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RIESZ BASES OF SPECIAL POLYNOMIALS

IN WEIGHTED SOBOLEV SPACES

OF ANALYTIC FUNCTIONS

by

J. de Graaf

Abstract

The main subject of this paper is the construction of Riesz bases in Weighted Sobolev Spaces
of Analytic Functions on open sets in C. For this two main tools are introduced.
First, starting from weighted Sobolev spaces on a disc or an annulus and supplied with the
Taylor basis, we move to an 'arbitrary' open set by means of a conformal mapping. In many
cases our weighted Sobolev spaces behave naturally under an analytic pull-back. The an­
alytic functions in our spaces are characterized by the asymptotic behaviour of expansion
coefficients and by boundary conditions in ordinary Sobolev spaces.
The second tool is of a completely different nature: By means of upper triangular transition
matrices 5 we construct new Riesz bases out of a given one. Our transition matrices are
diagonalizers of a class of given upper triangular matrices. Thus we are able to make esti­
mations in both 5 and 5-1 at once. In one of the applications we describe the domains of
exponentiated square roots of Jacobi operators in ordinary Sobolev spaces on [-1,1]. This
case was left in [GE]. We also relate this to a refinement of Szego's result on series of Jacobi
polynomials on an ellips. (Thm 4.1).

Contents:

1. Weighted Sobolev spaces of analytic functions on the annulus.

2. Weighted Sobolev spaces of analytic functions on open domains.

3. The general functional analytic classification problem.

4. Application to the Jacobi operators.
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1. Weighted Sobolev spaces of analytic functions on the annulus.

For an arbitrary subset 0 of the complex plane C we denote by A(O) the set of complex
valued functions on 0 which are analytic at each point z = x + iy E O.
Now let 0 be open. For a fixed weight function J.I. E L1(0), J.I. ~ 0 and m E INo = IN U {O}
we define

by

!I'!I0,I',m A(O) -+ [0,00] ,

11-+ (J {1/(z)12 + lim)(zW} J.I.(z) dxdy)!
o

We introduce the complex vectorspace

A 2(njJL,m) ={I 1II/IIO,I',m < oo}

provided with the inner product

(J,g)O,I',m = J{fez) g(z) + f(m)(z) g(m)(z)} JL(z) dxdy .
o

Instead of the triple (n,JL,O) we denote (n,JL). The first special open set n that we meet is
the annulus A = {z I 0 < a < Izi < b < oo} for fixed a and b. The special annulus AT is
defined by AT = {z I e-T < Izi < eT }, for some fixed T> O.
The subset At: C A, 0 < e < l(b- a), is defined by At: ={z I 0 < a < Izi < a+e or b- e <
Izi < b}.
For any given weight function J.I. on A the new weight function J.l.t: on A is defined to be zero
on the annulus A\At: and equal to JL on At:. So, JLt: equals J.I. near the boundary of A.

THEOREM 1.1.
Let the weight function JL on the annulus A be such that

• Vz E A JL(z) =JL(lzl)

• 3e > 0 Vz E At: J.I.(z) > 0 and J.I. is continuous at z.

Let mE INo be fixed.

(A) VI E A(A) Ve > 0 Vj E INo 3Mt:,; > 0

sup {If(;)(z)llz E A\At:} ~ Mt:,;(! lJ(zW J.I.(z) dXdy)!
A<
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(B) The space A2(Ailt,m) is a Hilbert space.
The functions {z 1-+ zn I n E ~} establish an orthogonal basis in A2(Ai It, m).

(C) For f E A(A) expressed as a Laurent series fez) = E:'=-oo an zn we have

00 00

f E A 2(Ailt,m) <===> L lanl2 IIznll~.#I.m = L 211" a;;2 lanl2 < 00 •

n=-oo n=-oo

Here (an )-2 = J: r2n+llt(r)dr+l(n-m+1)mI2 J: r2(n-m)+lIt(r)dr, with Pochhammer's
symbol

(n - m + 1)m = n· (n - 1)· .... (n - m + 1) .

So (anzn):=_oo is a Riesz basis inA2(Ailt,m). (That means: each 9 E A2 has a unique
expansion 9 =E:':-oo an(anZn), with (an)::_oo E 12 , which converges in .A2.)

(D) If It is replaced by v (not necessarily v(z) = v(lzl) such that

3e > 0 36 > 0 3M > 0 Vz E Ae
0 < 6 < :~:~ < M < 00 ,

then the spaces A2(Ai It, m) and A 2(Ai v, m) have equivalent norms, Le. they are the
same as topological vector spaces. Note that in both these Hilbert spaces the functions
{z 1-+ an zn I n E ~} establish a Riesz basis.

(E) Let j E IN, 0 < j < m. Then

Ve > 0 3Me > 0 Vf E A 2(Ailt,m)

(F) Let m distinct point ~ = (zo, ... , Zm-1) C A be given. The norm 1I·IIA.~.#I,m, defined by

m-1

IIfll~'b#l.m = L If(Zlc)1
2 + lIj<m)II~.#I '

lc=O

is equivalent to the norm 1I·IIA.#I,m'

Proof

(A) We use the "mean value property" for analytic functions

f(;)(w) = ci p-(2i+2) r fez) (z - w)i dxdy, j E lNo ,
JIV1-~I<p

with ci = (211")-1 (2j +2)j1. Take w on one of the circles Izi = b-ie, Izi = a + ie. Take
p = leo
Let 0 > 0 be such that on A~e\Ate one has It(z) > 8. Now application of the Cauchy
Schwarz inequality to
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f(i)(w) =ci (e) -(2;+2) r fez) (z - w)i p. dxdy
4 J\w-Ill< ~ J.I,

leads to

.+1
with Mc,; = (1r8)-l (j + l)l (~)' j!.
Because of the maximum principle this result extends to the annular domain between the
two circles.

