

Calculating the Warshall/Floyd path algorithm

Citation for published version (APA):
Backhouse, R. C. (1992). Calculating the Warshall/Floyd path algorithm. (Computing science notes; Vol. 9209).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/ae9874b4-19f7-4c20-b013-576a4b61f592

Eindhoven University of Technology

Department of Mathematics and Computing Science

Calculating the Warshall/Floyd
Path Algorithm

by

Roland C. Backhouse

Computing Science Note 92/09
Eindhoven, May 1992

92/09

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

CALCULATING THE
WARSHALL/FLOYD PATH

ALGORITHM

Roland C. Backhouse
Department of Mathematics and Computing Science,

Eindhoven University of Technology,
P.O. Box 513,

5600 NIB Eindhoven,
The Netherlands.

lVlay 18, 1992

Abstract

A calculational derivation is given of an all· pairs path algorithm
two instances of which are Warshall's reach ability algorithm and Floyd's
shortest-path algorithm. The derivation provides an elementary ex­
ample of the importance of the so-called star-decomposition rule.

1 Algebraic Framework

This paper presents a calculational derivation of an all-pairs path algorithm,
two well-known instances of which a.re Warshall's (reachability) algorithm
and Floyd's shortest-path algorithm. The calculations presented here are
essentially the same as those in [1, 2]. The presentation has been brought
up-to-date in that explicit rather than implicit use is made of invariant prop­
erties. Moreover notational refinements enhance the clarity of the derivation.

Like [1, 2] the framework for the current derivation is regular algebra.
The axioms of regular a.lgebra - the a.lgebra of regula.r languages - are
now widely known a.nd publicised. (See e.g. [6, 4].) The fact that the
elementa.ry operators involved in several path-finding algorithms obey the
a.xioms of regular algebra. is also widely known and this knowledge will be
assumed.

The specific details of the framework are that (S, +,·,*,0,1) is a regular
algebra. That is, S is a set on which are defined two binary operators + and·
and one unary operator' (written as a postfix of its argument). Addition (+)
is associative, commutative and idempotent. Multiplication (-) distributes
over addition and is associat.ive but is not necessarily commutative. The
basic properties of ' that we use here are, for all a, b E S :

(1) a . =1+(1'(1 *

(2) a . (b . a)* = (a W . a

(3) (a + b r = (a' . br * . a

(4) 1* = 1

Rule (2) will be referred to as the "leapfrog rule" whilst rule (:3) will be called
the "sta.r-decomposition rule." The main conl.ribution made by Backhouse
and Carl'(; [2] was 1.0 sholl' that. these four rules are at t.he heart of sev­
eral elimination t.echniques for solving shortest-path and other path-finding
problems. This paper provides the Illost elementary instance of this thesis.
Backhouse and van Gasteren [:3] have recently shown how a class of algo­
rithms that includes Dijkstra's shortest-path algorithm [7] can be derived
from these four rules. That deriva.tion is longer tha.n the one here since the

underlying assumptions are more complicated (and the algorithm is more ef­
ficient). The current paper can thus be viewed as an elementary introduction
to the principal ideas.

An important theorem that we exploit is that if (S, +,·:,0,1) is a
regular algebra then so too is (A1N(S), +,·:,0,1) where j\!tN(S) is the set
of N x N matrices whose elements are drawn from S. In proving this theorem
appropriate definitions must be given of matrix addition, multiplication and
star, and of t.he null and identity mat.rices 0 and 1. For the first. two the usual
definitions of mat.rix addition and multiplication are taken; for the last two:
o is the N x IV matrix all of whose entries are 0 and the identity matrix
is a 0-1 matrix that is everywhere 0 but for its diagonal elements (which are
all 1). It is not so easy to explain the definition of A', for matrix A, in a few
words. Appropriate definitions are given in [1,4]. The former also includes a
proof of the theorem. A proof has also recently been published by Kozen [8].
(As remarked by Kozen the proof of the theorem is an elementary exercise,
although it does not appear explicitly in any of the standard references.)

With these preliminal'ies we can now proceed to the task at hand. Given
is a matrix A E MN(S) and required is to derive an algorithm to compute
A+ = A . A'. By an "algorithm" we mean an (imperative) program in
which in no assignment or test is the star operator applied to a matrix.
(A pplication of star to matrix elements is however allowed.) The matrix A +
is called the transitive closure of A.

The heuristic underlying the algorithm is to use the star-decomposition
rule to reduce the given matrix A to the null matrix by successively nullifying
columns of the matrix. In order to express this formally we need to introduce
some aclclitional notation. Specifically, for all integers k, O:S; k < N we
define .A: to be a IV x 1 matrix (i.e. a column vector) that is everywhere
o but for its Hh entry which is 1. ('I'Ve index rows and columns beginning at
index 0.) The notation k. is llsed for the transJlose of .k, that is a 1 x IV
matrix (a row vector) whose only non-null entry is the Hh. We also define
[k] to be the (mat.rix) product ,k· hand [2: k] to be the sum of [i]
over all i in the range k:S; i < N .

