waiting time are excluded.

M(D?x) (o, a)= PFC ({(<(a+w,Dyv)> {(a,a+w D), E, o['A), a+w+1)
weTIME Aw20 AveVAL AteT(D?x) A
ECWAIT 4,04+, ANMP(E {(a,a+w,D)}) })

sequential composition

In order to define the semantics of sequential composition, the semantic function is

extended 1o initial tuples by defining M(L):{seB lo= 1 } - ID

First the concatenation of two tuples s, and s, is defined by

5152= (7,7, W;UW, W] UW$,0,a,)

Then M{L)S = {§sIseM(L)(8,&) AMP(We W) AMP(W® W)L

Note that there is an explicit check 1o guarantee that the concatenation satisfies the

maximal parallelism constraint.

The semantics of ;5 is defined as the union of 1wo sets:

- the result of computing S, starting in a tuple representing a terminated
computation of §;.

- the tuples representing the unfinished computations of §;.

A’y(S];SZ) (5,&)= {S IESI [S]GAq(S])(a.&) A 01¢_L-/\S€M(SZSSI]}

U {Sl IS]‘:\](S])(E).&) A 0]=.L}
Note that M (S,:S,) is prefix closed if S; and S, have a prefix closed semantics.
hiding
Hiding of internal communications just means the projection on external channels:
MCUIND) (0, a)=[MN) (0, o) Laman) .

with for U-€ ID-projection on a set cset is defined as follows: =

w]csez = {([T]cset W lge» W ligers 0, 0) 1 (7,W W€,0 Q’)EU } “’here
[7].,, denotes the restriction of 7 to records with channel name in cser , and
[A)., ={tuD)I(uD)A ADecse },for A SWAIT.

alternative

For the semantics of the alternative construction consider two cases:

- at least one of the purely boolean guards is true; then, because of priority for these
branches, take the union of the semantics of all branches with a true purely
boolean guard.

- none of the purely boolean guards is irue:

- then we take one of the open delay branches with minimal delay if there was
no communication available for the open communication guards within this
delay period. This last restriction is denoted by wait records for the channels
of open i/0-guards, with interval length equal to the minimal delay period.

- another possiblity is a communication before the minimal delay period has
elapsed. Then we include the usual communication record and wait records for
all open i/o-guards.

Again the wait records of the environment are restricted in order to satisfy the

maximal parallelism constraint.

T-(A) represents the time needed to decide which i/o-branches are open, 10 compute

delays, to select a branch, etc.

First define the extension of a function X :STATEXTIME — ID 1o a set UelD,

X- :ID - ID:

(remember the definition of X :{se€B lo= L } - ID at sequential composition)

X (U)={s13s,[s,eU no, =1 AseXs, 1}

U{s, Is,eU Ao,=11}

Note that M(S] ;Sz)(ﬁ,& = M(Sg). (M(S])(ﬁ ,&)).
N3

nl n;
LetA=[0b - S E}lb,';DELA)’ d; — S,-'_l_jlb,“;IO, - 5],

i=1
define

mindelay = min{ nonneg ([d Jo)1[6,J0 } (min(8)= o)
ioset = {type(10;) | [5;"]o } and abbreviate

{Lucset))={U,u,D)IDecse }.

M(A)(o,a)=

UM Xe.ati)ilodo nreread), i V 510,

i=1

and otherwise

n

_Lj]M(SZ- Y (PFC{(<>, {{a+1, a+t +mindelay , ioset)}, E, 6, o+t +nonneg (z*)) | [5;,To A
=

nonneg([[d,Jo) = mindelay At eT;(A) At'e€T(DELAY d;) A

— 14 -

E S WAIT 4t 4nonnegin AN MP(E (a+1 | a+1 +mindelay , ioser)}) })

n
U U M (S, Y (PFC{(<(a+t+w, D, [eDo)> {(a+1. a+1 +w . ioser)},
=1
E,o,a+t+w+t)1[b,"Jo A1O,=D¥ A
1e€Ts(A) A1'eTg(D¥) AweTIME AO0<w <mindelay A
ECWAIT 44 4w4r AMPE{(a+1, a+1+w, ioser)}) })
n
U UIM(S,- ") (PFC{{<(a+t+w,D,v)>, {(a+t, o+t +w, ioser)},
i=]
E.ol'A) att+w+rt) 16,10 AIO,=D?x AveVAL A
1e€T,(A) A1'eTo(D?x) AweTIME AO<w <mindelay A

ECWAIT 4494+ ANMP(E {(o+1, a+1+w, iosez)} })

iteration

The semantics of the iteration statement is defined as the limit of a chain of
approximations. The extension of a function X :STATEXTIME — ID 1o sets of
tuples, X~ :ID — ID, has been defined already a1 the alternative statement above.
Then we define

M@a)o.e)= U (0.0

where ¢, are functions from STATE XTIME to ID defined inductively by
d)o(o .Q) = {(<> vgyg9~]— 1-L)})

¢1+] (0 .O.’) =

ny n, n3
¢/ (M(A)(0,a)), if VIolo v Viado v Ve do
i= 1= 1=
PFCH<> @ .E, 0,0+t HECSWAIT .4, Nt €Ts(A)}, - otherwise. . . _

An equivalent definition of the semantics of the irerazion statement is given by the
following fixed point equation.

—15 —

n n, n
MFA) = uX. Ag g if S/l[[b,]]o % _y][[b,- To v);][Ib, o
then A (M(A) (0, a))

else PFC{(<>2.E,0.a+1)1 ECWAIT,,, A1eT (A},

with u the least fixed point operator.

‘parallel composition

For the parallel composition S, Il S, the semantics includes:

- . synchronized merge of the traces of both processes.

- union of sets of wait records. For the environment wait records we discharge the
wait records concerning the joint channels. Note that the tuples of M(S,;11S,)
satisfy the maximal parallelism constraint provided the tuples in M(S,) and
M (S,) satisfy this constraint. The assumptions made by one process concerning
the wait records of the environment must be fulfilled by the other process as far as
it concerns joint communications.

- combination of the states. Remember that there are no shared variables.

- maximum of the time components.

Given that S, and S, have a prefix closed semantics we again obtain a prefix closed

semantics for S; 11 S 5.

Let jchan = chan (§4)N chan (§,) and

define max (ay,0,)= L ifa;=1 Vv a,=1.

M(S 155)(8,8)={(r, W JUW, WEUWS — [WEUWS 1. 0. max (o, ag)) |
(r;,, W, WS 0, a,)eM(S5)(6,&) nie{l,2} A
[7)ehenis, =7: A (Déchan(§,.5,) = [rlp=<>) &
time —ordered (7) A
Wilichan = WSlichan AW olicnan = W5 Licpan A
o;(x) ,xevar(S;)

(o2 L ro, =Ll = o(x)=]5(4) ,xgvar (51,5,)) A

(6,=L vo,=1l - o=1)1

— 16 --

4. SPECIFICATION LANGUAGE

In this chapter our specification language is defined. First we give an informal
introduction to correctness formulae in section 4.1. Section 4.2 lists the basic
primitives of the assertion language, and the examples of section 4.3 should give an
impression of the type of specifications intended. Section 4.4 contains the syntax of
the assertion language. Restrictions on assertions are formulated in section 4.5. Section
4.6 concerns the formal interpretation of assertions, and finally in section 4.7 a formal
definition of a correctness formula is given.

4.1 Correctness formulae

In this section the correctness formulae used in the proof system are introduced.
Our aim is a compositional proof theory for safety properties, in which it is possible to
specify the behaviour of a process relative to assumptions about the behaviour of its
environment. Therefore we extend Hoare triples with two parts, an
- assumption specifying the expected communication behaviour of the environment

(the waiting for a communication included), and a
- commitment, which is guaranteed to hold by the process itself, as long as the

assumption concerning earlier behaviour has not been violated by the environment.

Important is that assumption and commitment reflect, respectively, the externally
visible behaviours of environment and process. That is, they refer 10 a communication
trace of externally visible channels and 1o wait records concerning these channels.
Consequently, assumption and commitment must not contain program variables or
internal channeis. Clearly the assumption refers to environmenr wait records, whereas
the commitment refers to wait records of the process itself. In addition we require
that assumption and commitment do not refer to the time component.