(B) Because of part (A) a Cauchy sequence in A2(Aj J.I" m) converges uniformly on compact
sets in A. So, the limit exists as an analytic function. Further, since p.(z) =p.(lzl) it is clear
that the functions {zn I n E IE'} are orthogonal. We show that the span of these functions
is dense: Let 9 E A2(Aj J.I" m) and suppose 9 .L zn for all n E 7Z. Write 9 = E::-oo bn zn,
evaluate (g, Zn)A\A<,Il,m and take the limit e ! o. This leads to

Hence the result that all bn =o.

(C) Let f =E~=-oo an zn E A(A). Since the functions {zn In E IE'} are mutually orthogonal
in all spaces A 2(A\AC j J.l"m) we have

00

Ilfll~\A<'lIlm = 1: lanl2 IIznll~\A<'SI.m .
n=-oo

Now let e 10 and observe that the sum is finite iff the integral is finite.

(D) First we show that we arrive at equivalent norms of J.I, is replaced by p.c. On one hand
there is the trivial inequality

On the other hand

The first term is equal to IIfll~.Il<.m. The second term can be estimated by

because of (A). Next we compare v with J.l,c. On one hand we have

On the other hand
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11!1I~.II.m = 1I!1I~'.lIlm + 1I!1I~\A'.II.m :;

:; M 1I!1I~•.~,m + (M;.o + M;,m) (I lI(z)dxdy) II!II~,~.
A

~ {M + (M;.o + M;.m) 1lI(z)dxdy} 1I!1I~'.~.m .
A

(E) Write

00

lI.r<i)II~.~ = L lalel 2 Ik· (k - 1)· .... (k - j + 1)12 II~-ill~.~ .
Ie=-oo

Because of IIzlc+lll~,~ ~ b2l IIzlell~.~, if lEINo, we estimate, with N E IN

1I!(i)II~.~:; L lalel 2 Ik· (k - 1)· .... (k - j + lW Ilzlc-ill~.~+
Ikl$N

Let e > 0 be given. Take N so large that for all k E ~, Ikl > N, I(k - j) ..... (k - m +
1)1-2 b2(m-i) < e.
Then the second sum can be estimated by ellt<m)II~,~.

The first sum can be estimated by Mell!II~.~ if we take

(F) Because of part (A) of the theorem there is a constant el, which depends only the choice
of Zo, .•. , Zm-ll such that

m-l
L 1!(ZkW ~ clll!II~,~ .
1e=0

Therefore

For the converse inequality, split

m-l
! =p+ It with p(z) = L ale z"

"=0
Since p is a polynomial of, at most, degree m - 1, there is a constant C2 > 0 such that
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m-l

IIpll~.~ ~ C2 L: Ip(Zk)12 ~
k=O

m-l m-l

~ 2 C2 I: If(ZkW +2 C2 I: Ifl(Zk)1 2
•

k=O k=O

Again, part (A) of the theorem, there is Ca > 0,

m-l

IIfll~.~ ~ 2 C2 I: If(zieW +(2c2ca +1) IIfll~.~ .
le=O

Finally,

IIftll~.p == I: lalel 2
IIzkll~.~ ~

le~O•...•m

00

~ b2m I: lakl 2 Ik . (k - 1) ..... (k - m +1W Ilzk-mll~.~=
le=-oo

(Remind that b is the outer radius of A.) o

Note on part (D) of the theorem. In the estima.te II ·11~.~.m ~ Gil ·11~.~•.mthe best possible
constant C is given by

b b b a+e

C = 1 +maxHI Jl(r)dr) (I Jl(r)dr)-l, (I Jl(r)dr) (I Jl(r)dr)-l}
a b-e a a

as a. simple monotollicity argument shows.

In the next theorem we consider important closed linear subspaces of A 2(Aj Jl, m) and Riesz
bases for them. We define four linear subspaces A(Aj+), A(Aj-), A(Aje), A(Ajo) of
A(A) in the following way: fez) = :E:=-oo an zn belongs to those spaces if, respectively,
"In E IN : a-n == 0, "In E IN : an == 0, "In E:£ : an == a-n, "In E:£ : an = -a_no

THEOREM 1.2
Suppose Jl satisfies the conditions of Theorem 1.1.

(A) The sets
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are closed linear subspaces in A 2(Ai p, m).
The functions in those subspaces can be continued analytically into, respectively, the whole
disc {z Ilzl < b}, and the set {z Ilzl > a} U {oo}.

(B) Consider the case A =AT. Define the mapping Z : A(AT) -+ A(AT) by (ZJ) (z) = f(~).

Suppose 3C > 0 Vz E AT p(~) $ Clzl4 p(z).
Then the operator Z is a continuous bijection on A2(ATiP,m). Further, the sets

are closed linear subspaces of A 2(ATip,m).

(C) With the same additional conditions on p, the functions

with

establish a Riesz basis in A 2(ATip,m).

Proof.

(A) Elementary.

(B) First, we show that Z is well defined.
Suppose f E A 2(ATip,m). If both liZ fll~T.~ < 00 and II(Z J)(m)II~TI~ < 00 then Zf E
A 2(ATip,m). We only prove the second inequality. By induction one shows

~ f (!) =~ f U)(!) p' (!)dzm . z ~ Z ,m Z ',=1

where the Pim are polynomials of degree at most 2m. These Pim do not depend on f. (Cf.
Faa di Bruno's formula [AS].)
Put 111 = sup{IPim(~)llz EAT, 1 $ j $ m}. Now

! I(Z J)(m)(zW p(z)dxdy $ m 1112 t ! Iii) (~) 1
2 p(z)dxdy .

