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1 Introduction 

This report gives a summary of the results of a cooperation between the Moerdijk Managing 
Technology department of Shell Nederland Chemie and the Institute for Mathematics Con­
sulting of the Eindhoven University of Technology (EUT). The purpose of this project is an 
investigation whether data reconciliation techniques could be of use in the EO plant of Shell 
Moerdijk. In the Appendix the original formulation of this feasibility study is given. 

The main characteristics of the plant under consideration are: 

a) the number of variables is very large 

b) the balance equations are non-linear 

c) both random and systematic errors are present. 

In the field of data reconciliation numerous software packages are available [JMK]. However, 
these packages only apply to systems with linear balance equations and without systematic 
errors. Points b) and c) cause the present application to be a field of research. The project 
has been succesively carried out by four stagiaires supervised by TUE staff members. The 
work and the results have been extensively described in several reports [JvB, PR, RW, DJM]. 
The present report is meant to conclude the project and gives an overview of the mathematics 
and the results without going into details. 
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2 Problem description 

The EO plant consists of a large number of process units, the core of which are two nearly 
identical reactors. Measurements of flow rates and concentrations of components are rou­
tinely made for the purpose of process control and process performance evaluation. When 
the process is in a steady state these measurements are expected to satisfy mass balances. 
These constraints are never satisfied exactly, because of the presence of random and, possi­
bly, systematic (also called : gross) errors in the data. The latter errors may be due to, e.g., 
miscalibrated measuring instruments or unsuspected leaks. An additional difficulty is that 
not all variables are measured because of cost considerations or technical infeasibility. 

The purpose of data reconciliation is to find estimates for: 

a) the unmeasured variables 

b) the true values of the measured variables 

c) the systematic enors. 

The information on which the estimation is based is twofold: 

i) measured values of a subset of all variables 

ii) the true values of all variables must satisfy the mass (and, possibly, energy) balance 
equations. 

Detailed descriptions of the EO plant are given in [JvB, DJM]. To give an idea of the size of 
this system we mention that the total number of variables is 180, because there are 18 flows 
in each of which the flow rate and the concentrations of 9 components are of importance. 
The application of various straightforward assumptions reduces the number of variables to 
98. Of these only 42 variables are measured. The number of mass balance equations is 74. 
These equations are non-linear in the variables containing, e.g., products of concentrations 
and flow rates. 
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3 Error modelling 

The modelling of the errors is an essential ingredient of the data reconciliation procedure. 
This modelling follows from the physical principles of the measuring instruments. For the 
EO plant we found the following assumptions to be reliable: 

- random errors are relative, i.e, proportional to the value of the measured .variable 

- systematic errors may have two components: 

1. a relative part 

2. an absolute part, leading to a constant shift (also called : bias) 

So, for a particular measurement the model reads as 

where 

1J : true value of the measured variable 
y : measured value 
Ea : absolute part of the systematic error 
E13 : relative part of the systematic error 
e : random error 

The covariance matrix of the random errors is denoted by I::. It is a diagonal matrix be­
cause the random errors are between different measurements. 
One systematic error can be present in several measurements, because one measuring device 
may be used to measme a variable at different positions leading to correlated errors in these 
measurements. 
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4 Mathematical procedures 

The idea behind data reconciliation is to adjust the measured values such that: 

1. the corrected values satisfy the balance equations 

2. the corrections or 'residuals' are as small as possible with respect to a (weighted) least 
squares norm. 

4.1 Estimation of :E 

In the procedures dealt with hereafter the (diagonal) variance matrix E of the random errors 
is assumed to be known. The elements of E have been estimated from long series of data 
sets at successive time points. See [RW]. Plots of the measured values at successive time 
points reveal that in most time series definite trends are present indicating that the EO 
plant is not in a steady state when observed during a time window of days. It even turns 
out that sudden shocks appear at which nearly all variables jump to another value. The 
variance of the random error in a measurement can be calculated from the variance of the 
fast variations in the measurements. To that end the trend, i.e. the long-term variation, has 
to be removed. This has been done using the moving average technique meanwhile taking 
care of the sudden jumps in the signals. Because of these jumps it does not seem worth to 
apply a more sophisticated technique for trend removing. 