We use the following notation: (A,C): {p} L {q}, meaning informally:

assume that p holds for the initial tuple (in B) in which L starts executing, then:

(1) C holds for the initial tuple of L,

(2) ~C holds after every communication and wait action of , provided A held after——————

all communications and wait actions of L before this particular one,

(3) ¢ holds for the final tuple if and when L terminates, provided A held after all
communications and wait actions of L, up to and including the moment of
termination.

Observe that the coupling between A and C is checked whenever the set of wait
records or the trace of L changes. This is justified, since A and C do not refer to the
program variables or to the time component. Furthermore, assertions are restricted (see
section 4.5) such that their validity is not changed by adding environment wait records.

4.2 Assertion language

In this section we list the basic primitives of our assertion language which will be
used in the examples of the next section. A complete syntax is given in section 4.4.

In our assertions it is possible to refer to the components of a tuple; to the
- trace of communication records by 7,

- set of wait records by W,

- set of environment wait records by W¢€,

- program variables,

- time component by means of the special variable zime.

In the sequel assertions are restricted to those where 7, W and W€ occur only
projected, that is, within the scope of a projection [...l :

[7] e, denotes the maximal subtrace of # with channel names in cset

(in the sequel denoted as 7,).

[W] e denotes the maximal subset of W with channel names in cset

(denoted as W,). Similar for [W€].,,.

We often omit brackets and commas in cser , e.g. Wp, 7gp.

The precise restrictions on the assertion language are formulated in section 4.5.

Because a trace is a sequence of records, we use an index to refer to a particular record,
e.g. mgli]refers to the i-th communication record in trace projection 7 5.

Furthermore, we can select the fields of a communication record:
- tim selects the time stamp,

- comm selects the channel name, and

- val selects the communicated value.

..l denotes the length of a trace expression.

— 18 -

4.3 Examples of specifications

The examples below should give an impression of the type of specifications
intended.

ex. 1 Take the following T-function: T (x:==x +1)= [3.4], 7(JO)=11.5,3.5]. Then
(TRUE ,TRUE) :{time=v } B> ; x:=x+1 ;D' {time —v €[6,11]}

where v is a logical VAL variable (see next section).
O

Assume for the following examples:
T(DELAY d)=[d 4], T(10) = [1,1], and T(4)= [1,1].
ex. 2 Consider the following informal specification:
(env. waits forthe first comm. via D fromtime 2 uptothe actual comm.,TRUE):
{execution starts ar time Qand the initial trace of channel D isempty }
DELAY 5;D!3
{ termination ar time 6 }.

This can be expressed formally as follows:
(mps= <> = (2tim(7pl1]),D)eW§, TRUE):
{time=0 Amp=<>}
DELAY 5;D!3
{ time=6 }.
0O

ex. 3 The correctness formula below contains an informal assumption:
(the environment does not communicate via channel D in time interval [1.6], TRUE):
{7p=<> Atime=0}
[DELAY 5 — x:=50D'3 - x:=61
{x=51}.
This assumption can be formalised as follows: I7 512 1 — tim (7 [11)¢[1,6].
O

ex. 4 This example demonstrates how two concurrent processes mutually make
assumptions about the waiting period for a communication of the other. Consider
assumption

A=(rpi2 1 = @rim (zp[ID.D)eWE) A Umpi=2 — (132im (7, [21),.D)eWg)

and commitment
Ci=Umpi2 1 o (52im (7 p11),DIeWp) A (tmp122 o (Brim(mp[21),D)W)

then

(A,.Cy):i{mp=<> Atime=0} DELAY 5;:D'3;DELAY 2 ;D6 {time = 14}.

Note that the commitment C; of this process expresses that the waiting period for the
second D -communication starts at time 8. which depends on the assumption in A,
about when the first D -communication of the environment is enabled.

The second concurrent process has an "inverted" assumption/commitment pair,

let A 2§C 1[“.(’/“'] and C2§A 1[“./“‘f] then

(A,.Cy)i{mp=<> Atime=0} DELAY 2;D?x ; DELAY 7 ; D?x {time = 14}.
O

4.4 Syntax of the assertion language

In section 4.2 a number of basic primitives of the assertion language were
presented. In this section the complete syntax is given.
In assertions we use logical variables to relate assumption, commitment, precondition
and postcondition. These variables do not occur in the program text, so the value they
denote is not affected by program execution. In order to apply correct substitutions
distinguish between three types of logical variables:
- logical trace variables: 1,
- logical wait variables : w,
- logical VAL variables: v.
Quantification is only allowed over logical variables.
In the following syntax of the assertion language we denote by elr an element of VAL,
by D a channel name, by x a program variable, and cser denotes a set of channel
names.

trace expressions :

te == mwlt 1tel,,

wait expressions :

we = W I W | w | [wel,,

wait records :

wr = (e;,e5.)

channels @

¢ u= D lcomm(tele])

VAL expressions :

e u=eltlvix ltime | liel | Iwel le,+e, |l val(zele]) I tim(zele])

assertions :

- 20 —

p u=lrue l1e,=tey lwey=wey lcy=cylej=eylcecser | wrewe |
=plipy—pa 1 3vipltIelplt3Iwipl

Let var (p) be the set of program variables occurring in assertion p .
chan (p) is defined as the set of channel names occurring in projections. Remember
that we restrict us to assertions in which 77, W and W* only occur projected .

The following abbreviations are often used:

Teset = [77]cset ’ ‘/Vcset = [W]cset ' W’:set = ["Ve]cser .

A lot of other abbreviations will be used which are expressible in the formal syntax as
given above, e.g. _

(5.0 8)em . = v ltime (7 5 [v1)=5 A comm (7w o, [vD=D »val(7 g, [vD=8l

To denote that a trace expression fe; is an injtial prefix of trace expression te,, we use
the abbreviation 7e ;< te ,. defined as follows

lte 1< lte,l A Yv [v Llreyl = tim (zey[vD=1im (re,[v]) A
comm (ze 1[v D)= comm (ze,[v]} A

val (ze [v D=val (ze,[v]) 1.

4.5 Restrictions on the assertion language

For a correctness formula (A, C):{p} L {g} the following restrictions are imposed
upon the assertions A,C,p and ¢:

- wvar(A ,)= o; program variables must not occur in A and C, since A and C
should express the communication interface only. '

- W does not occur in A ; an assumption must only mention the wait records of the
environment and the trace.

- W?¢® does not occur in C; a commitment must only mention the wait records of the
process itself and the trace. '

- the special variable zime does not occurin A and C.

- By imposing this constraint (and the first restriction), the-validity-of A-and C- -

depends on the trace and the wait records only, and not on the time component.
Consequently, we have to check preservation of the validity of A and C, and their
coupling, only after an occurrence of a communication or wait action, and not
when merely time passes. Future research will investigate the consequences of
allowing the special variable time to occurin A and C.

— 2] --

- 7, W and W* must occur projecred , that is within the scope of a projection [..] . .

- W¢ isallowed in p and ¢, but all assertions must be monotone in W*¢:
an assertion p is called monorone in W€ iff
p — YESWAIT [p[F VE4-]).
Also assumption A must be monotone in W¢.
ex. Examples of nonmonotone assertions are:
Wi=o, (57B%W5 W§5CS{(05.D),(910D)}
The following assertions are monotone:
Wi=e, (57,B)Wg, W§E21{(0,5D),910,D)}.
O

The last two restrictions are imposed because we aim at a compositional proof system,
that is, the specification of a program should be verifiable in terms of the specifications
of its syntactic subprograms. For the parallel composition rule the goal is, in principle,
a simple conjunction of commitments, and similar for pre and post conditions. This is
achieved by imposing maximal parallelism as a separate axiom on the domain of
interpretations of assertions, and furthermore by the above mentioned constraints and
restrictions in the proof system; assertions of a process remain valid under the
execution of environment actions:

w.r.t. wait actions of the environment (because of monotonicity), and

w.r.t. communications of the environment (because of the use of projections and the
restriction in the proof system that at parallel composition the assertions of one
process do not refer 10 external channels of the other process).

(See [HdeR] for a comprehensive discussion of compositionality and how to achieve it
by means of projections.)

4.6 Interpretation of assertions

This section concerns the interpretation of the assertion language.
An assertion p is interpreted in a logical variable environment 7y, which assigns values
to logical variables, and a tuple s = (7, W, W¢, 0, o) €/B, notation: [p]ys.
If p contains free program variables (var (p)= @) or the special variable zime, then p
is only interpreted in tuples s with 0 1 and o3 l. The interpretation is
straightforward, some examples:
[:Dys = y(), [wlys = y(w), [vlys = yiv),
[7lys = 7. [lrelselys = [[zelys ks,
[Wlys = w, [lwellys = [Twelys k.

if 021 and = L then [x]ys = o(x), [timelys = a.

