

Lambda calculus extended with segments

Citation for published version (APA):
Balsters, H. (1986). Lambda calculus extended with segments. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR242825

DOI:
10.6100/IR242825

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR242825
https://doi.org/10.6100/IR242825
https://research.tue.nl/en/publications/9e208de3-6ff6-4ee2-9152-6dabba24f462

LAMBDA CALCULUS

EXTENDED WITH SEGMENTS

H.BALSTERS

LAMBDA CALCULUS EXTENDED WITH SEGMENTS

LAMBDA CALCULUS
EXTENDED WITH SEGMENTS

PROEFSCHRIFf

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF. DR. F. N. HOOGE, VOOR EEN
COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

DINSDAG 4 MAART 1986 TE 16.00 UUR.

DOOR

HARMANNUS BALSTERS

GEBOREN TE GRONINGEN

Druk: Disserlatiedrukl<eril Wibro, Helmond.

Dit proef schrift is goedgekeurd

door de promotoren

Prof.dr. N.G. de Bruijn

en

Prof.dr. W. Peremans

CONTENTS

1. Introduction

1.1. An informal introduction to the Ao-system

1.1.1. The system AV

1.1.2. Beta-reduction

1.1.3. Name-free notation

1.1.4. Segments and abbreviations

1.1.5. Segment variables and substitution

1.1.6. Name-free notation for segments and

segment variables

1.2. An introduction to the typed system ATo

1.3. Reduction and related properties

2. Basic notions and results

2.1. Sequences

2.2. Language definition of the formal system AO

2.3. Reference mappings

2.4. Informal discussion of Definitions 2.9 and 2.10

2.5. Beta-reduction and substitution

2.6. The permutation condition (PC)

2

2

3

5

8

9

16

19

34

40

40

41

44

47

51

66

3. The Church-Rosser theorem for the type free Ao-calculus 73

3.1. Restricted reduction and the weak Church-Rosser

property

3.2. The strong normalization property for +a,
3.3. The Church-Rosser property for

4. The closure property for the typed system ATcr

References

Index of Definitions

Samenvatting

Curriculum vitae

73

93

111

116

125

126

128

129

1. INTRODUCTION

The A-calculus is concerned with axiomatizing the mathematical concept

of function and the rules governing the application of functions to

values of their arguments. In the A-calculus a function is seen as a

rule for calculating values; this is a view which differs from the one

held in set theory, where a function is to be a set of ordered pairs

and is identified with its graph. In axiomatizing the concepts of func

tion and application we define (i) a syntax, consisting of a set of

grammar rules, and (ii) inference rules. The A-calculus to be described

in this section, called ACT, is an extension of the ordinary type free

A-calculus (cf. Barendregt [81]) and was originally conceived by N.G.

de Bruijn (cf. de Bruijn[78b]). The main feature of ACT is the incor-

poration of a new class of terms called segments. These segments were

originally devised in order to provide for certain abbreviational fa

cilities in the mathematical language AUTOMATH. AUTOMATH is a typed

A-calculus in which it is possible to code mathematical texts in such

a way that the correctness of each proof written in AUTOMATH can be

verified mechanically (i.e. by a computer). There is much to say about

the AUTOMATH system, much more than the topic of this thesis aims to

cover. We shall mainly treat ACT as an interesting extension of the A

calculus in its own right and not pay very much attention to connections

with AUTOMATH. This thesis will be a rather technical treatise of the

syntax and axiomatics of ACT-theory. For an introduction to the AUTOMATH

project we refer to de Bruijn [80] and Jutting [81]; the latter paper

offers an excellent introduction to a fundamental AUTOMATH-language

called AUT-68. For a detailed treatise of the language theory of the

AUTOMATH-languages we refer to van Daalen [80].

This introduction consists of three sub-sections. In Section 1.1 we

shall give an informal description of the ACT-system and pinpoint major

differences with ordinary type free A-calculus (for a very complete

and up-to-date description of type free A-calculus we refer to Baren

dregt [81]). Section 1.2 contains an informal description of the ATCT

system (ACT extended with types). The types in ATCT are an extension of

the types in Church's Theory of simple types (cf. Church [40]), the

extension being that simple types are constructed for segments and

segment variables. Section 1.3, titled "Reduction and related proper-

ties", differs from Sections 1.1 and 1. 2 in that it is completely for

mal. We have included this formal section in our introduction because

it provides an abstract framework in which reduction can be discussed

for term-rewriting systems in general.

I.I. An informal introduction to the Ao-system

In this section we shall give an informal description of a system called

AO. We shall offer some explanation for the motivation behind the system

and show in which way AO is an actual extension of ordinary type free

A-calculus. We start with a Simple system called AV.

I.1.1. The system AV

The system AV is the well-known type free A-calculus as described in

Barendregt [81], although there are some slight deviations in notation.

Type free A-calculus has formulas like

xy

A • (A • xy)
x y

(A • (A • xy)) (z) x y

~he corresponding formulas in AV are written as

oyx

Ax oyx.

A A oyx x y

oz A A oyx x y

(1)

(2)

(3)

(4)

(1')

(2.)

(3')

(4')

In AV functional abstraction is denoted by Ax(•••) (i.e. the function

that assigns (•..)to the variable x, where x may occur in(.••)), and

'unctional application is denoted by OAB (i.e. the function B applied

to its argument A, where A and Bare AV-terms). Note that in AV argu

ments are written in front of functions, this in contrast with ordinary

cype free A-calculus where application of a function B to its argument

2

A is usually written as B(A). The syntax of Vis very simple and is

given below.

(1) AV-terms are words over the following alphabet

variables

abstractor

applicator

(2) The set of AV-terms is the smallest set X satisfying

(i) X E X for every variable x

(ii) A E X "'°' AXA E X, for every variable x

(iii) A,B E X .. oAB E X D

As will be clear, AV-terms are written in prefix notation: each vari-

able has arity 0, each abstractor Ax has arity and the applicator o

has arity 2. Each term can be represented as a rooted tree. As an

example we consider the term

oz A A oyx x y

which we write in tree form as

/y
- 0 - x

(4')

(4")

The correspondence between terms like (4') and trees like (4") is one

to-one. It certainly helps to think of AV-terms as such trees, and in

particular to see operations on terms as operations on their corres

ponding trees; especially when long terms are involved it is often use

ful to consider tree representations of terms.

1.1.2. Beta-reduction

In A-calculus we have the fundamental notion of application. The appli

cation of a function B to an argument A is written as oAB. Apart from

functional application we have the notion of functional abstraction. As

said before, the intu:ltive meaning of Ax(•••) is "the function that

assigns (•••) to the variable x". This is illustrated in the following

3

example (not a AV-term by the way)

o 3 A (2 • x + 1) = 2 • 3 + 1
x

i.e. , we substitute the number 3 for the variable x in 2 • x + 1. A for

mula of the form o A A B is called a rede:i;. Substitution of A for the x
free occurrences of x in Bis denoted by Ex(A,B). The transition from

o A A B to E (A,B) is called (3-reduation. We now proceed by giving a
x x

more formal description of substitution.

We recall that an occurrence of a variable x in a term A is called

bound in A if this occurrence of x lies in the scope of some abstrac

tor Ax in A; otherwise this occurrence of x is called free in A. Note

that a variable can occur both free and bound in the same term; as an

example consider the two occurrences of the variable x in the following

term written in tree form

Definition 1.1.2.

If A is a term and x is a variable and y is a variable with y ~ x then

we define Ex(A,B) inductively for terms B by

(1) Ex(A,x)

Ex(A,y)

(3) 1.: (A,A C)
x y

(4) E (A,oCD)
x

A

y

A C
x

A (A,C)
y

A E (A,C') ,
z x

if x does not occur free in c, or:

y does not occur free in A

otherwise - where c• is obtained by

renaming of all free occurrences of

y in C by some variable z which does

not occur free in A,C.

D

Most of the four clauses in the definition given above are self-evident,

with the possible exception of clause (3). Clause (3) is necessary in

order to avoid that free occurrences of the variable y in A get bound

by the Ay of Ay C after substitution, which would otherwise lead to

4

inconsistencies. This renaming of bound variables is known as a.-redua

tion. In our case it is said that ;I, C a.-reduaes to ;I, C'. Usually a.-y z
reduction is considered unessential. If a-reduction transforms a term

A into A' then A and A' are considered to be equivalent in an infor

mal way. This convention implies that the name of a bound variable is

unessential; the "meaning" of a term is considered unaltered after per

forming an a-reduction on that term. Actually, in the definition of

substitution given above, clause (3) does not introduce a proper term

but rather an a-equivalence class of terms.

1.1.3. Name-free notation

Renaming of bound variables can sometimes be very cumbersome; proofs

involving a-reduction are notoriously tedious. But apart from this we

have our own intrinsic reasons to avoid a-reduction. Later on we shall

introduc.e the full ;1,cr-system, an extension of ;1,V. The main feature of

;1,cr is the incorporation of a new class of terms called segments. Seg

ments are discussed in Section 1.1.4. Substitution of segments for

their corresponding variables can give rise to a large number of a.

reductions, especially when the formulas are long. There is, however,

a very simple way to avoid a-reduction. In de Bruijn [72], N.G. de

Bruijn introduced the concept of nameless dummies; he invented a ;\

calculus notation that makes a-reduction superfluous. The idea is that

we just write ;I, instead of ;I, ,;\ , ••• and every variable is replaced by
x y

a term of the form ~(n), where n is some positive integer. Each ~(n) is

called a name-free val'iahle and n is called a referenae number. The

reference number n of a name-free variable ~(n) determines the ;I, that

binds a specific occurrence of ~(n) in some term. The procedure is as

follows. If the name-free variable ~(n) occurs in some term t, we first

form the tree representation of t. We then descend from ~(n) towards

the root of the tree and the n-th ;I, encountered is the ;I, that binds

~(n). As an example consider the following name-carrying term in tree

representation

;I,
x

5

The name-free equivalent of this term is

1 so> 1 s<l>
A A - 6 A - 6 - A - s(4)

Remark. If a reference number n is larger than the number of A's lying

on the path from an occurrence of s(n) to the root of the tree in which

it occurs then we can interpret that occurrence as being free.

The use of name-free notation has certain consequences for substitution

of As-terms (AV-terms written in name-free form), which we now shortly

describe. Substitution in a As-term t results in the replacement of

free occurrences of a certain variable in t by some term u. We could

also describe this situation in terms of trees by saying that certain

end-points s(n) of the tree equivalent t oft have been replaced by

some tree u. Consider the following example of such a substitution in

a 1's-tree.

Let t be the A~-term

which has the following tree-representation t

Is <2>

1 a-so>
A - A - 6 - A - A - A s(3)

This tree contains a redex, namely

Is (2)

1 a-sO>
6 - A - A A - s(3)

and we can therefore perform a a-reduction on f.. By a-reducing t, the end

point s{3) is a candidate for substitution of the sub-tree

Is <2>
6 - sO>

Should we, however, simply replace s(3) by this sub-tree, as would have

6

been the case if t had been written in name-carrying form, then this

would result in the following tree t'

I t;(2l

0 - 1;(1)

It is immediately clear that the variables 1;(1) and 1;(2) in £' refer

to completely different A's than int. This inconsistency is due to

the fact that

(i) l;(l) and 1;(2) are external references int (i.e., references to

A's to the left of the subterm o I; (2) I; (1)) ;

(ii) after replacement, the variables t(l) and ~(2) int' have two

extra A's on their left.

There is, however, a simple way to resolve this inconsistency: by

raising the reference numbers 1 and 2 in 1;(1) and 1;(2) by 2 int',

these variables refer to the same A'S that they originally referred

to in t. This example demonstrates that certain measures have to be

taken in order to ensure that external references remain intact when

we substitute a Al;-term. In Section 2, where we give a formal defini

tion of substitution of name-free terms, we shall introduce so-called

referenae mappings, which see to it that reference numbers are suita

bly updated in order to avoid inconsistencies as described above. We

refrain from further discussion of these reference mappings here; they

shall be described extensively, both informally and formally, in Sec

tion 2.

In the following sections of this chapter we shall first stick to

name-carrying notation of formulas. The major reason for this is to

point out that name-carrying notation can possibly be maintained in

Ao-calculus (AV-calculus extended with segments and segment varia

bles), but we also want to show how awkward things can get in AO-calculus

by employing name-carrying notation. In the case of AV-calculus the

name-free notation might seem exaggerated in preciseness, and we can

imagine reservations towards this notation as far as readability of

formulas is concerned. In the case of Ao-calculus we shall try to show

that the name-free notation has advantages over name-carrying notation,

both in preciseness and readability.

7

1.1.4. Segments and abbreviations

We may consider a variable as an abbreviation of a certain term if

this variable can be replaced by that term by means of some suitable

S-reduction. For example, consider the following term written in tree

form

I.
w

I "x - x I w

o I. - Ii - z
z

By S-reducing (5) we obtain the term

/w
I. - o - I. - x ,
w x

(5)

(5')

i.e. a term in which the variable z has been replaced by the term \xx

and the redex has vanished. If we would have more occurrences of the

variable z, each bound by the "z of the redex, then each of these

occurrences serves as a kind of abbreviation of the term I. x.
x

In \cr there are, however, still quite different things that we want to

abbreviate. One such thing is a so-called a-string like

(6)

If it occurs more than once in a certain term, we may wish to abbre

viate it. Yet (6) is not a term, in the sense of a \V-term, but only

part of a term; it becomes a \V-term if we place an arbitrary \V-term

behind it. such parts of \V-terms are called segments. Another example

of a segment is a so-called \-string like

I. - !. - I. x y z
(7)

In AUTOMATH we have many cases where we would like to abbreviate seg

ments. In this respect we mention an interesting AUTOMATH-language,

namely Nederpelt's language A (cf. Nederpelt [73]). The original idea

of introducing such a language as A stems from N.G. de Bruijn who de

vised a language called AUT-SL (from AUTOMATH-Single Line) in which

AUTOMATH texts can be represented as one single formula. The language

A was devised as a fundamental and simple AUTOMATH-language which is

very well suited for language-theoretical investigations. In typical

8

codings of AUTOMATH texts in A we encounter very many copies of certain

a-strings and A-strings, copies which we would like to abbreviate. As

a consequence, segments like a-strings and A-strings will be treated as

separate independent entities in AO. In AO we shall even take a broader

approach and allow for segments of a much more general form than a-

str ings or A-strings alone. In the following section we shall give

examples of such segments of a more general form.

1.1.5. Segment variables and substitution

Segments are terms with a kind of open end on the extreme right. From

now on we shall use the symbol w to indicate the open end on the right.

So

is a segment as well as

A - A - A - w . x y z

As said before, segments are not AV-terms; a segment becomes a AV-term

if we replace the w by an arbitrary AV-term. According to this scheme

the following formulas can also be considered as segments:

By replacing the w in both of these formulas by some AV-term we obtain

a AV-term (provided, of course, that A and Bare AV-terms). In AO we

will go even one step further by allowing recursive nesting of segments,

and as a consequence w's can occur in other branches as well, like in

9

or

All these occurrences of w in the foregoing formulas act as a kind of

"holes", which - once replaced by a /..V-term - yield again a /..V-term.

All formulas having an w on the extreme right are called segments in

/..a. Along with segments we also add to our system a new kind of vari

ables for which segments can be substituted. These variables are re

presented by unary prefix symbols and are denoted, in name-carrying

form, by a, a' , a", • . . . An example of a /..a-term containing a segment

and a segment variable is

I /..x /..y - /..z - w

6 /.. a - x a (8)

This term is in redex form, where the segment variable a is bound by

the /..
0

of the redex. Performing a 8-reduction on this redex results in

/.. - /..
x y

/.. - x z
(8')

i.e. , the prefix symbol a is replaced by the segment /.. /.. /.. (where x y z
thew has been dropped). In /..a, segment variables can serve as a means

to abbreviate segments, just like variables in /..V can serve as a means

to abbreviate /..V-terms. When using segment variables to abbreviate

segments we must be careful, though. Consider for example the /..a-term

(8). The variable x in that term refers to the abstractor/,. hidden
x

inside the segment variable a, as seen in (8') where x gets bound by

Ax after 8-reduction of (8). This is an intended feature which we al

ways have to take into account in /,.a-calculus. If a segment variable

a occurs in some /..a-term then after replacement of a by the segment s

that a abbreviates in t, it can happen, as most often will be the case,

that certain variables occurring in t get captured by abstractors lying

on the main branch of the tree representation of s. This is to say that

each occurrence of a segment variable a in a /..a-term t can contain ab-

stractors - hidden insid.B a which will capture certain variables in

t after performing a 8-reduction in t resulting in the replacement of

a by the segment that a abbreviates in t.

10

We now wish to discuss a situation in which there are more occurrences·

of the same segment variable G in some AG-term. Consider the following

AG-term in tree representation

/Ax - Ay - w

6-A -G-G
o

Performing a 6-reduction on this term results in

A - A - A
x y x

(9)

(9')

where both instances of G have been replaced by the segment A A • The
x y

variables x and yin (9') are bound by the last two abstractors Ax and

A as indicated by the arrows in {9") shown below
y

~-----;x

A - A - A - A - o y
x y x yf-.-

(9")

Suppose, however, that we would want x and y to be bound by other

occurrences of the abstractors A and A as indicated in x y

- - -;x
"At< - "A A - A - o - y

x y" x y ,,.. "

(9"')

--- ---
In AG we want to have the freedom to allow for such deviations in pri

ority of binding power of A's, which appear when we have more than one

occurrence of some segment variable a in a AG-term. One way of doing

this is by renaming the abstractors in (9') in a suitable way; consider

for example the following term

A
x

(9"")

It is clear that the variables x and y are bound by the first two ab

stractors Ax and Ay' just as we intended them to be bound in (9"') •

This renaming, however, is done after substitution has taken place;

i.e. the renaming has taken place after 6-reduction of (9) to (9').

What we would like is that it can be seen beforehand (i.e. before 6-

reduction takes place) how the abstractors inside segments shall be

11

renamed. We would like to have a means systematically indicating be

forehand how this renaming of bound variables shall take place, in

stead of more or less arbitrarily renaming bound variables in segments

after 8-reduction. One way of doing this is by replacing the first,

respectively the second, occurrence of o in (9) by o(x,y), respectively

o(x1,y
1
). These parameter lists (x,y) and Cx

1
,y1) serve as instructions

indicating that the abstractors Ax and A are to be renamed by A 1A y x y
and Ax ,Ay in the first, respectively the second occurrence of o in

1 1
(9) (actually only in the second occurrence of o real renaming takes

place}. In general if a segment has n (n ~ 0) A'S lying on the main

branch of its tree, say Ax , .•. ,Ax, and o is a segment variable re-
1 n

ferringtothat segment then by adding a parameter list (y1 , ••. ,yn) to

owe have an instruction indicating that then abstractors Ax , .•. ,Ax
1 n

are to be renamed by Ay
1

, •.. ,AYn and in that order. Also the occurrence

of the variables x
1

, •.. ,xn in the segment which were bound by

Ax , ••• ,Ax are to be renamed by y
1

, ••• ,y . We note that it is impor-
1 n n

tant that the parameter list added to a segment variable o has as its

length: the number of A's lying on the main branch of the segments

that o refers to (this number is called the weight of s).

By adding parameter lists to segment variables we have a means to bind

occurrences of variables referring to a A hidden inside a segment

exactly as we desire. There is still one problem, though, that we have

to resolve. When performing a 8-reduction inside a segment we are some

times dealing with redices which, in the substitutional process in

volved, have an effect on the w on the extreme right of that segment.

Consider, for example, the following segment

/A
A - o - A - A - A x y z w w (10)

By 8-reducing the redex o A A A A w occurring in (10) we are faced
y z w

with evaluating l: (A,A A w). By the clauses given in Definition 1.1.1
y z w

we know how to "shift" the l: -operator past the
y

two abstractors A
z

and >.. ,
w

but then we arrive at the w and have to decide how to evalu-

ate l: (A,w). We could simply define
y

vital information would get lost; a

l: (A,w) as w, but then certain
y

situation which we now explain.

Suppose that (10) occurs as a segment in some term t and that (10)

12

is referred to by some segment variable cr(y
1

,y2 ,y
3

,y
4

> occurring int.

Suppose also that there is an occurrence of the variable y2 in t which

refers to the abstractor Ay
2

hidden inside cr(y1,y
2

,y3,y
4
). By B-reducing

(10) and defining EY(A,w) as w, this occurrence of y
2

is no longer a

candidate for substitution of the term A (which would have been the

case prior to this B-reduction of (10)), simply because the abstractor

A (or better: AY) has vanished. In order to avoid inconsistencies and
y 2

to keep this candidate-role of substitution for such occurrences of

variables y
2

intact, we shall define such substitutions of a term A

at an end-point w of a segment by

/A
E (A,w) = o - A - w •

y y

In this way it remains possible to refer to the A of the original y
redex in (10), and occurrences of variables which referred indirectly

to that lambda by means of a reference to a lambda hidden inside some

segment variable remain candidates for substitution of the term A.

There is still a problem, though, because the order of the A's in the

reduced segment is different from the order in which they appeared in

the original segment. In our example, B-reduction of (10) results in

/A
A - A - A - o - A - w
x z' w' y

(10.)

where z and w have possibly been replaced by new variables z' and w',

this in case that free occurrences of z or w in A would otherwise have

been captured. The abstractors in (10) appear in the order A ,A ,A ,A x y z w
and in (10') the order is A ,A ,,A ,,A. This difference has conse-x z w y
quences when these segments are substituted for some occurrence of a

variable o(y1,y2 ,y3,y4). Consider, for example, the following two terms

in which the segments (10), respectively (10'), occur

/A
I Ax - o - Ay - Az - Aw - w

0 - Ao - cr(Y1•Y2•Y3•Y4l - Y2 (11)

13

and

These terms

X
Y1

and

X
Y1

/A
• - Aw• - o - Xy - w

cr(y
1
,y

2
,y

3
,y

4
) - Y

2

S-reduce to

I
A'

- 6 - X - X - X - Y2 Y2 Y3 Y4

/A'

- X - X - 6 - X - Y2
Y2 Y3 Y4

(11')

(12)

(12')

where A
1

is obtained from A by renaming all free occurrences of x by

y
1

• In (12) we see that A
1

can be substituted for y
2

by performing one

more S-reduction; this is, however, not the case in (12'). So by

changing the order of the X's in some segments by performing a 8-

reduction inside s we can get the situation that occurrences of va

riables that originally (i.e. prior to this S-reduction of s) referred

to a certain X hidden inside some parameter-listed segment variable,

afterwards refer to a completely different X. There is a way, however,

in which such inconsistencies can be resolved. By adding an extra pa

rameter, called a segment mapping (or aegmap for short) to an w we can

safely S-reduce a segment prior to substitution of that segment. A

segmap is a permutation of some interval [1 •• n] of :N (n ~ 0), and tells

us how to restore the original order of the X's occurring in a segment;

i.e. by adding a segmap to the w on the extreme right of a segment

we can determine the order in which the abstractors occurred before

S-reduction of the original segment. Instead of writing w we now write

w(ljJ), where ljJ is some segmap. In our example we replace thew on the

extreme right of (11') by w(ljJ), where ljJ is a permutation of [1 •. 4]

defined by

iii (1)

1j.I (2) 3

ljJ (3) 4

1j.I (4) 2

14

Let us denote this modification of (11') by (11"). If we rearrange the

order of the parameter list (y
1

,y2,y
3

,y4) in accordance tow (i.e. the

first parameter remains first in the list, the second becomes the third, the

third becomes the fourth and - most importantly the fourth parameter becomes

the second in the list) then we obtain a new parameter list (y
1

, y
3

, y
4

, y
2

) .

By replacing the parameter list (y
1

, y 2 , y
3

, y
4

) in (11 ') by this new parameter

list (y
1
,y

3
,y

4
,y

2
l we obtain the following modified version of (11")

/A'
/ '-x - '-z 1 - "w , - o - Ay - w

o '-o - O(y1,y3,y4,y2) - Y2

which S-reduces to

(11 II)

(12")

and we see that all occurrences of variables in (12) and (12") refer

to the same 'A's, just as we wanted.

By adding parameter lists and segmaps we can take care of problems con

cerning references to 1-'s hidden inside segment variables in a suitable

way. We shall now attempt to give a more formal description of substi

tution of a segment for a segment variable.

we shall present this definition in name-carrying form, this in order

to show that name-carrying notation can be maintained in principle but

that employment of name-free notation provides for a more natural (and

certainly more concise) means for dealing with substitution of seg

ments for segment variables.

Definition 1.1.3.