4.2 Estimation of umneasured variables 

In [TM, JvB] it has been described how estimates for the unmeasured variables can be ob­
tained from estimates for the true values of the measured variables via the so-called projection 
method. In general not all unmeasured variables can be estimated this way. However, in the 
EO plant the number and positions of measured variables turn out to be appropriate to ob­
tain estimates for all unmeasured variables. 
The projection method is applicable only in case of linear constraints. In the iterative ap­
proaches to be presented hereafter the non-linear constraints are linearized at each interation 
step. The projection method is then applied to the constraints in linearized form. 

4.3 Random errors 

If only random errors were present and if the balance equationse were linear, the problem 
could be solved as described in [TM]. To deal with the non-linearity an iterative procedure 
is introduced based on the Gauss-Newton method. See [JvB]. It consists of the following 
steps: 

0. Find an initial guess for the values of all (measured and unmeasured) variables. 

1. Linearize the balance equations around this working point. 
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2. Solve the resulting (linear) Gauss-Newton problem. This yields a direction vector along 
which the current estimates for the measured variables can be adjusted best. 

3. Choose a step length following some (heuristic) algorithm and adjust the estNttates for 
the measured variables. 

4. Calculate new estimates for the unmeasured variables using the projection method. 

Repeat the steps 1 - 4 around the new working point and keep iterating the process until 
convergence is reached. As shown in [JvB] this procedure works very well when applied to 
the EO plant. The number of iteration steps necessary to obtain a reasonably high accuracy 
is seldom more than 5. 

4.4 Random and systematic errors. 

If also systematic errors are present, the procedure in§ 4.3 has to be extended. An important 
observation is that the systematic errors, i.e. the factors Ea and E[J in the model equations of 
the form given in § 3, are not present in the balance equations. This allows for a decoupling of 
the numerical estimation of random and systematic errors. Following this idea the following 
two steps are included into the procedure in § 4.3: 

O'. Set initially Ea = 0 and E13 = 1 for all systematic errors. 

5. Estimate the systematic errors from the random error estimates obtained in step 4. 

4.5 Instantaneous versus sequential 

· If the data reconciliation is based on a data set obtained at one time point, or within a. very 
short time period, e.g., hourly averages, we call the procedure followed the instantaneous 
approach. If, however, data sets a.t successive time points are simultaneously used, we refer 
to it as the sequential approach. 

4.5.1 Systematic errors in the instantaneous approach 

In the instantaneous approach it is impossible to distinguish systematic from random errors, 
if the former are present in uncorrelated measurements. Only if one and the same systematic 
error influences more than one measurement, e.g., because the same measuring instrument is 
used, one can try to estimate systematic errors separately. In general, a systematic error can 
only be estimated in a reliable manner if this error is present in a lot of measurements. The 
smaller this number of measurements, the more unreliable the estimates are. To show this 
point an extreme case will be used as an example. 
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Example 

Assume that one instrument is used to measure two variables. The measured values are 111 
and 112· The estimates for the time values under the assumption of no systematic errors are 
1'Jl and 'f/2 respectively. The pairs (Yt, fJl) and (712, '1/2) are plotted in Fig. 1. If not any errors 
are present, these pairs lie on the diagonal y = '1/· If only random errors are present and 
lots of pairs (y,, '1/i) are available, the points scatter around the diagonal. If in addition a 
systematic error is present, the points scatter around another straight line, the position of 

. which is determined by the values of the factors (Ea, E13), that are to be estimated. 