Y,

An assertion p is called valid, denoted by = p, iff
VyVseBlo=l na=l o [plys]

4.7 Formal definition of a correciness formula

Finally we are able to give a formal definition of the interpretation of a correctness
formula.
Again we use the abbreviation s = (7, W, W¢ 0, «), § = (7, W, We, 6,&)etc
The concatenation of two tuples, s;5,, was defined in section 3.4 as follows:
5152 = (17, W U W, Wi U WS ,0,5.a;)
Also recall the extension of the semantic function to initial tuples:
ML) = {5s1seM(L)(&,6) AMP(W,W¢) AMP(W*¢ W)}
Note that, by the explicit check on maximal parallelism, a tuple from /B is obtained.

For the formal interpretation of a correctness formula we need the < relation on
tuples, defined as:
s<s 2 s'S<s A7 VW=W),

Notation: § = (FW We,L 1)
Now a correctness formula is called valid, denoted by = (A,C):{p} L {¢{,iff
VyVseB,6= 1, a= L [[ply3 - Vse MTZ)5 (Vs[5 <s'<s = [Adys 1= [CcTys) A

(o=l - (Vs[5 . <s'<s> [Aalys'1- [gllys N1

Observe that this formal definition of (A, C):{p} L {g} corresponds to the informal
meaning of section 4.1, since M (L) is prefix closed and the definitions of prefix closed
and "<" are such that the validity of C is checked whenever W or 7 changes.
Furthermore C holds initially, because (<> ,8,8,1 ,1)eM (L)(5.&)

(since M (L) (& ,&) is prefix closed), and thus (#,W ,W¢,1,1)eM(L)$

(since MP(W ,2) and MP(W € 2)).

Then Vs'[§ | <s'<(7W . We, L L) [Alyss'],

because there is no s such that § | <s'<(7,W,We, 1L 1).

Hence, by the formal definition above, [Cly(#,W ., W¢.1 ,1) = [Cly$ has to hold
(remember that C does not refer 1o the state or the time).

— 23 -

I
|

5. PROOF SYSTEM

Important in the proof system, which will be formulated in this chapter, is how
we deal with maximal parallelism. In the assertion language the maximal
parallelism constraint is formulated as follows:

- (MP) Yvyvovav,l (Vv D)eWp A(v3 v D)eWE o [viv,> Nviv>=0],

where D is a channel name, and v,v,,v3,v4 are logical VAL variables.

Observe that it is allowed to use axiom scheme MP for every implication in the
assertion language, since assertions are only interpreted in tuples from B (remember
that every tuple in B satisfies the maximal parallelism constraint w.r.t. W and W€
(see chapter 3)).

Conclusion: Maximal parallelism is modeled as the axiom MP which is imposed on the
domain of interpretation of assertions in our system. That is, this axiom can be used
to prove implications between assertions, for instance, when applying the consequence
rule.

The rules and axioms of our proof system are given in three groups. In section 5.1 the
rules and axioms related to atomic statements of our language are presented. In section
5.2, those related to composite constructs, and in section 5.3 general axioms and rules
related to all language constructions are given. In section 5.4 soundness of the system
is stated (which is proved in the appendix). Section 5.5 contains an example
demonstrating the use of assumptions and commitments in combination with parallel
composition and hiding.

5.1 Rules and axioms for atomic statemenis

First we give rules and axioms for skip, assignment, delay and i/o-commands.
These rules and axioms have in common that in order to prove (A, C):{p} S {g} the
implication p — C has to hold (C should hold initially). Following [ZRE84] these
implications are avoided by proving (A,C):{p AC}S {g AC}.

For an arbitrary T -function the skip axiom would have the following form (note that
time does not occur in C):

(A,C):{Vr eT(SKIP)[¢ */im]) AC} SKIP {g AC}

In order to avoid explicit mentioning of the 7 -function in every rule of the proof
system we take one specific T -function. It represents assumptions about the execution
time which are similar to those in [KSRGA], where atomic actions take one time unit,
except for the DELAY d statement which takes exactly d time units.

— 24 —-

To be precise: in the sequel we adopt the following T -function:
T(SKIP)=T(x=e¢)=T(D')=T(D?x)=T(A)=[1.1] (closed interval), and
T(DELAY d)=1[d d]}

skip

This leads to the following skip axiom:

(skip) (A.C):Agl"™™ Yime] NC}YSKIP {g AC}

The assignment and delay axiom are similar to the skip axiom:
assignment

(assignment) (A, C)Aql"™ * ime, Al ACYx =€ {g AC}
delay

Remember that a negative delay value yields a zero delay, so the function nonneg is
applied, which is defined as follows:

0 if v <0,
nonneg(v)= |, i >0,
(delay) (A,C):{qlimetremnee @) 1 ACYDELAY d {¢ AC}

output

For the output command we have to prove that given the precondition:

- commitment C holds for the final state (which is represented by the substitution),
and

- the postcondition holds in the final state (also the time is updated). provided
assumption A holds in the final state.

Note that in general we do not know the length of the waiting period for this

communication, thus we have 1o prove commitment and postcondition for all possible

wait values w.

Let subsy = ¥ Y 1time sime+w D)y, m'(aime Do)/

I-(oulput)

p AC — Yw eTIME . w2 0[Clsubst] A (A [subst 1 = glsubst /™ * *Yime])]
(A,C):{p ACID {g AC}

As observed above, it is allowed to use axiom MP for every implication between
assertions. This will be used in the following example, where assumption A is strong
enough 1o determine the waiting period.

ex. We want to prove the following formula:

— 25—

(A= 7p2 <> - (71im(mp[ID.D)eWS . C=TRUE):

{p=mp=<> ntime=4} D'3 {timec=8}.
First take the following auxiliary postcondition:
g= (7Ttime—1.D)eW§ A (4 ime—1,D)eWp.
By using the output rule we can prove (A, C):{p}Dle {q},
since p AC AAlsubst] — (7,rime +w ,D)eW§ Atime=4, and
g lsubst /™ *** i) =
(7.time+w ,D)eW§ A (4time +w ,D)eWp U {(zime time +w ,D)},
thus p AC A Alsubst] — glsubst /™ ***Yime], for all w e TIME , w 2 0.

By using the maximal parallelism axiom MP for channel D we can derive from the
post condition ¢ :

[72ime—1>N[41ime—1>=2.
Since I S u for a wait record (7 ,u....) we can derive: time —1=7, and thus: time =8.

Then the consequence rule, which will be formulated later, leads 10 the desired result.
0O

input

The input rule has the same structure as the output rule. Since the received value is
not known in general, we have 10 prove commitment and postcondition for all possible
input values.

Lel subst = W U {(rime time +w D)I/“ T (zime +w D v)/”

(input)

p AC = VYw eTIME , w2 0VveVAL[Clsubst] A (A [subst] — glsubst "™ *Vime ' A1)]
(A,C):{p AC}D?x {g AC}

As we saw above, A may contain enough information 1o be more specific about the

waiting period for the communication. In addition, A can specify the value that will

be received by the input.

ex. Using the input rule, we can prove

(7 p £ <(..,D,5)> TRUE):{mp= <>} D?x {x=5}.

Note that it is not allowed to use the assumption directly for the commitment. So we

can not prove:

(mp£<(..,.D,5)> 7p < <(..,D,5)>):{mrp=<>}D?x {x=5}.

The reason is that we have to avoid circular reasoning in assumptions and

commitments, e.g. consider the following example:

using the assumption directly for the commitment, we could prove

— 26 —

(rp< <(2,D..)>,7p<<(Q2.D,.)>) {mp= <> Atime=0)} D?x {time = 3}
and

(7p S <(2,D,.)> 7, < <(2,D,.)>) {mp= <> Atime=0} D'8 {time = 3}.

Clearly the assumption of one process is implied by the commitment of the other, so
by the parallel composition rule, which will be given later, this would lead to:

(TRUE ,TRUE) :{m p= <> Atime=0} D?x Il D'8 {time =3},
but this formula is not valid.

The work of Pandya [PJ] shows that it is possible to obtain a sound proof system in
which for an inpur command the assumption may be used directly for a proof of the
commitment. Circular reasoning is avoided by requiring for every owpur command a
proof of the commitment without using the assumption.