The specific properties that we assume of these expressions are as follows.
First, by definition,

(5) [k] = • k . h

2

Second, by range splitting on the sUnImation defining [2: k] , for all k < N ,

(6) [2: k] = [k] + [2: (k + 1)]

Third, [2: N] is an empty summation. Thus

(7) [2: N] = 0

Fourth, [2: 0] is the identity miltrix:

(8) [2:0]=1

Finally, becil.use it is a criterion for deciding when we have an algorithm we
remark that, for all .IV x N matrices)(,i e . X . ej is the (i,j)th element
of X.

2 First Steps

We begin our calculation by noting that. [2: k] . X , for N x N matrix X,
is a copy of X but. for its first k columns which are all null. Let us consider
the expression ([2: k] . Xl" for k < IV . We ha.ve:

([2: A] . X r
{ k < iV, (6) and distributivity }

([kJ . X + [2: (k+ 1)] . Xt
{ star decolllposition }

([k] . X)" . ([2: (k + 1)] . X . ([k] . X)"),

This little calculation is interesting because the pa.ttern ([2: i] . Y)* recurs
in the first and last lines. In the first line i is just k and Y is X. In the last
line i is k + 1 and Y is);' . ([A'J . X), . It invites us to seek a particularly
simple recurrence. Let us introduce the function .M defined by

(9) 1\1(X,k) = X . ([2: kJ . Xl'

Then, for k < N we have:

M(X,k)
{ definition and above calculation }

X . ([kJ . Xl' . ([2: (k + I)J . X . ([k] . X)")"
{ definition }

1\1 (.x,.' . ([k] . X)', k + 1)

:l

Noting also that

and

M(X,O)
{ (8), definition }

X . (1 . Xl'
{ 1 is the unit of multiplication, definition }

X+

M(X,N)
{ definition, (7) }

)((0· Xl'
= { 0 is zero of multiplication, 0* = {(I)} 1 }

X

we have established the correctness of the following algorithm to compute
A+:

{A+ = M(A,O)}
X,k := A,O

{Invariant: A+
do k # N ---> X, k .-

M(X,N) }
X}

M(X, k) }
X . ([k)· Xl', k+l

3 The Algorithm

There is one more step to be t.aken before we have a.n algorithm in which
* is applied only to elements and not to matrices. VVe take the expression
X· ([k) . X)* and rewrite it lIsing (5).

X . ([I.,] . X)*
{ (1) }

X . 1 +),:" . [1.:) . X . ([k))()*
= { X· 1 = X, (.5) }

X + X . • 1., . k • . X . (.1., . k • . Xl'

4

{ leapfrog rule: (2) }
X + X . • k . (h' • . X . • k)* . k • . X

As remarked earlier k.· .\' ·.k is the (k, k)th element of X and since it
is the argument. of the only application of * we have obtained our algorithm:

{ A+ M(A,O) }
X,k .- A,O

{Invariant.: A+ M(X, k) }
dol" =F N ----;

X, k := X + X .k· (k • . X . • k)* . I.e •. X, k + 1
od

{A+ M(X,N)}
{A+ = X}

4 Implementation Freedom

The algorithm we have obtained is not quite Warshall's algorithm or Floyd's
algorithm (even aft.er suitable interpretation of the operators). The reason is
that at element level the assignment in the body of the loop is a simultaneous
assignment to all matrix elements. Spelling this out in detail, the matrix
assignment

is directly implement.ed as t.he simult.aneolls assignment

simultaneously_for i := 0 to N -] and j := 0 to N - 1 do
i.·X .• j :=

i.·X .• j + i. ·)(·.k· Ua·X· .I.e)*. k.·X .• j

(Writing i •. X .• j conventionally as l'ij this takes on the more familiar
appearance:

simultaneously_for i := 0 to N - 1 and j '- 0 to N - 1 do

Xij := :Ci,1 + Xik . (xkd * . J'kJ

.5

But, of course, the problem of the simultaneous assignment remains.)
Exploitation of the, as yet unused, idempotency of addition and star,

however, gives unlimited freedom in the order in which the matrix elements
are assigned. They may be assigned sequentially as in Warshall's and Floyd's
algorithms, or completely in parallel!

To explain why this is so consider t.he function

(10) X f-> X + X . • k . (k. ·.Y . • kr . k • . X

which, as we know, is equal to the function

(11) X f-> X . ([k] . Xl"

Let this function be called r The body of the loop is then the assignment

X, k := rX, k + 1

Forget the matrix structure of X and just regard X as the name of the set
of variables {i, j: O:S i, j < N: i.·){ .• j} . Then the fact that the
elements of the set may be assigned in an a.rbitra,·y order rests on three key
properties of the function:

(a) J is idempotent,

(b) X :s rX,

(c) J is monotone non-decreasing in each of its arguments.

