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Abstract 

A calculational derivation is given of an all· pairs path algorithm 
two instances of which are Warshall's reach ability algorithm and Floyd's 
shortest-path algorithm. The derivation provides an elementary ex­
ample of the importance of the so-called star-decomposition rule. 



1 Algebraic Framework 

This paper presents a calculational derivation of an all-pairs path algorithm, 
two well-known instances of which a.re Warshall's (reachability) algorithm 
and Floyd's shortest-path algorithm. The calculations presented here are 
essentially the same as those in [1, 2]. The presentation has been brought 
up-to-date in that explicit rather than implicit use is made of invariant prop­
erties. Moreover notational refinements enhance the clarity of the derivation. 

Like [1, 2] the framework for the current derivation is regular algebra. 
The axioms of regular a.lgebra - the a.lgebra of regula.r languages - are 
now widely known a.nd publicised. (See e.g. [6, 4].) The fact that the 
elementa.ry operators involved in several path-finding algorithms obey the 
a.xioms of regular algebra. is also widely known and this knowledge will be 
assumed. 

The specific details of the framework are that (S, +,·,*,0,1) is a regular 
algebra. That is, S is a set on which are defined two binary operators + and· 
and one unary operator' (written as a postfix of its argument). Addition (+) 
is associative, commutative and idempotent. Multiplication (-) distributes 
over addition and is associat.ive but is not necessarily commutative. The 
basic properties of ' that we use here are, for all a, b E S : 

(1) a . =1+(1'(1 * 

(2) a . (b . a)* = (a W . a 

(3) (a + b r = (a' . br * . a 

(4) 1* = 1 

Rule (2) will be referred to as the "leapfrog rule" whilst rule (:3) will be called 
the "sta.r-decomposition rule." The main conl.ribution made by Backhouse 
and Carl'(; [2] was 1.0 sholl' that. these four rules are at t.he heart of sev­
eral elimination t.echniques for solving shortest-path and other path-finding 
problems. This paper provides the Illost elementary instance of this thesis. 
Backhouse and van Gasteren [:3] have recently shown how a class of algo­
rithms that includes Dijkstra's shortest-path algorithm [7] can be derived 
from these four rules. That deriva.tion is longer tha.n the one here since the 



underlying assumptions are more complicated (and the algorithm is more ef­
ficient). The current paper can thus be viewed as an elementary introduction 
to the principal ideas. 

An important theorem that we exploit is that if (S, +,·:,0,1) is a 
regular algebra then so too is (A1N(S), +,·:,0,1) where j\!tN(S) is the set 
of N x N matrices whose elements are drawn from S. In proving this theorem 
appropriate definitions must be given of matrix addition, multiplication and 
star, and of t.he null and identity mat.rices 0 and 1. For the first. two the usual 
definitions of mat.rix addition and multiplication are taken; for the last two: 
o is the N x IV matrix all of whose entries are 0 and the identity matrix 
is a 0-1 matrix that is everywhere 0 but for its diagonal elements (which are 
all 1). It is not so easy to explain the definition of A', for matrix A, in a few 
words. Appropriate definitions are given in [1,4]. The former also includes a 
proof of the theorem. A proof has also recently been published by Kozen [8]. 
(As remarked by Kozen the proof of the theorem is an elementary exercise, 
although it does not appear explicitly in any of the standard references.) 

With these preliminal'ies we can now proceed to the task at hand. Given 
is a matrix A E MN(S) and required is to derive an algorithm to compute 
A+ = A . A'. By an "algorithm" we mean an (imperative) program in 
which in no assignment or test is the star operator applied to a matrix. 
(A pplication of star to matrix elements is however allowed.) The matrix A + 
is called the transitive closure of A. 