O

5.2 Rules for composite constructs

Next we give rules for sequential composition, hiding, alternative, iteration and
paralle]l composition. Since we give a compositional proof system, to each composite
construct corresponds a rule in which a specification of the construct can be derived
from its constituents without any further knowledge of the structure of these
components (see [HdeR] for more details).

sequential composition
(A, C):AptS,ir}. (A.C):{r1S,ig}
(A.C):{p}tS::S,1g!

(sequential composition)

hiding

The hiding rule allows us to encapsulate internal communications.

(A.Clidp AT jpen=<> AW, =215, 1S, g}
(A,C):Apt[S,1S,]{g}

where jchan =chan (S;)0 chan (S,), and provided chan (A, C, p, ¢)N jchan =2

(hiding)

alternative
For the alternative construct we have two rules; a consequence of purely boolean
guards havmg priority.

LetA = [Db—-oS Db, ;DELAY d; — ;" Db 110, — §;" 1.

The first rule is applied 1f one of the purely boolean guards evaluates to true.
Assertion § holds after evaluation of the purely boolean guards (which takes one time
unit) and before execution of a S; -branch.

—27 —

p = ™ me), (A, C)e{f Ab S g, i=1..n,

(altl) =
(A.C):dp n l/]b,}A {g}

In the second rule none of the purely boolean guards is true. In order to define the
minimal delay period and the set of "open" 10-guards, we have to know which
booleans are true. So we have 1o guess the set of irue boolean guards:

S is the set of indices of b;" which are true,

T is the set of indices of b;” which are true.

Define for sets S € {I,....n,} and T € {1,...n 3}
mindelay = min{ nonneg(d;)1ieS}, (min(8)= oo)
ioset = {type(10;) i €T}, and abbreviate
{(lu,cser)y={Uu,D)IDecse }.
Expression Bs 7 checks the guess, represented by S and 7', for booleans:
Ber= Ao A A=t A Aby” A N

ST=es ™ Tkes F U ker Ker ©
For a wrong guess Bg 7 yields FALSE in the premiss of an implication in the rule, thus
satisfying this implication trivially.
Assertion § holds after a DELAY -guard and before a S; -branch,
assertion p; holds after the 1O, -guard and before the S; “-branch.

Let subst IE W U {(rime + 1.time + l+mi{:dc1n,v Jioser)!/“.
subst ,= WU {(rime +11ime + 14w ioser)I/u, 'ﬂ'(limc +1+w Do)/“7
subst 35 W U {(rime + 1 time + 14w ioser)’/“, "n'“(rime +1+w D v)/7'_.

— 028 -

(alt2) forall SES{1..n,}, TE{1...n3k

ny
p AC — ™ Vbl

1=1]
Bs7 Ap AC — Clsubst |1 AN(A — plsubst,jimetmindeies+1/,. 1)
(A,C):{p Anonneg(d;)=mindelay Ab;'}S;'{g}, i=1,..n,
Bsr Ap AC — Yw e TIME [0S w <mindelay — C [subst ;] A
(A [subst ;] - p;[subst, ime*mindelar*2f, D] if 10; = DY ,i=1,.n;
Bsr Ap AC = Yw eTIME Yv e VAL [0S w <mindelay — C [subst 3] A
(A [subst 3] — p;Lsubsty/imermineetar+2f ' AD]) if 10, = D?x ,i=1,.n3 .

(A,C){Pl /\bi“}Si"{q} , i=l,...723 [‘r‘
(A,C):{p AC}A {g AC} i

iteration 4
1 2 3

Defineb = Vb, v Vb,' v V", then I

i=1 i=1 i=1

3
3
3

<L

(iteration) (A,C):lp bt A {p}

p A=b — J [”mc+l/1ime] |
(4.C):p1*A {q] i

|
|
|
i
parallel composition “
In [ZBR,ZRE84] the rule for parallel composition has the following form: il
given specifications (4;.C;):{p;}S, {g; ! for both components, r
choose a network assumption A for §; 1l S5, and check A AC; — Aj,
for (7,7)e{(1,2),(2,1)} _ ,’
This results in a specification (A,C; AC3):{p; Aps} S111S21g, Aga) i
provided certain restrictions on the assertions are met. {

Typically. in A AC; — A; assumptions concerning joint channels are verified; the it
remaining assumptions about external communications are maintained in A .

A straightforward adaptation of this rule is not possible; suppose we try a rule of the i
following form: i

(A,.C):p, } S g,). i=12

ANCI"AY o A4,
A ACz[“.e/“'] —_ A]
..):{...}51"52{...}
Then consider the valid formula:
(A= 0im (7 p[1D,D)eWh, C1=(7tim (mp [11D,D)¢ Wp) :

{mp=<> AWp=2 Atime=0} S;= D'3 {time=8}.

If we take the parallel composition of S; and an other process S, with D¢ chan(S,),
the new assumption of S;Il §, should be A =A,, since D is an external channel of
this network. But then A A C][“.‘/u'] — FALSE and we can prove every arbitrary
assumption A, for S,.

These problems can be avoided by taking care that the sets of channel names occurring
in projections of W€ in both components of the conjunction A A C;[* /] are disjoint.
Let wchan (p) denote the set of channel names occurring in projections enclosing W or
W€ in assertion p, and

let jchan = chan (§;)Nchan (S ,).

For the network assumption A we require that W¢ does not occur projected on joint
channels: wchan (A)N jchan =o.

Furthermore project the commitments C; and C, such that W occurs only inside
projections on joint channels in C; and C».

The W-projection of an assertion p on a set of channel names csez is defined as
follows:

P I“’CSCZ = 3“‘ [p[[“.]cmul“']comp/u.]]’

where comp = chan (p)—cser , (convention: [w].=2)
and w a logical wait variable not occurring in p.

ex. (7.8,D)eWg, W (D} =

(7.8.D)elWlgp IV (D} =

D [(7,8,D)elW]pUlw]z 1zp] =

I [(7.8.D)e[WilpUlw]z] =

(7,8,D)eWp

(7,8,B)eWzp W {D} 2
Iw [(7,8,B)e[Wl Ulw]z] 2
S [(7,8,B)elw)z] =

- 30 -

TRUE
O

(parallel composition)

(A4, C)idpi AWjcnan =218, g, hoi=12

@10 Viime e WY A ol Yoime 2 ¥ Yt} Atime = max (v,v4) A
W=w,Uw, AW® = walwa=IwsUwdiwm — ¢

Cl" A Cl"wIAW=wUw, = C

(€™ jchan N* Wl nA — A,

(C o™ jchan N ATAA = A,
(A.C):dpy Apa AWicnan =2} 51 1S5 {g)

with v,.v5.w,w,.w3 and wy logical VAL variables not occurring free in C or ¢, and
provided

wchan (A)N jchan =2,

chan (p; .4;.A; .C;)N chan (§;)E chan (§;), and

var (p,.q;)N var (S,)=, for (i,j)e{(1,2),(2,1)}.

The last two restrictions denote that assertions of one process are not allowed to refer
to program variables or external channels of the other process.

The clause Wz, =2 in the precondition is necessary as the following example shows.
ex. Consider the correctness formula

((0,3,D)eW§. TRUE) :{mp= <> Atime=2} D7 {m p=<(2,D,7)> }.

which is valid (to derive it use the output rule with posteondition
7p= <(time—1,D.,7)> A(2time—1,D)eWp A(0,3.D)e W5) and also

(TRUE, (0,3,D)eWp):{(0,3,D)eWp } DELAY 5;D?x {TRUE }.
Without the above mentioned clause the rule would lead to (take A =7RUE)
(TRUE ,TRUE){wp= <> Atime=2 A(0,3,D)e Wy IDVTIDELAY 5;D?x{7p= <(2,D,7)> }

which is not true. So this would lead to an unsound rule.
O

— 3] --

3.3 General rules and axioms

The following rules and axioms are applicable 10 every language construction.
The consequence rule is a straightforward extension of the usual rule in Hoare logic:
one can strengthen the assumption and weaken the commitment.

(consequence) (A,C)ptL g}

ADsA ,C5C ,p—=p',q'>¢q
(A,C):pt L {g}

As already observed, it is allowed to use maximal parallelism in the form of axiom
MP for every implication between assertions.

(A.C):{ptL {q}
(A, C)AplAJAEATL (g}
where v,r and w are a logical VAL variable, a logical trace variable and a logical wait
variable, resp., and where e,f and g are an arbitrary VAL expression, trace expression
and wait expression, resp., and provided vt and w do not occur freein A,C orgq.