Let Aw (lji) be a segment with weight n (n E JN U {O}), 1jl be a permutation of

[1 .. n] and B be a term. Substitution of Aw(w) for o(y
1

, ••• ,yn) in

o(y1, ••• ,yn)B is defined by

(i)

E (, ') (Aw(id(n)) ,o(y
1
• , ••. ,yn')B)

0 yl, ... ,yn
(ii)

15

(iii)

whereid(n) denotes the identity map on [1 •• n], (Yi•····Y~) is the re

sult of rearranging (y
1

, ••• ,yn) as indicated by ip and A' is the result

of suitable renaming of bound variables in A as indicated by

D

This definition is still rather vague since we have not defined

~ (A w(l(i) ,B), and also because such descriptions as "re-
O(Y1•···•Ynl

arrangement of a parameter list as indicated by a segmap" and "suit-

able renaming of bound variables in a term as indicated by a parameter

list" can hardly be considered as descriptions with formal status. The

transition from (ii) to (iii) is also a bit strange, since it is not

clear from (ii) alone how the segmap ip in (iii) suddenly turns up

again. Apparently, this is not a very good definition since it is too

vague; but, as mentioned before, this definition was only intended as

an attempt towards a formal definition. A precise formal definition

of substitution for segment variables can of course be given, but such

a definition would be rather involved. There is a more elegant and

shorter way to define substitution for segment variables, namely by

employing name-free notation for segments and segment variables. This

notation is described in the following section.

1.1.6. Name-free notation for segments and segment variables

There is another way of dealing with references to A1 S hidden inside

segment variables than attaching parameter lists to segment variables,

namely by employing name-free notation. What we shall do is the fol

lowing. Segment variables are written in name-free form as o(n,m),

where n denotes the reference number of o (which, like in ~(n), de

termines the A that some specific occurrence of o(n,m) refers to)

and m (m ~ 0) denotes the number of A's lying on the main branch of

the tree representation of the segment that cr(n,m) intends to abbre

viate (the number mis also called the weight of o(n,m)). The number

m in o(n,m) is to play the role of a parameter list in name-carrying

notation; i.e. m indicates that there are m A's hidden inside o(n,m).

As an example of a term in name-free notation containing a segment

16

and a segment variable consider the following term written in tree form

Ii;: Ol

/A O-A-A-w

A - o - A - o(1,3l

Ii;: t5l

0 - 1;;(2)

In this term we see that o(1,3) abbreviates a segment with three A's

lying on the main branch of its tree; so when determining the A that

1;;(5) refers to we descend from 1;;(5) towards the root of the tree, sub

tract 3 from 5, subsequently subtract 1 and see that 1;;(5) refers to

the first A (from the left) of the tree. The variable 1;;(2) refers to

the second A (from the right) hidden inside o(l,3) i 1;;(2) is thus bound

by the second A (from the right) of the segment

Ii;: c ll

A o A - A - w .

By employing name-free notation we get a concise way of denoting seg

ment variables and can do without attaching (potentially long) para

meter lists to these variables. There is still one problem, thoughi a

problem which we discussed earlier on in the name-carrying version of

AO-calculus, which dealt with the performance of certain a-reductions

inside segments prior to substitution of those segments for their re

spective segment variables. By performing a a-reduction inside a seg

ment, the order in which certain A's originally occurred in that seg

ment can be disturbed and, as we have seen earlier, this can lead to

problems when we substitute the reduced segment for certain occurrences

of segment variables in a term in which that segment occurs. We solved

those problems by adding segmaps to thew's on the extreme right of

the segments involved and we shall do so again in the name-free version

of AO.

We now shortly describe substitution of segments for segment variables

and we shall give this description in an informal manner in terms of

trees. The tree representation of a segment has an w(wl - where w is

some segmap - on the extreme right of its main branch. When we sub

stitute a segment we remove the wCwl and put the remaining tree frag

ment in the place of some occurrence of a segment variable in a Ao

tree. Segment variables occur in AO-trees as unary nodes and substi-

17

tution of segments for segment variables thus gives rise to replace

ments at unary nodes inside a Ao-tree (which differs completely from

At;-substitutions, where we could only perform replacements at end

nodes of trees). When such a substitution is performed, we again - as

in the case of At;-substitutions - have to be careful and update exter-

nal references in segments in order to ensure that these references

remain intact after substitution. But not only do we have to update

external references when we substitute a segment for a corresponding

segment variable, we also have to take into account the effect of the

segmap w attached to the end-point w of the segment involved, since

such a segmap reallocates references to A's lying on the main branch

of the segment which we want to substitute. We now give an example

to demonstrate both of these features. Consider the following example

of a AO-tree containing a segment and a segment variable

It; (3)

/A-A-o w(w)

A - o - A - A - A cr(3,2) - t;(l)

where w is the permutation of [1 •• 2] defined by w(l) = 2 and w(2) 1.

This tree, which we shall refer to as t, contains a redex, namely

I t;<3)

1 A-A-o-w<w>
o - A - A - A - cr(3,2) - t;(l)

and we can therefore perform a S-reduction on t. By S-reducing £, the

unary node cr(3,2) is a candidate for substitution of the sub-tree

I t:<3>

A - A - 0 - W(W)

Should we simply replace cr(3,2) by the tree fragment

I t;<3>

A - A - o

then this would result in the following tree £•

A - A

18

;U3)

0 - t; (1)

It is immediately clear that the variables ~(1) and ~(3) refer to

different :X's than they originally referred to in L The variable ~.(3)

is an external reference int and, as in the case of :\~-substitutions,

has to be suitably updated whenever the segment in which ~(3) occurs

is substituted for some segment variable. The variable ~(1) int refers

to one of the two :X's hidden inside o(2,3); it seems to refer to the

first :X (from the right) lying on the main branch of the segment in

volved, but the segmap ~ reallocates this reference to the second :X

(from the right). This means that correct 8-reduction oft would re

sult in the following tree t"

:X - :X

I~ <Sl

:X - :X - :X - o - ~(2)

In Section 2 we shall give a formal definition of substitution of :Xcr

terms. In this definition we shall use so-called referenoe mappings

which see to it that reference numbers are suitably updated, like in

our example in the transition from t to E". These reference mappings

(or refmaps for short) and their interaction with :Xo-terms are de

scribed extensively in Section 2, and we refrain from further dis

cussion of refmaps here.

The employment of name-free notation and segmaps makes it possible to

give a formal definition of substitution of segments for segment va

riables in a very concise way, as we shall see in Section 2. In pre

vious examples describing how substitution of segments for segment

variables can take place we have restricted ourselves to rather simple

situations. Our formal treatment of such substitutions, however, will

take much more involved situations into account. our formal definition

of substitution will take into consideration certain accumulative ef

fects which can occur when segments contain references to other seg

ments, or even :X's which bind segment variables.

1.2. An introduction to the typed system ATQ.

In this section we shall give a description of the :Xo-system extended

with types for terms. The types in AT o are a generalization of the

types described in Church's Theory of simple types (cf. Church [40]),

19

the extension being that simple types are constructed for segments and

that the description is given in name-free notation. The basic ideas for

our description are taken from de Bruijn[78b].we shall start from a

name-carrying calculus without segments - which, basically, is Church's

system of simple types - called ~ V. We then gradually move on to a

system in which operations on types are made more explicit and in

which the name-free notation is incorporated. Finally, we shall de

scribe the full A.Tcr-system by offering, in name-free notation, a

typing of segments. The definitions offered in this section will be

followed by explanatory remarks.

Definition 1.2.1 (ATV)

(1) !ype symbols (T)

The set of type symbols T is the smallest set X such that

(i) e,®EX;

(ii) a, f3 E X\{0} ... (af3) E x .

(2) Primitive symbols

The set of primitive symbols consists of

(i) variables: xa,ya,za'. •• a E T\{®}

(ii) the symbols A (abstractor)

and o (applicator)

(3) Terms (A.TV)

The set of terms ATV is the smallest set X such that

(i) x E X I for every variable x
Cl Cl

(ii) t E x ... AX t E X I for every variable x
Cl a

(iii) u,v E X =<> OUV E x

(4) Types of terms

The function typ on A.TV is defined inductively for terms t by

(i)

{ (a$) , if typ(u) 13 i- ®
(ii.) typ(A. xa u)

® otherwise

{ f3 if typ(u) a i- ® and typ(v) (o.S)
'iii) typ(ouv)

® otherwise

20

(5) The set of correct terms (ATV)

ATV= {t EA.TV I typ(t) f. ®}.

Remarks.

D

(1) e is some ground type, ® is to be interpreted as the type of terms

which are "incorrectly" typed.

(2) (a$) is to be interpreted as the type of those terms which map

terms of type a to terms of type $.

(3) If typ(t) =a then a is generally of the form

(a 1 (a 2 (a
3

••• (an an+l) ...))) , where a 1 , ... , an+l are types. Speaking

in terms of trees, this means that there are n abstractors

A.xa , .•. ,A.xa lying on the main branch of the tree representation
_ 1 n
t of t (and in that order) that cannot be removed by some $-re-

duction in t; i.e. for each abstractor A.xa. there is no matching
J.

o (or rather: o A.)
J.

such that this oA.-pair can be removed by means

of a suitable sequence of $-reductions.

Before giving the next definition we introduce some notation concerning

sequences. For an elaborate treatment of sequences we refer to Section

2.1. At this stage it is only important to know that a sequence is seen

as a function with some interval [1. .n] of lN (n 2: 0) as its domain,

where n will be the length of the sequence in question.

Notation. Let C be some non-empty set (called an alphabet) .

* C denotes the set of sequences over C (including the empty se-

quence denoted by¢ (the empty set)).

if c E C then <c> denotes the sequence of length 1 consisting of

the "symbol" c.

* if F ,G E C then F & G denotes the concatenation of the sequences

F and G, in particular if F is a sequence of length n (n 2: 0) then

F = <F(l)> & <F(2)> & ... & <F(n)>.

* if F E C then F denotes the reversed sequence of F, i.e. if

F <F(l)> & <F(2)> & ... & <F(n)> then

F <F(n)> & ... & <F(2)> & <F(l)>

21

In the following definition we offer an alternative version of ATV in

which operations on types are made more explicit.

Definition 1. 2. 2 (ATy V) •

(1) ~(Ty)

The set of types Ty is the smallest set X such that

(i) ® E X ;

(ii) F E (X\{®}) *.,. y(F) E X •

(2) Primitive syml?ols

The set of primitive symbols consists of

(i) variables: xf,yf, f E Ty\{®}

(ii) the symbols A (abstractor)

(3) Terms (A V)
-- Ty

and o (applicator)

The set ATy V is the smallest set X such that

(i) Xf E x, for every variable xf ;

(ii) t E x .,. A xf t E x, for every variable

(iii) u,v E x .,. OUV E x

(4) Types of terms

xf

The function y-typ on A V is defined inductively for terms t by
Ty

(i) y-typ(xf) f

= {

y(<f> & G) ,

(ii) y-typ (A xf u)

®

y(G)

(iii) y-typ(ouv)

(5) The set of correct terms (A V)
Ty

A v {t E A v I y-typ(t) 'f ®}
Ty Ty

22

if y-typ(u) = y(G) ,

for some G E (Ty\{®})*

otherwise

if y-typ(u) = f and

y-typ (v) y (<f> & G)

for some f E Ty\{®} and

G E (Ty\{®})*

otherwise

D

Remarks.

(1) We note that the symbol y is of no particular interest in itself,

and the reason for introducing it is basically historical in na

ture. In de Bruijn [78,b] types of ATy-terms (i.e. n6n-aegmenta)

were called "green" types, whereas types of segments were called

"red" types. The symbol y has been chosen for the construction of

the type of a ATy V-term purely for mnemonic reasons. In Defini

tion 1.1.5 (/.Tcr) we shall construct types of segments, and these

types will be of the form p(F,G,H). Here the symbol pis used in

the construction of types of segments, again, purely for mnemonic

reasons.

(2) y(¢) is the analogue of the ground type e in Definition 1.2.1.

(3) y (<f> & G) is the type of those terms which map terms of type f to

terms of type y (G) (cf. clause (4) (ii) above).

(4) In terms .of trees, if y-typ(t) y(<f1> & ••• & <fn>), then this

means that there are n abstractors /.xf , ••• ,>.xf lying on the main
1 n

branch of the tree representation £ of t that cannot be removed

by means of a suitable sequence of 6-reductions int (cf. comment

(3) in the remarks on Definition 1.2.1).

In the following definition we go one step further and introduce a

new type-constructor TI which takes two arguments, both sequences of

types. we recall that y(F) denotes the type of those terms with nab

stractors lying on the main branch of their corresponding trees (we

assume that Fis a sequence <f
1

> & ... & <fn> of length n) that can

not be removed by suitable 6-reductions. In the case of segments, how

ever, we can also have terms with appliaatora lying on the main branch

of their tree representations which cannot be removed by means of

suitable 6-reductions. When we write TI(F,G), where F and Gare se- ·

quences of types <f
1

> & ..• & <f >and <g
1

> & .•. & <g >, respectively,
n m .

then F denotes the sequence of n non-removable abstractors and G de-

notes the sequence of m non-removable applicators. we also introduce

a product operation "*" between TI-types and y-types with which we can

calculate types of terms. we note that terms in the system A V, de-
TTiy

fined below, are never typed as TI-types; TI-types in A v are only
TTiy

used as intermediate constructs for calculating the eventual type (a

23

y-type) of a term. When we calculate the type of a A -term t we first Tny
calculate the type of a beginning part of that term (such a beginning

part is a segment and will thus have an-type as its type), say that

this results in then-type n(F,G). Then we calculate the type of the

remaining part of t (which is not a segment and thus has a y-type as

its result type), say that this remaining part oft has type y(H). The

product n(F,G) * y(H) will result in the eventual type oft. With the

interpretation of n(F,G) as the type of a beginning part of a term with

Fas the sequence of non-removable A's and Gas the sequence of non

removable o's, Definition 1.2.3 should not be too hard to understand.

After this definition we shall give an example of calculating the type

of a II V-term • -""T'!Ty

Definition 1.2.3 (fl V)
-""T'fiy

(1) Quasi-types (TTI)

The set of quasi-types TTI is defined as

{TI(F,G) I F,G E (Ty\{®})*}

(2) Products of quasi-types and types (*)

* Let F, G and H be elements of (Ty\{®}) The product of a quasi-

type and a type is defined as follows

TI(F,G) * ® ®

l
y(F& I), ifH=G&I for some

'IT (F ,G) * y (H) I E (Ty\{®})*

® otherwise

(3) Terms (AT V)
--- '!Ty

AT V = AT V
TIY Y

(4) Types of terms

The function ny-typ on ATTiy V is defined inductively for terms t by

24

(i)

(ii)

(iii)

ny-typ(xf)

ny-typ(A xf u)

ny-typ(ouv) =

f

n(<f>,~) * ny-typ(u) ;

TI(~ 1 <ny-typ(u)>) * ny-typ(v)

(5) The set of correct terms (A V)
T'lf y

A V
T'lf y

{t E: A VJ 'lfy-typ(t) f' ®} •
T'lfy

A simple example of calculating the '!Ty-type of a AT'lfy-V term

Consider the following term t

IJ

and assume that h = y(H), where His some element of (Ty\{®})*. Accor

ding to the rules given in Definition 1.2.3, the type of t is calcu

lated as follows

'!Ty-typ (A xf o xg A xg xh)

'IT (<f> ,¢) * '!Ty-typ (o x Ax xh) g g

'!T(<f>,¢) * 11(¢,<g>) * 11y-typ(AX x) = g h

11(<f>,¢) * 11"(¢,<g>) * '!T(<g>,¢) * 'lfy-typ(xh)

'!T(<f>,¢) * 11"(¢,<g>) * '!T(<g>,¢) * y(H)

'!T(<f>,¢) * 11"(¢,<g>) * y(<g> &H) =

'!T(<f>,¢) * y(H) =

y (<f> & H)

and this result is indeed as expected: as mentioned earlier in comment

(3) by Definition 1. 2. 2, y (<f> & H) is to be interpreted as the type of

those terms which map terms of type f to terms of type y(H), and

clearly t is a term of that type. Also note that t 13-reduces to the

term A xf xy (H) which, as expected, also has type y (<f> & H).

The systems A V, A V and A V are, though different in their re-
T Ty T'IT'Y

spective descriptions, essentially equivalent in the sense that the

expressive power of each of these systems is exactly the same. The

reason for deviating from the notations and constructs employed in

the original system ATV is that we eventually want to give a descrip

tion of a typing mechanism for ATcr, a simple-typed version of the

name-free system AO. In AT cr we shall construct a completely new kind

of types, called p-types, for segments. What will be shown is that

25

the employment of ~-types, y-types and the *-operation provides for not

only an exact but also a concise description of a typing mechanism for

segments and segment variables written in name-free notation.

we now proceed by defining a typed version AT F; of the name-free system

AF;. Types in AT F; are elements of Ty. In order to calculate a type of

a name-free term in AT F; we introduce the concept of a F;-aonte:x;t., de

noted by t, which is a sequence of elements of Ty\{@}.

Definition 1. 2. 4 (AT F;)

(1) (AT F;)

The set of terms AT F; is the smallest set X satisfying

(i) F; (n) E X , for every n E :N ;

(ii) t EX• Aft EX, for every f E Ty\{®}

(iii) U,V E X • OUV E X

(2) !';-Type contexts (t)

A ;-context tis an element of (Ty\{®})*.

(Note that a type context t is a function of the form

T : [1. . length (T)] + T\ { ®} •)

(3) The typing function F;-typ

Let T be a F;-type context. The function F;-typ is defined induc

tively for AT ;-terms t by

{ : (n) I
if n E dom(T)

(i) F;-typ(F;(n) 1 T)
otherwise

(ii) F;-typ (Af u, T) ~ (<f> ,¢) * F;-typ(u,<f> & T)

(iii) F;-typ(ouv,T) ~(¢,<F;-typ(u,t)>) * F;-typ(v,t)

(4) The set of correct terms

26

Let T be a ;-type context. The set of correct AT ;-terms with

respect to T is

{ t E AT F; I F; -typ (t , T) i' 0 } . 0

Remarks.

(1) In AT I; we just write Af'Ag,Ah' •.• instead of A Xf'A xg,A xh, ••.

(the names of variables are dropped).

(2) The type of an occurrence of a variable I; (n) in a AT t;-te~rm t is

found as follows. First we form the tree representation t of t,

then we descend from that occurrence of l;(n) int towards the root

of the tree and the n-th lambda, say Af' is the lambda that binds

this occurrence of l;(n) and the type f attached to this lambda is

the type of l;(n). {If the total number of A's encountered on the

root path of this occurrence of E;. (n) is less than n (implying that

this occurrence of E;.(n) is free) then the type context will see

to it that this occurrence of l;(n) is suitably typed.)

(3) The correspondence between name-carrying terms in A V and name-
Tiry

free terms in ATE;. is as follows. If t is a ~iry V-term not con-

taining free occurrences of variables then we have the following

correspondence

iry-typ(t) = 1;-typ(t,~) ,

where t denotes the name-free equivalent of t. If t contains free

occurrences of variables then we have the correspondence

iry-typ(t) = i;-typ(t,t) ,

where the £:;.-context t is such that it is of sufficient length and

sees to it that all free occurrences of variables in t are typed

in the same way as they were typed in t.

We now move on to the definition of the full AT a-system by construct

ing types for segments. In order to do so we introduce a new kind of

types, called p-types, for segments. A p-type has three parameters

and is written as p(F,G,H), where F, G and Hare sequences of y- and,

possibly, p-types. The extra parameter H has a purely administrative

function; intuitively His the sequence of all types attached to the

A's, including those hidden inside segment variables, lying on the

main branch of the tree representation of the segment in question.

The sequences F and G have the same meaning as before in the case of

the quasi-type ir(F,G), namely the sequence of non-removable >.'sand

27

the sequence of non-removable d's, respectively, We need such an extra

parameter Hin p(F,G,H) in order to determine the type of those vari

ables which refer to a A hidden in a segment variable, a situation

which we now explain. Suppose that we have a AT cr-term t in which we

have a segment sw(Wl and an occurrence of a segment variable cr(n,m)

which abbreviates sw(W) int. From cr(n,m) we see that swtwl has m

(m ~ 0) A's lying on the main branch of its tree representation: these

m A's are hidden inside cr(n,m) and they can be referred to by vari

ables in t occurring to the right of cr(n,m). In order to be able to

type those variables which refer to one of the A1 s hidden inside

cr(n,m) we inspect the third parameter Hof the type, say p(F,G,H), of

sw(w). Suppose that them A's lying on the main branch of the tree

representation of sw(Wl occur in the order Ah , ••• ,Ah ,>.h , then
l m-1 .. 111

H shall be the sequence <hm> & <hm-l> & .•• & <h
1

>. If a variable in

t refers to the i-th (0 s i s m) A (from the right) hidden inside

cr(n,m) then it will be typed by the i-th member hi of H. Our defini

tion of AT o will also take into account the reallocational effects

that segmaps W have on references to A's lying on the main branch of

the segments in question.

We now give our definition, which at first sight might be a bit hard

to understand. We shall give an example of calculating the type of

a ATo-term ~ich should help clarify the rules stated in Definition

1.2.5. We note that the construct u(F,G), given below, is the same

construct n(F,G) as in Definition 1.2.3: it is an intermediate con

struct used for evaluating the product of a number of types in order

to evaluate the eventual type of a term (including segments), which

is either a y-type or a p-type (but never a n-type).

Definition 1.2.5 (ATcr l.

(1) ~ (T)

The set of types T is the smallest set X satisfying

(i) @ € X I

(ii) VF € (X\{B}) * y(F) E X 1

(iii) VF,G.H E (X\{B}) * : p(F,G,H) E X

(Note that y(¢) EX and p(¢,¢,¢l EX.)

28

(2) Qilasi-types (Tn)

The set of quasi-types Tn is defined as

{n(F,G) I F,G E (T\{®})*}

(3) Products of quasi-types and t;y£es (*)

Let F, G, H, I and J be elements of (T\{®})*. The product of a

quasi-type and a type is defined as follows

TI(F,G) * ® ®

f y (F & I) , if H = G & I for some I E (T\{®})*
TI(F,G) * y(H) l ® otherwise

TI(F,G) * p(H,I,J)

(4) Terms (AT o)

p(F&K,I,J) I if H G & K for some

KE (T\{®})*

p(F,K& I,J), if G = K & H for some

K E (T\{0}) *
otherwise

The set of AT o-terms is the smallest set X satisfying

(i) f;; (n) € x , for every n E :N ;

(ii) if ljl is a segmap then w (ljl) € x
(iii) if u € x and f E T\{0} then Af u E x I

(iv) if u € x then o(n,m)u E X, for every n E :N and

m E :N U {O} ;

(v) if u,v € X then ouv E X •

(5) Type contexts

A type context is an element of (T\{®}) *.

(6) The typing function (typ)

Let T be a type context. The function typ is defined inductively

for AT o-terms t by

(i) typ(f;;(n),T) l : (n)
if n E dom(T) and T(n) is a y-type

otherwise

f p (¢ 1¢ t T o ljl) 1

l ®

if rge(ljl) S dom(T)
(ii) typ(w(ljl) ,t)

otherwise

29

(iii) typ(Af u,1) = 11(<f>,¢) * typ(u,<f> & 1)

(iv) typ(cr(n,m)u,1) =

(v)

l
11(F,G) *typ(u,H&1), if nEdom(1) and 1(n) is a p-type of

the form p(F,G,H), where His a sequence of length m

® , otherwise

typ(ouv,1) 11(¢,<typ(u,1)>) * typ(v,1)

(vi) The set of correct terms

Let 1 be a type context. The set of correct AT a-terms with

respect to 1 is

We now give a further explanation of the rules stated in Definition

1.2.5, and we shall do so by means of a non-trivial example in which

all of the features for calculating y- and p-types are incorporated.

In this example we shall employ the following notational conventions

(association to the right)

Consider the following term t written in tree form

Ir,; (2l Ir,; (ll

I Ag - 0 - Ah - Ai - 0 - w (ijJ)

Af - o - Aj - cr(l,3) - F,;(1)

where f, g, h, i and j are certain elements of T\{®} and 1jJ is a per

mutation of the interval [1 .• 3] defined by ijJ(l) = 2, 1jJ(2) = 3 and

1jJ(3) = 1. According to the rules given in Definition 1.2.5, the type

of t with respect to the empty context ¢ is calculated, step by step,

as follows

30

typ(AfOA of,;(2) AhA. of,;(l)w(ijJ) A,cr(l,3) F,;(1),¢)
g l. J

11(<f> ,¢) * typ(o A 0 F,; (2) Ah A. 0 F,; (1) w (ijJ) A. a (1,3) F,; (1) ,<f>)
g l. J

11(<f>,¢l * 11(¢,<typ(u,<f>)>) * typ(A. cr(l,3) F,;(1) ,<f>)
J

where u is the segment A a l;,(2) Ah A, a l;,(1) w(lj!), or in tree form
g l.