The heuristic underlying the algorithm is to use the star-decomposition 
rule to reduce the given matrix A to the null matrix by successively nullifying 
columns of the matrix. In order to express this formally we need to introduce 
some aclclitional notation. Specifically, for all integers k, O:S; k < N we 
define .A: to be a IV x 1 matrix (i.e. a column vector) that is everywhere 
o but for its Hh entry which is 1. ('I'Ve index rows and columns beginning at 
index 0.) The notation k. is llsed for the transJlose of .k, that is a 1 x IV 
matrix (a row vector) whose only non-null entry is the Hh. We also define 
[k] to be the (mat.rix) product ,k· hand [2: k] to be the sum of [i] 
over all i in the range k:S; i < N . 

The specific properties that we assume of these expressions are as follows. 
First, by definition, 

(5) [k] = • k . h 
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Second, by range splitting on the sUnImation defining [2: k] , for all k < N , 

(6) [2: k] = [k] + [2: (k + 1)] 

Third, [2: N] is an empty summation. Thus 

(7) [2: N] = 0 

Fourth, [2: 0] is the identity miltrix: 

(8) [2:0]=1 

Finally, becil.use it is a criterion for deciding when we have an algorithm we 
remark that, for all .IV x N matrices )(,i e . X . ej is the (i,j)th element 
of X. 

2 First Steps 

We begin our calculation by noting that. [2: k] . X , for N x N matrix X, 
is a copy of X but. for its first k columns which are all null. Let us consider 
the expression ([2: k] . Xl" for k < IV . We ha.ve: 

([2: A] . X r 
{ k < iV, (6) and distributivity } 

([kJ . X + [2: (k+ 1)] . Xt 
{ star decolllposition } 

([k] . X)" . ([2: (k + 1)] . X . ([k] . X)"), 

This little calculation is interesting because the pa.ttern ([2: i] . Y)* recurs 
in the first and last lines. In the first line i is just k and Y is X. In the last 
line i is k + 1 and Y is );' . ([A'J . X), . It invites us to seek a particularly 
simple recurrence. Let us introduce the function .M defined by 

(9) 1\1(X,k) = X . ([2: kJ . Xl' 

Then, for k < N we have: 

M(X,k) 
{ definition and above calculation } 

X . ([kJ . Xl' . ([2: (k + I)J . X . ([k] . X)")" 
{ definition } 

1\1 (.x,.' . ([k] . X)', k + 1) 

:l 



Noting also that 

and 

M(X,O) 
{ (8), definition } 

X . (1 . Xl' 
{ 1 is the unit of multiplication, definition } 

X+ 

M(X,N) 
{ definition, (7) } 

)( (0· Xl' 
= { 0 is zero of multiplication, 0* = {(I)} 1 } 

X 

we have established the correctness of the following algorithm to compute 
A+: 

{A+ = M(A,O)} 
X,k := A,O 

{Invariant: A+ 
do k # N ---> X, k .-

M(X,N) } 
X} 

M(X, k) } 
X . ([k)· Xl', k+l 

3 The Algorithm 

There is one more step to be t.aken before we have a.n algorithm in which 
* is applied only to elements and not to matrices. VVe take the expression 
X· ([k) . X)* and rewrite it lIsing (5). 

X . ([I.,] . X)* 
{ (1) } 

X . 1 + ),:" . [1.:) . X . ([k) )()* 
= { X· 1 = X, (.5) } 

X + X . • 1., . k • . X . (.1., . k • . Xl' 
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{ leapfrog rule: (2) } 
X + X . • k . (h' • . X . • k)* . k • . X 

As remarked earlier k.· .\' ·.k is the (k, k)th element of X and since it 
is the argument. of the only application of * we have obtained our algorithm: 

{ A+ M(A,O) } 
X,k .- A,O 

{Invariant.: A+ M(X, k) } 
dol" =F N ----; 