In this example we only have two pairs. Following the model in §3, these points have to 
satisfy, the equations 

1/1 = Ea. + E/3711 + Cl f/1 
112 = Ea + E13'1/2 + e2'1J2 

with e1,e2 the random errors. 
If the points lie on the same side of the diagonal, as is the case in Fig. 1, one may interpret 
this as being caused by a systematic error, but it may also be just by chance. It is now to the 
user to decide which interpretation must be prefered. He might follow different strategies: 

a.. In view of the la.ck of information no conclusion about the systematic errors is drawn, 
setting Ea = 0 and E13 = 1. 

b. The absolute part is ignored setting Ea = 0. The relative pa.rt E13 is then estimated from 
the slope of the straight line bin Fig. 1, which passes through the origin. The estimates 
'f/1 and 'f/2 are accordingly be adjusted by projecting the points on line b. 

c. One decides to estimate both Ea and E13 by ascribing all deviations from the diagonal to 
the systematic errors. This simply results in straight line c passing through both points. 
From its slope E13 is estimated and from its crossing of the vertical axis Ea is found. In 
this interpretation one has vanishing random errors: e1 = e2 = 0. 

It will be clear that in cases b. and c. it is likely that the systematic errors are considerably 
overestimated. In the mathematical procedure described in § 4.4 and applied to the EO plant 
the same strategy as mentioned under c. is followed : possible trends in the residuals are as 
much as possible ascribed to systematic errors, irrespective of the number of the residuals 
involved. This implies that the instantaneous approach will tend to yield too large values for 
the systematic errors. 

4.5.2 Systematic errors in the sequential approach 

In the sequential approach one obtains for each measurement '!It on timet an estimate 'TJt. A 
possible systematic error can be estimated from as ma.ny pairs (Yh '1/t) as there are successive 
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data sets. So, if enough data sets are available, the disadvantages discussed in §4.5.2 are not 
present. E.g., even a systematic error figuring in only one measurement (and not in a couple 
of correlated measurements) can be detected this way. 

4.6 The residual approach 

In addition to the instantaneous and sequential approaches we mention the residual approach. 
This method is conceptually simpler than the other ones. In the residual approach the instan­
taneous approach is applied to successive data. sets ignoring in the first instance systematic 
errors. So one sets Ea = 0 and E13 = 1 for all measurements. Then, the residuals a.t succes­
sive times a.re analyzed. If the residual of a. specific measurement appears to be not normally 
distributed, but shows a. trend over time, one concludes to a systematic error in tha.t measure­
ment. Theoretically this procedure is not fully sound, because the instantaneous approach, 
assuming only random errors, is apparently not applicable in those cases, but the method is 
applied in the EO plant with some succes. 
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5 Results and discussions 

In [JvB, PR] the instantaneous approach has been applied to a. data. set from 26-02-91. In 
[DJM] a.ll approaches mentioned in §4 have been applied to successive data. sets from 17 and 
18-05-93. Here, we give a. concise overview of a.ll the results. 

5.1 Estimation of E 

In [RW] several methods to estimate the (diagonal) matrix 'E containing the variances of the 
random errors are discussed. An appropriate method is to make use of long time series of 
successive measured values. The long-term trends in these series, due to the system not being 
in a. steady state, are removed via. the weighted moving average technique. The variances of 
the remaining residuals are estimates for the diagonal elements of 'E. Two points should be 
special care taken of: 

- The window length must be chosen such tha.t the residuals are normally distributed. A 
length of 18 for a. series of 2 minutes data turns out to be satisfactory. 

- The time series show sudden jumps. These can be best removed by hand. 

5.2 Estimation of only random errors 

With Ea = 0 and Ep = 1 for each measurement only random errors are estimated. The 
iterative process described in §4c converges rapidly and yields estimates for all measured and 
nearly a.ll unmeasured variables. Furthermore, in [DJM] it is found that the instantaneous and 
sequential approaches yield nearly identical results. So, we conclude that the information in 
one data set is enough to obtain reliable estimates for the random errors via the instantaneous 
method, provided that no systematic errors are present. If this. would be the case in the 
MEOD plant, the residuals would scatter in a random way. However, for some variables they 
show definite biases over time . In the residual approach these biases are used as indications 
for systematic errors. 

5.3 Estimation of random and systematic errors 

In [PR] it is shown by introducing artificial errors in the real data set that big systematic 
errors (in the order of about 30 %) in mass flow measurements are detectable using the in­
stantaneous method. However, in the real data the systematic errors, if any, are apparently 
much smaller. than those used in these simulations, and the instantaneous method did not 
detect any systematic error in the EO data. 