AT ,=1 AT

Transform the latter integral z 1-+ ~ and use the condition on Jt. Then
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II(Z f)(m)II~,~ ~ mM2 t J If(i)(zW Iz l-4 p. (;) dxdy
,=1 AT

~ m M 2C f: J If(i)(z)12 p.(z)dxdy .
;=1 AT

After removing the intermediate derivatives with Theorem 1.1 (E), we arrive at

for some C1 > 0 not dependend on f.
Hence Z is a continuous bijection with Z2 = I. The mentioned subspaces are merely the
ranges of the respective projection operators !(I+ Z) and !(I - Z).

(C) First we show that from our assumptions follows the existence of constants A1 and A2
such that for all n E INo

(*)

Note that, with b = eT ,

b

(a_n)-2 = 211" J r-2n+1 p.(r)dr+
b-1

b

+211"1( -n) ..... (-n - m + 1)1 2 J r-2(n+m)+1 p.(r)dr .

b-1

Change the variable r f-t ~. Take n > 2(m - 1)

b

(a_n?=211" J r2n-3p.(~) dr+
b-1

b

+211"[n(n + 1)· .... (n + m - 1W J r 2(n+m)-3 p. (~) dr ~
b-1

b

r 2n
+1 p.(r) dr + 211" C b4m [n . .... (n + m - 1)]2 J

b-1

r 2(n-m)+1 p.(r) dr

An inequality of type (an? ~ Cm(a_n)2 is derived in a similar way.
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f(z)= f ananZn=aoao+f i(anan +a_na_n) (zn+z-n)+
n=-oo n=l

We write

00 00

fez) = aoao +L bn13n(zn + z-n) +L en13n(zn - z-n)
n=l n=l

with

Because of (*) the sequences (bn) and (en) are 12 iff (an) is 12 •

Note that in case J.L is of the form

with X arbitrary, and m = 0, the basis in Theorem 1.2 (C) is orthonormal.

o

DEFINITION 1.3.
Let oA denote the boundary of A. We have oA = oaA U obA with oaA and ObA the circles
Izl = a and Izl = b respectively.
For f E A(A) and a < r < b consider the function

We say that f satisfies a boundary condition in the Sobolev space H"'(ObA), v E JR, if
fb = lim,.rb f,. exists in H;er({-1r,1r])·
Similarly we say that fa E H9(oaA), 8 E JR, if fa = lim,.ra f,. E H:er([-1r,1r])·

THEOREM 1.4.
Consider the Hilbert space A2(A; J.L9"" m) with J.L9",(lzl) = (b - IzI)2",-1 (lzl- a)29-1.
Let f E A(A) , fez) = E::-oo an zn.
The following three conditions are equivalent
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(iii) f satisfies the boundary conditions

So the functions {1, b-n n-(m-II) zn, an n-(m-') z-n I n E IN} establish a Riesz basis in
A2(Aj IL,v, m).

Proof.
We apply Theorem 1.1 (C), so we have to calculate the asymptotic behaviour for k _ ±oo
of the integral

b

i21c+l =f r21c+l(b - r)211-1 (r - a)2'-1 dr ;:
II

1/11

b211- 1a2'-1 f r-(2k+l+2"'+2')

l/b
(

1 )2'-1 ( 1)211-1
- - l' l' - - dr =
a b

1

= b2k+l(b - a)211+2'-1 f (1 - s)2'-1 82"'-1 (1 - s (1 _~) )21c+l ds =
o

= (~
1)-(2k+l) ( )29i (b - a?",+29-1 .

1

f ( )211-1 29-1 ( ( a) )-(21c+1+211+2') d. l-s 8 l-s 1-7; 8,

o

Note that, for 0 < B < 1, I E IN

1

(IB?'" f (1- s)2'-1 8 211- 1(1_ sBi ds =
o

1f (l-s?'-l (IBs)211-1 (l-.ylBs)'IBds=
o

10



00

_ / 0'211-1 e-tT dO' =f(2v) , as 1_ 00 ,

o

Since

we find that the following two limits exist

(1)-n
lim an[- Inlm-II] =L2 > 0 ,n_-oo a

(i) <=> (ii) We apply Theorem 1.1 (e). Since b> a we have (n;1 an)~=_oo E h iff

(bn Inlm-II n_)n=oo__oo E 12 d (n I Im-.)oo E 1
""n .1ML- a n an n=-oo 2

(ii) <=> (iii) Note that

00

fb = L: an bn eintP E H m
-

II(ObA )
n=-oo

'ff ( bn m-lI)oo I1 an n n=-oo E 2·

For fa. the argument is similar,

As an application of Theorem 1.2 (B) we find

COROLLARY 1.5.
In the Hilbert space A 2(AT; J-LII' m), with J-L1I(lzl) = (eT -lzI)211-1 (Izl- e-T )211-1,

T > 0, v > 0, the functions

o

{1 -nT -(m-II)( n + -n),e n z z ,

establish a Riesz basis.
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2. Weighted Sobolev spaces of analytic functions on n c c.
Consider an open set 0 C C and a function "p E A(O) which maps 0 bijectively onto an
open subset "p(0) C A, the annulus of section 1. The linear subspace A(O; 1/1) c A(O) is
defined by a pull-back

ACO;"p) = {F I F(O = IC"p(e)), (= e+ i1"J EO, IE A(A)} .