(substitution)

(A,.C:Ap; VL {g;). i=1.2
(A} NA2 CyAC):ipy Apat L gy Agal

(conjunction)

(invariance) (A,C):{p ACIL {p AC}
provided var (p)N var (L)=2 and chan (A ,C ,p)N chan (L)=2.

According to [ZRE84] the following two axioms are needed for relative completeness of
the proof system. '

(prefix invariance) (TRUE , oy 21)T =t} L {7 s 21}

where cset = chan (L), and 7 is a trace variable.

(strengthen) (A, V1 (101 <7y » Al'/a) D i =101 L {A}

where cser =chan (L), 1 a trace variable not occurring free in A , and provided
chan (A)E cset and wchan (A)=o.

5.4 Soundness

Soundness of the proof system above is stated in the following theorem.

Theorem:
All rules and axioms of the above given proof system are sound w.r.l. the given
semantics.

See the appendix for a proof of this theorem.

5.5 Example

The following example demonstrates the use of assumptions and commitments in
combination with parallel composition and hiding. Consider the following processes:

Spi=Dy?x;x=x+1;BW

S12= Dy iyy=y 1By aiya=yaty i F Yy,

S, =I[D0I D,0);[F?z — SKIP
ODELAY 5 — error:=11
Suppose we want to prove

(TRUE ,TRUE) :{error =0} [[Sy; N S12] 11 S] {error =0 A z=2}.

For an easy formulation we define the following predicates:

“env waits for D fromv " denotes the assumption that the environment waits for the
first communication via channel D starting at point of time v. '

"env waits for D fromv and sends v" expresses the waiting for the first

communication along channel D starting at point of time v, until the communication
takes place with communicated value v.

"wait for D from~v " and "wait for D fromv and send ¥" express similar commitiscnts
for the process itself. Formal definitions:

env waits for D fromv = mp#E <> — (vium(mp[1).D)eW}
env waits for D fromv and sends v
=7wp2 <> o (viim(zp[ID.D)eW§ Aval (mpl1)=%

- wait for D fromv = 7= <> o (vium(zp[1D.D)eW,
i wait for D fromv and send v
" = wp# <> o (virm(zpIDD)eWy Aval(mpliD=v.
Note: wair for D fromv and send ¥ = (wait for D fromv and receive ¥)[*A-].
We use abbreviates like "wair for D,D, fromv " instead of
“wait for D, fromv Await for D, fromv "

—- 33 -

|

Then we can prove:
(env waits for Dy fromv and sends O,
wait for Dy fromv Await for B fromv+2and send 1):
{time=v Amg=<> Amp=<>}8, {TRUE}
and
(env waits for D, fromv and sends O A env waits for B fromv+2 and sends 1,
wait for D, fromv Await for F fromv+4and send 2):
{time=v Amp=<> ANmpp=<>}8,, {TRUE}.
With the parallel composition rule (and the consequence rule for the precondition) this
leads to (observe that the commitment of S;; about channel B justifies the assumption
of S, about this channel)
(env waits for D,,D, fromv and sends O,
wait for Dy,D, fromv Await for F fromv+4 and send 2):
{time=v Amp pr=<> Amg=<>}S,, I Sy, {TRUE}.
Hiding of joint channel B gives
(env waits for D,,D, fromv and sends O,
wait for Dy,D, fromv A wait for F fromv+4 and send 2):
{time=v Amp p,r=<>}[S; I S;;]{TRUE}.
For S, we can prove:
(env waits for D,D, fromv Aenv waits for F fromv+2+7 and sends 2 AT <35,
wait for D,,D+ fromv and send 0):
{time=v Amp p,r=<> ANerror=0}S, {error=0 A z=2}.
Using the parallel composition rule we obtain

(TRUE ,TRUE) :{time=v Aerror=0 Awp pr=<>}IS;; Il S;5]1I S; {error=0 Az =2}.
Applying the hiding rule leads 10
(TRUE ,TRUE) : {time=v A error =0} [[S;; I S;211 S; 1 {error=0 A z=2}.

Using the substitution rule. with substitution [/]in the precondition, we obtain the
desired result: :

(TRUE ,TRUE) :{error =0} [[S;; 1 ;51 1 S, 1 {error =0 A z=2}.

— 34 —

6. CONCLUSION AND FUTURE WORK

A compositional proof system has been formulated for a real-time programming
language for distributed computing with communication via synchronous message
passing. In this proof system it is possible 1o specify assumptions about the expected
behaviour of the environment of a process, and to formulate a commitment concerning
the behaviour of the process itself, relative to these assumptions. Assumption and
commitment are expressed as invariants, thus allowing the specification of
nonterminating processes. Maximal parallelism is modeled by imposing a separate
axiom on the domain of interpretation of assertions.

An essential restriction on the assertion language is that the special variable zime
must not occur in assumption or commitment. The next step in our research is to drop
this restriction. Thereafter we hope 1o investigate the relation with liveness properties,
in view of Lamport's statement ([La]) that real-time properties can be expressed as
safety properties. Also the relation with real-time temporal logic ([KRLIKVR]) will be
subject of future research.

Another interesting topic concerns changing the computation model: instead of
maximal parallelism, where every process has its own processor, we plan to study the
real-time behaviour resulting from the implementation of all processes on one
processor together with some scheduling policy. For this seems to be what current
practice in real-time programming is about - at least within our Esprit project. Also
other communication primitives, such as asynchronous communication and broadcast,
will be studied.

We expect the extension of the proof system with recursion in the style of [ZRE]
10 be straightforward. Finally relative completeness of the proof system is expected to
proceed along the same lines as the relative completeness proof of the [ZRE]-system; it
will be considered as soon as [Z] becomes available.

A. APPENDIX

A.l Soundness of the proof system

In this appendix soundness of the proof system, as formulated in chapter 5, is
proven. That is, every correctness formula (A,C):{p} L {¢g{ which is derivable in
the proof system of chapter 5 is also valid: | (A,C):{p}L {g{, as defined in
section 4.7, using the semantics of chapter 3.

This is achieved by proving the following theorem.

Theorem:
All rules and axioms of the proof system of chapter 5 are sound w.r.t. the
semantics given in chapter 3.

proof’:
We have to prove that every axiom is valid, and that the conclusion of a rule is valid

given the validity of the premisses.

Proving = (A,C):{p} L {g{ is by the definition of section 4.7 equivalent to the
following:

(again s denotes the tuple (7,W,W¢o0,a), §=(fW,W¢5,&), etc, and

s_=(EFww.L.1))
giveny,§eB, 5= L, 4= 1L with [p]y$, prove two parts for s e M (L)3:

i) Vs'[8,<s'<s = [Alys'1- [Clys,and

i) o=l = (Vs'[5<s'<s = [Alys' 1o [glys).

Observe that all assertions are interpreted in tuples from B, because the initial tuple §
is in B, and if s e M(L)§ then s B (see the definitions of M and M(L) in chapter
3). Also note that if s¢/B,and s'Ss ors’'<s, thens’eB.

Remember that B consists of all tuples (7,W ,W¢,0,«0) with MP(W W€), so the
following axiom MP holds in every tuple from BB:

(MP) VV1V2V3V4[(VI,V2,D)€“VD /\(VS,V4,D)€“75 - [vl,v2>n[V3,V4>=z],

where D is a channel name, and v,v,,V3,V4 are logical VAL variables.
Thus it is allowed to use this axiom for every implication between assertions.

— 36 —

Note that, because of the restrictions on the assertion language (see section 4.5),
[cly(r,W W¢,0,a) depends on 7 and W only, so we often write [CIy(r,W ,.....,..).
similar. often [A Iy (7....W¢) is used.

skip
We have to prove:

(A, C): g™ " ime] AC}SKIP {g AC}

proof:

Choose y, §eB, 6= 1 ,and @ 1 arbitrary. Assume
(l) [[q [ume+1/”_me] AC]]')'§ .

Let se M(SKIP)S§, then 7=7 and W=W.

i) C depends on trace 7 and set of wait records W only, thus [IC]]'ys = [[C]]y§,
which is valid by (1).

ii) If 0= 1 then according to the definition of M (SKIP):
6=08,a=a&+1,and W¢ = WEUE with ECWAIT ;,,.
Hence, from (1),
[gl *Yim] nC Dy(F W We,5.,8)=
[g rcIyFW We,5,6+1)=
[g rCc Iy W We,0,a) (remember r=7 and W=W).
Since ¢ is monotone and W€ does not occur in C, we can add E to the
environment wait records:
[g ACly(zWWeUE,0,0)=
g aclyzWWeo,a)= [g AC Jys.