In [DJM] the residual and sequential methods are applied and we shortly discuss the main 
results. It should be emphasized that these results have been calculated toithout using the 
knowledge that some of the systematic errors are in fact identical because the same measuring 
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device is used for a couple of measurements. 

02 flow into M10t 

A systematic error in the 02 concentration of the :O.ow into the mixer M101 can in principle 
not be estimated with the instantaneous approach, because not enough balance equations are 
available. The software then automatically sets Ea = 0 and E13 = 1 for this variable and the 
instantaneous approach, applied successively, reduces to the residual approach. In Fig. 1.03, 
quoted from [DJM], the estimates are a small but systematic amount above the measured 
values, leading in the residual approach to the estimate E13 = 0.99. The sequential approach, 
in which E13 is estimated directly, yields E13 = 0.95. The latter estimate is the most reliable 
one from a theoretical point of view. We conclude that the residual approach may be useful 
to indicate the presence of a systematic eror, but it underestimates its absolute value highly. 

Total mass flow into R101a 

In Fig. 1.07, quoted from [DJM], results for the mass :O.ow into the reactor are given. For 
this variable a possible systematic error can be in principle be found from the instantaneous 
approach leading to the estimate E13 = 0.96 (setting Ea = 0). The sequential approach yields 
E13 = 0.98. In accordance with the considerations in §4 the instantaneous method overesti­
mates the systematic error if this figures in only a few balance equations. 

Selectivity 

Figures Al.Ol and B1.01 show the estimated selectivities for the two reactors from the in­
stantaneous and sequential approach respectively. Both methods yield very similar selectivity 
curves. The amplitudes of the variations are smaller for the sequential approach, but still 
larger than expected from physical considerations about the stability of the system. One 
reason, but certainly not he only one (see below) , might be that the series of data sets used 
is far from being ideal. Around 3 pm the 17th July and 5 pm the 18th July the data show 
sudden jumps as if either the system or the recording software experienced sudden shocks. 
At those time points the instantaneous method did not converge. Around these points the 
estimated selectivities show definite dips and peaks. It is to be expected that the sequential 
approach will yield less varying estimates when data sets without such shocks are used. 

Summary of systematic errors 

In table A4.2 the estimates for all possible systematic errors are given as obtained with the 
sequential approach. These results should be interpreted with reserve, because no system­
atic investigation is yet performed and the present estimates are based on only one series 
of data sets. In Table A4.2 95% confidence limits are given. The interpretation is that, 
with 95% confidence, the estimates for the systematic errors are between the values given in 
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the columns under the headings 'lower conf' and 'upper conf'. If such an interval does not 
include the orirgin, it is concluded that a systematic error is present (see last column). In 24 
measurements such significant errors are detected. Most of them are very small. The bigger 
ones are in the total mass flows (about ±7%). 

In table A4.3 a subset of these results is ordened otherwise. There the systematic errors that 
should be the same are mentioned together. It is seen that equality is indeed found for mea­
surements in flows at the same side of the reactors, i.e. streams 3 and 4 (inlets) and streams 
5 and 6 (outlets) .. This is more or less trivial, because there the flows are merely splitted 
or combined. Estimates at different sides of the reactors show differences. In general the 
agreement is good, but in some cases the corresponding confidence intervals have no overlap. 
Although this can partly be understood from the way the data are obtained, it seems that 
at this point the results are somewhat inconsistent. 

There are three possible reasons for these findings. First, in these calculations the assumption 
Ea = 0 is used. If these systematic errors indeed have an additional component, simultaneous 
estimation of both Ea and Ep might improve the consistency of the results. Second, it might 
be the case that the number of measurements and/or balance equations used is indeed too 
small. This could be easily improved by putting into the balance equations the information 
that certain subsets of measurements must have identical Ea and Ep factors. This has the 
extra advantage that it reduces the number of variables to be estimated considerably. Third, 
it has been observed independently that some systematic errors are time dependent and vary 
even on a scale of hours, possibly because of correlation with the weather conditions. The 
sequential approach is based on the assumption of time independent systematic errors, so 
this aspect might slightly con:upt the estimates. 
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6 Conclusions and recommendations 

The project has led to a number of conclU8ions summarized hereafter. For all the methods 
mentioned software have been developed in MATLAB. Only research versions of the programs 
are available. These are computationally efficient, but not yet user-friendly. 

