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Abstract. There is an increasing demand to develop image process-
ing tools for the filtering and analysis of matrix-valued data, so-called
matrix fields. In the case of scalar-valued images parabolic partial differ-
ential equations (PDEs) are widely used to perform filtering and denois-
ing processes. Especially interesting from a theoretical as well as from
a practical point of view are PDEs with singular diffusivities describ-
ing processes like total variation (TV-)diffusion, mean curvature motion
and its generalisation, the so-called self-snakes. In this contribution we
propose a generic framework that allows us to find the matrix-valued
counterparts of the equations mentioned above. In order to solve these
novel matrix-valued PDEs successfully we develop truly matrix-valued
analogs to numerical solution schemes of the scalar setting. Numerical
experiments performed on both synthetic and real world data substan-
tiate the effectiveness of our matrix-valued, singular diffusion filters.

1 Introduction

Matrix-fields are used, for instance, in civil engineering to describe anistropic
behaviour of physical quantities. Stress and diffusion tensors are prominent ex-
amples. The output of diffusion tensor magnetic resonance imaging (DT-MRI)
[14] are symmetric 3 × 3-matrix fields as well. In medical sciences this image ac-
quisition technique has become an indispensable diagnostic tool in recent years.
Evidently there is an increasing demand to develop image processing tools for
the filtering and analysis of such matrix-valued data.

d-dimensional scalar images f : Ω ⊂ IRd → IR have been denoised, segmented
and/or enhanced successfully with various filters described by nonlinear par-
abolic PDEs. In this article we focus on some prominent examples of PDEs used
in image processing and which can serve as a proof-of-concept:
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– Total-Variation (TV)-Diffusion (p=1), [3,10] and balanced-forward-backward
(BFB)-diffusion (p=2), [13],

∂tu = div
(

∇u

‖∇u‖p

)
, (1)

– Mean curvature motion (MCM), [2],

∂tu = ‖∇u‖ div
(

∇u

‖∇u‖

)
, (2)

– Self-Snakes involving a Perona-Malik type diffusivity g, [15],

∂tu = ‖∇u‖ div
(

g(‖∇u‖2)
∇u

‖∇u‖

)
, (3)

where we impose the initial condition u(x, 0) = f(x) for x ∈ Ω in all cases.
TV-type diffusion filters require no tuning of parameters but have shape-
preserving qualities [6] and a finite extinction time [4]. Even arbitrary exponents
have been considered, [1,17]. Extensions of curvature-based PDEs to matrix fields
have been proposed in [11] and more recently in [16], based on generalisations
of the so-called structure tensor for scalar images to matrix fields. The research
on these structure-tensor concepts has been initiated by [7,19]. The approaches
to matrix field regularisation suggested in [9] are based on differential geometric
considerations. Comprehensive survey articles on the analysis of matrix fields
using various techniques can be found in [20].

In this article we will proceed along a different path. We will develop a generic
framework for deriving matrix-valued counterparts for scalar PDEs. This does
not just mean that we derive systems of PDEs which can be written in matrix
form. Instead we will exploit the operator-algebraic properties of (symmetric)
matrices to establish truly matrix-valued PDEs. For this work we concentrate
on the matrix-valued analogs of the singular PDEs (1)–(3) as particularly in-
teresting equations. It is also worth mentioning that in contrast to [11] and [16]
our framework does not rely on a notion of structure tensor. Nevertheless, the
proposed concept ensures an appropriate and desirable coupling of channels. The
methodology to be developed will also enable us to transfer numerical schemes
from the scalar to the matrix valued setting.

The article is structured as follows: The subsequent Section 2 contains the
basic definitions necessary for our framework, such as functions of a matrix, par-
tial derivatives, and generalised gradient of a matrix field. In Section 3 we turn
first to the simple linear diffusion for matrix fields for the sake of later compari-
son. After introducing a symmetrised multiplication for symmetric matrices we
then formulate the matrix-valued counterparts of the singular equations men-
tioned above. By considering the already rather complicated one-dimensional
case, first properties of the matrix-valued diffusion processes are inferred. The
transition from scalar numerical solution schemes to matrix-valued algorithms
for the solutions of the new diffusion equations is discussed in Section 4. Exam-
ple applications on synthetic and real DT-MRI data are presented in Section 5,
followed by concluding remarks in the last Section 6.
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2 Matrix-Valued PDEs: A Generic Framework