0
Soundness of the assignment and the delay axiom requires a similar proof.
input

Let subst = W U {{rime time +w D)l/“_ ’ﬂ'(tin‘)(‘ +w Dy)/ﬂ.

Assume
(1) '= p ANC —

Yw eTIME ,w20Vv e VAL [Clsubst] A (A lsubst] — glsubst "™ ** *ime, A1) 1.
_Wehavetoprove: = (A,C):{p AC}D?x {g AC}. -
proof: .

Choose y, §€B, 6= L ,and &5 | arbitrary. Assume:
(2) [p aclys.

LetseM(D?x)§.

Then. by definition of M (D?x), there exists a tuple
S=(<(a+w.Dv)> {(&,a+w . D) E, o, a+w+1)

with w € TIME, v e VAL ,E C WAIT 5, 1. and MP(E {(&.&+w .D)}),
such that § | £s < §5.

From the definition of < (see section 3.2) this implies
s=§,,ors=55,0rs=S§5.

i) AssumeVs'[§) <s'<s — [A]ys']and prove [Clys as follows:
- if7=7 and W=W then [Clys = [CJy$, which is valid by (2).

- ifr#forW=W thenr=7"<(&+w,Dv)> and W=W U {(&,&+w,D)}.
So [Clys = [CIy(# (&+w,Dv), WU {(&.&+w,D)},...0t)
= [C [subst 1Ty (F W ,eepere)
= [C [subst 1]y5,
which is valid by (1) and (2).

ii) Assume 0= 1 and
(3) Vs[5 ,<s'<s - [alys’)
Prove [[¢g ACJys asfollows.
First note that in this case s=5§75.
Furthermore, remember that p is monorone in W¢, and W* does not occur in C,
so from (2) we can derive, by adding E to the set of environment wait records:
(1) Ip ACly(F W WeUE,5,&).
Now (3) implies
[Alys= [Alyss=
[Aly(7*(&6+w D v)W U{(&&+w ,DIWEUE,D a+w+1).
Thus [Alsubst]y (F W W€ UE.5.,8).
Together with (4) this leads, by using (1), to [g¢ [subst 11y(F W W€ U E 5 ,&).
Hence [gly(# (&+w .D)W U{(&.a+w DNWeUE, 6+w+1)= [¢glys.
In part i) we already proved [Clys, so [g rClys.

O

Soundness of the output rule proceeds along the same lines.

sequential composition
Let
(1) E(A,C):{p}S,{r}, and

— 38 —-

(2) EA,C):H{r}S,igh
prove (A, C):{p}S5;:S,1q}.

proof:
Choose y, §€B, 6= 1 ,and &= L arbitrary. Assume

3) [rlys.

Let s e M(S,;5,)§. Note that

M(S,:8,)8 = {s13s;[5,eMS)8 roy =L AseMS5)s,)
U{sliseM({S,)§ no=11}

So there are two possibilities:
> seM(S,)§ and o=L1.Then
) Vs'[3,<s'<s = [Alys'] - [Clys, follows from (1), since (3) holds.

i) o=l - (Vs'[§, <s'S<s = [Alys']1 - [glys), because o= 1 .

> there exists an s; with s,€M(§,)§, 0, 1, and se M (S,)s;.
Again consider two cases:

>> 7t=7yand W=W,.

i) If we assume
(4) Vs'[§,<s'<s = [Alys’],
then certainly Vs'[§ | €5'<s; — [ATys'). sinces'<s; = s'<s,
thus by using (1): [CJys,.
So [[C]]'ys, since 7=7; and W,=W,.

ii) Assume 0# 1 and
(5) VS'[§L<S'<S — [IA]]‘)/S'],
then certainly Vs'[§ | <s'<s; - [Aa]ys'].
In this case 0, 1 and s,eM(S,)§, so we obtain by (1): [r]ys,.
From (5): Vs'[(s)); €s'<s = [Alys'].
Since 0 # 1 and s e M (S,) s, this leads by (2) to: [¢]ys.

2> rEryorWeW,, o o o L

i) Assume
(6) Vs'[5;<s'<s = [alys’].

Since s,<s, we can deduce in this case that s;<s.

So, if s'< sy, then also s '<s.

Consequently, we obtain from (6) Vs'[§ | <s'<s; - [Alys'].
So (1) leads to (remember 0 ;= 1): [r]ys;.

Now (6) implies V¥s'[(s;). <s'<s = [Alys'},

thus, using (2) and s e M (S,)s,, we derive [C]ys.

ii) Assume 0= 1 ,and Vs'[§<s'<s > [Alys’]
Then similar to part i) we infer [rlys;, and
Vs [(s,); <s'<s - [Alys*].
Thus, by using (2), we obtain [¢]ys.
O
hiding
Assume
(D EA.C)ip Nrjopgn=<> AW, =215,1 S, {g},
where jchan = chan (§,)N chan (S,), and provided
(2) chan(A ,C,p.g)N jchan = @.
We have to prove:
E(A,C):{pt IS, nS,0{gh

proof:
Choosey,§e¢B, = 1 ,and == L arbitrary. Assume

(3) [plys.
Let s e M8, TS,D5.
Then there exists an § with s = §[5).5:c00n »

(4) §eM(S,1S,)(5,4), and
(5) MP(W [Weenan) AMPUW Lcnan W),

where extchan = chan ([S,1 S,]).

Define the projection of a tuple s on a set of channel names cser , notation [s 1, . as
follows:

[S]CSPI = ([T]CSGI ‘[“:]CSGI ’[“72]CSGI '0 ,()’)'

Furthermore s \cser denotes the tuple obtained from s by deleting all records (in 7, W
and W€) with channel name in cser .

By using chan (p)N jchan = @ (see (2)),

we can deduce from (3): [plly$\jchan.

Observe that [7 e = <> AW, 0, =@y \jchan , so
6) [p A7jchan=<> AWjcnan =o]y§\jchan.

— 40 —-

i) Assume
(7) Vs'[§,<s'<s > [Alys']
and prove [Clys as follows.
First we show that (7), together with chan (A)N jchan =@ (see (2)), leads 10
(8) Vs'[(§\jchan) | €s'<(§\jchan)5 — [Alys').
proof’:
If (§\jchan)| €£5'<(8\jchan)5,
then there exists an s with s'= (§\jchan)s and s <5.
Now take s" = §[S Lychan , then § | <5 <5[5FLschan »
and thus (remember s = §[5], 500): § | <57 <s.
So (7) leads to [Allys” = [ADy5[s Lrschan =
[ATy($\jchan s lozchan » Since A does refer to jchan.
Observe that s <5, so s contains channel names from S, and S, only, and
since extchan = chan (§,.5,)~ jchan , we infer
[Aly(8\jchan)s = [Alys".
O
Now (§\jchan)5e M (5,1 S5)(3\jchan) _
(by (4) and MP(W \jchan ,W*¢), MP(W W €\jchan) from (5)),
together with the validity of (6) and (8) this leads, by using (1), to
[cly(5\jchan)s.
Since chan (C)N jchan =@ (from (2)), we obtain
[clyss.
5 only contains channels from S; and S,, and C does not refer 10 the joint
channels, so
[[C]]y§ [§]e1tchan = HC:DYS .

ii) Assume 0¥ 1 and

(7) Vs[5 . <s'<s > [Alys']

Note that in case i) we already proved [CJlys.

Prove [[q]]-ys as follows.

Again (7) and chan (A)N jchan =@ lead 10

Vs [(§\jchan)| £s'<(§\jchan)s - [Aalys‘]

Together with (6) and (1) this gives

[gly($\jchan)s.

Similar as above we can use chan (¢)N jchan =2 (from(2)) and infer
lelyss = Dely3l5Lkacnmn = Lalys.