The verification of the idem potency of f proceeds as follows:

r(f. X)
= {(II)}

X ([A']' X)* . ([kJ .)(([k]·)n*)*
{ M = (1 + 0)* }

X ([k]· X)* (I + [kJ X· ([k] . X)*)*
= { (1) }

X ([k]. X)* ([k]. X)**
{ <1** = 0* and 0* = 0* . 0* }

X ([k]· X)*
{ (11) }

6

Property (b) is immediate from (10), and (c) follows from the monotonicity
of addition, multiplication and star.

The claim that. the combination of these three properties permits the
conversion of the simultancous assignmcnt to a parallel assigment mayor
may not be well known. (It. is not well known among colleagues to whom I
have spoken.) Its proof is remarkably simple and is given in the appendix.

This concludes the derivation of the Warshall/Floyd algorithm. Note that
the total calculation (including the discussion of implementation freedom)
takes roughly twenty elementa.ry steps which is about what it should be for
such a compact algorithm.

References

[1] R. C. Backhouse. Closure algorithlll., and the star-height problem of regular
languages. PhD thesis, University of London, 197.5.

[2] R.C. Backhouse and B.A. Carre. Regular algebra applied to path-finding
problems. Jou1'lUlI of the Institute of Mathematics and its Applications,
15:161-186, 1975.

[3] Roland Backhouse and A.J.M. van Gasteren. Calculating a path algo­
rithm. Submitted for publication, 1992.

[4] B.A. Carre. Graph., and Networks. Oxford University Press, 1979.

[5] P. Chisholm. Calcula.tion by computer. In Third International Work­
shop Softwm'e Engineering and its Applications, pages 713-728, Toulouse,
France, December :3-7 1990. EC2.

[6] J.H. Conway. Regular algebra and finite machines. Chapman and Hall,
London, 1971.

[7] E.\I\'. Dijkstra. A note on two problems in connexion with graphs. Nu­
merische Mnthem.a!.ik, 1:269-271, 19.59.

[8] Dexter Kozen. A completeness theorem for kleene algebras and the al­
gebra of regular events. In Proc. 6th Annual IEEE Symp. on Logic zn
Computer Science, pages 214-225. IEEE Society Press, 1991.

7

Appendix

Let X be a finite set of variables and suppose the type of each of the variables
is a set ordered by the (partial) relation :S. Suppose f is an endofunction on
the domain of X satisfying the properties:

(a) f is idempotent,

(b) V(X:: X:S f.X),

(c) f is monotone non-decreasing in each of its arguments.

Then the a.ssignment

X := f..x.:

is equivalent to the assignment

parfor x E)(do a' := fx.X

The proof is by induction on the size of X. The basis is of course trivial.
For the induction step the following lemma suffices.

Lelnn1a 12 Let EB and @ be bina.ry operators such that

(a) xEBy (a'EBv)EB(x@y)
x@1I (a'EBy)@(x@y)
(I.e. the function (a"y f-> a'EBy,x@y) is idempotent.)

(b) x:S.'1: EB 11
y:S a'@y

(c) Both EB and @ are monotone in both their arguments.

Then the simultaneous assignment

:r,Y := XEBY,l'@y

can be implemented by the sequential assignment

x .- :1'ffiy
11 .- x,':!J 11

s

or by the sequential assignment

y .- xO y
:): a: El!1J

Proof We have to show that

(13) (x61y)@y = x@y

and

(14) x61(x@y) = x61y

The first is proved as follows:

.1: @y
< { (b) and (c) }

(x61y)0y
< { (b) and (c) }

(x61y)0(x@y)

Hence, by (a),

x0y = (:r61y)0y

The second identity is proved similarly.
o

Acknow ledgements

Thanks go to Wirn Feijen, Joop van den Eijnde and Lambert Meertens for
their critical comments and suggestions for improvement.

Prepa.ration of the report lVas expedited by the use of the proof editor
developed by Paul Chisholm [.5].

9

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.HL.Aarts
A.E.Eiben
KM. van Hee

89/9 KM. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A. T .M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
KM. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
KM. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J .A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.I.I.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networlcs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theoty, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p. 23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A. C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
1. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
lIif ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een ovelZicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.I.I.M. Marcells

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 I. Coenen
W.-P. de Roever
I.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.l. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
G.l. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 I.C.M. Baeten
F.W. Vaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
J.S.C.P.v.d.Woude

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/F1oyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

	Abstract
	1. Algebraic Framework
	2. First steps
	3. The Algorithm
	4. Implementation Freedom
	References
	Appendix
	Acknowledgements