/l;,(2) /l;,(l)

Ag - o - Ah - Ai - a - w(lj!) (u-)

First we calculate typ (u, <f>) :

typ (A 0 t; (2) Ah A. 0 !;, (1) w (ljJ) I < f>) =
g l.

1TC<g>,¢l * typ(o !';(2) Ah Ai a t;,(l) w(lj!) ,<g,f>)

1!(<g>,¢) * 1!(¢,<typ(t;,(2) ,<g,f>)>) * typ(Ah \a !';(1) w(ijJ) ,<g,f>)

1T(<g>,¢l * '11(¢,<f>l * typ(Ah\ai;,Olw(ijJ),<g,f>l =

(if f is a y-type, otherwise the product is equal to ®)

1!(<g>,¢) * '11(¢,<f>) * 1!(<h>,¢) * 1!(<i>,¢) *

* typ(o !;, (1) w(lj!) ,<i,h,g,f>)

1T (<g> ,¢) * 1T (¢, <f>) * 1T (<h> ,¢) * 1T (<i> ,¢) *

* 1T(¢,<typ(f;(1),<i,h,g,f>)>) * typ(w(lj!) ,<i,h,g,f>)

1!(<g>,¢) * '11(¢,<f>) * 1T(<h>,¢) * 1!(<i>,¢l * '11(¢,<i>) *

* typ(w(ijJ) ,<i,h,g,f>) =

(if i is a y-type, otherwise the product is equal to ®)

1!(<g>,¢) * '11(¢,<f>) * 1T(<h>,¢) * 1T(<i>,¢) * '11(¢,<i>) *

* p(¢,¢,<h,g,i>) =

(note that the composition of the sequence <i,h,g,f> with the seg

map 1jJ yields not only a permuted but also reduced sequence <h,g,i>

of <i,h,g,f>)

1!(<g>,¢) * '11(¢,<f>) * 1!(<h>,¢) * 1!(<i>,¢) * p(¢,<i>,<h,g,i>)

1!(<g>,¢) * '11(¢,<f>) * 1!(<h>,¢) * p(<i>,<i>,<h,g,i>)

31

n(<g>,¢) * n(¢,<f>) * p(<h,i>,<i>,<h,g,i>)

TI(<g>,¢) * p(<i>,<i>,<h,g,i>) =

(if f = h, otherwise the product is equal to ®)

p(<g,i>,<i>,<h,g,i>)

and this is indeed as expected: the segment u has two non-removable

abstractors (A and A.) lying on the main branch of its tree; it has
g l.

one non-removable applicator with i as the type of its argument; it

has a total nwnber of three abstractors lying on the main branch of

its tree, which, due to the reallocational effect of the segroap W•
are referred to in the order Ah, Ag and Ai (from the right).

Now that we have evaluated typ(u,<f>) we can proceed with calculating

typ(t,¢):

typ(t,¢) =

32

TI(<f>,¢) * TI(¢,<p(<g,i>,<i>,<h,g,i>)>) * typ(;\. <J(1,3) f;(1) ,<f>)
J

n(<f>,¢) * n(¢,<p(<g,i>,<i>,<h,g,i>)>) * n(<j>,¢) *

* typ(a(1,3) l;(1),<j,f>J =

n(<f>,¢) * n(¢,<p(<g,i>,<i>,<h,g,i>)>) * n(<j>,¢) * n(F,G) *

(where j = p(F,G,<h
1
,h2 ,h3>} for some F,G € (T\{®})* and

h 1,h2,h3 e T\{®} (cf. clause (6) (iv)), otherwise the product if

equal to ®}

n(<f>,¢) * TI(¢,<p(<g,i>,<i>,<h,g,i>)>) * n(<j>,¢) * TI(F,G} * h1

(if h 1 is a y-type, otherwise the product is equal to ®)

;r(<f>,¢) * n(¢,<p(<g,i>,<i>,<h,g,i>)>) * n(<j>,¢) * y(F&H 1)

(1)

(where h 1 = y(G&H
1

) for some H
1

e (T\{®})* (cf. clause (3) (ii)),

otherwise the product is equal to ®)

'lf(<f>,~) * '!T(~,<p(<g,i>,<i>,<h,g,i>)>) * y(<j> & F & H1)

(if j = p(F,G,<h
1
,h

2
,h

3
>) = p(<g,i>,<i>,<h,g,i>), i.e. if F = <g,i>,

G

®)

h, h
2

= g, h
3

= i, otherwise the product is equal to

(by definition of j)

and this is indeed the.expected result: tis a non-segment and there

fore its type is a y-typei if we assume that H = <i> & H
1

= <i> &

& <h
1

, •.• ,hn> for certain h 1, ••• ,hn ET\{®}, then the non-removable

abstractors lying on the main branch of the tree representation of t

occur in the order Af ,.A , A. , Ah , .•• , Ah , since the non-removable ab-
g i 1 n

stractors hidden in a(l,3) are A and A., and the first type i in the
g l.

sequence <i,h 1, ••• ,hn> is removed because the type of the argument.

'(1) of the last applicator occurring in the segment

;'(2) ;'(1)

Ag - o - Ah - Ai - o - w(~J

is equal to i (remember that the last variable '(1) occurring in t has

type y(<i,h
1

, ••. ,hn>) which means that the first non-removable ab

stractor of the term that this occurrence of '(1) intends to abbreviate

would be Ai, and that this \ matches the o ' (1)-part in the segment

u).

Note also that t B-reduces to the following term written in tree form

;'(2) ;'(1)
Af - Ag - o - Ah - Ai - o - ,(2)

where we have substituted the segment u for cr(l,3) (the reference

number in the last variable '(1) in t has been changed to 2 because

of the reallocational effect of the segmap ~).This new term can be

S-reduced once more, resulting in

33

I~ <1>
Af - Ag - Ai - o - ~(3) ,

where-we have substituted an updated version of the first occurrence

of the variable ~ (2) for the second occurrence of ~ (2) (which was

bound by the abstractor Ah of the redex). The variable ~(1) in this

term has type i, and the variable ~(3) has type

f h y(<i,h
1

, ••• ,hn>); therefore the type of the whole term is

equal to y(<f,g,i> & <h1 , ••• ,hn>), which is the same type as we have

calculated for t: an expected result. In general, one would expect the

type of a term and its B-reduct to be the same. This property of e

quality of types for terms and their B-reducts with respect to a cer

tain context is called the alosure property. A proof of the closure

property for AT cr is given in Chapter 4. We note that in Chapter 4 we

shall also define the product of two quasi-types and furthermore show

that this extended version of the *-operation is associative, i.e.

(f * g) * h = f * (g * h) for all quasi-types f ,g and quasi-types and

types h. Products of quasi-types and the associativity of the *-opera

tion will prove to be useful for facilitating the calculations of

types of AT a-terms .

1.3. Reduction and related properties

The language theory of A-calculus is concerned with the syntactical

structure of terms and properties of reduction relations. The study

of the B-reduction rule is of particular interest in this respect.

This rule tells us how to compute the value that a function takes

when applied to a certain argument. In this section we shall define

basic relations on some abstract set X by starting from an abstract

reduction relation on X denoted by +R. Such a structure <X,+R> pro

vides an abstract framework in which reduction relations can be dis

cussed for term-rewriting systems in general.

Notions of reduction

The following definitions are taken from Barendregt [81,pp. 50 - 58].

34

Definition 1.3.1.

A notion of Peduction on a set X is a binary relation on X. IJ

Definition 1.3.2.

Let +R be a notion of reduction on X and t,u,v € X.

(i) ~R is the transitive reflexive closure of +R defined by

* (1) t +Ru• t +Ru 1

* (2) t + t I R

* * * (3) t + U I u +R v • t +R v • R

* (ii) = is the equivalence relation generated by + defined by
R R

* (1) t + u .. t u R R

(2) t = u .. u t
R R

(3) t u , u =R v • t =R V •

(iii) t +; u * * iff 3v: t +RV A u +R v •

(iv) The basic relations derived from +R are pronounced as follows:

* R-Peduces u is an R-Peduct oft t + u t to u or R

t + u t R-Peduces to u in one step
R

t = u t is R-conVePtible to u R

t +*
R u t and u have a common R-Peduat

* The relations +Rand =R have been introduced inductively. Therefore

properties about these relations can be proved inductively. Such in

ductive proofs are called proofs by induction on the generation of

these relations.

For the remainder of this section let X denote some set and let +R

be a notion of reduction on X. We shall use the meta-symbols

t,u,v,w, ••• to range over elements of X (called terms).

Definition 1.3.3.

(i) A term t is called an R-noPmal form (R-nf) if

D

35

(ii) A term u is an R-nf of t (or t has the R-nf u) if u is an R-nf

* and t +Ru.

Definition 1. 3 .4.

D

(i) Let >- be a binary relation on x. Then >- satisfies the diCJ711ond

property if

Vt,u,v (t >- u A t >- v => 3w: u >- w A v >- w)

see Figure 1.3.1.

t

A u •, • v
' / ,,

/
>- / >-

' '•'
w

FIG. 1. 3.1.

* (ii) A notion of reduction +R is said to be ChUPeh-Rosser (CR) if +R

satisfies the diamond property. D

Theorem 1 • 3 • 1 •

If +R is CR then a term t can have at most one R-nf.

~: Suppose that u
1

,u2 are both R-nf's oft.

follows that there exists a term v such that u 1
*

:rom + R be in; CR it

+R v and u2 +R v. But

it holds for all since +R is the transitive reflexive closure of +R

* R-nf's w that if w +R w' then w = w', and therefore u
1

Theorem 1.3.2.

If +R is CR then

* * t -Ru=> 3v: t +R v A U +R v •

Proof: By induction on the generation of

36

= v D

D

Definition 1.3.5.

An R-reduation path is a finite or infinite sequence t
0
,t

1
,t

2
, •••

such that t 0 +R t 1 +R t 2 +R ••••

Conventions.

(i} The meta-symbol v ranges over reduction paths.

D

(ii) The reduction pathinDefinition1.3.5starts with t
0

• If there is

a last term t in v, then v ends with t • In that case we say
n n

that v is a reduction path from t 0 to tn. D

Definition 1.3.6.

Let t e: X.

(i) t R-no:t'fTl(lZizes (R-N(t)) if t has an R-nf.

(ii) t R-strongZy no:t'fTl(lZizes (R-SN(t)) if there is no infinite R

reduction path starting with t.

(iii) tis R-infinite (R-oo(t)) if not R-SN(t).

(iv)

(v)

+R is normaZizing (N) if Vt Ex : R-N(t) •

+ is strongZy normaZizing (SN) if Vt e x : R-SN(t)
R

Definition 1.3.7.

A notion of reduction +R on X is said to be weakZy Churah-Rosser

(WCR) if

* * Vt,u,v (t +R u A t +R v _,. 3w: u +R w A v +R w)

Theorem 1.3.3 (Newman [42]).

For notions of reduction +Rone has

SN A WCR"I> CR.

Proof: The following elegant proof is taken from Barendregt [81], p.

58.

D

D

By SN each term R-reduces to an R-nf. It suffices to show that this

R-nf is unique. Call a term t ambiguous if t R-reduces to two distinct

R-nf's, say t
1

and t 2 . If tis ambiguous then there exists a term u

such that t +R u and u ambiguous, which we now show. The following

37

two figures suggest how t can reduce to t 1 and t 2•

t

FIG. 1.3.2. FIG. 1.3.3.

In the case of Figure 1.3.2 it is immediately clear that the ambiguous

term u exists by taking t' for u. In the case of Figure 1.3.3 it fol

lows from WCR that t • and t" have a common reduct t "' and, by SN, t "'

has an R-nf t
3

as indicated in the figure below.

t

i\:
t'·~i t'
J *

R R . . .
tl t3 t2

From t 1 # t 2 it follows that either t 3 # t 1 or t
3

t 2 • If t 3 # t 1
then we can take t' for u, and if # t 2 then we can take t" for u.

Since all ambiguous terms R-reduce in one step to another ambiguous

term, we have obtained a contradiction with SN, hence ambiguous terms

do not exist. D

3&

Theorem 1.3.4.

Let +R be a notion of reduction that is both CR and N and let t,u E X.

Then

t =Ru * R-nf(t) = R-nf(u)

where R-nf(t) and R-nf {u) denote the R-nf's of t and u.

Proof: First note that t and u have unique R-nf 's by CR, N and Theorem

1.3.1.

(i) •: if t =Ru then by Theorem 1.3.2 there exists a term v such

* * that t +R v and~ +R v. This*term v also has a unique R-nf, say

v
0

, and since t +R v
0

and u +R v
0

it follows immediately that

R-nf(t) = v
0

= R-nf{u)

(ii) <=: trivial.

Remark. A consequence of Theorem 1.3.4 is the following decidability

result: if one has an effective procedure for computing R-nf's of

terms then one also has an effective procedure for determining whether

t =R u holds or not, for all terms t,u.

39

2. BASIC NOTIONS AND RESULTS

The usual set-theoretic notation will be used in the metalanguage, in

cluding the abbreviations V (for all), 3 (there exists),• (if ••• then

••.),*(if and only if), A (and), v (or) and I (not). We shall adopt

the following conventions concerning the natural numbers

:N {1,2,3, •.. }

:M E U {O}

l'!lk { n E: :N I n ~ k} , for every k E: :M • Hence, :N
0

= !11 .

The set of mappings from the set A to the set B is denoted by [A+ B].

Domain and range of a function fare denoted by dom(f) and rge(f),

respectively. If f and g are functions then the composition f o g of

f and g is the function with domain {x E: dom(g) I g(x) E: dom(f)} and,

for every x E: dom(f o g), f o g(x) f(g(x)).

The set of permutations of :Nk is denoted by Perm(k) and id(k) denotes

the identity map on :Nk. The set U{perm (k) I k E M} is denoted by

Perm. Furthermore, for every function f with rge(f) !:;;;; '.N, we have the

function f 1 defined by

dom(f - 1) = dom(f)
and

VxE dom(f): f - l{x) f (x) - 1 •

2.1. Sequences

Definition 2 .1.

An aiphabet is a non-empty set c.

c* u{[:Nk + cJ I k E M}

c+ c*\{!11} .

c* is called the set of c-sequenaes and c+ is called the set of non

empty C-sequences. If f is a C-sequence and dom(f) = :Nk then k is

called the iength off and is denoted by L(f). Elements of [:N
1

+ C]

are called C-symbols. If f is a C-sequence of length k ~ 1, then the

first symboi off, denoted by FS(f), is defined as f(l) and the iast

symboi off, denoted by LS(f), is defined as f(k). 0

40

Definition 2.2.

If f is a C-sequence of length k then f is the C-sequence of length k

defined by

ViEl\ :f(i) = f(k-i+l)

f is called the reversed sequence of f. D

Definition 2.3.

If f and g are C-sequences and L(f) k and L(g) = m, then the c-

sequence f & g of length k + m is defined by

{

f (i)

f & g(i) =
g(i- k)

ifiE:Nk

if i E :Nk+m \:t<k.

f & g is called the concatenation of the c-sequences f and g. D

Note that concatenation is an associative operation on C-sequences;

Le. (f&g) & h = f & (g&h), for every f, g and h. We shall make

frequent use of this property of concatenation since we can omit pa

rentheses and write f & g & h without fearing ambiguities.

Remark. Whenever it is clear which C-sequences f and g are being con

catenated, we shall write fg instead of explicitly writing f & g.

Furthermore, if it is clear which alphabet C is being used to form

C-sequences, we shall often drop the C and tacitly speak about se

quences instead of c-sequences.

2.2. Language definition of the formal system AO

Definition 2.4.

Let C be a countable set and let c 1 denote the set of C-symbols. We

introduce a set of mappings which are considered fixed from now on.

(i) i; is an injection from :Iii into cl ;

(ii) w is an injection from Perm into cl ;

(iii) A is an element of c
1

;

(iv) a is an injection from :Iii x :111 into c
1

D

41

(v) o is an element of c
1

;

(vi) rge(I:;), rge(w), {A}, rge(cr) and {o} are mutually disjoint sub-

sets of C. 0

Defir.i tion 2. 5.

A is the smallest set X satisfying

(i) I; (n) E X I for every n E N ;

(ii) w(lj!)€X, for every 1jJ € Perm

(iii) if t € X then A & t E X

(iv) if t E X then a (p) & t € X , for every p E N x l'l

(v) if t,u E X then o & t & u E X 0

Elements of A are called Ao-terms (or terms, for short). Elements of

rge(;l U rge(cr) are called variables; elements of rge(I:;) are called

l:;-variables. and elements of rge(cr) are called a-variables. We shall

use the meta-symbols 11t11' 1 11", ••• to range over variabl.es. For every

l:;-variable 11 there is exactly one n E N such that n = l:;(n), and for

every cr-vai;iable 11 there is exactly one pair (n,m) E N x l'l such that

11 cr(n,m). In both cases the number n is called the reference nwnber

of 11• These reference numbers determine the A, if any, that binds an

occurrence of a variable in a term. Terms with last symbol w(ij!), for

some tjJ E Perm, are called segments. Elements of Perm are called segment

mappings (or segmaps, for short). Note that terms are written in pre

fix-notation: each l:;(n) and w(lj!) has arity O; A and each cr(p) has

arity 1; o has arity 2.

For an informal description of Ao-terms we refer to the introduction.

Furthermore, we note that frequent use will be made of the 1-1 corres

pondence between AO-terms and their tree representations. The reason

for this is that tree representations of AO-terms, as described in

the introduction, facilitate the reading (parsing) of these terms. We

now proceed by introducing some important concepts concerning vari

ables.

42

Definition 2 .6.

Var(t) is defined inductively for terms t by

(i) Var(~(n)) {~(n)}

(ii) Var(w(ljJ)) ¢ ;

(iii) Var(AU) Var(u)

(iv) Var(cr(p)u) {a (p)} u Var(u)

(v) Var (ouv) Var(u) u Var(v) D

Var(t) is called the set of variables of t. If n E Var(t) then we say

that the variable n oaaia>s in t.

~· If a variable n occurs in a term t then it can occur in t at

different places. Sometimes we would like to speak only of some spe-

cific occurrence of n in t; i.e. we would like to speak of the vari-

able n occurring in tat a specific place. We shall reserve the in-

formal term "an oaaUl'renae of n in t" when we wish to refer to a va-

riable n occurring in t at a specific place. Following this terminolo-

gy we can say that a variable n can occur in a term t, but, at the

same time, there may also be different occurrences of n in t.

Definition 2.7.

Let n be a variable.

The set D(n,t) is defined inductively for terms t by

{ {n} , if n ~(n)
(i) D(n,~(n))

¢ if n 'I ~(n)

(ii) D(n,w(l/>)) = ¢

(iii) D(n,J..u) = {k - 1 I k e D(n,u)} ;

· {{n}U{k-mjkeD(n,u)}
(iv) D(n,cr(n,m)u) =

{k-m I k E D(n,u)}

if n O' (n,m)

if n 'I cr(n,m)

(v) D(n,ouv) D(n,u) U D(n,vl •

Note that D(n,t) s zz:.

D

If k E D(n,t) then we say that n ooaUl'S at reference depth k in t. If

n occurs at some reference depth in t then it occurs in t in the sense

defined above. Formally:

43

If n ¢ var(t) then D(n,t) = ~ •

This statement can easily be proved by induction on L(t).

Definition 2.8.

Let t be a term and let n be a variable. We say that n has an external

referenae oaaurrenae int if there exists a k >Osuch that k E D(n,tl,

and we say that n has an internal referenae oaaurrenae in t if there

exists a k ~ 0 such that k E D(n,t). D

Example. Consider the following term t

/A - F; (6)

x-x-o-X-cr{3,1) F;(2l

The variables F;(6), cr(3,1) and F;(2) occur at reference depths 3, 0 and

-2 respectively. Furthermore, F;(6) has an external reference (i.e.

F;(6) is bound by a A outside oft) and the variables cr(3,1) and F;(2)

have internal references in t (i.e. both variables are bound by a ;\

inside oft). Note that if a variable F;(n) or cr(n,m) occurs at re

ference depth k in a term t, then the reference number n will usually

not be equal to k.

Remark. If a variable n occurs at different places in some term t

then it can well be the case that n occurs at two different reference

depths k, k' in t. It can even be the case that n has both an external

as well as an internal reference in t. Each specific occurrence of n

in t, though, has exactly one corresponding reference depth k in t.

In informal discussions we will often speak of "the reference depth

k of an oaaurrenae of n int", such to focus our attention on a spe

cific occurrence of n in t instead of taking all occurrences of n in

t into account. In the same way we shall speak of "an external (in

ternal) referenae oaaurrenae of n in t".

2.3. Reference mappings

Reference mappings were introduced by N.G. de Bruijn in his paper de

Bruijn [78,a] in order to describe the possible effects that a B-

44

reduction of a name-free term t can have on the variables occurring

in t; more specifically: reference mappings see to it that a suitable

updating of reference numbers of variables takes place after having

performed some S-reduction on t. Reference mappings (or refmaps for

short) are elements of [:N + :N], and for each refmap µ we also have

a mapping ~ which works on terms. The effect that a mapping E has on

a term t can be described as follows. Let n be a variable occurring

in t. If a specific occurrence of n in t has reference depth k > 0

in t then that occurrence of n will be replaced by a variable n' which

has reference depth µ(k) in ~t. Internal reference occurrencesof n in

t are not effected by E·

For example, if we have the tree

i>. - 1;(4)

A - A - A - Eo - cr(2,1) - 1;(2)

and if µ(1) 2, µ(2) = 1, µ(3) = 3 and µ(n) = n, for n ~ 3, then 1;(2)

is bound by the second A (from the left), cr(2,1) is bound by the third

A (from the left) and 1;(4) is bound by the first A (from the left).

This means that

IA - t,;(4)

~o - cr(2,ll - I; (2)

is equal to

IA - t;C4l

o - cr(l,1) - I; (3) .

We now introduce four important classes of refmaps (Definition 9) and

give a formal definition of applying a mapping Ei for each refmap µ,

to a term t (Definition 10). An informal explanation of Definition 9

and 10 is given in Section 2.4.

Definition 2.9.

Let m be an element of Jo1 and n be an element of :N. we define the

following mappings, all elements of [:N + :N].

(i) cpm (n) = n + m ;

45

(ii)

I n + 1 ,

em(n)=1: ,

(iii) if w E Perm then

{

W (n) ,
w·(n) =

n '

if n s; m

if n = m+ 1

if n > m + 1

if n E domCwl

if n t/ dom(wl

(iv) if µ E [:N-+ :N] then

<m>
µ (n)

if n s; m {: + µ (n-m) , if n > m D

Lemma 2.1.

(1) cpk 0 cpm = cpk+m ;

(2)
<m>

= a em 0 ek k+m

(3)
<k> <m> <k+m>

()l))l

(4)
<m> <m> <m>

(µ o v) Jl ov

Proof. A straightforward check of Definition 2.9.

Definition 2.10.

If µ is a refmap then !!(t) is defined inductively for terms t by

(i) !!(~(n))

(ii) !!(W(W))

(iii) !! (AU)

"Jl (n))

w(µ 0 wl

<1>
A_ll_ (u)

(iv) !!(cr(n,m)u) = cr(µ(n),m) (u)

D

(v)];I ouv o !! (u) !! (v) D

Remark. !!(t) is a Acr-term (easily proved by induction on L(t)). Fur

thermore, from now on we shall write];It instead of !!(t) in order to

economize on the use of parentheses.

46

2.4. Infonnal discussion of Definitions 2.9 and 2.10

In this section we will give an informal description of the effect
<m>

that the mappings ~m' em, ~ and _µ __ have on an arbitrary term t.

(i) ~mt: Let n be a variable occurring in t. The effect of ~m on t

will be that the reference number, say n, inside an external

reference occurrence of n in t will be raised by m and thus

change to n + m.