O

Proving soundness of the alternative rule "altl" is straightforward and omitted here.
The second rule "alt2" requires a rather long and tedious proof based on the same
techniques used for soundness of the delay axiom and the rules for i/o and sequential

— 41 -

composition. Also the soundness proof of the iteration rule is omitted, because it is
very similar to the usual proof for such a rule.

parallel composition

According 1o the parallel composition rule for §; 1l S,, we assume the following,

let jchan = chan (§)Nchan (S),

(1) B, Cip, AWpm=01S5; {g;}, i=12

(2) =g [Yiime,* VYt] A gl Yoime," o, Yit] Atime = max (vy,v,) A
W=w,Uwy AW =wiUws—IwsUwslicnen — ¢

(3) '=C][“'l/w] A C2[w2/“'] AW =w;Uw,y; - C

(4) E(C,¥ jchan I¥] AA = A,

(5) E(C% jchan ¥] AA — A,

(6) vy, vywy,w,yws3and w, logical VAL variables not occurring free in C org,

(7) wchan(A)N jchan=2,

(8) chan(p,;.,q;,A;,C;)N chan(S;)& chan (S§,), and

(9) var (p;,g;)N var (S;)=2, for (i,7)e{(1,2),(2,1)}.

‘We have to prove:
EA,C)ipy Apsy AWicnen=21 511155 1{g}

proof: Choose y, §¢B, = 1, and & L arbitrary.
Assume [p; Aps AW =2]y3. Thus
(10) [pJys .i=1,2 and
(11) W, pm=2.
Let se M(S,115,)§, then s = §3, where
§=(F W, UW, WEUWS—IWSUWS i @, max (a,&3)) with, for i=1,2:
=(r; W, Wfo,.«;)eM(S5;)(d,&), and
(12) [Flpan(s,=7: A (Dgchan(S;118;) — [Flp=<>),
(13) [“v I]jchan = [W§]jchan A [“72]jchan = [“75]jchan ’
o,(x) ,xevar(S;)
(14) If o, L Ao, L then 0(x)= |45 () xgvar(S1.5,),

ifo,=1 vo,=1 theno=.1l.

i) AssumeVs'[§ | <s'<s — [A]ys’], and prove
(15) [clys.
proof: First prove, with induction on I7y + Ir 5l + IW ;U Wl :

(16) _2\1[[C,»]]y§s,-.

— 42 -

® Basicstep: Ir)l+ 17,1+ W, UW,I=0, thus7=7,= <>, W =W,=0.
Then there is no s;* with § | <5;°<§s; (see definition <), so
Vs, [§ <s5;'<85; = [Ays;']. From (1) we obtain [C,Jy3s,, fori=1,2.

® Induction step: let I7 1 + |75l + W, U W,LI>0.
Assume, by induction, that (16) holds for smaller values.
Let (i,7)e{(1,2),(2,D)}.
From (1) we could prove [C,Jy3s; if Vs, ' [§ | <s5;'<5$s; - [[A Tys; 1 holds.
So first the following lemma is proven.
Lemma: Vs; [§ | <5;°<385s;, = [4.]ys;")
proof: Let § | <s,"<§s;, then 5;"=3§s;* with s, <s;,.
Thus s;'e M (S;) (6 ,&), because M (S;) is prefix closed.
Now choose s5; '€ M (S;) (6 ,&), such that, if we define
s=(r" W, UW, WE'UWS§'—[W¢§ U W Vichan +L 2L), where
(A7) [7dnans) =7:" A [Thenancsy=7;" A
(Dg¢chan (§,115,)— [r'],=<>), and
(18) [Wi ']jchan = [“Ije']jchan .
then s'<5 and s ' e M(S,115,)(5,&).
(Observe that for every s;’<s; such an s;’ can be found, since s; and s;
satisfy (12) and (13).)

In order to prove A, for tuple s;” we want to apply (4) and (5), so we
need C; \W jchan and A, interpreted in a related tuple.
Since 17,1+ 17,1+ W UWI< Ir i+ 17+ W, UW,l, we can use the
induction hypothesis and derive [[Cj]]y§sj C o= [[Cj]]y(f‘rj WU W resere)-
Now (8) and (17) lead to [ICj]]y(fr',\f' U W o). -
Applying projection to this assertion, we obtain
[c; ™ jchan]]'y(rr [V Lichan U IW; i chan serrenns). Thus
[[(C W jchan ¥ /w11 y(Fr.., [W],C;mn U IW; Tichan reeres)-
So (11), i.e. [W ; 1;cpn =2, leads to

(19) [(C;1¥ jehan X¥ A1 Ty (F1 e, W Licpan oo

Weassumed [Allys forall § with § | <§<s,so
[Alys foralls with 3 <s<55. |
Note that the s’ defined above satisfies s'<¥,so § | < §5'<§5, and thus
[Aly(Fr . WeUWe . .)=

[AlyGr WeUWS UWS—[WSUWST on o)
From (7) we know that A does not refer to joint channels, so

(20) [ADy(Fr . WeUWSUWS—IWSUWS Y han =W cnan soores):

In order to combine (19) and (20) by using (4) and (5) we define the
following union of their environment wait records:
W; = [“7j ']jchan Uweuy Wiy w5 '_[Wi ‘UWws§ ']jch.an —[W7e]jchan .
Because of the projection on jchan in the assertion of (19), we can add wait
records with channels not in jchan , thus obtaining
[(C, ™ jchan W A 1Dy (F 100 WE).
Furthermore, A does not refer to jchan in environment wait records (by
(7)), thus validity of (20) leads to
[[A]]y(?r',..,Wf,..,..).
So by (4) and (5) we infer from the last two formulae:
[ATy(Fr,. We).
Now A; does not refer to external channels of S; (see (8)),
so remove W' ~[W£']; ;. from the set of environment wait records:
Ay Gro i IW; Jcnan UWEU WE=IWEL an —[W €) cngn oeres)-
Remember (18) : [W; ') cngn = W] cpan » SO
[ADyGr WeuWe—[Wel o)
Since A, is monotone in W€, we can add [W €], .., to the set of environment
wail records, and achieve
[ADy(GFr,. Weuwe...).
By using (8) and (17):
(A ly(Fr Weuwe 0= [Adyss, = [ATys"
which proves the lemma.
O
This lemma together with (10) and (11) leads, by using (1), to [C,Jyss,.
Thus (16).

Remains to prove (15): [Clys.
From (16) we infer, by using (8) and (12): [[Cﬂ]y(?'r‘,W UW, o)
Take, temporarily, a new environment y'=y[* Y%y, *Y¥%2/] then
2 -~
i /\1 C.l] AW=w,Uw,lyGFWUW,UW,,...,.).
i=
Hence (3) leads to [ICIy (F7,W U W, U W,,........).
Thus from (6) : [Cly(F7,W U W,U W,........) = [Clys5 = [Clys.

0O

ii) Assumeo= 1 and Vs'[§ | <s'<s - [Alys’].
We have to prove [¢qJlys.
proof: Let i=1,2.
Similar to part i) we can prove: Vs;'[§ | <s5;'<$§s; = [A;]ys;").
Then (1) and (10) lead to [¢Jyss,;=[gly(Fr, WU W, WU W{, 0, ;).
From (8), (9), (12) and (14) we obtain [¢,Jy(F7, WU W,,We U W¢, 7, «,).

. vuw Wwuw weuwd, Wwuw$
Take y'=y[°V %, Yoy Y, 1., Y¥2/.] then

Lg; ['ihime i/ 2122w]y (FFW U W, U W,
WeU WS UWS—IWSE U WS pm @ max (ay,a;))
Thus

2
[Ag[ithime, /s i+2fwe] Atime =max (v ,v,) AW=1w U w, A
i=1

We=w U w,—[w3Uw,l o, ly$s.

Then (2) leadsto [¢ly'$5, so by using (6) [¢llyss = [¢lys.
O

0

Soundness of the consequence, the substitution, and the conjunction rule, and the
invariance axiom is straightforward.

prefix invariance

Let cset = chan (L), and 1 some trace variable. We have 1o prove:

}‘_‘ (TRUE* 77cse:>z) : {ﬂcsetzz } Sl I SZ {ﬂcsa?z }

proof:

For traces 7, and 7,. 7,< 7, denotes that 7, is an initial prefix of 7.
Observe that [7 ., 21]ys = [rl 2y)

Choose y, § €B, 6 1 , and &= L arbitrary. Assume [7.,,=7]y35, then
(1) y@)=1flse-

Let se M(L)3, then s=35 with §e M (L). Thus

(2) r27.

© 1) "By (2)and (1) wesee: 7l 2 [Fl=y(@),
so (7o 2 1]ys.

ii) Similar for the postcondition 75 27 .
O

strengthen

Let cset = chan (L), and 7 a trace variable not occurring free in A. Assume
(1) chan (A)EScser , and

(2) wchan(A)= o.