There is a bijective linear correspondence

Jy : A(A) -+ A(O;"p) , (Jy f) «() = I(1/1(0) ,

so Jy(A(A)) =A(O; "p).
Note that ,p(0) =A implies A(O;,p) =A(O). The Hilbert subspace Jy (A2(A; Il, m)) carries
the inner product

In this section we investigate the relation between the mentioned "pull back inner product"
and an ordinary Sobolev inner product in A(O). In the next Lemma an auxilliary result
concerning the chain rule is presented. The proof is omitted. An explicit expression for the
Rm; is given by Faa di Bruno's formula [AS].

LEMMA 2.l.
Let I and "p be analytic functions. We have

m

(i) (f 0 ,p)(m)«() =2: (fU) o,p) (0· Rm;«().
;=1

• The Rm;, m E IN, 1 ~ j $; m, are homogeneous polynomials of degree j in
,p', ,p(2), ... , ,p(m-;+l). Put Rm,; =0 if j < 1 or j > m.

• Rm+l,i = R~.; + ,p' . Rm,i-b Rn = 1//.
• Rmm = (,p'r, Rm1 = ,p(m).

(ii) I(m)(z) = (d,p-)m {(f 0 ,p)(m)(,p-(z)) - 1: IU)(z) Rm;(,p-(z))}
dz ~1

THEOREM 2.2.
Consider an open set 0 C C. Let ,p E A(fi),,p : fi -+ A be injectief. Denote fic ="p-(AC

).

Let W E L1(0) be a weight function and let m E INo be fixed. Finally, let Jl E L1(A) be a
weight function on A which satisfies the conditions of Theorem 1.1.
Suppose
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(a) sup 1,p(q)(OI = M 1 < 00
O~q~m, 'esuppw

(b) 3€ > 0 3M2 > 0 3M3 > 0 'V( E n~

M2 /-L(,p«()) 1,p'«(W ::; w(O ::; M3 /-L(t/J(O 11,p'«(W

(c) If m > 0 then
3€ > 0 3M. > 0 'V( E n~ 1,p'(OI-1 ::; M•.

Then

(A) If ,pen) is dense in A, then on A(n;,p) the norms F 1-+ IIJ;1 FIIA,j.I,m and F 1-+ IlFllo,lII,m
are equivalent. So the functions (an(,p«(»n):=:_oo establish a Riesz basis in A2(n; ,p;w, m).

(B) Let W be a closed subspace of A 2(A;/-L,m) and suppose that the norms 1I·IIA,j.I,m and
II ·1I1/>(O),j.I,m, when restricted to W, are equivalent. Then on the Hilbert space J1/>(W) c
A(n; ,pi W) the norms F 1-+ IIJ;1 FII1/>(O)ij.l,m and F 1-+ IlFllo,loI,m are equivalent. So
(O'n(znneI is a Riesz basis in W iff (O'n(,p( (nneI is a Riesz basis in A2(n; ,pi W; w, n).

Proof.

(AI) Let F E A(n; ,p). There exists a unique f E A(A) such that F = f o,p. For € > 0
sufficiently small we estimate the two terms of

separately. With Lemma 2.1.(i) and the condition on w we estimate

f 1(/0 ,p)(m)«(W w(O ded1J ::;

0'

::; C1 't f IU(i) 0 t/J) (O!2 /-L(t/J«(» It/J'«(W dedTj .
3=1 0'

The constant C1 depends on m, M1, M 3 and the shape of the Rmj. The latter expression
is equal to

C1 t f If(j)(z)1 2 /-L(z) dxdy ::; C2 IIfll~.j.I,m .
3=1 A'

The constant C2 depends on C1 and on the constants mentioned in Theorem 1.1, parts
D and E.
Next we show that

Indeed, for ( E supp w n (n\n~) write

13



= ~ f: (-I)i j! Rmi«() f fez) (1/J«() - z)-l-i dz .
2n . 1,= K

Here K consists of two suitably oriented circles in the interior of AJC\Alc • On K we
have, with the constants of Theorem 1.1.(A), If(z)\ ~ Mic 0 Ilfll 1. • From this we

3 ' A:r,,.
infer the existence of C3. We gather that

Since such an estimate also holds for m = 0 we arrive at the existence of c. > 0 such
that

(A2) Now let f E A(A). With Lemma 2.1.(ii) and conditions (b), (c)

lIt<m)II~•.,.:5 C4 f IU 0 1/J)(m) (t/J-(z»1 2 JL(z) dxdy+

A'

m-l
+cs :?= f If(i)(z) Rmi(1/J-(z)W JL(z) dxdy .

3=1 A'

The constant Cs depends only on M. and m.
From the boundedness of the Rmi and application of Theorem 1.1.(E) it follows that

IIt<m)II~.,~:5Cs f IUo.,p)(m) (.,p-(z)1 2 JL(z) dxdy+ce IIfll~••~·
A'

The constant Ca depends only on Cs, Ml and the shape of the Rmi' Transform the
integral over AC to an integral over nc and estimate again

Add to this expression the inequality

Finally, with Theorem 1.1.D, we are led to

(B) The proof of part (B) is merely a simple adaptation of the proof of (A).

14
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REMARK 2.3.
The conditions (a) and (c) of Theorem 2.2 are automatically satisfied if 0 is compact and
1/J E A(O).

A simple modification of Theorem 2.2 is the following

THEOREM 2.4.
Consider an open set n C C. Let 1/J E A(n), 1/J : n -+ A be injective. Let w E LI(n) be a
weight function such that for some MI > 0, M 2 > 0

Let W C A2(A;J.t, 1) be a closed subspace as in Theorem 2.2.(B). Fix pEn. Then on the
Hilbert space J.(W) the norms

are equivalent.
The mapping J. becomes unitary if w(() = IL(1/J(() and A2( A; IL, 1) carries the norm

o

In the next theorem we study a class of weight functions on A and n which can easily be
compared. We need

CONDITION 2.5.
Suppose that 1/J : n -+ A extends continuously to 1/Je 0 -+ A. Fix a subset l1 C ao.
Consider the distance functions disC(, l1) on nand disCz, 1/J( l1» on 1/J(n) c A. Let e > 0 be
fixed. Assume

(i) Each ( E n e can be connected with l1 by means of a differentiable curve within n e and
which has length dis((, l1).