This section contains the key definitions for the formulation of matrix-valued
PDEs. The underlying idea is that to a certain extent symmetric matrices can
be regarded as a generalisation of real numbers. In that spirit we would like to
generalise notions like functions of matrices, derivatives and gradients of such
functions to the matrix-valued setting as instigated in [8]. We juxtapose the cor-
responding basic definitions in Table 1, and comment on them in the subsequent
remarks. We start with clarifying notation. A matrix field is considered as a
mapping F : Ω ⊂ IRd −→ Mn(IR), from a d-dimensional image domain into
the set of n×n-matrices with real entries, F (x) = (fp,q(x))p,q=1,...,n . Important
for us is the subset of symmetric matrices Symn(IR). The set of positive (semi-)
definite matrices, denoted by Sym++

n (IR) (resp., Sym+
n (IR)), consists of all sym-

metric matrices A with 〈v, Av〉 := v�Av > 0 (resp., ≥ 0) for v ∈ IRn\{0} .
This set is of special interest since DT-MRI produces data with this property.
Note that at each point the matrix F (x) of a field of symmetric matrices can
be diagonalised yielding F (x) = V (x)�D(x)V (x), where x 
→ V (x) ∈ O(n) is a

Table 1. Extensions of elements of scalar valued calculus (middle) to the matrix-
valued setting (right)

Setting scalar valued matrix-valued

function h :
j

IR −→ IR
x �→ h(x) h :

j
Symn(IR) −→ Symn(IR)
U �→ V �diag(h(λ1), . . . , h(λn))V

partial ∂ωu, ∂ωU := (∂ωuij)ij ,
derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

higher ∂k
ωu, ∂

k
ωU :=

`
∂k

ωuij

´
ij

,
derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

Laplacian Δu :=
dP

i=1

∂2
xi

u ΔU :=
dP

i=1

∂
2
xi

U

∇u(x) := (∂x1 u(x), . . . , ∂xd u(x))�, ∇U(x) := (∂x1 U(x), . . . , ∂xd U(x))�,
gradient ∇u(x) ∈ IRd ∇U(x) ∈ (Symn(IR))d

div (a(x))� :=
dP

i=1

∂xiai(x), div (A(x))� :=
dP

i=1

∂xiAi(x),
divergence

a(x) := (a1(x), . . . , ad(x)) A(x) := (A1(x), . . . , Ad(x))

|w|p := p
p|w1|p + · · · + |wd|p, |W |p := p

p|W1|p + · · · + |Wd|p,
length |w|p ∈ [0, +∞[ |W |p ∈ Sym+

n (IR)

multiplication a · b A
1
2 BA

1
2
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matrix field of orthogonal matrices, while x 
→ D(x) is a matrix field of diagonal
matrices. In the sequel we will denote n × n - diagonal matrices with entries
λ1, . . . , λn ∈ IR from left to right simply by diag(λi). O(n) stands for the ma-
trix group of orthogonal n × n-matrices. We will also assume that the matrix
field U(x) to be diagonalisable with U = (ui,j)i,j = V �diag(λ1, . . . , λn)V , where
V ∈ O(n) and λ1, . . . , λn ∈ IR .

Remarks 1:

1. Functions of matrices. The definition of a function h on Symn(IR) is stan-
dard [12]. As an important example, |U | denotes the matrix-valued equiva-
lent of the absolute value of a real number, |U | = V �diag(|λ1|, . . . , |λn|)V ∈
Sym+

n (IR), not to be confused with the determinant det(U) of U .

2. Partial derivatives. The componentwise definition of the partial derivative
for matrix fields is a natural extension of the scalar case:

∂ωU(ω0) = lim
h→0

1
h

(
U(ω0 + h) − U(ω0)

)
=

(
lim
h→0

uij(ω0 + h) − uij(ω0)
h

)
i,j

= (∂ωuij(ω0))i,j ,

where ∂ω stands for a spatial or temporal derivative. By iteration, higher
order partial differential operators such as the Laplacian or other more so-
phisticated operators find their natural counterparts in the matrix-valued
framework.
It is worth mentioning that for the operators ∂ω a product rule holds:

∂ω(A(x) · B(x)) = (∂ωA(x)) · B(x)) + A(x) · (∂ωB(x)) .

Observe that positive definiteness in general is not preserved through deriva-
tion ∂ω.

3. Generalized gradient of a matrix field. The definition of a generalised
gradient is somewhat different from one that might be expected when view-
ing a matrix as a tensor (of second order). The rules of differential geometry
would tell us that derivatives are tensors of third order. Instead, we adopt
a more operator-algebraic point of view: The matrices are self-adjoint oper-
ators that can be added, multiplied with a scalar, and concatenated. Thus,
they form an algebra, and we aim at consequently replacing the field IR by
the algebra Symn(IR) in the scalar, that is, IR-based formulation of PDEs
used in image processing. Hence, the generalised gradient ∇U(x) at a voxel
x is regarded as an element of the module (Symn(IR))d over Symn(IR) in
close analogy to the scalar setting where ∇u(x) ∈ IRd.
In the sequel we will call a mapping from IRd into (Symn(IR))d a module
field rather than a vector field.