(ii) e t: In order to understand the effect of e on a term t con-
m m

sider the following two specific examples o~terms written in

tree fashion

/A /l;(j)

o - A - A - - A - o - I; (m + 1) (1) ------.------
m A's

I ~mA Ii;; (j)

'-A----.-_-_A__,- o - A - em o - I; (m + 1) (1')

m A's

What we shall try to show is that the terms (1) and (1') are,

in a sense, equivalent. The claim is that all references to

A's in (1) and (1') are the samei i.e. each specific occurrence

of a variable in (1) will refer to exactly the same A after

it has (possibly) been reallocated in (1'). The mapping ~m

placed in front of A in (1') has the effect that all ext~nal

reference occurrences in A skip the block of m preceding A's

by raising their respective reference numbers by m and thus en

suring that they remain bound by their original A •s (i.e. by

the same A's as in (1)). Furthermore, the mapping em' placed

in front of ot;(j) l;(m+l), ensures that both i;(j) and l;(m+l)

remain bound by their original A. By doing so we achieve that

t; (m + 1) is bound by its original A ({Im (m + 1) = 1) and by apply

ing em to j we see that if l;(j) was originally bound by a A

occurring in the preceding block of m A's in (1), then by rais

ing j by 1 cem(j) = j + 1, if 1 :s j :s m) we achieve that l;(j)

remains bound by that same A in (1') . If j > m + 1 then em has

no effect on l;(j), so also in this case we see that i;(ji--is

47

bound by the same A in both (1) and (1'). The purpose of this

example is to show that one can reallocate a oAA-part in a term

t to some other place in t and, by introducing suitable refmaps

q>m and em' can still preserve references to original A's (i.e.

r~ferences to A's prior to this reallocation). As pointed out

earlier in the introduction (Section 1.1.5). such reallocations

of OAA-parts will occur often after performing certain fl-reduc

tions inside segments. By 8-reducing certain redices inside a

segment we sometimes get the situation that the "oAA-part" of

the redex reappears and is placed directly in front of the end

point, say w(ljJ), of the segment. In order to ensure that all of

the original references to A's (i.e. references to A1 S as they

appeared in the segment before the 8-reduction was performed)

remain intact we introduce suitable mappings q>m and em; the

mapping qi is placed in front of the term A and e iS-placed m m
in frontof w(ljJ), thus obtaining o q>mAA emw(ljJ) at the end of

the reduced segment. This way variables which are bound by a A

hidden inside a o-variable abbreviating the segment just dis

cussed, remain bound by the same A after performing a a-reduc

tion inside that segment (see also clause (iii) below). A for

mal description of how mappings em are introduced in terms is

given in Definition 2.11 (substitution).

(iii) !I(t: If ljJ is a segmap (i.e., an element of Perm) then ljJ- extends

the domain of ljJ to l'I by defining w- (n) as n for each

48

n € l'l\dom(ljJ). Since ljJ- is an element of [l'I + JN] we have ex

tended the segmap ljJ to a refmap ljJ-. such refmaps w- are called

upon when segments are substituted for segment variables. As

described earlier in the introduction, the segmaps ljJ occurring

at end-points of segments reallocate references to A's lying on

the main branch of such segments. When we substitute a segment

for some segment variable n we will introduce a refmap ljJ- which

will have the intended reallocational effect on those variables

which refer to a A hidden inside n. As an example consider the

following term

A - A

/A /B
Io - A - o - A - w (ljJ l

0-A-o(l,2)

I.; (5)

0 - !;(1) (2)

(iv)

where w is the mapping with domain {1,2} and w!1) = 2 and

w(2) = 1. In (2) we see that cr(1,2) abbreviates the segment

oA.:UlBAw(w) and that 1;(1) - apparently - is bound by the first

A (from the right) hidden inside cr(1,2). Although the reference

number 1 in i;(l) apparently indicates that 1;(1) is bound by the

first A hidden inside cr(1,2), the segmap w reallocates this re-

ference to the second A hidden inside cr(l,2) since w(l)

performing a $-reduction in (2) we get

2. By

/A ;B I 1;(4)

A - A - o - A - o - A - ~- o - i; (1) (2')

Substitution of the segment oAAoBAw(w) for cr(1,2) has lead

not only to the introduction of a mapping~- in (2'), but also

to the replacement of the variable 1;(5) by 1;(4). The reason for

replacing 1;(5) by 1;(4) is that by a-reducing (2) the A of the

redex that has been a-reduced has disappeared, and since this

A lies on the root path of i; (5) in (2) we have lowered the re

ference number 5 with 1 in order to keep this variable bound by

its original A (i.e., the same A it was bound by in (2)). The

mapping~- introduced in (2') has the intended effect on the

variables 1;(4) and 1;(1): w-(4) 2, so i; (4) and

i;(l) refer to the same A's in (2 1
) as 1;(5) and i;(l) refer to

in (2). A formal description of how refmaps w- are introduced

is given in Definition 2.11 (substitution).

<m>
_µ __ t: When we evaluate the effect that a refmap µhas on a

term t then we shift the mapping E through the tree represen

tation of t, as seen from Definition 2.10, until we reach an

end-paint, where the (possibly altered) refmap µ is either

applied to a reference number occurring in a !;-variable or is

compcsed with a segmap w occurring in some w(wl. In this

shifting process we may encounter a A and have to evaluate an
<1>

expression like EAU. We define EAU as A _µ __ u, for in this

way the specific reference depths of all variables occurring in
<1> !! AU and A_µ __ u are exactly the same. If. an occurrence of a

variable n has reference depth 0 in Au then this occurrence

also has reference depth 0 in !! AU; i.e. the mapping !! has no

influence on this occurrence of n. This same occurrence of n

49

<1>
has reference depth 1 in u as it should also have in _µ __ u,

<1>
this is why µ (1) is defined as 1. If an occurrence of a va-

riable n has reference depth j > 0 in AU then it has reference

depth µ (j) in .!:! AU. This occurrence of n has reference depth j + 1

in u, so in order to ensure that this occurrence has the same
<1> <1>

reference depth in both µ AU and A µ u we define µ (j + 1)
- <1> --

as µ(j) + 1 or, in general, µ (k) is defined as µ(k- 1) + 1,
<1>

for all k > 1. When we proceed in evaluating _µ __ u other map-

pings µ<m> (m > 1) will often arise. Say that u is of the form

AV the~cording to the definition of µ <l> AV we get
<1> <1> <1>--zf> <1+1> <2>

A (µ) v. Lemma 2. 1 says that (µ) = µ = µ l
<1> <2>

i.e. _µ __ Av = A_µ __ v. In general, if a mapping .!:! is applied

to a term t = A ••. AV beginning with a block of m A's (m l!. 0)
<m>

then this results in .!:! t = A ••• A_µ __ v. This is also the case

when.!:! is applied to a term t of the form a(j,m)v. The variable

a(j,m) in a(j,m)u has reference depth j in t and the number m

in a (j ,m) indicates that there is a block of m A's hidden in

side a(j,m). Therefore,µ is applied to the reference number j
<m>

and once past a(j,m), the mapping.!:! is changed to.!:! ; i.e.
<m>

J:!t a(µ(j) ,m) _µ __ v.

We shall now give an example of evaluating the application of a map-

9ing .!:! to a term t. Let µ be the refmap qi6 , which raises the refer

ence numbers of all external references in t by 6, and let t be the

term

I t:;.(9)

A - A - a(3,5) - 6 - 1;.(4)

Now application of qi
6

to t results in

qi
6

A A a(3,5) 61;.(9) 1;.(4)

<1>
=Aqi

6
A0(3,5)61;;(9)1;;(4)

<1><1>
AAqi

6
a(3,5) 61;.(9) 1;.(4)

<2>
= A A qi

6
a(3,5) 6 l;.(9) 1;.(4) =

<2> <2><5>
"' A A a(qi6 (3) ,5) ,

6
6 l;.{9) 1;.(4)

50

<7>
A A cr(2 + cp

6
(3- 2) ,5) cp

6
o s(9) s(4)

<7> <7>
AA0(2+7,5) ocp6 s(9) cp6 s(4)

<7> <7>
AAcr(9,5Jos(cp6 (9Jls(cp

6
(4ll

AAcr(9,5J os(7+cp
6

(9-7ll s(4J

= AAcr(9,5J os(l5l s(4J.

This is indeed the expected result; the reference numbers in the ex

ternal reference occurrences cr(3,5) and s(9) have both been raised by

6 and the internal reference occurrence s(4) remains unaltered. As

mentioned earlier, refmaps µ and mappings ~ have been introduced in

order to describe the effect that S-reduction of a term can have on

the variables occurring in t. In the next section we will give a for

mal definition of substitution and describe how S-reduction of a term

invokes the introduction of refmaps.

2.5. Beta-reduction and substitution

If a term is of the form o A A B then we call it a redex. We can read

such a redex as "the function AB applied to the arg\llllent A". Should

we evaluate the application of the "function part" AB to the "argu

ment part" A then we say that this redex is S-reduced (or contracted),

thus resulting in the substitution of A for all occurrences of vari

ables in B with reference depth 1 in B. This substitution is denoted

by E(A,B,1). In general, the meta-symbol E (denoting substitution)

takes three arguments and is of the form E(A,B,k). The expression

E(A,B,k) is to be read as the substitution of the term A for all

occurrences of variables in B with reference depth k in B. In this

section we will start by giving a formal definition of E(A,B,k). This

definition is then followed by a discussion of each of the clauses

involved.

Definition 2.11 (substitution).

Let u be a term and k be an element of JN. E(u,v,k) is defined in

ductively for terms v by

51

r-1 u

if n k and LS(u) E rge(I;;)

(i) v"' !;; (n) : l: (u, ~ (n) ,k) !;; (n) if n < k

~(n-1) I if n > k

if k E rge(ljJ)
(ii) v = w(ljJ) l: (u,w(ljJ) ,k)

if k I. rge (ijl)

(iii) v :\w: l:(u,:\w,k) Al:(u,w,k+l);

(iv) v "' a (n,m)w:

l:(u,cr(n,m)w,k) "'

(v)

S ~ - £: (U I WI k + m) I if n = k , W(u)

LS (u) E rge (w) , q>k-l u

and rge(ljJ) S :Nm

cr(n,m) l:(u,w,k+m) if n < k

cr(n-1,m) l:(u,w,k+m), if n > k

sw(ijl)

D

We now proceed with a discussion of each of the five clauses given in

Definition 2. 11 •

(i) v ~(n) : If n = k then we know that this occurrence of ~(k)

has reference depth k in v and, thus, that u can be substituted

for i;;(k). we cannot, however, simply replace ~(k) by the term

u, since external reference occurrences in u will then possibly

get bound by the wrong :\'s. This situation is clarified by the

following diagrams

~(k)
u

k :\'s ! • :\
• :\

• :\ (the :\ of the redex)

k-1:\'s { • :\

• :\

• :\
u

• :\ • :\

• :\

*) W(u), the weight of u, is formally defined in Definition 2.12.

52

The variable (;;(k) is to be interpreted on an underlying "context"

of k A's, while the term u is to be interpreted on a context of

A's just below the context of (;;(k). In order to ensure that the

external reference occurrences in u remain bound by their ori

ginal A's after substitution of u for (;;(k), the first k-1 A's

have to be skipped when determining the A's that bind these re

ference occurrences. The reason for this is that the end-stage

of a substitution, resulting in an expression like L(u,(;;(k),k),

was the result of a S-reduction of some redex. This redex will

be of the form Ii u A B, where (;; (k) occurs somewhere in the term

B and (;;(k) is bound by the A of that redex. In the transition

from 6 u AB to L(u,B, 1), the A of the redex is dropped and all

original references to that A - like (;;(k) are replaced by u.

After replacing (;;(k) by u the term u is interpreted on a con

text of k - 1 extra A's. By substituting <pk-l u - instead of u -

for (;; (k) we ensure that the k - 1 extra A's are skipped, with

the effect that external reference occurrences in u remain bound

by their original A's. If n > k then after reduction of the

redex which give rise to L(U,~(n) ,k) we have the situation that

the A of that redex has disappeared and since this A occurred

on the root path of ~ (n) we lower the reference number n in ~ (n)

by 1 in order to maintain that this variable remains bound by

its original A. If n < k then removal of this A has no effect

on ~(n) and we can let ~(n) remain unaltered. Note that we have

only allowed substitution of the term u for ~(k) if the last

symbol of u is a ~-variable. This way we exclude substitution

of segments for ~(k).

(ii) v = w(iji) : As indicated earlier in the introduction (Section

1.1.5) we have to be careful when we evaluate expressions like

L (u,.w (iji) ,k). The reason for this is that L (u,w (iji) ,k) may have

been the result of some internal S-reduction of a segment end

ing in w(iji). In that case we have to ensure that possible re

ferences to the A of the redex which has been contracted remain

intact. Should we, for example, simply define L(u,w(iji) ,k) as

w(iji) then references to the A of this redex are no longer possi

ble, and this can lead to inconsistencies. If, for example, the

segment in question is substituted for some segment variable

53

S4

o(j,m) and there is a reference to the A of this redex (one of

the A's of the block of m A's hidden inside o(j,m)) then after

6-reduction this A will have disappeared. As a consequence the

argument u of this redex can no longer be substituted for those

variables which originally, i.e. prior to 6-reduction, referred

to this now vanished A. As an example consider the following

term
/u

I A - Ii - A - A - A - w (id 4)

Ii - A - O(l,4) - 1;(3)

As we can see the variable o(l,4) abbreviates the segment

(3)

Ao u A A Aw (id
4

) and F; (3) refers to the third A (from the right)

lying on the main branch of this segment; i.e. F;(3) refers to

the A of the redex o u A A Aw (id
4

) occurring in the segment

Ao u A A A w(id
4

J. Should we 6-reduce this redex and apply the

rule that E(u,w(id
4

),3) results in w(id
4

J, then the segment

reduces to A A A w (id
4

) ; i.e. the term (3) 6-reduces to the term

I A - A - A - w (id4)

Ii - A - o(1,4J - F;(3) (3 I)

In (3') two things are to be noticed: first, the variable o(l,4)

now apparently abbreviates a segment with three A1 S lying on the

main branch of its tree, while four A's are expected; second,

the variable F;(3) now refers to a A different from the A it

originally referred to in (3). From this we can conclude that

not only is (3') ill-formed, it also contains references to A's

different from those in the original term. In order to remedy

this situation we will have to come up with a different defini

tion of E(u,w(~),k). In the case of our example we shall define

E(u,w(id4J,3) as

/ 'll2 u

o - A - e2 w(id4 l .

Following this definition, (3) 6-reduces to

I f.P2 u

/ >.. - >.. - >.. - o - >.. - k}2 w(id4)

o - >.. - cr(l,4) ~(3) (3")

' •• 1e mapping r,p
2

ensures that all external reference occurrences

in u remain bOund by the same >..'s as in (3), and the mapping

ensures that ~(3} remains bound by its original>.. as well

(~2 (3) = 1), with the effect that u (or rather: cp
2

u) can still

be substituted for t(3) (as originally intended in (3)) after

performing suitable 6-reductions (see also clause (iv)}. Inge

neral, if k € rge(l/J) then E(u,w(l/J),k) is defined as

I 'Pk-1 u

o - >.. - w(l/J)

with the effect that references to the >.. of the redex that has

been contracted inside some segment remain possible for all

those variables indirectly bound by that A from the outside ~

variables originally bound by this >.. by means of an indirect

reference to a corresponding A hidden inside some segment vari

able cr(n,m) prior to reduction of the redex in question. If

k d rge(l/J) then the reference number k is not a customer for

reallocation of references to >..'s among the >..'s lying on the

main branch of the segment involved and in that case we could

also define E (u,w (l/J) ,k) as 6 q>k-l u A k}k-l w (l/J). But if k ¢ rge (ljl)

then 1 I. rge (k}k- l o l/J) • In other words k}k-l o l/J will never re

allocate a reference to the >.. in o r,pk-l u >.. w(k}k-l o 1/1). In that

case we can just as well discard the whole 6 r,pk-l u >..-part and

simply write w (.Sk-l o ip - 1) (we have subtracted 1 because the >..

of the redex has disappeared).

(iii) E(u,>..w,k) : If an occurrence of a variable n has reference depth

k j n >..w then n has reference depth k + 1 in w: therefore

E(u,>..w,k) = >..E(u,w,k+l).

(iv) E(u,o(n,m)w,k) : If n = k then cr(n,m) has reference depth k in

the term o(n,m)w and u can be subsituted for o(n,m). Certain

conditions have to be met, though, if this substitution is to

make sense. First of all, u has to be a segment: i.e. u is a

55

term ending in w(~}, for some~ EPerm. Terms ending in a ~-vari

able cannot be substituted for a-variables; this would make no

sense at all. Second, the weight of the term u (= the number of

A's lying on the main branch of u} has to be equal to the number

m in cr(n,m) (= the number of "hidden" A's in cr(n,m}}. When these

two conditions have been fulfilled we can substitute u for

cr(n,m}. Again, in order to maintain that external reference

occurrences in u remain bound by their original A's, we apply

the mapping ~k-l to u and replace cr(n,m) by ~k-l u; or more pre

cisely: a (n,m} w is replaced bys 1j(E (u, w ,k + m} ,--where ~k-l u = sw (~) •

If an occurrence of a variable n in w has reference depth k in

cr (n,m}w then it has reference depth k + m in w; this explains

the part E(u,w,k+m} in s~-E(u,w,k+m}. The mapping~- is

placed in front of E (u, w, k + m} in order to ensure that the re

ferences of variables in E (u,w,k + m} to a A occurring in s get

reallocated to their proper A's as indicated by the segmap ~·

If n # k then we have a situation analogous to the case n # k

in clause (i}, The variable cr(n,m} either remains cr(n,m} or is

changed to cr (n - 1,m}, depending on whether n < k or n > k.

(v} E{u,ow1w2,k}: If an occurrence of a variable n has reference

depth k in ow1w
2

then it either has reference depth k in w
1

or

in w
2

, depending on whether n occurs in w1 or w
2

• This obviously

leads to the definition E{u,ow
1
w

2
,k} = &E{u,w

1
,k) E(u,w

2
,k}.

We now proceed by stating some technical lemmas and theorems concern

ing refmaps and relations between refmaps and substitution.

LellUlla 2.2.

If k, 9-, m E :M and µ is a ref map then

<k>
µ 0 ~k (i) ~k 0 µ ;

(ii}
<k>

µ 0 1'>k-1

if k $ 9,

ifk>R,

(iv}

56

(v) if m ::!: JI, then -&mo -&Jl,-l

Proof. Simple computation. D

Lemma 2.3.

For all refmaps µ and terms u, L(~u) L(u) •

Proof. By induction on the length of u and Lemma 2.1. D

Lemma 2.4.

For all refmaps µ, cp and term u, (µ o q>)u = ~(~u).

Proof. By induction on the length of u and Lemma 2.1. D

Definition 2,12.

W(u) is defined inductively for terms t by

(i) W(~(n)) 0

(ii) W(w(ljJ)) 0

(iii) W(AU) = 1 + W(u)

(iv) W[cr(n,m)u) = m + W(u)

(v) W(ouv) = W(v) • D

W(t) is called the weight of the term t. Informally, W(t) represents

the number of all ;\ • s (also those A's hidden inside segment variables)

lying on the main branch of the tree representation of t. For example,

if tis the term OAAO~(l) A.;\w(id
4

) ;\;\cr(2,4) ;\~(3) thenthetreeequi

valent of t is
I~ <ll

I;\ - ;\ o - ;\ - ;\ - w(id4)

o - A. - ;\ - cr(2,4) - ;\ - ~(3)

and its weight is 1 + 1 + 4 + 1 7 .

Lemma 2.5.

If sw(ljJ) is a segment and W(sw(ljJ))

maps µ
<m>

J:!(S&t) = S 1 & _µ __ t t

where !:! sw (ljJ) s'w(ljJ') •

m, then for all terms t and ref-

57

croof. By induction on L(s) and Lemma 2.1. D

Corollary.

If LS(u) = w(~), W(u) m and rge(~) S :Nm then LS(~u) w (~) •

Informally, the following theorem shows how to interpret substitutions

for variables occurring at reference depth k (k > 1) as substitutions

for variables occurring at reference depth 1.

Theorem 2.1.

Let u and v be terms and let k be an element of JN. If (u,v,k) E

E dom(l:) or (q_ 1 u,0k-l v,1) E dom(l:), then

E(u,v,k) = E(qik-l u,0k-l v,1)
-- --

Proof. By induction on L(v):

(i) v = ~ (n):

{ ~-1 u
if n = k

A E (u, ~ (n) ,k) = ~ (n) if n < k

~(n-1), if n > k

B l:(qik-1 u,0k-1 ~(n) ,1)

{

ij)k-1 u

~(0k-1 (n) -1) if 0k_1 (n) > 1

{ '>-1 u
if n = k

~(n) if n < k

- ~ (n - 1) , if n > k

Conclusion: A B •

(ii) V = W(~):

{ 0 qik-1 u).. w (0k-1 0 ~) , if k E rge(~)
A E(u,w(~),k)

w (0k 0 ~ - 1) if k f. rge(~)

58

{
o <pk- l u It w (·I_ 1 o 1jl) ,

w (.\\-101jl 1)

if

if

E rge (.\}k-l o ijl)

t rge (.\lk-l o ijl)

Since 1 is an element of the range of .\}k-l 0 1jl if and only if k

is an element of the range of 1jl we can conclude that A= B.

(iii) v = AW :

A E(u,!tw,k) = AE(u,w,k+ 1) and from the induction hypothesis

it follows that A

From the induction hypothesis and Lemmas 2.1 and 2.4 we conclude

B
1>

w) , 1)

and thus A = B •

(iv) v = a (n,m)w: :.:.et A = E (u,cr (n,m)w,k) and B =

E(<pk-l u,.t7k-l cr(n,m)w,1). By the induction hypothesis one of

the following three cases holds for A or B

A: n=k and A=s:!(E(u,w,k+m) =s1(E(<pk+m-l u, w,1)

n<k and A=cr(n,m) E(u,w,k+m) =cr(n,m) E(<pk+m-l u,.\lk+m-l w,1)

n>k and A=cr(n-1,m) E(u,w,k+m)

cr(n-1,m) E(

59

60

B: B E(qik-l u,ak-l cr(n,m)w,1)

(1) n
~ <m>

k and B = s ~ i:: (qik-l u,ak-l w,m+ 1)

(2) n < k and B

(3) n > k and B

<m>
E(qik-l u,cr(n+ 1,m) .ek-l w,1)

a (n,:, E
<m>

u,ak-l w,m + 1)

cr(n,m) E(qim+k-l u,am+k-l w,1)

E (q>k-l u ,a (n ,m) w, 1)

<m>
cr(n- 1,m) E(qik-l u,ak-l w,m+ 1)

cr(n-1,m) E(1pm+k-l u,am+k-l w,1) --- ---

Conclusion: A B •

(Lewna . 2 • 4)

(Lemma 2 .1)

oE(u,w
1

,kJ E(u,w
2

,kl and from the induction

hypothesis it follows that

Furthermore, B

and again we see that A B, which completes the proof. D

Informally, the following theorem shows how refmaps interact with

substitutions for variables occurring at reference depth 1 (Theorem

2.1 sees to it that all substitutions can be brought back to substi

tutions for variables occurring at this reference depth) •

Theorem 2.2.

Let u and v be terms and µ be a refmap.
<1>

If (u,v,1) € dom(l:) or (!;!u,_µ __ v,1) € dom(I:), then

j!l:(u,v,1)
<1>

L(j!U,_µ __ v,1)

By induction on L(v):

(i) v = ~ (n) :

<1>
(l)n=l: !;!I:(u,v,l)=j!U, andfurthermore µ (1)

<1>
which it follows that l:(J!u,_µ __ v,1) = J!U.

1 from

(2) n > 1: µ I:(u,v,1) = µ ~(n-1) = ~(µ(n 1)), and furthermore
<1> - - <1>

ll (n) = 1 + ll (n - 1) > 1; hence I: (J!U,_J.J __ v, 1)

= I: (]:!u, ~ (1 + µ (n - 1)}, 1) = ~ (J.! (n - 1)) •

(ii) v = w(tlJ) :

<1> o J:! u A_µ_w(ljl)
<1> -o l:! u Aw(µ o ljl), and furthermore

<1> <1>
1 € rge(µ o ljl); hence I:(]:!u,_µ __ v,1)

<1>
l:(];!u,w(µ oljl),1)

<1>
OJ;!UAW(µ oljl).