(ii) Each z E 1/J(ne ) can be connected with vJe(l1) by means of a differentiable curve within
1/J(ne

) and which has length dis(z, 1/J(l1».

THEOREM 2.6.
Assume Conditions 2.5. Suppose in addition

15



3M > 0 V( E n c l.,p'«()I~ M and l.,p'«()!-l ~ M .

Let 8 > -1. On n c define w(() = (dis(( , ~»'.
On AC n .,p(n) define JL(z) = (dis(z, .,p(a»)'.
Then

and condition (b) of Theorem 2.2 is satisfied.

Proof.
Let ( E nco Take a curve s t-+ X(s) within .,p(nC

) which connects .,p«() and .,p(a) and which
has length L = dis(1/;((), 1/;(a». Estimate

L

dis«(,a) ~ J Id.,pt-d:(s»! ds ~ ML = M dis(.,p«(), .,p(a».
o

Similarly we estimate for z E 1/;(nC
)

dis(z,1/;(~» ~ M dis(1/;t-(z),a).

Taking the 8-th power leads to the desired inequalities.
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APPLICATION I.
Consider the rectangle

n = ST = {( = ~ + i1] 1 ~ E (-11",11"), 1] E (-T,T)).

Take 1/J(() = eiC , 1/J(ST) = AT \ ( - 00, 0). Note that 1/J(ST) is an open dense set in AT.
We find that A(ST; 1/J) = A(ST; 211"-per), Le. the space of functions on ST which extend to
211"-periodic analytic functions.
For the weight functions on ST and AT take

Note that the conditions (a), (b), (c) of Theorem 2.2 are satisfied. Combining Theorem 1.4
and Theorem 2.2.A we find that for all (J > 0 and all m E !No

is a continuous bijection between both Hilbert spaces. As a corollary thereof, the functions

establish a lliesz basis in A 2(ST;211"-per;w8,m). Note also that f E A(ST;211"-per) belongs to
A 2( ST; 211"-per;w8, m) iff the limits of ~ l--1' f( ~ + i1]) as 1] i T or 1] 1 - T exist in the Sobolev
space H;;8( -11",11").
A combination of Theorem 1.2.B and Theorem 2.2.B leads to the lliesz bases

for the even and odd subspaces of A 2(ST; 211"-per;W8, m) respectively.

APPLICATION II.
Consider the ellips ET ={( =~ + i1] 11- Co!2 T + .ul~ T) > O}.
Take n =Et =ET \ (-00, -1] U [1,(0).
Take 1/J«() =eiarccoI( Then 1/J maps Et bijectively onto At, Le. the part of AT which lies
in the open upper half plane.
Note that J.(A(AT; e» = A(ET) because of its symmetry f(eiarccOlC) does not jump at the
real axis and extends to an analytic function on the whole of ET.
Further, since on A(AT; e) the norms 1I·IIAT.#ol,m and 1I·IIA~.#ol.m are equivalent for any choice
of J.L which satisfies the conditions of Theorem 1.1, we can apply Theorem 2.2.B.
In particular we apply Theorem 2.6. Take Ll = BET. On ET introduce the weight function
W8(() = (dis((, BET»28-1, (J > O. On At introduce J.L8 as in Application I. We find that for
all (J > 0 and all m E !No

17



is a continuous bijection between both Hilbert spaces. As a consequence the Chebyshev
polynomials

1
with Tn ( () =cos(n arccos 0, n E IN and To(() =11'-, establish a Riesz basis in A2(ET;W8, m).

As a corollary of the general Theorems in sections 1 and 2 we mention the following

Characterization Result:
Let I E A([-1, 1]), I(x) = E:'=o an Tn(x), let (J > 0, m E lNo, then the following three
conditions are equivalent:

• IE A2(ETjw9, m)

• (n(m-8) enT an)::o E 12

• J E A(ET) and JI8ET E nm
-

8(8ET)

In the next section we extend this expansion characterization to a much wider class of suit­
ably normalized polynomials which encompasses all (normalized) Jacobi polynomials. In this
way Szego's result [Sz] is refined in several directions at once.

APPLICATION III.
Consider the set n =BT = .lR xi (-j-, j) \ aT with UT = {~+if] II sin ~I > tanh T cosh f]}.
Note that aT is an infinite set of "ovals" centered at the points e+ if] = i(k + l)lI', k E 7Z.

Take "p(e) = e2iarctansinhC = exp 2i j col,., dw, "p(BT) = AT\(-OO,O), which is open and
o

dense in AT. We find that A(BT;"p) = A(BT;211'i-per,8eoo). A function 9 belongs to this
class iff it extends to 9 E A(C \ aT) such that

(i) 9 is 211'i-periodic

(ii) V(EC g(ij+()=g(ij-()

(iii) lim b(0 exists.
IRCI--co

There are natural subspaces of A(BT;"p) which exhibit even more symmetry:

• J,,(A(AT;e» = A(BT;lI'i-per, even, 8eoo) which is the subspace of even lI'i-periodic
functions .

• J,,(A(AT; 0» = A(BT;211'i-per, odd, 8eoo) which is the subspace of odd 211'i-periodic
functions.