1. The E matrix containing the variances of the random errors can quite easily be estimated 
from successive data. sets. 

2. The instantaneous approach is 

very appropriate to detect random errors if no systematic errors are present. The 
present number of measurements (42) is large enough to obtain estimates for nearly 
all (measured and unmeasured) variables in the MEOD plant. 

not much appropriate to estimate systematic errors. Some possible systematic errors 
can not be estimated because they do not figure in enough balance equations. If 
systematic errors can be estimated, this approach tends to overestimate the values. 

3. The residual approach is conveniently applicable, but tends to underestimate possible 
sustema.tic errors. 

4. The sequential approach is highly appropriate for the simultaneous estimation of random 
and systematic errors provided that 

successive data. sets are available preferably from a. period in which the plant operates 
smoothly, i.e. without sudden jumps in the data.. 

as many information as available is included into the balance equations (e.g. the 
information that certain systematic errors are identical). 

These insights lead to the following recommendations: 

a.) Use the sequential approach because iu the MEOD plant systematic errors are present. 

b) Use a. great number of successive data sets, but make sure that in the period under 
consideration the system did not undergo sudden shocks. 

c) Use as many information in the balance equations as available. E.g., include the knowl~ 
edge that some systematic errors occur in more measurements. A lot of extra. information 
can also be derived from inclusion of the energy balances. 

d) Estimate not only the multiplicative component EfJ in the systematic errors, but also the 
additive one E01 • 

e) Check the method carefully by applying it shortly before and shortly after a recalibra.tion 
of a. number of measuring instruments. The improvements made should be immediately 
found back in the reconciliation results. 

f) Develop a. full-proof and user-friendly environment for the reconciliation programs. Sp~ 
cia.l attention should be paid to a. smooth data. transfer from the computer monitoring the 
EO system to the reconciliation package, and to an appropriate (graphical) presentation 
of the results. 
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Appendix : projektfonnulering (juli 1991) 

' 

Datavereffening en Gross-errordetektie in de Ethyleenoxide fabriek van Shell Nederland 
Chemie B. V ., Moerdijk. 

In de procesindustrie is het van groot technisch en economisch belang de diverse massastromen 
onder kontrole te hebben. Men plaatst daarom op geeigende plaatsen in het systeem fl.owmeters. 
Bij de interpretatie van de meetgegevens kunnen zich enk.ele complicaties voor doen: 

a) Niet alle massastromen kunnen gemeten worden. 
b) De meetgegevens bevatten random meetfouten. 
c) De fl.owmeters kunnen een systematiscbe fout hebben. 
d) Er kan ergens een lek opgetreden zijn. 

Verschijnselen c) en d) vat men in de literatuur samen onder de term "gross errors". 

De meetgegevens worden voor twee doelen gebruikt: 

1. Datavereffening: Schat uit de gemeten waarden de exak.te fl.owgegevens (zowel gemeten 
als niet-gemeten). 

2. Foutdetektie: Scbat of er gross errors opgetreden zijn en waar deze zich in het systeem 
bevinden. 

Deze facetten kwmen niet onafhankelijk van elkaar behandeld worden. We zullen de te gebruiken 
technieken kort toelichten en vervolgens enige opmerkingen plaatsen. 