(2) (. rge(ljl):]:!I:(u,v,1) = J!W(tlJ-1) = w(J.Jo (ljl-1)), and fur-

<1> <1>
thermore 1 ¢ rge (J.J o ljl); hence I: (]:!u,_µ __ v, 1) =

<1>
l: (J:!U 1 W(J,1 o ljl) 1 1) L (!!_U,W(l + J,l o (tlJ - 1)} ,1) =

w cc e0 o c 1 + µ o (ljl - 1)) - 1 > = w ((1 + µ o cip - 1)) - o

= w (J,1 0 (qi - 1)) •

61

(iii) v = AW:

]:!E(u,v,1)

!:! :\2: (u,w,2)

<1>
!. _µ __ E (u,w,2)

<1>
J._µ __ E(cp

1
u, w, 1)

<1> <1>
(cpl u), -'----'----(%1 w),1)

w, 1) =

<2>
,\ 2: ():!U 1 _µ __ w,2)

<1>
,\ w, 1)

(iv) v o(n,m)w:

(1) n 1 :

(Theorem 2 .1)

(induction hypo
thesis)

(Lemmas 2.1 and 2.4)

(Lemma 2 .2)

(Lemma 2.4)

(Theorem 2 .1)

]:!E(u,o(l,m)w,1) = 11s E (u,w,m + 1), where u SW (ljJ) ,

W (u) m and rge (ljJ) £;; Nm•

Furthermore

];!S E(u,w,m+l)

s' (1/:.:.E(u,w,m+ 1)) (Lemma 2. 5)

s'
<m>

o lj(E(u,w,m+ 1) (Lemma 2.4) µ

s'
<m>

(rge (iJ.i) 0 E(u,w,m+ 1) £ N)
m

<m>
s' !I((_µ __ E(u,w,m+ 1)

S I 11J • (<m> <' (°' 1) i: _µ __ ,., qim u,vm w, =

s' ,_,,· E (µ <m> <m+l> .,, (qim u) ,_µ ___ (.\Jm w), 1)

• <m+l> s' ~ E(]:!u,_µ ___ w,m+ 1)

<m+l>
E(]:!u,a(l,m) _µ ___ w,1)

<1>
E (J:!u,_µ __ a (1,m) w, 1)

(2) n > 1 :

!:! E (u,a (n,m)w, 1)

!:! a(n 1,m) E(u,w,m+ 1)

a(µ(n
<m>

1) ,m) _µ __ E (u,w,m+ 1)

<m>
a(µ (n - 1) ,m) _JJ __ E (qim u,.\Jm w, 1l =

cr(µ(n - 1) ,m) E (µ <m> (qim u) ,µ <m+l> (.\Jm w) ,1)

<m+l>
a(µ(n-1) ,ml E(qim (]:!U) ,am (_µ ___ w) ,1)

<m+l>
a(µ (n - 1) ,m) E (]:!u,_µ ___ w ,m + 1)

(Lemma 2. 4)

(Theorem 2.1)

(induction hypo
thesis)

(Lemmas 2.2 and
2.4)

(Theorem 2 • 1)

(Theorem 2 • 1)

(induction
hypothesis)

(Lemmas 2 .2
and 2.4)

(Theorem 2 .1)

If n > 1 then µ<l> (n) 1 + µ (n - 1), from which it follows

that

<1>
E (]:!u,_µ __ a (n,m)w, 1)

<m+l>
E(J:!u,cr(l + µ(n-1) ,m) _µ ___ w,1)

<m+l>
cr(µ(n- 1) ,ml E(]:!u,_µ ___ w,m+ 1)

63

(v) v

<1> <1> 6l: (]:!u,_µ __ w
1

, 1) l: (]:!u,_µ __ w
2

, 1) (induction hypothesis)

Corollary.

<1>
l:(]:!U 1 0

<1>
_µ __ w

2
, 1)

If m < Jl then l: (u,v,Jl-m)

cp l:(u,v,.11,-m)
m

= l:(
<1>

(cp.11,-m-1 u) ,cpm (~Jl-m-1 v) ,1)

D

(Theorem 2.1)

(Theorem 2.2)

(Lemmas 2.2 and 2.4)

l:(u, v,.11,)

Informal,ly, the following theorem shows that in some cases it is

possible to short-cut the evaluation of a substitution.

Let k be an element of :Ii and m an element of :M. If k + m ~ Jl > m

and (u,cp~m> v,Jl) E dom(l:) then l:(u, <m> v,.11,) =

Proof. By induction on L(v):

<m>

q>~m>(n) = l n
if s n s m

(i) v = t; (n)

n+k, if n > m

64

v •

0

<m>
If k + m <:: R. > m then <pk (n) 'I' R..

<m>
E(u,qik i;(n) ,9.)

{

i;(n)

E;;(n+k-1) I

<m>
cpk-1 i:; (n)

(ii) v = w(ljl)
<m> { ljl(n)

cpk o 1jl (n) =
ljl(n) + k I

if 1 s n s m

if n > m

if 1 s ljl(n) s m

if 1jl (n) > m

<m>
If k + m <:: J/, > m then Jl I rge (cpk o ijl).

<m> <m>
E(u,cpk w(ljl),ll) = w(-!lll-l ocpk oljl-1)

<m>
{

ljl(n) if 1s1jl (n) s m
l (n) Furthermore -!! 9.- l o <pk o 1ji

1jl (n) + k - 1 I if ijl(n) > m

<m>
Conclusion: E(u,cpk w(ljl),ll)

(iii) v = Aw:

<m>
E(u,cpk w,R.)

E(u,;\ <m+l> v,R.)

<m+l>
AI: (u,cpk v, J/, + 1)

<m+l>
;\ cpk-1 v

(iv) v = a (n,p)w:

<m>
cpk-1 o 1jl (n)

<m>
q>k-1 w (ijl)

(induction hypothesis)

<m> <m> <m+p> s = E(u,q>k a(n,p)w,R.) = E(u,a(qik (n),p) <pk w,R.)

<m>
As seen earlier in i) J/, I rge(cpk), therefore S

<m+p>
a) 1 s n s m: a(n,p) E(u,cpk w,ll+p)

65

b) n > m

(v) v = otw:

<m>
l:(u,cpk v,.t)

cr(n,p)

<m>
cpk-l a (n,p) w

w (induction hypo
thesis)

cr(n+k
<m+p>

1,p) l:(u, · w,.t+p)

o(n + k- 1,p)

<m>
qik-l o(n,p)w

w (induction hypo
thesis)

<m>
ol:(u,cpk t,.t) l:(u, w,.t)

Corollary.

<m>
cpk-1 otw

2.6. The permutation condition (PC)

(induction hypothesis)

D

With the definition of AO-terms as it stands it is possible to con

struct terms that have undesirable properties. Consider as an example

the following term represented in tree form by

/A
/ ;\ - ;\ o - ;\ - w (ijl)

;\-;\-o-;\-cr(l,3J B

where ijJ is a segmap containing a number larger than 3 in its range.

Such a segmap ijJ also reallocates references to ;\'s that do not lie

on the main branch of its segment. Should we substitute the segment

66

for cr(l,3) then this results in

/A
A - A - A - A - o - A - ~- - B

and wesee that variables in B which are bound by a A in front of the

segment are now influenced by ¢. This is not the intention, though.

Such external reference occurrences in B should not be influenced by

¢; the sole role of a segmap is the reallocation of references to A'S

which occur inside its corresponding segment (variables in B which

are bound by A'S in front of the segment can refer directly to these

A's anyway, instead of indirectly by means of a segmap $).We there

fore require that a segment t with LS(t) = w($) satisfies the condi-

tion ¢ E Perm(m), where m W(t). That way the segmap ¢will only in-

fluence references to A1 S occurring in the segment t. This condition

is taken care of by the so-called permutation aorulition (PC) described

below.

Definition 2.13 (PC).

Let k be an element of JM.

PC(t,k) is defined inductively for terms t by

(i) PC(~ (n) ,k) ,

(ii) PC(w(¢),k) * ¢ E Perm(k)

(iii) PC (),u,k) .. PC (u,k + 1) ;

(iv) PC (cr (n,m) u,k) * PC (u,k + m)

(v) PC(ouv,k) .. PC(u,O) A PC(v,k) D

Informally, the number k indicates the number of A's encountered in

the process of "recursively shifting" PC through the tree of t. Given

a term t we will require PC (t,0), and if PC (t,O) holds we say that t

satisfies the permutation condition.

we now give an example of a term which satisfies the permutation con

dition. Consider the following term t

67

I. o Ao I. ~(2) I. I. w(ij>) I. A cr(2,3) A w(q>) (4)

where 1/> € Perm(3) and q> E Perm(7). The tree representation of (4) is

1" ~(2)

1
1.-0 t.-t.-w(i/>l

A - o - A - I. - cr(2,3) - I. - w(q>) •

From (4') we see that PC(t,O) holds if PC(~(2),1), PC(w(ij>),3) and

PC(w(q>),7) hold. The first condition is trivial, and since

(4 f)

ij> € Perm(3) and q> E Perm(?) we also have PC(w(ij>),3) and PC(w(q>),7).

we now proceed by stating some properties concerning the permutation

condition which will be used later on.

The following four lemmas are easily proved by induction on L(t).

Lemma 2.6.

Let m be an element of JM.

If t : sw(id) and u are terms and W(t)
m

PC(s & u,k) * PC(t,0) A PC(u,k + m)

Lemma 2.7.

Lett be a term and k,t be elements of JM.

If t ~ k then, for all refmaps µ

<t>
PC(t,k) * PC(_µ __ t,k)

Corollary.

PC(t,0) * PC(J:!t,0)

Lemma 2.8.

Let t be a term and k be an element of :M.

If ij> E Perm(m) and m $ k then

PC(1_j(t,k) * PC(t,k) •

Lemma 2.9.

Let t be a term and k,m be elements of :M.

68

m then

If LS(t) € rqe(~) then

PC(t,k) * PC(t,m)

Theorem 2.4.

Let t and u be terms and k, 9, be elements of :M.

If PC(t,k), :EC(u,O), 9, > k and (u,t,9,) € dom(E) then PC(E(u,t,9-),k).

Proof. By induction on L(t):

(i)
{

ip9,-1 u

t = ~ (n) : E (u, t, 9,) = ~ (n)

~ (n - 1) I

if n 9,

if n < 9,

if n > 9,

If n F 9, then, by Lemma 2.9, it follows that PC(E(u,~(n) ,9-),k).

If n 9, then E(u,~(n),9,) = ip9,-l u and LS(u) € rqe(O. From the

corollary to Lemma 2.7 and PC(u,0) it follows that PC(ip9,-l u,O).

Furthermore, if LS(u) € rqe(~) then LS(ip9,-l u) € rqe(~~rom

Lemma 2.9 and PC(ip9,-l u,0) it follows that PC(ip9,-l u,k).
-- --

(ii) t = w(ijl): From PC(w(ijl),k) it follows that ijl € Perm(k), and

therefore that 9, t rqe(ijl). If 9, t rqe(ijl) then E(u,w(ijl),9,)

= w(~9,-l o ijl-1). Furthermore, if 9, > k, ~9,-l o ijl-1 = ijl. There

fore E(u,w(ijl),9,) = w(ijl) and, thus, PC(E(u,w(ijl),9,),k).

(iii) t =Av: If PC(t,k) then PC(v,k+l). The induction hypothesis

gives PC(E (u,v,9, + 1) ,k + 1) and therefore we have

PC(E(u,Av,9,),k).

(iv) t cr(n,m)v:

s ~· E(u,v,9-+m) if n = 9,; where

E(u,cr(n,m)v,9-)
IP 9,-1 u sw(ijl) and W(u) = m

cr(n,m) E (u,v, 9, +ml if n < 9,

cr(n-1,m) E(u,v,9-+m), if n > 9,

a) n F 9,: From PC(cr(n,m)v,k) it follows that PC(v,k+m). From

the induction hypothesis it follows that PC(E(u,v,9-+m),k+m)

and therefore both PC(cr(n,m) E(u,v,9-+m),k) and

PC(cr(n-1,m) E(u,v,9- +m) ,k).

69

b) n ,\',: From PC(u,Ol and the corollary to Lemma 2. 7 it

follows that PC(~,\',-l u,0). From the corollary to Lemma 2.5

we see that if u = sw (!JI) then LS (u) = w (!JI). Furthermore

PC(u,0) A PC(o(,1',,m)v,k) =>

=>PC u, O) A PC (v, k + ml =>

=> PC(sw(!J!),0) A PC(l:(u,v,9.+m),k+m) =>

=> PC(sw(id),0) A PC(l:(u,v,9.+m),k+m) =>
m

=> PC (s ~. l: (u, v, ,\', + m) , k)

(v) t = ovw:

PC(u,0) A PC(t,k) =>

=> PC(u,0) A PC(v,0) A PC(w,k) =>

(induction
hypothesis)

(Lemma 2.8)

(Lemma 2.6)

=> PC(l:(u,v,9.),0) A PC(l:(u,w,9.),k) => (induction hypothesis)

=> Pc(ol:(u,v,9.) l:(u,w,9.) ,k) =>

=> PC (l: (u,ovw, 9.) ,k) • 0

Corollary.

PC(u,0) APC(t,O)=>PC(l:(u,t,1),0).

The following theorem shows that the permutation condition is invari

ant with respect to S-reduction.

Theorem 2.5.

Let o u At be a term and k be an element of JM.

If (u,t,1) E dom(l:) then

PC(ouAt,k) => PC(l:(u,t,1),k)

Proof. By induction on L(t).

From PC(.S u A t,k) it follows that

70

a) PC(u,0) ;

b) PC (t,k + 1)

(i) t = ~(n): E(u,t,1) = { u
~(n- 1),

if n

if n >

If n > 1 then PC(E(u,~(n),1),k) (trivial). If n = 1 then

E(u,t,1) = u and LS(u) € rge(~). From Le1I1111a 2.9 and PC(u,0) it

follows that PC(u,k).

(ii) t = w(lji): From PC(t,k+1) it follows that 1jJ € Perm(k+1) and

therefore 1 € rge(!jl). If 1 € rge(lji) then E(u,w(lji),1) = au>.w(lji)

and therefore PC(E(u,t,1),k).

(iii) t = >.v: From the corollary to Lemma 2. 7 and PC(u,0) it follows

that PC (<p
1

u,0) • Furthermore

PC(f.v,k+ 1) *

* PC(v,k+2) *

* PC(-&
1

v,k+2) * (Lemma 2.8)

* PC(A -&
1

v,k+1) •

From PC(cp
1

u,O) and PC(). -&
1

v,k+1) we have PC(o rp
1

u;. -&
1

v,k+1).

From the"""induction hypothesis it follows that ~

PC (E (cp
1

u,-&
1

v, 1) ,k + 1) and therefore PC (E (u,v, 2) ,k + 1) (Theorem

2.1).If PC(l:{u,v,2),k+1) then PC(E(u,>.v,1),k).

(iv) t = o(n,m)v ~ If n = 1 then E(u,o(n,m)v,1)

where u = sw(lji) and W(u) = m. Furthermore

PC(o u;. 0(1,m)v,k) *

*PC(u,0) fl PC(v,k+m+l) *

PC(u,0) fl PC(-& v,k+m+l)
m

PC{u,0) /IPC(rp u,O) /IPC()..\7 v,k+m)
_.!!!. m

* PC(u,O) /I PC(o<pmUA-&mv,k+m) -

s ~A E (u,v,m+ 1),

(Lemma 2.8)

(cor. to Lemma
2.7)

71

=> PC(u,0) A PC(E(ip u,
m

v,1),k+m) => (induction
hypothesis)

=> PC(sw(lji) ,0) A PC(E(u,v,m+ 1) ,k +m) => (Theorem 2.1)

=> PC(sW(idm) 1 0) A PC(~- E(u,v,m+ 1) ,k +m) => (Lemma 2.8)

""PC(s ~- E(u,v,m+ 1) ,k) • (Lemma 2.6)

If n > 1 then E(u,t,1) = cr(n-1,m) E(u,v,m+ 1)

cr(n-1,m) !:(u, v,1) and therefore PC(E(u,t,1) ,k) .,.

.,. PC(l:(u,-&mv,1 ,m+ 1). PC(E(tp u,-& v,1) ,m+ 1) is proved as
-1!!. -1!!.

above the case n = 1.

(v) t = ovw:

PC(ou>.t,kl.,.

.,. PC (u,0) A PC(t,k + 1) 4'*

4'* PC(u,0) A PC(v,0) A PC(w,k+ 1) =1>

""PC(ou>.w,kl 11 PC(l:(u,v,1),0)=> (cor. to Theorem 2.4)

=1> PC(E(u,w,1),k) A PC(E(u,v,1),0) =1> (induction hypothesis)

""PC(o!:(u,v,1) E(u,w,1) ,k)""

""PC(E(u,ovw,1) ,kl •

Informally, the following lemma shows that with PC it is sometimes

possible to short-cut the evaluation of a substitution.

Lemma 2.10.

D

Lett and u be terms and k,.Q; be elements of F... If i $ k, PC(u,.Q;) and

VnEVar(u): k+l I. D(n,ul, then
<k>

l:(t,u,k + 1) = u •

Proof. By induction on L(u). IJ

Corollary.

PC(u,0) A VnEVar(u) 1 I. D(n,u) ""ip
1

E(t,u,1) u •

72

3. THE CHURCH-ROSSER THEOREM FOR THE TYPE FREE Ao-CALCULUS

In this section we of fer a proof of the Church-Rosser property for 8-

reduction in type free AO-calculus. The proof is basically along the

lines of the proof given in Barendregt [81], pp. 279- 289, employing

so-called "finiteness of developments". The main theorem in this sec

tion states that the strong normalization property holds for a special

kind of reduction (called 8') in AO. From this theorem together with

the weak Church-Rosser property for 8' (proved in Section 3.1) it

will be shown that the Church-Rosser property holds for 8-reduction

in general.

J.1. Restricted reduction and the weak Church-Rosser property

In this section we introduce an extension of the set of AO-terms by

marking certain redices.

Definition 3.1.1 (A').

Let A denote the set of Ao-terms. The set A' is the smallest set X

satisfying

(i) Acx
(ii) t € X"" At € x i

(iii) t € x • o(p}t € XI for every p € l'1 x :M

(iv} u,v € x .. ouv € x
(v) u,v € X • ouA'v € x 0

The elements of A' are called A'o-terms. The main difference between

the definitions of A and A' lies in clause (v) in which redices are

marked. This difference is essential, since only marked redices are

contracted in A' (cf. Definition 3.1.2 below}. But apart from differ

ences regarding contractions of redices it is easily seen that the

basic operations on AO-terms introduced in Section 2 can be extended

to A'o-terms in an obvious way, and moreover that the results obtained

in Section 2 regarding .these operations also hold for A'o-terms. In

particular:

(1) Ifµ is a refmap then the application of~ to a A'o-term tis de

fined as in Definition 2.10 with the additional clause that ~A't

73

is defined as ;\ • > t. It is easily seen that Lemmas 2.3 and 2.4

also hold for ;\'a-terms.

(2) The weight W(t) of a ;\'a-term tis defined as in Definition 2.12

with the additional clause that W(;\ 1 t) is defined as 1 +W(t). It

is easily seen that Lemma 2.5 also holds for ;\'a-terms.

(3) Substitution of ;\'a-terms is defined as in Definition 2.11, though

with two exceptions. The first exception is, of course, the addi

tion of an extra clause telling us how to recursively shift the

substitution operator, denoted by E' in A', past an abstractor;\'.

This is done as follows. If u and w are ;\'a-terms and k is an ele

ment of N then E' (u,;\'w,k) is simply defined as ;\' E' (u,w,k + 1).

The other exception is the adaption of clause (ii) in Definition

2.11 which tells how to evaluate a substitution at an end-point

w($) of a segment. We recall that E(u,w($),k) was defined in A as

Ii cpk-l u ;\ \-i w($), if k is ari element of :W such that k E: rge ($).

In:-A'we have a different situation to take account of. In A, sub

stitutions are the result of contracting some B-redex, whereas in

A' substitutions can only be the result of contracting some B'
redex. It is for this reason that we define E(u,w($),k) in A' as

u ;\' ~k-l w ($) , where ;\' corresponds to the ;\' of the B • -

that gave rise to this substitution (see also the discussion

of clause (ii) offered in Section 2 pp. 53 - 55). By checking the

proofs of Theorems 2.1, 2.2 and 2.3 it is again easily seen that

the results stated in these theorems also hold in A'.

Definition 3.1.2 (+
8
,J.

The binary relation B' on A' is defined as follows.

(1) If t,u E: A' then

tB' u c.t 3v,w: t = ov;\'w Au= E'(v,w,1) A (v,w,1) € dom(E') •

If t S' u then t is called a B'-redex.

(2) The notion of reduction +
8

, on A' is inductively defined by

74

(i) u'"v•u+ v · .., B' ,

(ii) u +B' v. AU +B' AV

(iii) u +
8

, v • ;\'u +
8

, ;\'v

(iv) u + v• a(n,m)u +6' 6'
u +a, v .. c5uw + ovw 6' (v)

(vi) u +a• v .. c5wu +6' owv

Theorem 3.1.1.

Let u,v € A' and µ be a refmap.

If u +
8

, v then i:u +
8

, µv.

a(n,m)v

0

Proof. By induction on the generation of + S, and Theorem 2. 2. 0

Important.

We note that in the following lemmas and theorems concerning substitu

·tion it is tacitly assumed that the substitutions involved are indeed

defined. We do this for the sole reason of economy of expression.

Furthermore these lemmas and theorems are only secondary, in the sense

that they are used as auxiliary results in proofs concerning contrac

tions of redices, and since contractions of redices presuppose the

well-definedness of their corresponding substitutions there is one

reason less for fearing the omission of the explicit mentioning of

well-definedness of the substitutions involved (- but, none the less,

the following lemmas and theorems can only hold if the substitutions

are indeed defined).

Lemma 3.1.1.

Let w, s & w, u e A• and m e :M and k € :fi.

I:'(u,s&w,k) "'A & I:'(u,w,k+W(sw(idm)),

where I:' (u,aw(id
111

)) = A & (IJ(idm) •

Proof. By ind~ction on L(s) and the definition of substitution. O

Lellllla 3 • 1. 2 •

Let u,v e A' and me II and k e :ll.

If tjl e Perm(p) and p s m then

I:'(u,,!j(v,k+111) = f(J:''(u,v,k+m)

75

Proof. From Theorem 2.1 and Lemma 2,4 it follows that

l:' (u,!f- v,k +ml

= l:' (qik+m-1 u,1}k+m-1 ° lj!- v,l) •

Furtliermore

(simple computation), and

- - <1>
(2) .ek+m-1 ° 1jJ = (lj!) 0 i}k+m-1

Result (2) is established by the following calculations. If n is an

element of ID then

lj!- (n) + 1 , if s n s p

n+l if p < n :S k+m-1

i}k+m-1 (lj!- (n))
if n k+m

n if n > k+m

and

{
(lj!-) <1> (n + 1) , if s n:Sk+m-1

(lj!-) <l> (.()k+m-1 (n)) (lj!-) <1> (1) if n k+m

(lj!-) <1> (n) if n > k + m

s n s p

l+n if p < n S k + m - 1

if n k + m

n if n > k + m

By (1) and (2) we have

o lj!- v,1)

(Theorem 2.2)

~- i:• (u,v,k+m) (Theorem 2. 1)

76

0

Theorem 3.1.2.

Let u,w,s &w E /\' and k E '.Mand k E :ti. If ljJ E Perm(p) and

W(sw{lj!)) = m ~ p then

where i::• {u,sw{lj!) ,k) = A & w{lj!) •

Proof.

l:'{u,s!!(w,k) =

=A & l:' (u,!f-w,k+m) ,

where l:'{u,sw(idm),k) =A & w(idm) (cf. Lemma 3.1.1).

A & i::• (u,!f- w,k +m) =

A & l:'{u,~-w,{k+m-p) +p)

=A & JJ(l:'{u,w,{k+m-p) +p) (Lemma 3 .1. 2)

A & !f- i::• (u,w,k +m)

Theorem 3.1.3.

Let u,v,w E /\' and k,JI. E :N. If k ~ JI. then

* +B'
l:' {u,i::• (v,w,JI.) ,k) * E' (l:' {u,v,k- JI.+ 1) ,E' (u,w,k + 1) ,!) .

B'+

~·By induction on L{w). Let s
1

and s
2

denote E'{u,l:'(v,w,Jl.),kl

and E'(l:'{u,v,k-Jl.+1),l:'{u,w,k+1),t), respectively. In this proof

* * +B'
we shall write ++

6
, for *, i.e.

B'+

* * * A +-+-
6

, a* A -+-
6

, a I\ a -+-
6

, A ,

for A'a-terms A and B.