Now, let ~ = BUT nET. Denote the function

18



For the weight function on BT we take

On AT introduce the weight function "",, as in Application I. For E: < (1- e-T ) the conditions
of Theorem 2.2 are satisfied (use Theorem 2.6). So we find that for all 8 > 0 and all m E INo

is a continuous bijection between both Hilbert spaces. As a consequence we find for the
subspace A2(BT; 1!"i-per, even, 8eoo;wI, m) a Riesz basis

(n-(m-I) e-nT T2n (_1_))00
cosh ( n=O

and for the subspace A2(BT; 21l'i-per, odd, 8eoo;w" m) we have the Riesz basis

(n-(m-,) e-nT (tanh () U2n-l (~h())oo .
cos n=l

Here the polynomials U en T are defined by Tn ( cos 0) =cos nO and Un ( cos 8) = sintV)'.
As a corollary of the general theorems in sections 1 and 2 we mention the following

Characterization Result:
Let f EA(lR), f(x) = E:O=o an T2n (co:hz) + tanh x E:O=l bn U2n- 1 (co:hz)· Let 8 >
0, mE INo, then the following three conditions are equivalent:

• f E A 2(BT;21l'i-per,8eoo;w"m)

• (n(m-') enT a)OO E 1n n=O 2 and (n(m-') enT b)OO E 1
n n=1 2

• f E A(C \ UT), f is 21l'i-periodic,

lim f( () exists and flBUT E Hl:c-' (BUT) .
IR(I-+oo

Finally it follows that

(1!"-1(coshx)-!T2n_2 (~h), 1!"-l(coshx)-! tanhxU2n- 1 (~h))00
cos x cos X n=l

is a complete orthonormal system in L 2(lR).
In [BG1] and [BG2] we have characterized the Fourier and Fourier-Jacobi images of some of
the spaces mentioned here.
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APPLICATION IV.
Consider the set n = Rab = C \ (Da U Db) with 0 < a < 1 < b. Here Dc, c> 0, denotes the
closed disc {( II( + i ~!~ I ~ I)~ll}'

Take ¢«() =~, then ¢(Rab) =A \ {-I}.
We find that Atn; ¢) = A(Rab;00), i.e. the space offunctions which are analytic outside the
discs Da and Db and at infinity.
Note that if we take W+ = A(A;+) then

and, similarly

Let A = aDa u aDb. Denote the function

,511«) = (min{dis«(,A), 1})211-1, e> 0 .

For the weight functions on Rab and A we take

J.l1I«) = (b - Iz\)211-1 (lzl- a)211-1 .

For c: < i(b - a) the conditions of Theorem 2.2 are satisfied (via Theorem 2.6).
So we find that for all e> 0 an all m E IN0

is a continuous bijection between both Hilbert spaces.
As a consequence, for A2(Rab ;00; WI, m) we have the Riesz basis

Finally, it follows that

is an orthonormal basis in L 2(JR).

Spaces of this example playa key role in [D].
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3. The general functional analytic classification problem.

Let K = (Kmn):n=0 be an infinite matrix with Kmn =0 if m > n.
We denote K E I UTM, Le. the class of upper triangular matrices. If we suppose that
Kii :F Kii if i :F j there exists a unique S E UTM with all Sii = 1 such that S-1 K S =
.!lie = diag(Koo, K 11 , ••• ). If K has suitable growth properties we construct classes of diagonal
matrices M = diag(1L0,1L1,"') such that MSM-1 and MS-1M-1 are 12-bounded matrices.
In general the growth properties of M are related to those of K.

This general result will enable us to construct a great variety of (polynomial) Riesz bases
out of a given one, in the weighted Sobolev spaces of the preceding sections. One of the
consequences will be a refinement and an extension of Szego's classical theorem of Jacobi
expansions of analytic functions on an ellips.

We start with a separable Hilbert space X and a selected orthonormal basis (Tn):C;o eX.
Associated with a sequence IL = (J.Ln):C;o, J.Ln > 0, J.Ln - 00 as n - 00, we introduce a. Hilbert
space X p which is dense in X,

00

X p = {I I I E X, L IL~ IU,Tn )1 2 < oo} .
n=O

Note that I = L::'o an Tn E X p iff L::'o IL~ lan l2 < 00. Note also that (1L;1 Tn)~=o is an
orthonormal basis in X w By means of a transition matrix S E UTM we define a sequence
of vectors (Rn)~=o C X by Rn = L:i=o Sin Ti' We take all Snn = 1 so that S has an inverse
S-1 E UTM of the same type and Tn = L:i=o Sin1Ri' Our first question is: When is the
sequence (J.L;1 Rn)~=o a Riesz basis in X p ?

THEOREM 3.I.
Let M E UTM be defined by M = diag(lLo, ILl, ... ). The sequence (J.L;1 Rn):C;o is Riesz basis
in X p iff both matrices MSM-1 and MS-1M-1 are 12-bounded. This means that they can
be regarded as bounded operators in 12 ,

Proof.
On span(Tn) define the operators M and S by M Tn = J.Ln Tn and S Tn = Rn, followed
by linear extension. On span(Tn) the inverse S-l exists and S-1 Rn = Tn. Observe that
(J.L;1 Rn):C;o is a Riesz basis in X p iff S extends to a continuous bijection on X p iff both S
and S-1 extend to continuous mappings on X p iff both matrices MSM-1 and MS-1 are
12-bounded. The latter equivalence follows from liS Illp = 11M III = II(MSM-1 ) Mill. 0

Let K be a densely defined operator in X which acts invariantly on span(Tn). Suppose that,
with respect to the basis (Tn):C;o, the operator K is represented by a matrix K E UTM with
mutually distinct entries on its diagonal. Then there exists a unique S E UTM, with all
Sii = 1, such that S-1 K S = .!lK = diag( Koo ,1(11' ... ). Consequently, there exists a unique
sequence (T!)==o C span(Tn) of eigenvectors of K.
Note that T! = L:i=o Sin Ti and K T! = ](nn T!. Now we turn span(Tn) into a pre-Hilbert
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space by declaring the sequence (JL~l T{2~=o to be an orthonormal sequence: The Hilbert
space completion is then denoted by XIS' Note in particular that (JL;l T!')::o is a Riesz
basis in XIS iff XIS = X!- as topological vector spaces. Note that XIS = Xr-. Two problems
can now be posed:

• The classification problem.
For which pairs (K, JL), (K/, JL') do WE~ have X!- = X!-' as topological vector spaces. Or,
more generally, when a second Hilbert space Y with a similar construction is involved.
When do we have X!- = Y",L?