Bij het toepassen van datavereffening spelen de (bekend veronderstelde) massa- en energiebalansen 
een centrale rol. Deze balansen geven (vaak lineaire) relaties tussen de concentraties op verschillen­
de plaatsen van de bij het proces betrokk.en componenten. Meestal worden niet alle flows op alle 
meetpunten bepaald. In dat geval dienen de balansen gereduceerd te worden met een techniek 
beschreven in bijv. [1]. Deze reductieprocedure is niet uniek en er dient te worden nagegaan hoe 
de gemaakte keuze van invloed is op de berekeningen. De niet-gemeten flows zijn alleen te 
schatten indien ze geen gesloten loop in bet systeem vonnen. 
De gemeten flows zullen in bet algemeen niet precies voldoen aan de (gereduceerde) balansen 
tengevolge van de boven genoemde fouten b), c) en d). Indien er alleen random meetfouten zijn en 
geen systematische afwijkingen of lekken, is bet probleem van datavereffening theoretisch opgelost 
[1 - 8]. De oplossing is gegeven in tennen van de covariantiematrix van de random meetfouten. 
Het scbatten van deze matrix kan bemoeilijkt worden door niet-stationariteit van het proces en 
correlaties tussen de random meetfouten van opeenvolgende metingen. In dat geval dienen de 
trends uit de gemeten tijdreeksen gefilterd te worden. In [9] staan hiervoor geschikte technieken 
beschreven, waarbij gebruik gemaakt wordt van het Kalman filter en ARMA modellen. 

In de Ethyleenoxide fabriek treden met vrij grote zekerheid wei systematische fouten op. Voor het 
schatten van deze fouten is in de Iiteratuur een scala van methoden bekend. Sommige daarvan zijn 
globaal en geven (met zekere kans) aan of er ergens een gross-error is opgetreden. Andere, meer 
verfijnde technieken zijn gebaseerd op analyse van de lokale residuen, die verlcregen zijn door bij 
het datavereffenen systematisch sets van metingen weg te Iaten. In [2] wordt hiervoor een 
efficiente methode beschreven. In [7] worden verscbillende methoden vergeleken. Alle methoden 
veronderstellen dat de covariantiematrix van de random meetfouten bekend is. De schatting van 
deze matrix uit de data kan een fout bevatten ten gevolge van de aanwezigheid van gross-errors. 
Dit probleem zal aangepakt worden via een iteratieve procedure. Men gaat daarbij uit van een rowe 
schatting voor de verdeling van de gross-errors (bijvoorbeeld helemaal geen gross-errors). 
Vervolgens worden de data hiervoor gecorrigeerd en wordt de benodigde covariantiematrix geschat 



uit de data, Daama voert men een geschik.te test op gross-errors uit. Dit Ievert een nieuwe schatting 
voor de gross-errorverdeling op en daannee wordt de cyclus herhaald totdat convergentie bereik:t is. 
Het opstellen van de criteria voor convergentie is een belangrijk onderdeel van het projekt. 

Opmerking 1. 

Het projekt heeft een aanta1 researchmatige aspekten. Weliswaar zijn uit de literatuur methoden te 
halen om datavereffening en gross-errordetektie separaat uit te voeren, doch met de toepassing op 
de boven beschreven iteratieve manier is niet veel ervaring opgedaan. Het projekt dient opgevat te 
worden als een feasibilitystudy naar de mogelijkheid om deze technieken toe te passen op de 
Ethyleenoxidefabriek. Daartoe zal er software ontwikkeld worden binnen het IWDE, waannee 
karakteristieke meetgegevens, beschikbaar gesteld door Shell Nederland Chemie B.V., Moerdijk, 
.geanalyseerd zullen worden. 
Na afloop van het projekt zal deze software overgedragen worden aan de contactperSoon nam.ens 
Shell Echter, het is niet de bedoeling dat deze software in een vonn gegoten wordt, die deze 
gescbik.t zou maken voor gebruik door niet-specialisten. 

Opmerking 2. 