(i) w l';(n) : s1 = i::· (u,i::• (v,t;(n) ,JI.) ,k)

(1) n = JI. : s
1

= I:' (u,qi
1

_
1

v,k)

D

77

8 = 2

E' (E' (u,v,k - t + 1) ,E' (u,i;; (n) ,k + 1) ,t)

E' (E' (u,v,k+ t 1) ,!;;(n) ,t) (k ~ t and JI, n,
therefore k + 1 > n)

= q>t-l E' (u,v,k + t - 1)

(cor. to Th. 2.2)

Conclusion: 8
1

= 8
2

•

(2) n < t:

8 =
1

E' (u,!;;(n),k)

I; (n) (n < t :5 k) •

E' (E' (u,v,k- JI,+ 1) ,i::• (u,1;; (n) ,k + 1) ,t)

E' CE' (u,v,k JI,+ 1) ,!;;(n) ,JI,) =

= !;; (n) •

Conclusion: 8
1

8
2

•

(3) n > t:

8 "" 1

E' (u,E' {v,l;;(n) ,t) ,kl

= E'(u,i;;(n-1),k).

(3 • 1) n > JI, and n - 1 k u

E' (E' (u, v ,k - JI, + 1) , E' (u, I; (n) ,k + 1) , JI,)

78

= E'(E'(u,v,k-Jl.+1),qiku,Jl) =

= lpk-1 u (Theorem 2.3)

Conclusion: s1 = s2.

(3.2)n>Jlandn-1<k 51 ~ (n - 1)

5 =
2

E• (E' (u,v,k• JI.+ 1) ,~(n) ,JI.)

= ~(n-1) (n > JI.) •

Conclusion: 5
1

= 5
2

•

(3.3) n >JI. and n-1 > k s
1

~ (n - 2)

E' (E' (u,v,k- JI.+ 1) ,~(n-1) ,JI.)

~ (n - 2) (n - 1 > k ~ JI.) •

Conclusion: 5
1

= 5
2

•

(ii) w = w(ljJ) :

(1) k+l E: rge(ljJ) : If k+l e: rge(ljJ) then ljJ e: Perm(p), for some

p ~ k + 1; therefore JI. E: rge (ljJ) •

5 =
1

E' (u,E' (v,w(ljJ) ,JI.) ,k)

E' (u,6 qii-l V ;\' -&Jl-l W(ljJ) ,k)

6 E' (u,qiJl-l v,k) ;\' E' (u,-&Jl-l w(ljJ) ,k + 1)

5 =
2

E' (E' (u,v,k- JI.+ 1),E' (u,w(ljJ) ,k+ 1) ,JI.)

E' (E' (u, v ,k - JI.+ 1 l , 6 qik u ;\' -&kw (ljJ), 1)

79

0 EI (EI (u, v, k - R. + 1) , qik u I R.) A' E' (E. (u Iv I k - R. + 1) I

0 qik-1 u A' E ' (E' (u Iv I k - R. + 1) , w (ip l , R. + 1l
(Theorem 2.3)

o u).' E' (<pt E' (u,v,k- R. + 1) ,et o ek W(lj!) ,1)
- (Theorem 2.1)