• The characterization problem.
If X is a function space, describe thE! elements of X!- in classical analytic terms.

The characterization problem has been, in fact, the subject of the preceding sections. When
dealing with the classification problem we want to apply Theorem 3.1. We solve a problem
of the following type: Let there be given an infinite matrix I( E UTM with distinct diagonal
elements. Let 5 E UTM with all 5ii = 1 be the diagonalizer of K, so 5-1 K 5 = t:1K =
diag(Koo,Kn , ... ). Find diagonal matrices M = diag(JLo,JLll ... ) with the property M5M-1

and M 5-1M-1 are 12-bounded. We consider matrices M of the form M = etA with Re t > 0
and A = diag(>.o, >'ll"')' The conditions we impose on K and the conditions on A that we
look for are growth conditions.

THEOREM 3.2.
Let K E UTM. Put en = J:llaf( \Kiil. Suppose

1$'<3$n

(i) 3D> 0 'tin> m I 1
-1 D

K mm - K nn ~ ( )nn-m

(ii)

Let JL ~ 1 be fixed. Let A = diag( >'0, >'1, ... ) with

Re(>'n - >'m) ~ nlS-
1(n - m) (1 +e3(n, m)), n > m

with e3(n, m) -+ 0 as min(n, m) -+ 00

with €4(n, m) -+ 0 as min(n, m) -+ 00 •
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Let S E UTM be the diagonalizer of J( with S•• = 1, 0 ~ i < 00. The for all tEe, Re t > 0,
the matrices

Proof.
The proof consists of parts (a)-(g).

(a) Since J( S = S D..K and S-l J( = D..K S-l we have the following recurrence relations for
the entries of Sand S-l:

q-1

• Sn-q.n = (J(n-q.n - J(nn)-l ~ l(n-q.n Sn-1c.n ,
1c=O

Snn =1, 1 ~ q ~ n - 1

q-1

• S~~m+q = (J(mm - J(m+q.m+q)-l ~ J(m+1c,m+q S;~m+1c ,
1c=O

S;~ = 1, q 2: 1 .

(b) We show that

i~;~:: }~ exp 2{Do(n - m)}~ .

From the recurrence relations for the entries of S we estimate

DC
n

q-1

ISn-q.nl ~ -- ~ ISn-1c,nl, 1 ~ q ~ n, Snn = 1 .
n q 1c=O

By induction, for 1 ~ q ~ n

DC q-1 1 DC q 1
ISn-q,nl ~ _n II (1 + -1 _n) ~ II (1 + -1 DO) ~ e2..,f2D6 •

n q 1=1 n 1=1

For the second one

DC
q-1

IS-l I < m+q ~ IS 1 I s 1
m,m+q - 2(m + q) LJ ;,m+Ie' q =1,2, ... , ;m =1 .

1c=O

By induction, q = 1,2, ... ,
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(d) We now show that each row in u t in an 12-sequence. So let m be fixed

Take N so large that for n > N we have

For n> N the second factor is smaller than e-tt ..n • Hence the result.

(e) Starting from the inequality in (c) we find with conditions (iii)

Below the Mth row, M sufficiently large, we have

tIllumnl ~ exp {2(D8(n - m))i - '2 t1(n - m)} .

Therefore each diagonal is a bounded sequence. Finally for m > M and (n - m) ~

t 8(D8)t

(f) We now split the matrix ut in 2 parts:

• The first M rows. They represent a bounded 12-operator which is Hilbert Schmidt,
cr. (d).

• The part below the M th row also represents a bounded 12-operator because of the
"codiagonal estimate" , use

co

L (.s~p IKiil < 00 •
Ic=O ,-I=1c

(g) For etA 5-1 e-tA the parts (c)-(g) of the proof apply in exactly the same way. 0

REMARK.
If J.t > 1 the conditions (i) and (ii) can be relaxed considerably, see [GE] and [G]. However in
this paper we need the case J.t = 1.
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THEOREM 3.3.

(a) The conditions on A in Theorem 3.2 are satisfied if An = n~(1 + pen»~, J.L ~ 1, and

li () - 0 li Ip(n) n - p(m) m 1- 0m p n - m sup - .
,,-co m_co ,,~m+1 n - m

(b) The conditions of (a) are satisfied if p is a (complex valued) differentiable function on
(0,00) with lime_co p(e) =0 and lime_co ep'(e) =o.

(c) IT A = N: = diag( ... ,(n(n+ a))l~, ... ), a E C, then condition (b) is satisfied.

Proof.

(a) We compute

A" _Am = (n _ m) n~-l {I + (1 - (~~ _1) + (np(n) - mp(m») + (m 1- (~::-1 p(m»)} .
1-- n-m n 1--

n "

On the interval [0, 1) one has

1- x~

J.L ~ 1 ~ 1 and-x

1 - x~-l

1 _ x :s; max(I,J.L - 1) :s; J.L •

For €3(n,m) take the real parts of the 3rd and 4th terms between { }. We omit the simple
verification of the other conditions.