Binnen het projekt zal ook nagegaan worden of er onderscheid gemaakt kan worden tussen 
systematische fouten in de flowmeters en lekken. Het is bij voorbaat niet duidelijk of deze 
verfijning praktisch haalbaar is. In theorie lijkt dit onderscheid wei te detekteren te zijn, indien er 
een overmaat aan data voor handen is. 
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Graph 1.07 s030 Mass flow into R101a 
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Graph A1.01 Selectivity of reactor RlOla Selectivity of reactor Rl01 b Instantaneous 
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Graph Bl.Ol Selectivity of reactor RlOla Selectivity of reactor RlOl b Sequential 
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~able a4.2 95t Confidence Intervals For Systematic Error 
rvariable ~tream (to) LOwer Xean. Upper Error 

Conf · Conf 
Mass Flow ~tream 1 m101 -7.5' -6.3' -5.1' Yes 
oxygen. !Stream 1 m101 -0.4' -0.3~ -0.2~ Yes1 

Mass Flow stream 2 lll101 . -0.6' +0.4' +1.4' No 
Methane. stream 2 m101 +0.1~ +1.0! +1.9~ Yes 
Ethane stream 2 lll101 +0.2' +1.0' +1.8~ Yes 
~ass F~ow stream 3 r101a -2.8~ -0.9' +~.0~ ·No 
~thylene •tream 3 r101a -0.4' -0.3' -0.2~ Yes 
pxygen stream 3 r101a +0.0! +0.4~ +0.8~ No 
!Ethylene OXide stream · .3 r101a -2.3' +0.0~ +2.3' No 
~rbon Dioxide stream 3 r101a -0.5' -0.3' -0.1' Yes 
!Methane stream 3 r101a -0.6~ -0.5~ -0.4~ Yes 
!Ethane stream 3 r101a -3.2' -3.1~ -3.0' Yes 
Argon stream 3 r101a -1.3' -1.1' -0.9' Yes 
Nitrogen stream 3 r101a -0.5~ . ~o.4~ -0.3~ Yes 
Mass Flow stream 4 r101b -1.8' -0.9' -o.o' No 
;Etny~ene stream 5 c203 -0.2~ -o.o~ +0.2~ No 
oxygen !Stream 5 c203 -0.6' -0.4' -0.2' Yes 
;Etny~ene Oxide !Stream 5 c203 -1.4~ -1.1~ -o.8~ Yes 
:'=ar);)_on Dioxide stream 5 C203 -o.3' -o.o' +0.3'. No 
~ethane stream 5 C203 -0.4~ -0.3' -0.2' Yes 
iEtnane stream 5 c203 -2.2~ -2.0! -1.8~ Yes 
[Argon stream 5 C203 +0.3' +0.4' +0.5' No 
~itrogen stream 5 c203 +0.1~ +0.1~ +0.1~ Yes 
!Ethy~ene ~Stream 6 c203 -0.2' -o.o' +0.2' No 
pxygen stream 6 c203 -0.6' -0.4' -0.2' Yes 
~thylene Oxide stream 6 c203 -1.4! -1.0~ -0.6~ Yes 
~arbon Dioxide stream 6 c203 -0.3' -o.o' +0.3' No 
~ethane stream 6 c203 -0.4~ -0.3~ -0.2' Yes 
!Ethane stream 6 c203 -1.9' -1.8' -1.7' Yes 
!Argon stream 6 c203 +0.2~ +0.4~ +0.6' Yes 
Nitrogen •tream 6 c203 +0.1' +0.1' +0.1~ Yes 
Ethylene Oxide stream 7 Ar.bld -0.3~ +0.0~ +0.3' No 
water stream· 7 Ar.b~d -8.4' -7.7' -7.0~ Yes 
Mass Flow stream 8 stgas -2.3~ -o.o~ +2.3! NO 
Mass F~ow !Stream 10 CH4in -0.9~ -0.4~ +0.1' No 
Ethylene stream·1o CH41n -o.o~ -o.o~ -o.o~ No 
Mass F~ow stream 12 c201 -1.5~ -0.4~ +0.5~ No 
Mass Flow •tream 13 m101 +6.2' +7.0' +7.8' Yes 
water ~tream 14 xc201 -1.8~ -0.6~ +0.2~ No 
Mass Flow !Stream 16 xc201 -7.0' -6.7' -6.4~ Yes 
Nater ~tream 16 xc20l -1.3~ +0.0! +1.3" No 
Mass Flow stream 17 c203 -1.7' +0.0' +1.7' No 



~able a4.3 comparison Of Measurement Devices 

OXide 