0 qik-1 u A' E' (qil E' (u,<pt-1 v,k) ,eR. 0 %k W(ifi) ,1)
- ~~~

(car. to Theorem 2.2 and <pR.

v,kl ,w(eR. o ek o lj!), 1)

Furthermore

1 E: rge(%R. o %k o lj!) * R.+ 1 E: rge(%k o lj!) * R. E: rge(lj!) •

Hence

v,k) >.' E' U t % 1 W (% R. 0 ek 0 1fi) I 1 l "'

(Theorems 2.1 and 2.3)

Furthermore

<1>
el 0 et= eR.-1' hence \ 0 %R. 0 %k

(Leillllla 2.2), and therefore

80

o E' (u,

= o E' (u,q>R--l v,k) ;\' E' (u,~R,-l w(!jl) ,k+ 1)

And also

s =
1

o E' (u,qiR--l v,k) ;\' E' (u,~R--l w(!jl) ,k + 1) =

(Theorem 2 • 1)

(Theorem 2.1 and cor. to Theorem 2.2)

Furthermore, if k <?: R, and p <?: k + 1 then

(computation) ;

(computation)

Therefore

E' (q>t-l E' (u,v,k - R, + 1) E' (qik u,~k w(!jl) ,1) ,1)

(Theorem 2.2)

E'(I:'{u,v,k-t+1),E'(u,w(!jl),k+1),t) =

{Theorem 2.1 and cor. to Theorem 2.2)

{**)

81

82

* From (*) and (**) it follows that s
1

;:- s
2

•

(2) k+l {. rge(tjl) and R, E rge(tjl):

s = 1

= 1:' (u,1:' (v,w(tjl) ,R.) ,k)

1:' (u,o qit-l v X' w(tjl) ,k)

Furthermore

k+ 1 E rge(~R.-l o tjl) .,. k+ 1 E rge(tjl) (k + 1 > k ~ R,) I

hence sl = 0 L 1 (u,

From rge(tjl) s :Nk and R. ~ k it follows that rge (~R.-l o tjl) s

s =
2

1:' (1:' (u,v,k- R,+ 1) ,1:' (u,w(tjl) ,k+ 1) ,R.)

Furthermore

Hence

L 1 (u,v,k- R.+ 1) x·

~R.-l o tjl. Hence

(k + 1 {. rge (tjl)) •

(Theorem 2.3)

From rge (tjl) S :Nk it follows that ~k o tjl - 1 = tjl, and there

fore

o E' (u,qit-l v,k) A.' w(et-l o lji)

(3) t ;. rge (lji) If t E rge(lji) then k,k+l t rge(lji)

s =
1

E' (u,E' (v,w(lji) ,R.) ,k)

E' (u,w ({_
1

o 1ji - 1) ,k)

E' (u,w (lji) ,k) =

w(e olji-1)
k-1

w (lji) •

s =
2

E' (E' (u,v,k- R. + 1) ,E' (u,w{lji) ,k + 1) ,R.)

E' {E' (u,v,k- R. + 1) ,w(ek o lji- 1) ,t)

= E' {E' (u,v,k- i + 1) ,w(lji) ,t)

w(e olji-1)
R.-1

= w (lji)

Conclusion: s
1

= s
2

•

(iii) w = A.w
1

or w = A. 1 w
1

: This case follows simply from the induc

tion hypothesis.

(iv) w = o(n,m)w
1

:

(l)n<t:

E' (u,E' (v,o (n,m)w
1

, t) ,k)

83

84

*

E' {u,a(n,m) E' (v,w
1

,Jl +m) ,k) =

* a(n,m) E'(u,E'(v,w
1

,Jl+ml,k+m) ++
8'

f;t a(n,m) E'(E'(u,v,k-Jl+1),E'(u,w
1
,k+m+1),Jl+m)

(induction hypothesis)

E' (E' (u, v ,k - Jl + 1) , a (n, ml E' (u, w
1

,k + m + 1) , Jl)

E' (E' (u,v,k- Jl + 1) ,I:' (u,cr (n,m)w
1

,k + ll ,Jl)

(2) n Jl: If <pJl_
1

v = sw(ljll then s
1

= E'(u,s~"E'(v,w1 ,Jl+ml,k).
Since W(v) = W(qiJl-l v) = W(sw (ljll) = m and ljl E Perm(p) for

some p !> m, it follows fr.om Theorem 3. 1. 1 that

S l = A & ~" E ' (u, E ' (v, w l , Jl + m) , k + ml ,

where E' (u,sw (ljl) ,k) = A & w (1/ll •

By the induction hypothesis we have

* E'(u,E'(v,w
1

,Jl+m),k+m) ++ E'(i:'(u,v,k-Jl+l),
. 8.

E' (u,w
1

,k+m+ ll ,Jl+m)

and from Theorem 3.1.1 it follows that

* ljl"E'(u,E'(v,w
1

,Jl+m),k+m) ++tjl"E'(E'(u,v,k-Jl+1),
- 8' -

E' (u,w
1

,k+m+ ll ,Jl+m)

and therefore

* s
1

++A & ljl"1:'(i:'(u,v,k-Jl+1),E'(u,w
1
,k+m+1l,Jl+m)

8' -

Furthermore

E ' (E • (u, v, k - Jl + 1) , E ' (u, a (n, ml w
1

, k + 1) , Jl)

E' (E' (u,v,k- t+ 1) ,cr(n,m) E' (u,w
1

,k +m+ 1) ,t)

(n t < k + 1) •

Since

ip
1

_
1

1:'(u,v,k-.t+1)

(cor. to Theorem 2.2)

1: 1 (U, SW (tP) ,k)

= A & W(l/J)

it follows that s
2

=A & ~~1:'(1:'(u,v,k-.t+1),

1: I (u I w 1 I k + m + 1) I .t + m) •

* Conclusion: s
1

;:- s2 •

(3} n > .t :

s =
1

1:' (u,1:' (v,a(n,m)w
1
,t),k)

= 1: • (u I a (n - 1 , m} 1: I (v I w 1 I JI, + m) I k)

(3.1} n < k+1:

*

* a(n- 1,m} 1:' (u,1:' (v,w
1

,JI. +m) ,k +m) ;;

++ a(n-1,m) 1:' (1:' (u,v,k- JI.+ 1) ,1:' (u,w
1

,k +m+ 1} ,JI. +m)
6'

(induction hypothesis)

1: I (1: I (u Iv I k - JI, + 1) I a (n Im) 1: • (u I w 1 'k + m + 1) I JI,)

(n > JI.)

1:' (1:' (u,v,k- .t + 1) ,1:' (u,a(n,m)w
1
,k+1) ,.t)

* Conclusion: s
1

++ S •
6' 2

(3.2) n = k + 1

(n < k + 1)

85

86

By the induction hypothesis and Theorem 3.1.1 we have

* s1 ;:- sl ~- l:' (l:' (u,v,k- JI,+ 1) ,l:' (u,w1,k+m+ 1) ,Jl,+m)

Furthermore

l: • (l:' (u, v ,k - JI, + 1) , l:' (u, o (n ,m) w
1

,k + 1) , JI,)

l:' (l:' (u,v,k- JI,+ 1) ,s
2
~- i::• (u,w

1
,k + m+ 1) ,JI,)

where qik u = s
2
w (ljl) •

From Theorem 2. 3 it follows that

L I (i:: I (U IV I k JI, + 1) I qlk U I JI,) = (j)k-l U I

From Theorem 3.1.2 and qik-l u

that

* Conclusion: s
1

; s
2

•

(3.3) n > k+1

l:' (u,l:' (v,o (n,mlw
1

,JI,) ,k)

l:' (u,o(n- 1,m) l:' (v,w
1

,JI, +ml ,k) =

since k ;:: JI,

* o(n-2,m) l:'(u,l:'(v,w
1

,Jl,+m),k+m) ++
B'

* ++ o (n - 2 ,m) l:' (l:' (u,v, k - JI,+ 1) , l:' (u, w
1

,k + m + 1) , JI, +ml
B'

(induction hypothesis)

l: • (l:' (u,v ,k - JI,+ 1) ,o (n - 1,m) l:' (u,w
1

,k + m + 1) , R,)

l:' (l:' (u,v,k- JI,+ 1) ,l:' (u,o(n,m)w
1

,k+ 1) ,JI,) =

* Conclusion: s
1

;: s
2

,

(v) w = OW1W2

thesis.

This case follows simply from the induction hypo-

D

Theorem 3.1.4.

Let u,v,w € A' and k € :N.

If v +fl' w then z:• (u,v,k) "'fl• E' (u,w,kJ •

Proof. By induction on the generation of +fl'

(i) v = oPi.'Q and w = E' (P,Q,1) :

E' (u,v,k)

oE'(u,P,k)).' E'(u,Q,k+1) +fl'

+fl' z:• (E' (u,P,k) ,z:• (u,Q,k + 1), 1)

* +->- E' (u,E' (P,Q,1) ,k) (Theorem 3.1.3)
fl'

E' (u,w,k) •

Conclusion: E' (u,v,k) .ffl' E' (u,w,k) •

E' (u,v,k) =

(induction hypothesis)

E' (u,w,k + 1)

(1) n < k:

E' (u,v,k)

87

+
6

, cr(n,m) E' (u,w
1

,k + m)

E' (u,w,k)

(2) n = k : If u = sw(1/J) then

E'(u,v,k)

E'(u,w,k)

(3) n > k :

E'(u,v,k)

E' (u,cr(n,m)w
1

,k)

E' (u,w,k) •

(iv) v = c5vlv2, vl +13' w
1

and w c5w1w2

E' (u,v,t)

c5 E' (u,v
1

,k) E' (u,v
2

,kl +a·

=
+13, c5 E' (u,w

1
,k) E' (u,v

2
,k)

E' (u,w,k)

(v) v c5v1 v2, v2 +B' w
2

and w c5vlw2

Theorem 3.1.5.

Let u,v,w E A' and k E :N.

If u +
6

, v then E' (u,w,k) +
6

, E' (v,w,k) •

88

(induction hypothesis)

(induction hypothesis and
Theorem 3.1.1)

(induction hypothesis)

as in (5). D

~· By induction on L(w).

(i) w = f;; (n) :

(1) n < k i::' (u,f;; (n) ,k) E; (n) l:'(v,t;(n),k).

(2) n = k:

i::• (u,E;(n) ,k)

qik-1 u +a·

(Theorem 3. 1 • 1)

l: • (v, E; (n) ,k)

(3) n>k: l:'(u,f;;(n),k)

(ii) w = w(tjJ) :

(1) k E rge (tjJ)

l: • (u,w (tjJ) ,k)

o qik-1 UA' -&k-1 w(tjJ)
-- --

i::• (v,w(tjJ) ,k) •

f;; (n - 1)

+ a•

(2) k ~ rge(•) : l:'(u,w(.),k)

l:'(v,t;(n),k).

(Theorem 3 • 1 • 1)

i:: • (v,w (tjJ) ,k) •

(iii) w = i..w
1

or w = A'w
1

: this case follows simply from the induc

tion hypothesis.

(iv) w = o(n,m)w
1

(1) n < k:

l:' (u,o(n,mJw
1
,k)

=
o(n,m) i::• (u,w

1
,k+m) +

8
,

+
6

, o(n,m) l:'(v,w
1
,k+m) (induction hypothesis)

89

90

I:' (v,w,k) •

(2) n k : We shall prove the following statement by induction

on L(s).

Let X,Y,sw(lji) EA'. If x +
6

, Y and

sw (1ji) , s ' w (q>) then s ~(X +
6

, s ' 2 - Y •

(2.1) L(s) = 0 : In this case s = s' =~and 1ji = qi.
=

Furthermore, by Theorem 3 .1.1 ;!(X +
6

, ~- Y •

=
(2. 2) s As

1
, s

1
w (lji) +

6
, siw(qi) and s' = Asi :

From the induction hypothesis it follows
=

that 11(! +6, si~-y and therefore

'}(X -i.;, Asi!(Y.

(2.3) s ;\' , s
1
w(lji) :

6
, siw(cp) ands' ;\'si

as in (2.2).

(2.4) s = cr(p,q) , s
1

w(lji) +
6

, siw(cp) and

(2.5)

s' = cr (p, q) s i : From the induct,: on hypo

thesis it follows that s 1 ~- ~ +6, si 2- Y

and therefore cr(p,q)s
1
!- x +

6
, cr(p,q)si 2- Y.

s = ozs Z + Z' and s' = oz' s : From
- 1' 13' 1

1£.- x +;, !- Y it follows that

s1 !- x "'a· sl !- y and therefore

ozs1 !- x -i.;. oz• !- y.

(2.6) s = ozs
1

, s
1

w(lji) +
6

, slw(cp) ands' = ozsl

From the induction hypothesis it follows

that s 1 11(x +a. s i !(y, and therefore

ozs1 1£.-X +;, oZsi!(Y.

(2.7) s = 0Z;\ 1 s
1

, sw(lji) :
13

,

= s'w(qi) : If W(s
1

w(lji))

'oz*>-'w(qil

* r then z q> z
r

and q> = -&r o lji. Furthermore let R denote

the common reduct of X and Y, then we have

the following reduction diagram

0ZA. 1 s
1

!J:-X * Si 0 z A I p- y

+;. +;,
tS Z "-' s

1
!J:- R - (Theorem 3.1.1) - sj_ oz* A.' ~(R

+a·
l:' (z,s

1
ij(R,1)

sj_ I:' (z,~- R,1 + r)

(Theorem 2.1)

Now that we have established the correctness of the above

mentioned claim we proceed by completing the proof of case

(iv) (2) :

E' (u,w,k)

l:' (u,cr(k,m) ,w
1

,k)

where ipk-l u SW (ljl) •

Furthermore

l:' (v,w,k) ..

l:' (v,cr (k,m)w
1

,k)

Sf g(L 1
(V f W

1
t k + m) where ipk-l v ., s'w (<jl) •

By respectively taking E'(u,w
1
,k+m), I:'(v,w

1
,k+m) and

ipk-l u for x, Y and sw (ljl) in the above mentioned claim, we

iiiiiii;diately see that I:' (u,w,k) +;, l:' (v,w,k).

91

(3) n > k:

E' (u,a(n,m)w
1

,k)

a(n 1,m) E'(u,w1,k+m) "'s•

(induction hypothesis)

E' (v,w,kl •

(v) w = ow1w2 : E' (u,w,k) = o E' (u,w
1

,k) E' (u,w2 ,k) ~nd from the in

duction hypothesis it follows that E'(u,w
1

,kl "'s• ~·cv,w1 ,kl and

E' (u,w2,kl "'s• E(v,w2,kl. Therefore

hence

E' cu,w,kl "'s· E' cv,w,kJ . D

Theorem 3 • 1. 6 •

= i.e. if u,v,w E A' and u -..
6

, v and u +
6

, w then

* * 3z E A. : v a. z A w a. z •

Proof. By induction on L(u).

(i) u = ~(n) trivial

(ii) u (.\) (ljl) trivial

(iii) u Au
1

, u
1

, v
1

, u
1

+
6

, w
1

, v = Av
1

, w = Aw
1 this case

follows simply from the induction hypothesis.

= (iv) u = A'u
1

, u
1

+
6

, v
1

, u
1

+
6

, w
1

, v as in case

(iii).

(v) u = a(n,mJu
1

, u
1

+
6

, v
1

, u
1

+
6

, w
1

, v a(n,mJv
1

, w = a(n,mJw
1

this case follows simply from the induction hypothesis.

(vi) u

92

(1) u 1 ~a• v1, u1 ~a• vi, v = ov1u2 , w = ovlu2 : this case

follows simply from the induction hypothesis.

= =
(2) ul +a· v1' u2 +a, v2, v ov1u2, w = ou1v2 : simple, take

ov1v2 for the common reduct.

(3) u2 • v2, u2 ' v2, v = ou1v2' w = ou1v2 : this case

follows simply from the induction hypothesis.

(4) u1 + v1' u2 = ;\ 'p, v = ov1u2, w = l:'(u
1

,p,1) consider a I

the following reduction diagram

furthermore, by Theorem 3.1.5, l:' (u
1
,p,1)

and therefore ov1 ;1.'p +;. l:'(u1,p,1).

3.2. The strong normalization property for +
6

,

In this section we shall offer a proof of the strong normalization

property for +
6

, (SN(+S 1)). As mentioned earlier this proof is basic

ally along the lines of the proof given in Barendregt [81] (pp. 283-

286). SN(+S,) is an important result, since SN(+a,> and WCR(+S,) imply

the Church-Rosser property for S-reduction {this is proved in Section

3. 3).

The idea of the proof offered in this section is to assign special

norms (positive integers) to ;\'a-terms. These norms satisfy the follow

ing property: if u,v E A' and u +S' v then for each special norm for

u there is a strictly smaller one for v. These special norms are intro

duced via an auxiliary system ;1.0 defined below.

Definition 3.2.1 c;1.0).
The set of nwnbered ;l.'a-te1'111s ;\' is the smallest set x satisfying

0

93

(i) l,;m (n) E X 1 for every n,m E N;

(ii) wm(ljJ) € x' for every segmap 1jJ and m E N;

(iii) u € x ... AU € x;

(iv) u € X.,. om(p)u E x, for every p E N x :MandmE JN ;

(v) u,v E X • OUV E X;

(vi) u,vEX•ouAOVEXandOUAiVEX·.

Remarks.

(1) Every numbered A'o-term (or numbered term for short) u
0

can be

seen as a pair (u,I) where u is a A'o-term and I is a numbering

function which assigns a positive integer to all occurrences of

variables and w's in u
0

.

D

(2) Application of a mapping ~· where µ is some refmap, to a numbered

term u
0

is defined in the obvious way (numbering of A'o-terms has

no effect on the application of ~ to u0) .

Definition 3.2.2.

The function J J
1

t by

Ao Ao is inductively defined for numbered terms

(i) J!,;m(n) I 1 l,;m(n)

(ii) Jwm(ljJ) I 1 wm(ljJ)

(iii) JAuJ 1 = AJuJ 1 ;

(iv) Jom(n,r)uJ
1

= om(n,r) & I ul 1 1

(v) I ouv 11 .. o I u 11 Iv 11 ,

(vi) JouA~vl
l.

= o luJ 1 Ai Jvl 1
(i 0, 1) • D

Definition 3.2.3.

The substitution operator in A0, denoted by r0, is defined as follows.

If u E A0 and k E N then r0(u,t,k) is inductively defined for num

bered terms t by

94

u if n = k and LS(u) i;;P (j) , for

some j,p e E
(i) r.0 (u,!;;m(nl ,kl

l;;m(n) if n < k

l;;m(n - 1) , if n > k

if k e rge(lj!)

if k I. rge (lj!)

s~·r.o(u,v,k+r) , ifn=k,

Im ul st/'(•1·)·, (for some t e :N) ,
"k-1 1 'I'

(v}

W(u) = r, rge(ljJ) S Er

crm(n,rl r.0(u,v,k+r) if n < k

crm(n-1,r) r.0(u,v,k+r), if n > k

(i O, 1) •

The following definition offers a norm for numbered terms.

0

Definition 3.2.4.

The function II II

t by

X0 + :N is inductively defined for numbered terms

(i}

(ii)

II l;;m(n} II

llwm(lj!) II

= m;

: m;

(iii) llXull = llull;

(iv) llcrm(n,r}ull = m + llull

(v)

(vi)

llouvll llull + llvll ;

llouX!vll =Hull+ llvll + i
l.

(i o, 1) • 0

95

Definition 3.2.5 (+S,).
0

(1) The binary relation B0 on Ao is defined as follows. If t,u E Ao

then

: t = 6vAi w" u = r.0cv,w,ll " <v,w,ll E domcr.0i.

If t s0 u then t is called a B0-redex.

(2) The notion of reduction +61 on A0 is inductively defined by
0

(i)

u +Ba v ... AU +Bo AV ;

(iii) u+S' v•A~u+6 , Ai_V;
0 J. 0

(ii)

(iv) m m u +
6

, v • cr (n,r)u +61 cr (n,r)v;
0 0

(v) u + B, v • 6uw + B, 6vw ;
0 0

(vi) u +
13

, v • 6wu +B' 6wv
0 0

The permutation condition (PC) is defined for numbered terms in the

obvious way (cf. Section 2.6, Definition 2.13). The numbered terms

that we take into consideration in this section all satisfy the per

mutation condition.

Definition 3.2.6 <A0J.

A0 = {t € A01 PC(t,o)}

Remark.

0

0

From Theorem 2.5 (invariance of the permutation condition with respect

to S-reduction) it follows immediately that the notion of reduction

+
6

, is a binary relation on A0; i.e. if u € A0 and u +
6

, v then v € A0. 0 0

In Section 2, Definition 2.7 concerned reference depth values of vari

ables in AO-terms. This definition is extended to AO in the obvious

way (marking of A's and numbering of variables and w's in Ao-terms has

no effect on the definition of D(n,t), where n is some numbered vari-

96

able and t is a numbered term) • Analogous to A we shall often speak in

>..0 of "an occurrence of a (numbered) variable n with reference depth k

(k E ~) in a (numbered) term t", meaning that k E D(n,t) and - by

abuse of language - that n is a specific occurrence of the variable n

in t (cf. the remark made on page 44, concerning variables and vari

able occurrences, and their corresponding reference depth values).

Definition 3.2.7.

Let u
0

= (u,I) E >.O, where I is a numbering function for u. The pro-

perty + (u, I) is defined inductively for terms u ,;: A' by

(i) + (i;; (n) ,I) if uo t;;m (n) for some m " 1'I i

(ii) +(w(ljl) ,I) , if uo Wm (ljl) ' for some m " 1'I 1

(iii) +(A.v,I) , if +(v, I)

(iv) +(o(n,r)v,I), if

(1) +(v,I)

and

(2.1) r = 0 and (o(n,r)v,I) = crm(n,r) & (v,I)

or

(2.2) r > 0, (cr(n,r)v,I) = crm(n,r) & (v,I) and all occurrences

of variables n in v with reference depth value p in v

(1 s p s r) satisfy II n II > m 1

if w # >..' w
1

(for any w
1

,;: A') and +(v,I), +(w,I)

(vi) +(ovA._iw,I), if

+ (ovw,I) , (v)

(1) +(v,I) and +(w,I)

and

(2) all occurrences of variables n in w with reference depth

value 1 in w satisfy II n II > II v
1

II , where v
1

= Iv 1
1

• 0

If +(u,I) then we say that the numbering function I is decreasing in

u, or: (u, I) has a decreasing numbering.

Informally, +(u,I) implies that all occurrences of variables in (u,I)

which are candidates for substitution of some sub-term in (u,I) by

contracting a ~0-redex in (u,I) have a norm larger than the norm of

97

the terms by which they can be replaced.

Example.

Consider the following term written in tree form

A -

I
o - A'

j

i:,;2 (1)

I
o - A' - w5 (id(2))

i
10

0 (1, 2)

This term has a decreasing numbering; this in contrast with the num

bered term

LeT!lllla 3.2.1.

For every u EA' there is a numbering function I such that +(u,I).

Proof. Number the occurrences of variables or w's in u from the left

to the right, and assign to the n-th occurrence (n > 0) the (high)

index 2m+n- l , where m is equal to the number of marked A ' s to the

left of that occurrence.

Example: If u is the A'o-term

then the result is

n n-1 Since 2 > 2 + ••• + 2 + 1, (u, I) has a decreasing numbering (where

I is the numbering function for u as defined above) .

Remark.

The specific numbering function I defined in Lemma 3.2.1 also satis

fies:

I ul 1 •

98

0

* we recall that a numbered term t has a ab-normal form u if t +a· u
0

u +
8

, v. In A0 we have terms that, strictly speaking,
0

do not have a normal form, but (in some sense) can be considered as

terms already in normal form. We shall give some examples to illustrate

this situation. First consider the term

I t,;m(l)

o - AO - w1
(id(1)) (1)

This term a0-reduces to itself and to no other term, hence it has no

s0-normal form. However, a0-reduction of (1) involves no actual sub

stitution of the argument of the 80-redex contracted. Another example

of a term in A0 that a0-reduces to itself without involving actual sub

stitutions of arguments of contracted redices is

(2)

By contracting the left-most 80-redex in (2) we obtain

(2 I)

By once more contracting the left-most redex in (2') we get

/f,;m(l) /f,;n(2)

o - AO - o AO - w
1

(-&
1

o -&
1

o id(2)) (2")

and since -& 1 ° -& 1 is equal to the identity mapping on 1\1 we see that

(2") is the same term as (2), i,e. the term (2) sei-reduces to itself

without having performed actual substitutions of the arguments of the

contracted redices. In ordinary type-free A-calculus we also have the

situation that certain terms 8-reduce to themselves, e.g. Church's

well-known counter example - written in name-free notation - for nor

malization of this calculus

99

I (Ol

/J...-o-((1) I' (1J
----Ci - ((1) Ci - J... (3)

There is a large difference, though, between (2) and (3), namely that

(3) $-reduces to itself as the result of actual substitution of the

argument J... Ci ((1) ((1 J for each of the two right-most occurrences of

the variable ((1) in (3), whereas So-reduction of (2) involves no

substitutions at all, the redices just change places via (2') to (2").

so,in a sense, the term (3) is a much more serious counter example

for normalization in ordinary type-free >...-calculus than the terms (1)

and (2) are in A0, since s0-reduction of (1) and (2) just involve a

shifting around of redices and no actual substitutions of arguments of

contracted redices takes place. In A0 we shall consider contractions

of s0-redices inside a segment which do not give rise to actual sub

stitutions of their corresponding arguments in that segment as non

essential, since these contractions have the sole effect (apart from

updating of reference numbers in variables) that the contracted re

dices are just re-entered at the back of the segment in question with

out any substitutions of their respective arguments having taken place.

As a consequence we shall consider terms that only give rise to non

essential s0-reductions as already being in so-normal form.

We procee~ by giving a formal definition of a class of terms in A0
(called A

0
) which only give rise to non-essential s

0
-reductions as

defined above.

Definition 3.2.a co0).
The sub-set o0 of J...0 is inductively defined as follows. The set o0 is

100

the smallest set X such that

for every m E :N and every segmap 1ji ;

(ii) if t E Ao, u = swm(lji) E x, W(u) + 1 E rge(lji) and

VnEVar(u): 1 t D(n,u),then otAOU Ex.

Remark.

In clause (ii) of Definition 3.2.8 we see that S0-contraction of the

redex o t A0 u does not result in substitution of the argument t for

any variable in u, since there are no occurrences of variables in u

with reference depth 1 in u. Furthermore, from W(u) +1 E rge(lji) it

follows that the redex-part with argument t reappears at the back of

the segment u after contraction of o t A(, u.

Definition 3.2.9 (A0J.

A'
0

{t E OQ I 3k E :M: PC(t,k)} 0

Lemma 3.2.2.

If u E A0 and u +S' v then v E A0.
0

Proof. By induction on the generation of +s,·
0

0

Lemma 3.2.2 motivates the following definition which induces an equi

valence relation on A0.

Definition 3.2.10 (-0).
we inductively define the following binary relation - 0 on A0 as

follows

(i) u -0 u;

(ii) ou>..0v-0 E0Cu,v,1);

(iii) u ~0 v • ow Af u - 0 ow Af v ;

(iV) U - 0 VI V - 0 W ... U - 0 W •

Theorem 3.2.1.

~0 is an equivalence relation on A0.
~· By induction on the generation of - 0 and the corollaries to

Theorem 2.3 and Lemma 2.10.

D

0

101

The following definition extends ~0 to A0.

Definition 3.2.11.

we extend the relation ~0 on A0 to A
0

as follows. If t,u,v,w E A
0

then

(i) t ~0 t l

(ii) t,U E A0, t ~0 u (in A0 > .. t ~0 u (in A0> ;

(iii) ~· At ~· AU I >..'t ~0 >..'u and
R,

~·
R,

t
0

u ..
0

a (p)t
0

a (p)u;

(iv) t ~0 u, v ~o w .. otv ~0 ouw.

Remark.

~0 is an equivalence relation on A
0

• (This follows easily from the

fact that ~0 is an equivalence-relation on A0.)

Definition 3.2.12.

Let t,u E A
0

•

t essentially B'-reduaes to u ++ t +
6

, u A It
0 0

Definition 3.2.13.

BI u.
0

Let t E A0 • we say that t is in essential B0-noz>mal foPm if

D

D

D

If t E A0 is in essential s
0

-normal form then this means that the only

s0-reductions that we can perform in t are non-essential s0-reductions.

We could also !2,ay that t is in essential s
0

-normal form if there is no

term u such that t essentially s0-reduces to u.

Definition 3.2.14.

Let t E A0.
(i) t essentially s0-noPmalizes (ess s0-N(t)) if t has an essential

s0-nonnal form ;

(ii) t essentially B0-stPongly noPmalizes (ess s0-SN(t)) if there is

no a0~reduction path starting with t and containing an infinite

number of essential B0-reductions;

(iii) +
6

, is essentially noPmalizing (ess N(+61)) if
0 0

102

(iv) +
8

, is essentiaZZy strongly no!'ITlaZizing (ess SN(+81)) if
0 0

We now proceed by stating some technical lemmas which lead up to the

most crucial result of this section, Lemma 3.2.11, which says that

norms of numbered terms decrease after essential s0-reduction.

Lemma 3.2.3.

Let t be an element of AO and µ some refmap.

If 1 s k E D(n,~t) then

3n' E var(t) 3mE :N µ(m) k Am E D(n',t) A llnll

Proof. By induction on L(t).

Lemma 3.2.4.

II n' II •

Lett be an element of AO and~ be an element of perm(m), for some

m E :M. If k E D(n,t) and m < k then k E D(n,~At).

Proof. By induction on L(t).

Lemma 3.2.5.

D

D

D

Let t,u E AQ and k,R. E :N. If k E D(n,I:0(t,u,l+R.)) and 1 S k SR, then

n E Var(u) and k E D(n,u).

Proof. By induction on L(u) and Lemmas 3.2.3 and 3.2.4. D

Lemma 3.2.6.

Let t,u E AO and k E :N and R. E :M. If R. < k and PC(t,R.) holds and all

occurrences of variables n in t with reference depth k in t satisfy

llnll > llu
1

11, where u 1 = lul
1

, then

(1) llI:0(u,t,kl II < lltll , if there is an occurrence of a variable n

in t with reference depth k in t ;

(2) llI:0(u,t,kl 11 = lltll, if there are no occurrences of variables n

in t with reference depth k in t.

Proof. By induction on L(t). IJ

103

Remark.

The results (1) and (2) stated in Lemma 3.2.6 also hold for

s
1

/L0(u,t,k)j
1

and t
1

= /t/
1

; i.e. lls
1

11 <: llt
1

11 or Us
1

11 11\11,
depending on whether or not there are occurrences of variables n in

t
1

with reference depth kin t
1

•

Lemma 3.2.7.

Let t,u E 1.0 and k E JN and fl E :M. Furthermore assume that t and u

have decreasing numberings and fl s k. If PC(t,11,) holds and all

occurrences of variables n in t with reference depth k in t satisfy

II n II > II u
1

II , where u
1

= /u / 1, then LO (u,t,k) has a decreasing num

bering.

By induction on L(t).

(il t = ~m(nl : If n ~ k then +L0(u,t,k) holds trivially. If n = k

then Lo (u,t,k) qik-l u, and qik-l u has a decreasing numbering

iff u has a decreasing numbering.

if fl, < k
L0(u,t,k>

if fl, k

In both cases it is easily seen that L0(u,t,kl has a decreasing

numbering.

(iii) t A.t
1

: This case follows easily from the induction hypothesis.

m
(iv) t o (n,p) t

1
:

104

(1) n > k : Then LO (u,t,k) = om(n,p) Lo (u,t
1

,k +pl and it follows

easily from the induction hypothesis that LO (u,\ ,k +pl has

a decreasing numbering. Suppose that p > 0 and n is an

occurrence of a variable in LO (u,t
1
,k +pl with reference

depth j (1 S j s p) in L0(u,t
1
,k+p). From Lemma 3.2.S it

follows that n occurs in t
1

at reference depth j in t
1

•

From +om(n,p)t
1

it follows that II n II > m, and hence

om(n,p) L0(u,t
1
,k+p) has a decreasing numbering.

(2) n = k: Then L0(u,t,kl = s & ~- L0(u,t
1
,k+p), where

qik-l u1 = sw(ljl). In (1) we have already seen that

(v) t

'l.0 (u, t
1

, k + p) has a decreasing numbering.

There remain the following cases which we have to investi~

gate in order to establish f'l.0(u,t,kJ.

(2 .1 J p > 0 and <pk-l u 1 is a term of the form

and furthermore there is an occurrence of a variable

n in ':!(E0 (u, t
1

,k + p) with reference depth j + 1 in

1J.:·r.0cu,\,k+pJ, where j = W(s
2

wq(l/l)J

In this case we have to show that II n II > II v
1

II , where

v 1 lvj
1

• From Lemma 3.2.3 it follows that there is

an occurrence of a variable n • in E0 (u, t
1

,k + pJ and

an r € JN such that this occurrence of n • has refer

ence depth r in r.0 (u, t
1

,k + p) and 1/1 (r) = 1 + j and

II n II = II n • II • Since rge (1/1 J £ JN , 1 s; r s; p and from
p

Lemma 3.2.5 it follows that n' € Var(t
1

J and

r € D(n 1 ,t
1
J. From fom(n,p)t

1
it follows that this

occurrence of n' in t
1

satisfies II n' II > m. Further-
m m

more, n = k and k € D(o (k,p),o (k,p)t
1

J, hence
m

llo (k,p) II = m > llu
1

11 = ll<pk-l u
1

11.

Conclusion: llnll = lln'll >ffi>ll<pk_
1

u
1

11 > llv1 11.

(2. 2). p > 0 and <pk-l u
1

is a term of the form

s - oi (h,r)
1

and furthermore there is an occurrence of a variable

n in 1:1(r.0 (u, t
1

,k + p) with reference depth j +a in

!/!. E0 (u,\ ,k + p), where j W(s
2

wq(l/I)) and 1 $ a $ r:

In this case we have to prove that II n II > i. The proof

of this case is an exact analogue of the proof given

in case (2.1) above.

ot
1

t 2 and FS Ct
2

) '/' '-i : This case is simply proven by apply-

ing the induction hypothesis.

105

and l:0(u,t,k) has a decreasing numbering iff

(1) H 0(u,t
1

,k) and +E0(u,t
2
,k+ 1);

(2) If n is an occurrence of a variable in l:0(u,t
2

,k+ 1) with

reference depth 1 in i::0(u,t
2
,k+l) then llnll > lls

1
11, where

s
1

= li::0(u,\,kl 1
1

•

From ft it follows that ft
1

and ft
2

• Furthermore, PC(t,R.) holds

iff PC(t
1

,0l and PC(t
2
,i+ 1) hold. By applying the induction

hypothesis it is easily seen that H 0(u,t
1

,kl and H 0(u,t
2
,k+l)

hold.

If 1 E D(n,l:0(u, ,k+l)) then by Lemma 3.2.5 n E Var(t
2

l and

1 E D(n,t
2
l. From ft it follows that such an occurrence of n in

* t
2

satisfies II n II > II, where t
1

Lemma 3.2.6 it follows that llt;ll ~

lt
1

1
1

• Furthermore from

lls
1

II, hence llnll > lls
1

II. 0

Corollary.

(1) If ouA' t EA' and Hu A~ t then H
0
1 (u,t,ll

i 0 1

(2) If u E A0 and u +
13

, v and .i.u then fv.
0

Let k E :N. If v = .s q;k_ 1 u "o t E o0 and PC (v, R,) holds for some

R, E .lN then lll:0(u,t,k) II = llvll.

Proof. By induction on L(t).

(i) t wm(t/I) : Since v E o0 it follows that 1 E rge (~k-l o t/ll, hence

k E rge(t/J) and l:0(u,t,k) 0 !j)k-l U AO {Jk-l Wm(ijl) V.

(ii) t
m

ow "o s w <tPl

i::0 (u,t,k) =

Furthermore v E o 0 , hence

'v'n E Var (t) k ¢ D(n,t)

Therefore there are no occurrences of variables in w with refer-

ence depth kin w, and from PC(v,R.) it follows that PC(~k-l w,0).

106