X, k := X + X .k· (k • . X . • k)* . I.e •. X, k + 1 
od 

{A+ M(X,N)} 
{A+ = X} 

4 Implementation Freedom 

The algorithm we have obtained is not quite Warshall's algorithm or Floyd's 
algorithm (even aft.er suitable interpretation of the operators). The reason is 
that at element level the assignment in the body of the loop is a simultaneous 
assignment to all matrix elements. Spelling this out in detail, the matrix 
assignment 

is directly implement.ed as t.he simult.aneolls assignment 

simultaneously_for i := 0 to N - ] and j := 0 to N - 1 do 
i.·X .• j := 

i.·X .• j + i. ·)(·.k· Ua·X· .I.e)*. k.·X .• j 

(Writing i •. X .• j conventionally as l'ij this takes on the more familiar 
appearance: 

simultaneously_for i := 0 to N - 1 and j '- 0 to N - 1 do 

Xij := :Ci,1 + Xik . (xkd * . J'kJ 

.5 



But, of course, the problem of the simultaneous assignment remains.) 
Exploitation of the, as yet unused, idempotency of addition and star, 

however, gives unlimited freedom in the order in which the matrix elements 
are assigned. They may be assigned sequentially as in Warshall's and Floyd's 
algorithms, or completely in parallel! 

To explain why this is so consider t.he function 

(10) X f-> X + X . • k . (k. ·.Y . • kr . k • . X 

which, as we know, is equal to the function 

(11) X f-> X . ([k] . Xl" 

Let this function be called r The body of the loop is then the assignment 

X, k := rX, k + 1 

Forget the matrix structure of X and just regard X as the name of the set 
of variables {i, j: O:S i, j < N: i.·){ .• j} . Then the fact that the 
elements of the set may be assigned in an a.rbitra,·y order rests on three key 
properties of the function: 

(a) J is idempotent, 

(b) X :s rX, 

(c) J is monotone non-decreasing in each of its arguments. 

The verification of the idem potency of f proceeds as follows: 

r(f. X ) 
= {(II)} 

X ([A']' X)* . ([kJ .)( ([k]· )n*)* 
{ M = (1 + 0)* } 

X ([k]· X)* (I + [kJ X· ([k] . X)*)* 
= { (1) } 

X ([k]. X)* ([k]. X)** 
{ <1** = 0* and 0* = 0* . 0* } 

X ([k]· X)* 
{ (11) } 
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Property (b) is immediate from (10), and (c) follows from the monotonicity 
of addition, multiplication and star. 

The claim that. the combination of these three properties permits the 
conversion of the simultancous assignmcnt to a parallel assigment mayor 
may not be well known. (It. is not well known among colleagues to whom I 
have spoken.) Its proof is remarkably simple and is given in the appendix. 

This concludes the derivation of the Warshall/Floyd algorithm. Note that 
the total calculation (including the discussion of implementation freedom) 
takes roughly twenty elementa.ry steps which is about what it should be for 
such a compact algorithm. 
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Appendix 

Let X be a finite set of variables and suppose the type of each of the variables 
is a set ordered by the (partial) relation :S. Suppose f is an endofunction on 
the domain of X satisfying the properties: 

(a) f is idempotent, 

(b) V(X:: X:S f.X), 

(c) f is monotone non-decreasing in each of its arguments. 

Then the a.ssignment 

X := f..x.: 

is equivalent to the assignment 

parfor x E )( do a' := fx.X 

The proof is by induction on the size of X. The basis is of course trivial. 
For the induction step the following lemma suffices. 

Lelnn1a 12 Let EB and @ be bina.ry operators such that 

(a) xEBy (a'EBv)EB(x@y) 
x@1I (a'EBy)@(x@y) 
(I.e. the function (a"y f-> a'EBy,x@y) is idempotent.) 

(b) x:S.'1: EB 11 
y:S a'@y 

(c) Both EB and @ are monotone in both their arguments. 

Then the simultaneous assignment 

:r,Y := XEBY,l'@y 

can be implemented by the sequential assignment 

x .- :1'ffiy 
11 .- x,':!J 11 

s 



or by the sequential assignment 

y .- xO y 
:): a: El!1J 

Proof We have to show that 

(13) (x61y)@y = x@y 

and 

(14) x61(x@y) = x61y 

The first is proved as follows: 

.1: @y 
< { (b) and (c) } 

(x61y)0y 
< { (b) and (c) } 

(x61y)0(x@y) 

Hence, by (a), 

x0y = (:r61y)0y 

The second identity is proved similarly. 
o 
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