(b) Follows by application of the mean value estimation on (n - m )-1 (p(n) n - p(m) m).

I!-
(c) We have p(x) = (1 +;) 2 - 1 which satisfies (b). 0

Note that sequences like «log n)A nB exp(t n~ + Cn + D In))::1 with A, B, C, D E lR,
t> 0, J.L ~ 1 are of type (exp(tn~(1+pen»)).
Now we formulate the main result of this section which is a consequence of Theorems 3.1 and
3.2.

THEOREM 3.3. (Classification)

• Consider a Hilbert space X and fix an orthonormal basis (Tn)::o eX.

• Let IC denote the class of all upper triangular matrices K E UTM which satisfy the
conditions (i) and (ii) of Theorem 3.2.

• Let Y denote the class of sequences (An):=o which satisfy condition (iii) of
Theorem 3.2.
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Then

(A) For all K E IC the sequence (e-t~.. T!)~o is a Riesz basis in XI-" In other words, the
Hilbert spaces XI-' and X: are the same as topological vector spaces.

(B) H for some positive sequence 8 = (8n)~o and some I( E JC the sequence (8n T!)~o
happens to be a Riesz basis in a Hilbert space Y, then for all K E JC and all L E IC we
have the equality

as Hilbertizable topological vector spaces.
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4. Application to the Jacobi operators.

The results of the preceding section can be applied in the following way. If the, suitably nor­
malized, eigenvectors of some operator establish a Riesz basis in a "scale" of smooth Hilbert
spaces then certain perturbed operators will do the same. To put it differently: All perturbed
operators when "substituted" into a suitable fixed unbounded function lead to closed opera­
tors which all have the same domain.
Such a procedure leads in a straight forward way to long lists of Riesz bases for e.g. the
spaces of analytic functions that we discussed in the Applications I-IV in Section 2.
In this final section we carry out such a program for the Jacobi operators which can be con­
sidered as perturbations of the Chebyshev operator.

Consider the general Jacobi differentiation operator

~ d d
A aJ3=-(l-x2

) dx2 +(o+,8+2)x dx-(,8-o) dx ' o,,8eC, fixed.

In the special case 0,,8 e IR, a > -1, ,8 > -1, the differentiation operator Aa J3 can be
regarded as a self-adjoint operator in X aJ3 = L2([-1, 1], (1- x)a (1 + x)J3 dx). In this special
case for the eigenfunctions we take the normalized (in X a J3) Jacobi polynomials

RaJ3 = ..aJ3 paJ3
n "'n n .

The explicit expression for the normalizing coefficient K.:J3 is mentioned in [GE], one has

Special cases are the normalized Chebyshev polynomials of the first and second kind: In a
local convention we have

1

.n!·!(cos 9) = (~)2 sin(~+ 1)9 , n e INo .
7r sm 9

Next, let K = Aa J3 denote the matrix of Aa ,6, a e C, ,8 e C, with respect to the basis
(Tn)::o in the space of all polynomials.
In [GE] we showed that K mn = (Aa,6Tm,TnLl_!' K nn = n(n + 0+,8 + 1) and IKmnl ~

2' 2

(21,8 - 01 + 10+,8 + 1.1) n. Note that this matrix satisfies the conditions (i) and (ii) of Theorem
3.2.
The matrix Sa,6 e UTM is defined by

s;J AaJ3 Sa,6 = diag( ... , n(n + a +,8 + 1), ...) .
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Via the transition matrix So./3 we construct the polynomial basis (~/3):,,0 from the Cheby­
shev basis (Tn):"o' If a> -1, fJ> -1, we have T:/3 = r::/3 R:,/3 where the sequences (r::/3)~=o

and «r::t3)-l ):=0 are bounded.
Now we are in a position to extend the results of Application II in Section 2.

APPLICATION V. (sequel to Applications II)
First we fix some notations.

!(m-') !
For all a> -1, fJ > -1, mE INo, 8 > 0, t > °we consider the domain D(A~/3 exp t A~(3)

ofthe selfadjoint operator A!~m-6) exp t A!/3 in Xo./3 = L2([0, 1] (1 - x)o. (1 +x)/3 dx). Note
that the sequence J.I, = (JLn)::o of eigenvalues of this operator is given by

([n(n + a + fJ + l)]Hm-') exp t [n(n + a + fJ + l)]t):'=o .

Note also that for fixed m, (J, t the quotient of two such sequences (for different pairs (a, fJ»
is always bounded. As a corollary of the general theory in Section 3 we obtain

THEOREM 4.1 (Cf. [Sz] Thm 9.1.1)
Let f E A([-l, 1]). For a,fJ E C, K E K" expand

00 co

f(x) =:E a~/3T:t3(x) =:E a~T~(x).
n=O n=O

1 1

Denote a~2'-2 = an' Let m E INo, (J > 0, T > O. The following nine conditions are
equivalent.

• f E A 2 (ET;w6,m)

• (n(m-') enT an)~=o E 12

• f E A(ET) and fl8ET E Hm-'(8ET).

• 30.EC 3t3EC (n(m-') enT a::(3):"o E 12

• Vo.EC V/3EC (n(m-6) enT a~(3):=o E 12

• 30.>-1 3/3>-1 f E D(A!~m-') exp T A:(3)

• Vo.>-l V/3>-l f E D(A!~m-') exp T A!t3)

• 3K E K, (n(m-') enT a~)::o E 12

• VK E K, (n(m-') enT a~)::o E 12 , o

Note that it is an interesting problem to look for other "known" polynomials which correspond
to eigenvectors of a matrix K E K,.
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