We have 1o prove:

E A,V [1,€t<m g = AU D Hm =10t L {A L

proof:

Choose y,§€B, 65« | , and & L arbitrary. Assume [7,,=17,]y3, then
(3) y(G)=I[7l,,-

Letse M(L)s.

i) Assume (4) Vs'[§),<s'<s = [Alys'].
We have to prove [Vr [1o€7 <z gy = Al'%1]ys.
Choose 7 arbitrary, and assume [[7 (<7 <7 Jys, thus
v (1)< y(1)<I7], - By (3) we obtain:
[?]cser < 'y(?)< [T]csel .
Then there exists an 7* with #< 7'<7, such that y(z)=[7"],,.
Thus we can find an s* with § | <s'<s, hence
[Alys', by (4).
Now (1) leads to [AJy([7) W' W0 ') =
(A U4y (7) W W e 0 ') =
[A[/])]ys. since w and W* (see (2)) do not occur in A ['/7].

ii) Assume o=l and ¥s'[§_ <s'Ss - [Alys'].
then (take s '=s) [Alys.

O

So all rules and axioms of the proof system as given in chapter 5 are sound w.r.t. the
semantics defined in chapter 3, and using the interpretation of correctness formulae
from chapter 4.

]

— 46 —

B. REFERENCES

[deB] de Bakker, J.W., Mathematical Theory of Program Correctness, Prentice
Hall, London, (1980).

[FLP] Francez, N., Lehman, D., Pnueli, A., A Linear History Semantics for
Distributed Programming, TCS 32, (1984), 25-46.

[Glass] Glass, R.L., The "Lost world" of Software Debugging and Testing, CACM
23, (1980), 264-271.

[Hoare] Hoare, C.A.R., Communicating Sequential Processes, CACM 21, (1978),
666-677.

[HdeR] Hooman, J., de Roever, W.P., The quest goes on: a survey of proof systems
for partial correctness of CSP, Current Trends in Concurrency, LNCS 224,
(1986). 343-395.

[HGR] Huizing, C., Gerth, R., de Roever, W.P., Full Abstraction of a Real-Time
Denotational Semantics for an OCCAM-like Language, to appear in POPL
87, (1987).

[KR] Koymans, R., de Roever, W.P., Examples of a Real-Time Temporal Logic
Specification, The Analysis of Concurrent Systems, LNCS 207, (1983),
231-252.

[KSRGA] Koymans, R., Shyamasundar, R.K., de Roever, W.P., Gerth, R., Arun-
Kumar, S., Compositional Semantics for Real-Time Distributed
Computing. Report no. 68, University of Nijmegen, 1o appear in
Information and Control, (1986).

[KVR] = Koymans, R., Vytopil, J., de Roever, W.P., Real-Time Programming and
Asynchronous Message Passing, Proc. 2nd ACM Symposium on Principles
of Distributed Computing, (1983).

[La)

MC]

[OCC]

[PJ)

[Z]

[ZBR]

[ZRE84]

[ZRE]

Lamport, L., What Good Is Temporal Logic?, Information Processing 83,
R.E. Manson (ed.), North Holland, (1983), 190-222.

Misra, J., Chandy, K.M., Proofs of Networks of Processes, IEEE
Transactions on Software Engineering, SE-7, (1981), 417-426.

The OCCAM Language Reference Manual, Prentice Hall, (1984).

Paritosh Pandya, Mathai Joseph, A-C Logic: A proof system for total
correctness of OCCAM-S, Draft Tech. Rep., TIFR, Bombay, India, (1986).

Zwiers, J., Ph.D. Thesis, to appear, Eindhoven University of Technology,
(June 1987).

Zwiers, J., de Bruin, A., de Roever, W.P., A proof system for partial
correctness of dynamic networks, Logics of Programs 83, LNCS 164,
(1983).

Zwiers, J., de Roever, W.P., van Emde Boas, P., Compositionality and
concurrent networks: soundness and completeness of a proofsystem,
Report no. 57, University of Nijmegen, (1984).

Zwiers, J., de Roever, W.P., van Emde Boas, P., Compositionality and
concurrent networks: soundness and completeness of a proofsystem,
ICALP 85, LNCS 194, (1985). '

— 48 --

COMPUTING SCIENCE NOTES

In this series appeared :

No.
85/01

85/02

85/03

85/04

86/01

86/02

86/03

86 /04

86 /05

86 /06

86/07

Author(s)
R.H. Mak

WeM.C.J. van Overveld

WeJ.M. Lemmens

T. Verhoeff
H.M.J.L. Schols

R. Koymans

G.A. Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord
G.J. Houben
J. Paredaens

K.M. van Hee

Jan L.G; Dietz
Kees M. van Hee

Tom Verhoeff

R, Gerth

L. Shira

~ On proving communication

Title
The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA, A language for formal
specifications of information
systems

Some reflecticns on the implementation
of trace structures

The partition of an information
system in several parallel systems
A framework for the conceptual

modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

closedness of distributed iéyéfé

86/08

86 /09

86/10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans

R.K. Shyamasundar

W.P. de Roever
R. Gerth

S. Arun Kumar
C. Huizing

R. Gerth

W.P. de Roever

J. Hooman

W.P. de Roever
A. Boucher:
R. Gerth

R. Gerth
W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver

Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semantics for
real-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
OCCAM-like language

A compositional proof theory

for real-time distributed
message passing

Questions to Robin Milner - A
responder’s commentary (IFIP86)

A timed failure semantics for
communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of

the monitor concept

Federatieve Databases

A formal approach distri-
buted information systems

Delay-insensitive codes -

An overview

TIR83.1

TIR84.2

TIRS85.1

TIR85.2

TIR8S.3

TIR85.4

Available Reports from the Theoretical Computing Science Group

Author(s)

R. Koymans,
J. Vytopil,
W.P. de Roever

R. Gerth,
W.P. de Roever

R. Gerth

W.P. de Roever

O. Griinberg,
N. Francez,

J. Makowsky,
W.P. de Roever

F.A. Stomp,
W.P. de Roever,
R. Gerth

R. Koymans,
W.P. de Roever

R. Koymans

J. Hooman,
W.P. de Roever

Title

Real-Time Programming and Synchronous
Message passing (2nd ACM PODC)

A Proof System for Concurrent Ada Pro-
grams (SCP4)

Transition Logic - how to reason about tem-
poral properties in a compositional way
(16th ACM FOCS)

The Quest for Compositionality - a survey
of assertion-based proof systems for con-
current progams, Part I: Concurrency based
on shared variables (IFIP85)

A proof-rule for fair termination of guarded
commands (Inf.& Control 1986)

v p-calculus as an assertion language for
fairness arguments (Inf.& Control 1987)

Examples of a Real-Time Temporal Logic
Specification (LNCS207)

Specifying Message Passing and Real-Time

-- Systems (extended abstract) -

The Quest goes on: A Survey of Proof Sys-
tems for Partial Correctness of CSP

(LNCS227)

Classification
EUT DESCARTES
CSN86/01
EUT-Report
86-WSK-01

TIR86.3

TIR86.4

TIR86.5

TIRB6.6

TIR86.7

TIRB6.8

TIRB6.9

TIR86.10

TIRR7.1

R. Gerth,
L. Shira

R. Koymans,

RK. Shyamasundar,
WP, de Roever,

R. Gerth,

S. Arun Kumar

C. Huizing,

R. Gerth,

W.P. de Roever

J. Hooman

W.P. de Roever

A. Boucher,

R. Gerth

R. Gerth,

WP, de Roever

R Koymans

R. Gerth

-2-

On Proving Communication Closedness of
Distributed Layers (LNCS236)

Compositional Semantics for Real-Time
Distributed Computing (Inf.&Control 1987)

Full Abstraction of &8 Real-Time Denota-
tional Semantics for an OCCAM.-like
Language

A Compositional Proof Theory for Real-
Time Distributed Message Passing

Questions to Robin Milner - A Responder’s
Commentary (IFIP86)

A Timed Failure Semantics for Communi-
cating Processes

Proving Monitors Revisited: a first step
towards verifying object oriented systems
(Fund. Informatica IX-4)

Specifying Message Passing Systems
Requires Extending Temporal Logic

On the existence of sound and complete
axiomatizations of the monitor concept

CSN86/07

CSN86/08

CSN86/09

CSN86/10

CSN86/11

CSN86/12

CSN86/13

CSNB6/14

CSN87/01

PE.O1

TR.A4-1-(1)

TR.4-4(1)

PE.O2