From PC(ek-l w,0) and Lemma 2.7 it follows that PC(w,0) and

therefor_e __

llE0(u,w,k) II = llwll , by Lemma 3.2.6 • (*)

m
If 0 <pk-1 u Ao ek-1 t E 00 then also 0 <pk Ao ek SW (1/1) E 00. By the

induction hypothesis and (*) it follows that

Corollary.

m Hr.0(u,w,k)ll + HE0(u,sw (1/1),k+l)ll

11w11 + II o qik u Ao ek (1/1) II =

llwll + llcpk ull + swm(iJI) II =

<1:> m
u II + 11 l}k-1 SW (1/1) II

II cpk-l u ti + II ek-l t II

llvll .

(1) If v = ouA0t E AO then ll'f.0(u,t,l)il = llvll

(2) if u,v E A0 and u ~0 v then Hull = llvll •

Definition 3.2.15.

D

Let u E AO and let SUB(u) denote the set of sub-terms of u. we define

the sub-set A of Ao as follows

A= {u E Ao I VtESUB(uJ D

Lemma 3.2.9.

If u =OW Al ZEA then V = r.0(w,z,1) EA (i 0, 1) •

Proof. By induction on L(z).

(i) z =

(1) n = 1 Then v = w, and since w E SUB(u) and u E A it follows

that V E A;

(2) n > 1 : Then v l;m(n - 1) E A.

107

(ii) z = wm(tjl) : Then

= j '•'O"m"', if E rge(tjl)
v

wm(1jl) if ,_ rge(tjl)

and in both cases v E A.

(iii) z = Az
1

: This case follows simply from the induction hypothesis

and Theorem 2.1.

(iv)

(v)

z =

(1)

m cr (n,r) z
1

:

n = 1 : Then v s ~!(LO (w, z 1 , 1 + r) = s ~- LO (ipr w, 11 r z 1 , 1) ,

where lwl 1 = (1jl). If t E SUB(v) and t AO t 2 , for

some t 1,t2 E A0, then t E SUB(w) or t E SUB(L0(iprw,11rz1 ,1)).

If t E SUB(w) then t E SUB(u) and since u E A we-have-

t E o0. By applying the induction hypothesis to o <pr w Aj_ 11r z

(E A, for i = 0,1) we see that if t E SUB(L0(ipr w,11r z 1 ,1))

then t E o0. Hence, v E A.

(2) n>l :Thenv=crm(n 1,r)L0(qirw,11rz
1

,1) and the result

follows immediately from the induction hypothesis.

z

follows immediately from the induction hypothesis.

(vi) z

108

applying the induction hypothesis we see that L0(w, ,1),

L0Cqi
1

w,11
1

z
2

,1J E A. Furthermore from u E A it follows that

Z E-'7fQ and, hence, z2 E o0. If z
2

E o0 then 11
1

z
2

E OQ and also

Lo (ip1 w,111z2,1) E 00 (it is easily proved that p E o(i implies

LO (q,p, ll E o0, for all q € AO) . In order to prove that v € A

we have to show that v € o0, and since L0Cip
1

suffices to show that

(1) there are no occurrences of variables in L0(ip
1

with reference depth 1 in L0(ip
1

w,11
1

z 2 ,1)

(2) if LS(LO(ipl w,11
1

z
2

,1) = w,Q,(ljl)~he:-
1 + W(LO(~w,~z21 1)) E rge(1jl).

From Lemma 3.2.5 it follows that 1 € D(n,L0(w,z2 ,2ll

1 E D(n,z
2
J, hence yielding a contradiction with z E o0. Further

£ more from z E o0 it follows that LS(z
2

l w (<pl and

1 +r € rge(cp), where W(z
2

) = r, for some segmap cp. If

2 + r € rge (cp) then ip -& r+
1

o cp and 1 + w (E 0 w, -&
1

z
2

, 1))

2 + r E rge(iiJ), If 2 + r r/ rge(cp) then ip cp and

+ W(E0Ccp
1

w, z
2

,1))

(vii) z = ll z 1 Al z
2

: Then v

1 + r E rge(ip). Hence, v E A.

applying the induction hypothesis we see

E0<cp
1

w,-\7
1

z
2

,1l EA. Hence, v EA.

Theorem 3.2.2.

If u " A and u +
6

, v then v E A.
0

w,-&
1

z
2

,1). By

E0<w,z
1
,1i,

D

Proof. By induction on the generation of +
6

, and Lemma 3.2.9. D
0

Corollary.

If u € Ao and all marked A's in u are indexed with the number 1 then

* v E A for all terms v such that u +
6

, v.
0

Lemma 3.2.10.

v ll u AO t € A n A0 • II v II

Proof. The result follows from Lemma 3.2.8.

Let v ll cpk-l u Ai .\Jk-l t E A. If PC(t,k) and +v then

II v II :- II E0 (u,t,kJ -II-. -

Proof. By induction on L(t).

(i) t F;,m(n) :

(1) n < k Then II Eo {u, t,k) II llF;,m(n) II lltll

(2) n k Then II Ea (u,t,k) II II cpk-l ull < llvll

(3) n > k Then II E0 (u,t,kl 11 II F;,m(n - 1) II = lltll

II .\Jk-1 tll

II .\Jk- l t II < II v II •

(ii) t = wm(lji) : From PC(t,k) it follows that llE0(u,t,k) II

11 s cpk_ 1 u A0 .\Jk-l wm(ipJ 11 < llvll •

D

< llvtl

(iii) t = AZ : This case follows simply from the induction hypothesis.

109

(iv) t

(v)

(vi)

(1) n < k: Then 'l.0(u,t,k) crm(n,r) 'l.0(u,z,k+rl and the result

follows by applying the induction hypothesis.

(2) n k : Then 'l.0(u,t,k)
~

SW (lji) = jq>k-1ul1 •

ll'l.0cu,t,k) 11 =

~
llsw (lji) II+ ll'l.0<u,z,k+rl II :s;

:s; m + ii'l.0(u,z,k+rl 11 <

< m + II o

m+ ull + 11.ek+r-lzll + 1

m +!lull+ llzll + 1 =

llvll

(tv)

(induction hypothesis)

(3) n > k : Then 'l.0 (u,t,k) = crm(n - 1,r) r.0 (u,z,k + r) and the

result follows by applying the induction hypothesis.

t ozlz2 : Then 'l.o (u, t,k) = 0 r.o (u, zl ,k) 'l.0(u,z
2

,kJ. Furthermore

11 o E0 (u, ,k) r. 0(u,z
2

,kl II =

ll'l.0(u,z
1

,kl II + 11 r.0 (u,z
2

,kl 11 s;

$ ll~k-1z111 + !l'l.0cu,z
2

,kl 11 < (PC ,0) and Lemma
3.2.6)

< ll~k-1 zl II + Uq>k-1 u II + 11.ek-l z2 II + 1 (induction
hypothesis)

llvll .
t o z 1 Ai_ z 2

See case (v). D

Corollary.

(1) If ouAl t EA n AO and tOuAl t then llouA;. tll > lli:.0(u,t,1) II

(2) If u,v E A n Ao' tu and u essentially s0-reduces to v then

llu II > llvll •

110

Theorem 3.2.3.

+
8

, is essentially strongly normalizing on {t E An A0 I +t} •
0

Proof. The result follows from the corollaries to Lemmas 3.2.7, 3~2.8,

3.2.11 and Lemma 3.2.10. D

3.3. The Church-Rosser property for + 8

In this section we offer a proof of the Church-Rosser property for +
8

on {t EA J PC(t,0)} by using the results given in Sections 3.1 and

3.2. This is done as follows. By dropping the numberings from the

definitions of 60, A0, ~0 and A0 we obtain the definitions of 6', A',

~· and A:, where A: {t EA' I PC(t,0)}. Furthermore, the notion of

essential 8'-reduction on A: is defined as follows.

Definition 3.3.1.

Let t,u E A:.

t essentially S'-reduaes to u ** t +
8

, u A l(t ~· u) .

From Definition 3.3.1 we get the obvious definition of +
8

, being

essentially strongly normalizing (ess SN(+81 J). Since adequate num

bering of terms is always possible the following result follows

immediately from Theorem 3.2.3.

Theorem 3. 3. 1.

D

+
8

, is essentially strongly normalizing on A:. IJ

Since the permutation condition is invariant with respect to $'

reduction (cf. Theorem 2.5) the following result follows immediately

from Theorem 3.1.6.

Theorem 3.3.2.

+
8

, is weakly Church-Rosser on A:. D

Theorem 3.3.3.

For every t E A: there exists an u E A: such that

(1) u is an essential B·' -normal form of t ;

(2) if v is an essential $'-normal form of t, then u ~· v.

111

The following proof is along the lines of the proof given for

Theorem 1.1.3. By Theorem 3.3.1 each term t E A; has an essential B'
normal form u. Furthermore, call a term t E A; ambiguous if t S'

reduces to two essential B'-normal forms u
1

, u
2

such that l(u1 ~• u
2

J.

* If t is ambiguous then there exists a term u such that t +
6

, u and u is

ambiguous and l(t ~· u), which we now show. The following two figures

suggest how t can reduce to u
1

and u
2

•

t t

,. j·

3 3 1 FIG. 3.3.2.

where v +
6

, v' and w +
6

, w' denote the first essential S'-reductions

occurring on the reduction paths starting from t and ending in u
1

,u2 •

In the case of Figure 3.3.1 it is immediately clear that v' is ambi

guous. In the case of Figure 3.3.2 it follows from WCR(~S') that t'

and t" have a common S'-reduct t'" and, by ess SN(+
6

,J, t"' has an

essential S'-normal form u
3

as indicated in the figure below.

112

t

FIG

Since v +
6

, v' was the first essential a•-reduction on the reduction

path from t to u
1

, it follows that t' -• v and, by symmetry of-•,

* * * v -' t'. Hence, v +
6

, t'. From v +
6

, t' and t' +
6

, t
3

it follows that

* * v +
6

, . Analogously, w +
6

, u
3

• Furthermore, from l(u
1

-• u
2

) it

follows that either l(u
3

-• u
1

) or l(u
3

-• u
2
). If l(u

3
-• u

1
) then

we can take v' for the ambiguous term u, and if l(u
3

-' u2) then we

can take w' for u.

Now that we have established that all ambiguous terms essentially 6'

reduce to another ambiguous term we have obtained a contradiction with

ess SN(+
13
,), hence ambiguous terms do not exist and the result

follows.

Definition 3.3.2.

Let t,u E A~. The relation >' on A~ is defined as follows

t >' u iff u is an essential a•-normal form oft and

if v is an essential a•-normal form of t then v -· u

Definition 3.3,3.

The function I I : A' +A is inductively defined for marked terms t

as follows

D

D

113

(i) I~ en> I ~(n)

(ii) I w cl/I> I w (1/1)

(iii) jAuj Alu! ;

(iv) lcr(n,mlul = cr(n,m) lul

(v) louvl olul Iv! 1

(vi) Io u A' vi o lul A Iv! D

Definition 3.3.4.

A* = { t E A I PC (t,0)} D

Definition 3.3.5.

Let t,u € A*. The relation > on A* is defined as follows.

t > u .. 3t' EA'
*

t lt'I At' >' u' Au I u I I .

(1) The binary relation 13 on A is defined as follows.

If t,u € A then

D

OVAW Au= i:(v,w,1) A (v,w,1) € dom(E).

If t 13 u then t is called a 13-redex.

(2) The notion of reduction + on A is inductively defined by
13

(i) uBv,,.u+
6

v;

(ii) u +13 v""' AU + AV;
B

(iii) u +
B

v""' cr(n,m)u +
6

a (n,m)v ;

(iv) u + v ""' ouw + ovw ; B B
(v)

Theorem 3.3.4.

* * +6 is the transitive and reflexive closure > of > on A*.

Proof. From Theorem 2.5 it follows that the permutation condition is

invariant with respect to fl-reduction; hence, if u E A* and u +
13

v

then v E A*. Furthermore, from

114

* + c: > c: +
13 - - B

it follows that

* * hence +
13

= >

Theorem 3.3.5.

> satisfies the diamond property.

D

Proof. Assume that t > u and t > v. From the definition of > it follows

that there exist terms t' ,u' ,v' E A' such that t = It' I, u
*

v Iv' I and

(1) u', v' are essential B'-normal forms oft'

(2) u' ~ v' •

From (1) and (2) it follows that u' >' v' and v' > v'. Therefore u > v

and v > v, and the result follows. 0

Theorem 3.3.6.

+
13

is Church-Rosser on A*.

The result follows from Theorems 3. 3. 4 and 3. 3. 5. 0

115

4. THE CLOSURE PROPERTY FOR THE TYPED SYSTEM \Tq__

In Section 1.2 we introduced the typed system ;\Ta. The definition of

;\Ta in Section 1.2 was completely formal and therefore when we speak

of ;\Ta we refer to the system ;\Ta as defined in Section 1.2, Defini

tion 1.2.5. We recall that we have the following relevant sets re

garding types.

(1) The set of types T

type®;

we have y-types, p-types and the incorrect

(2) The set of quasi-types Tn : elements of Tn are not types of terms

in ;\Ta, but serve as intermediate constructs for evaluating the

product (*) of a number of types in order to calculate the even-

tual type of a ;\Ta-term, which is either the incorrect type ® ,

a y-type or a p-type (but never a n-type).

The objective of this section is to show that the type of a correct

;\Ta-term t, with respect to a certain type context T, and the type of

its B-reduct (with respect to the same context) are the same, provided

that t satisfies the permutation condition (the aZosure property for

;\Ta) •

We note that basic operations on terms introduced in Section 2 for the

type-free system A are extended to ;\Ta in the obvious way; in parti

cular ~t, W(t) and PC(t,k) are defined for typed terms t as in Section

2 (a typed lambda is treated in the same manner as a non-typed lambda).

Furthermore, a substitution operator in ;\Ta is denoted by Ef, for some

type f € T\{®}. The type f attached to a substitution operator is

the same type as attached to the lambda of the redex, say ou v,

that - after contraction of o u Af v - gave rise to the invokement of

the substitution Lf(u,v,1). We proceed by defining substitution in

;\Ta•

Definition 4.1 (substitution).

Let f € T\{®}. If u .: ;\Ta and k .: :N then (u,t,k) is inductively

defined for typed terms t by

{ ·k-l u
if n k and LS(u) .: rge(!;;)

(i) (u,!;; (n) ,k) = !;; (n) if n < k

!;;(n-1), if n > k

116

(iii)

(iv)

(v)

Ef (u,w (ijl) ,k)

(u,A v,k)
g

i: f (u, a (n, ml v, k)

r

l

if k E rge(ijl)

if k ¢ rge(ijl)

s ~~ i:f (u,v,k +ml if n = k I

u "' sw(ijl) , W(u) = m and rge(ijl) s JN m

cr(n,m) i:f(u,v,k+m) if n < k

o(n-1,m) Ef(u,v,k+m), if n > k

D

We note that the results concerning applications of refmaps to terms

and the results concerning substitution in Section 2 hold equally in

the typed system ;\Ta, since the typing of terms in ;\To is completely

irrelevant as far as establishing these results is concerned. The

same holds for the results concerning the permutation condition in

Section 2.3. We shall therefore make frequent use of these results

simply by referring to the corresponding type-free results in Section

2.

Definition 4.2 (+
6
).

(1) The binary relation 6 on ;\Ta is defined as follows.

If t,u E ;\Tcr then

If t 6 u then t is called a 6_:.redex.

(2) The notion of reduction +
6

on ;\Tcr is inductively defined by

(i) u8v=1> u+
6

v;

(ii) u+v=1o;\u+;\v
6 f 6 f

for every f E T\{®} ;

(iii) u +
8

v • a(p)u +
8

a(p)v , for every p E JN x ~;

(iv) u +6 v .. ouw +
8

ovw;

(v) u +6 v• owu + OWV. 0 B

117

In order to facilitate the evaluation of the product of quasi-types

and types in ATcr we give the following definition of the product of

two quasi-types ensuring that this extended version of the *-operation

is associative; i.e. f * (g * h) = (f * g) * h, for all quasi-types f,g

and types h.

Definition 4.3.

Let F, G, H, I and J be elements of (T\{®})*. The product of two

quasi-types is defined as follows

7r(F,G) * 7T(H,I)

Lemma 4.1.

\

(7r(F &J,I)

7r(F,J & I)

®

if H G & J
-

if G J & H

otherwise D

The *-Operation is associative; i.e. f * (g*h)

quasi-types f,g and types h.

(f*g) * h, for all

The result follows from Definitions 1.2.5 and 4.3 by simple

computation.

Definition 4.4.

We define the following sub-sets of T\{®}

r

p

{ f E T\ { ®} I FS (f)

{f E T\{®} I FS(f)

y}

p}

Let t E ATG and T be a type context. If typ(t,r) # ® then

(1) typ(t,T) E f.,. LS(t) E rge(~)

(2) typ(t,T) E p .. LS(t) E rge(w)

By induction on L(t).

Lemma 4.3.

Let C be a non-empty set and let µ be a refmap.
* <m> If f,g EC and L(f) m then (f&g) oµ f & (goµ).

Simple computation.

118

D

D

D

D

Lemma 4.4.

Let t E ATcr, T be a type context and µ be a refmap.

* If t 0 µ E (T\ {@}) then typ (J:t,T) typ (t, T 0 µ).

Proof. By induction on L(t) and Lemma 4.3.

Lemma 4.5.

D

Let t = sw(lji) and s & u be elements of ATcr and let T be a type con

text. If typ(t,T) # ®and W(t) = m then

L(F3) =mAtyp(s&u,T)

By induction on L(t). D

Lemma 4.6.

Let t sw(lji) E ATcr and T be a type context. If typ(t,T) # ®,

W{t) = m and PC(t,0) then typ(t,T) = p(G1 ,G
2

,G
3

) and L(G
3

) = m, for

certain G
1

,G
2

, E (T\{0})*.

~· From Le1IUUa 4.5 it follows that typ(t,T) ~(F 1 ,F2 l *

* typ(w(lji),F
3

&T), for certain F1,F
2

,F
3

E (T\{®})* and L(F
3

) m.

Furthermore, by Lemma 2.6 PC(w(lji) ,m) and, hence, ljJ E perm(m). If

ljJ E perm(ml and L(F
3

) m then typ(w(lji),F
3

&T) = p(¢,¢,F
3

olji) and

L(F
3

o lji) = m. By taking F1 for G
1

, F
2

for G
2

and F
3

° ljJ for G
3

we see

that typ(t,T) = p(G
1

,G
2

,G
3

) and L(G
3

) = m. D

Theorem 4.1.

Let o t Af u E).Tcr, k E JN and T be a type context. If

typ(lltAfU,T) # ®, PC(t,0) and PC(u,k) then (t,u,1) € dom(l:f) and

typ(o t Af u,T) typ(i::f (t,u, 1) ,<)

~· To begin with we have the following data

la. PC(t,0)

lb. PC(u,k)

2a. typ{t,T) f i

2b. typ(o t).f u,Tl = typ(u,<f> & Tl # ®.

The proof is given by induction on L(u).

119

(i) u ~(n) :

(1) n : From 2b and Lemma 4.2 it follows that f E r, hence,

by 2a, LS(t) E rge(~). Therefore Lf(t,u,1)

typ(Lf(t,u,1),T)

typ(t,T)

f =

typ(u,<f> & T)

typ(o t :>.f u,t)

(2a)

(2b)

t and

(2) n > 1: Then Lf(t,u,1) = ~(n 1). From 2b and Lemma 4.2 it

follows that T (n - 1) E r. Therefore

typ(Lf(t,u,1),T)

typ(~(n 1),T)

T (n - 1)

typ (u I< f> & T)

typ(ot:>.fu,TJ. (2b)

(ii) U = w(lji): If 1 E rge(lji) then (t,u,1) otl.fu, and if

(iii)

120

1 i rge(lji) then lji =¢and (t,u,1) w(\21). If Lf(t,u,1) = w(\21)

then

p(¢,¢,¢) =

typ(u,<f> & T)

typ<o t "f u,tl • (2b)

u =I. v: Then Lf(t,u,1) =A L (t,v,2) I. Lf(qi
1

t,.;,
1

v,1), if
g g f g - -

(qi
1

t,.;,
1

v,1) E dom(Lf). We now apply the induction hypothesis

t;--11
1

v. From 1 a and the corollary to Lemma 2 • 7 it follows

thatPC(qi
1

t,O). From lb it follows that PC(v,k+ 1) and by

Lemma 2.S-we have PC v,k+l) <\ = lji-, for a lji E perm(2)).

Furthermore

typ(qil t,<g> & T)

and

typ(t, (<g> & T) 0 cpl)

typ(t,T)

f

typ(\ v,<f> & <g> & T) =

typ(v, (<f> & <g> & T) o \)

typ(v,<g>&<f>&T) f

f ® •

(Lemma 4.4)

(2a)

(Lemma 4.4)

(2b)

Therefore typ(o cp
1

t >.f \ v,<g> & T) = typH\ v,<f> & <g> & T) f ®.

By the inductionhypothesis (cpl t,.s
1

v,1) 7 dom(l:f) and, hence,

Ef (t,u, 1) = Ag Ef (~ v, l) :--Furthermore

1T (<g> ,¢) * typ (qil t,.(ll v,l) ,<g> & T)

n (<g> ,¢> * typ co (induction
hypothesis)

rr(<g>,¢) * typ(v,<g>&<f>&T)

typ(u,<f> & T)

= typ(o t Af u,T) • (2b)

(iv) u = a(n,m)v : From 2b it follows that f E P and therefore

f p(F
1

,F
2

,F
3
), for certain F

1
,F

2
,F

3
E (T\{®})*. Furthermore

from 2a, la and Lemmas 4.2 and 4.6 it follows that LS(t) = w(~),
for some segmap ~,and~ E perm(m) and L(F

3
) m, where m = W(t).

(1) n 1 : Lett= sw(~) then Ef(t,u,l) = s'.j(Ef(t,v,1 +m)

s ~- Ef(qim t,.Sm v,l), if (cpm t,.Sm v,l) E dom(Ef). We now

apply theinduction hypothesis to .S v. From la and the
m

corollary to Lemma 2. 7 it follows that PC(qi t,O). From lb
m

it follows that PC(v,k+m) and by Lemma 2.Bwe have

PC (.S v, k + m) • Furthermore
m

121

122

typ(cpm t,F
3

& 1) =

(Lemma 4.4)

typ(t,1)

= f

and

typ(.\Jm v,<f> & F
3

& 1)

(Lemma 4.4)

typ (v, F
3

& < f> & 1) 1-

Therefore typ(ocpmt/.f.\Jmv,F
3

&1) = typ(.\Jmv,<f>&F
3

&1) f. ®·

By the inductionhypothesis (cp t,.\J v,lJE dom(l:f) and,
m m

hence, l:f(t,u,1) = sljl~ l:f(cp t,.\J v;l.J. Furthermore let
- m m

G
1

,G
2

,G
3

E (T\{®}J* besuchthatL(G
3

) = m and typ(s &w,1)

= 11(G
1

,G
2

J * typ(w,G
3

& 1), for arbitrary w E I.Ta such that

s &w E I.Ta (cf. Lemma 4.5). By taking w = w(ljl) we see that

f

typ(t,1)

F
3

• Furthermore

typ(l:f (t,u, 1) ,1)

"' typ (s ~ - E f (qi m t, ~ m v , 1) , t) =

typ(cr(l,m)v,<f> &T)

typ(o t Af u,T) .

(Lemma
4.4)

(induction
hypothesis)

(2) n > 1 : Then E f (t, u, 1) = a (n - 1 , m) E f (t, v, m + 1) =

= cr(n-1,m) Ef(cp t,~ v,1), if (qi t,~ v,1) E dom(Ef). From
_!!!. __!!!. _!!!. _!!!.

2b it follows that n-1 E dom(T) and T(n-1) = p(F
1

,F
2

,F
3
).

Analogous to case (iv) (1) we have PC(cpm t,0), PC(~m v,k+m)

and typ(o cpm t>.f~m v,F
3

&T) # ®. By the inductionhypothesis

(cpm t,~m v;Ti E dom(Ef) and, hence, Ef(t,u,1)

=cr(n-=l.,m) Ef(cp t,~ v,1). Furthermore
m m

typ (cr (n,m) v, <f> & T)

= typ(o t>.fu,t) •

(induction
hypothesis)

(2b)

(v) u = ovw : Then Ef(t,u,1) = o Ef(t,v,1) Ef(t,w,1). From lb and 2b

it follows that PC (v,0) and typ(v,<f> & T) # ®. By the induction

123

hypothesis (t,v,1) € dom(l:f) and typ(ot:\fv,T) =

= typ(l:f(t,v,l) ,T) typ(v,<f> & T). Furthermore, from lb and 2b

it follows that PC(w,k) and typ(w,<f> & T) # ®. By the induction

hypothesis (t,w,1) € dom(I:f) and typ(ot:\fw,T)

= typ (t,w,1) ,T) typ(w,<f> & T). Therefore

typ(l:f (t,u, 1) ,T) =

11 (¢, < typ (E f (t, v, 1) , T) >) * typ (l: f (t, w, 1) , T)

11<¢,<typ<o t v, ·n >) * typ (6 t ;\ f w, T) =

11 (¢,<typ(v,<f> & T)>) * typ(w,<f> & T)

typ(ovw,<f> & tl

= typ(o t ;\f u,T)

(induction
hypothesis)

(2b) D

Corollary (Closure).

(1) If PC(o t u,.t) (.t ?: 0) and typ(o t :\f u,t) # ® then

(t,u,1) € dom(l:f) and typ(l:f(t,u,1),T) = typ(ot:\fu,T)

(2) Let t,u € :\Tcr and t +S u. If PC(t,OJ and typ(t,T) # ® then

typ (t, T) typ (u, T) .

124

REFERENCES

Barendregt [81]: Barendregt, H.P. The Lambda calculus: Its Syntax
and Semantics. North Holland, 1981.

de Bruijn [72]: de Bruijn, N.G. Lambda calculus notation with name
less dummies, a tool for automatic formula notation, with
application to the Church-Rosser theorem. Indag. Math. 34,
1972, pp. 381-392.

de Bruijn [78a]: de Bruijn, N.G. Lambda calculus with namefree for
mulas involving symbols that represent reference trans
forming mappings. Indag. Math. 40, 1978, pp. 348-356.

de Bruijn [78b]: de Bruijn, N.G. A Namefree Lambda Calculus with
Facilities for Internal Definition of Expressions and
Segments. Dept. of Math. and Comp. Sci., Eindhoven Uni
versity of Technology, 1978, TH-Report 78-WSK-03.

de Bruijn [80]: de Bruijn, N.G. A survey of the project AUTOMATH.
Seldin & Hindley [80], pp. 579-607.

Church [40]: Church, A. A formulation of the simple theory of types.
J. Symbolic Logic 5, 1940, pp. 56-68.

van Daalen [80]: van Daalen, D.T. The language theory of AUTOMATH.
Dissertation. Eindhoven University of Technology, 1980.

van Dalen [78]: van Dalen, D., Doets, H.C., de Swart, H. Sets: Naive,
Axiomatic and Applied. Pergamon Press, 1978.

Jutting [81]: van Benthem Jutting, L.S.
randum 86-01. Dept. of Math.
versity of Technology, 1986.

Description of AUT 68. Memo
and Comp. Sci., Eindhoven Uni-

Nederpelt [73]: Nederpelt, R.P. Strong normalization for a typed
lambda calculus with lambda structured types. Dissertation.
Eindhoven University of Technology, 1973.

Newman [42]: Newman, M.H.A. On theories with a combinatorial defini
tion of "equivalence". Ann. of Math. (2) 43, 1942, pp.
223-243.

Seldin & Hindley [80]: Seldin, J.P. and Hindley, J.R. To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism,
edited by J.P. Seldin and J.R. Hindley. Academic Press,
1980.

Shoenfield [67]: Shoenfield, J.R. Mathematical logic. Addison Wesley,
Reading (Mass.), 1967.

125

INDEX OF DEFINITIONS

calculus

"AV--, 3

"ATV--, 20

AO--, 42

/..To--, 28

A--, 42

A'--, 73

A - - I 114
*

A'-
0 96

A'- -* I
111

o'- - I 111

o'- -0 I
100

A'- - , 111

b.0- -, 101

Church-Rosser, 36

closure, 124

common reduct, 35

concatenation, 41

correct term, 30

decreasing numbering, 97

diamond property, 36

essential

-a•-normal form, 111

-a0-normal form, 102

essentially

-a•-normalizes, 111

-a0-normalizes, 102

-B'-reduces, 111

-a0-reduces, 102

-B'-strongly normalizes,

-a0-strongly normalizes,

normalizing, 102, 111

111

102

strongly normalizing, 103, 111

126

first symbol, 40

last symbol, 40

length (of a sequence) , 40

norm (of a numbered term) , 95

numbered term, 94

numbering function, 94

occurrence

-of a variable, 43, 44

internal reference-, 44

external reference-, 44

permutation condition, 67

product, 29, 118

reduction

a--, 5

B- (on A), 114

B- (on >..To), 117

B'- -, 74

a0- -, 96

notion of -, 35

one step -, 35

-path, 37

reference

-depth, 43, 44

-mapping (refmap), 45

-number, 42

R

-convertible, 35

-infinite, 37

-normal form, 35

-normalizes, 35

-reduct, 35

-strongly normalizes, 37

segment, 42

segment mapping (segmap) , 42

sequence, 40

substitution

E- -, 51

I:' -, 74

type

the incorrect-, 21, 28

quasi--, 29

y- -, 28

1f- -, 29

p- -, 28

-context, 29

typing function,

variable

f;- -, 42

cr- -, 42

29

weakly Church-Rosser, 37

127

SAMENVATTING

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan heeft

betrekking op een gegeneraliseerd systeem van A-calculus, geheten Ao.

Het systeem wijkt af van bestaande A-calculi doordat een geheel nieuwe

klasse van termen is opgenomen, geheten segmenten. Segmenten waren

oorspronkelijk ontworpen door N.G. de Bruijn om te zorgen voor be

paalde afkortingsfaciliteiten in de wiskundige taal AUTOMATH. Het on

derwerp van dit proefschrift is een taaltheoretische studie van de

Ao-calculus.

In Hoofdstuk 1 wordt een uitgebreide informele beschrijving gegeven

van het Ao-systeem en worden de voornaamste verschillen aangegeven

t.o.v. klassieke ongetypeerde A-calculus. Tevens wordt er in Sectie

1.2 van dit hoofdstuk een beschrijvihg gegeven van een getypeerde

versie van AO, geheten ATO. De types in ATO zijn een extensie van

zogenaamde "simple types" in de klassieke getypeerde A-calculus,

waarbij de uitbreiding hieruit bestaat dat er tevens types worden ge

construeerd voor segmenten en segmentvariabelen.

In Hoofdstuk 2 worden de belangrijkste definities en basisresultaten

gegeven.

In Hoofdstuk 3 wordt een bewijs gegeven van de Church-Rosser eigen

schap voor AO volgens de methode van de eindige ontwikkelinge~ en in

Hoofdstuk 4 wordt een bewijs gegeven van de geslotenheidseigenschap

voor ATo.

128

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 2 februari 1952 geboren te

Groningen. In 1971 behaalde hij aan de Rijks H.B.S. te Groningen het

diploma H.B.S.-B. Na de vervulling van zijn diensttijd is hij Wis- en

Natuurkunde gaan studeren aan de Rijks Universiteit Groningen. In

maart 1982 slaagde hij voor het doctoraalexamen Wiskunde met als hoofd

vak mathematische logica. Sinds april 1982 is hij werkzaam bij de

Technische Hogeschool Eindhoven, meer in het bijzonder in de Onderaf

deling der Wiskunde en Informatica bij Prof.dr. N.G. de Bruijn.

129

STELLINGEN

behorende bij het proef schrift

LAMBDA CALCULUS EXTENDED WITH SEGMENTS

van

H. BALSTERS

Eindhoven, 4 maart 1986

* * 1. Laat t, u, v en w lca-termen zijn. Als t -+e u en v -+
6

w dan

* I:(t,v,k) -+
13

I:(u,w,k), voor elke k (k E :N).

Hoofdstuk 3 van dit proefschrift.

2. Naamdragende notatie voor variabelen wordt in ;\a-calculus al gauw onhan-

teerbaar.

Hoofdstuk 1 van dit proefschrift.

3. De klassieke reductienorm voor het bewijs van de normalisatiestelling in

;\-calculus voorzien van "simple types" is niet geschikt voot: een bewijs

van de gelijknamige stelling in getypeerde lea-calculus.

4. Door een lichte aanpassing van een programma geschreven door R.M.A. Wieringa

verkrijgt men op gemakkelijke wijze een implementatie van het reductieme-

chanisme in lea-calculus.

R.M.A. Wieringa: Een notatiesysteem voor lambda-calculus met definities.

Afstudeerverslag, T.H. Eindhoven, 1978.

5. Een basiscursus logica opgezet volgens het principe van natuurlijke deductie

is bijzonder geschikt om studenten vertrouwd te maken met formeel redeneren.

6. Boomvormige afleidingen in systemen van natuurlijke deductie kunnen op

eenvoudige wijze warden geformaliseerd.

H. Balsters: A formal definition of derivation trees in systems of

natural deduction.

Memorandum, onderafd. WSK/I, T.H. Eindhoven, 1982.

7. Elke aanzet tot een bewijs is waardevol, omdat zelfs foutieve bewijsvoeringen

het inzicht kunnen aanscherpen.

8. Combinatorische bewijsvoeringen dienen met de grootst mogelijke kritische

zin gevolgd te worden; in het bijzonder wordt de rol van de lege verzame

ling vaak onderschat en is een "uitputtende" gevalsonderscheiding vaak

minder uitputtenddanaanvankelijk wordt gedacht. Dergelijke bewijsvoeringen

zijn dan ook geschikte objecten voor een controle op correctheid door een

bewijsverificator, hetgeen door een implementatie in de wiskundige taal

AUTOMATH mogelijk is.

9. Er is een grote overeenkomst tussen een constructief bewijs van een formule

R en een programma dat R als postconditie heeft. Teneinde deze overeenkomst

te exploiteren verdient het aanbeveling programmeertaal en logische taal

te integreren.

10. Er zijn veel wiskundigen en informatici die het belang inzien van formeel

logische technieken, maar onder hen is er slechts een minderheid die het

geduld kan opbrengen om deze technieken consequent te blijven toepassen.

11. Het is te betreuren dat de A-notatie van A. Church geen gemeengoed is ge

worden onder wiskundigen.

12. Het is merkwaardig dat vele voorstanders van spellingvereenvoudiging zo'n

hekel hebben aan een eenvoudige letter als de x.