4. Generalised divergence of the module field. The generalization of the
divergence operator div acting on a vector field to an operator div acting
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on a module field A is straightforward, and is in accordance with the formal
relation ΔU = div ∇U = ∇.∇U known in its scalar form from standard
vector analysis.

5. Generalised Length in (Symn(IR))d. Considering the formal definition in
Table 1 the length of an element of a module field A is close at hand. It results
in a positive semidefinite matrix from Sym+

n (IR) the direct counterpart of a
nonnegative real number as the length of a vector in IRd.

6. Symmetrised Multiplication in Symn(IR). The scalarTV-diffusion equa-
tion (1) requires the multiplication of the components of a vector (namely ∇u)
with a scalar (namely 1

‖∇u‖ ). In the matrix-valued setting the components of
∇U , that is, ∂xiU , i = 1, . . . , d, and (the inverse of) its generalised length
|∇U |2 =: |∇U | are symmetric matrices. However, the product of two sym-
metric matrices A, B ∈ Symn(IR) is not symmetric unless the matrices com-
mute. Among the numerous options to define a symmetrised matrix product
we focus on one that is inspired from pre-conditioning of symmetric linear
equation systems [12]. We define

A • B := A
1
2 BA

1
2

as the symmetrised multiplication of symmetric matrices.

For the sake of future comparison we first consider the matrix-valued version of
the linear diffusion equation on IRd × [0, ∞[ in the next section.

3 Diffusion Equations for Matrix-Fields

3.1 Matrix-Valued Linear Diffusion

The linear diffusion equation ∂tu =
d∑

i=1
∂xi∂xiu =

d∑
i=1

∂xixiu = Δu on IRd×[0, ∞[

is directly extended to the matrix valued setting:

∂tU =
d∑

i=1

∂xi∂xiU =
d∑

i=1

∂xixiU = ΔU (4)

with initial condition U(x, 0) = F (x). The diffusion process described by this
equation acts on each of the components of the matrix independently. It is proven
in [11] that positive (semi-)definiteness of the initial matrix field F is indeed
bequeathed to U for all times.

3.2 Matrix-Valued Singular Diffusion Equations

In Section 2, Remark 1, (6) we set A • B := A
1
2 BA

1
2 for a symmetric multi-

plication of symmetric matrices. It is easily verified that this product is neither
associative, nor commutative, and distributive only in the second argument.
However, if A is non-singular, the so-called signature s = (s+, s−, s0) of B is
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preserved, where s+, s−, and s0, stand for the number of positive, negative, and
vanishing eigenvalues of B, respectively. This implies in particular that the posi-
tive definiteness of B is preserved. Furthermore, for commuting matrices A, B we
have A • B = A · B. Another even more prominent candidate for a symmetrised
multiplication would be the so-called Jordan product A •J B := 1

2 (AB + BA) ,
which is neither associative nor distributive, but commutative. The reason we
disregard it in this article lies in the fact that it does not preserve positive
(semi-)definiteness as the following simple example shows:

(
2 0
0 0

)
•J

(
1 1
1 1

)
=

1
2

((
2 2
0 0

)
+

(
2 0
2 0

))
=

(
2 1
1 0

)
but det

(
2 1
1 0

)
= −1 .

Remark 2: It should be mentioned that the logarithmic multiplication intro-
duced in [5] and given by A •L B := exp(log(A) + log(B)) is defined only for
positive definite matrices. However, the matrix-valued PDE-based filtering pro-
posed here requires the symmetric multiplication to be able to cope with at least
one factor matrix being indefinite. Furthermore, matrix fields that are not nec-
essarily positive semidefinite should also be within the reach of our PDE-based
methods. Hence the logarithmic multiplication is not suitable for our purpose.

With these definitions we are now in the position to state the matrix-valued
counterparts for the PDEs (1)-(3) mentioned above. For the sake of brevity we
concentrate on the most general one, the self-snakes:

∂tu = |∇U | • div
(g(|∇U |2)

|∇U |
• ∇U

)
(5)

=
√

|∇U | ·
[

d∑
i=1

∂xi

(√
g(|∇U |2)

|∇U |
· (∂xiU) ·

√
g(|∇U |2)

|∇U |

)]
·
√

|∇U | ,

where we used the notation

g(|∇U |2)
|∇U |

:= g(|∇U |2) · |∇U |−1
= |∇U |−1 · g(|∇U |2) = |∇U |−1 • g(|∇U |2) .

Specifying g = 1 we regain the matrix-valued PDE for mean curvature motion of
matrix fields, while neglecting the factor |∇U | and setting g(s2) = 1

|s| in equation
(5) produces the equation for BFB-diffusion, for instance.

3.3 Matrix-Valued Signals

In this section we investigate matrix-valued TV-related diffusion processes, mean
curvature motion and self-snakes in the case of one space dimension. We restrict
ourselves to the one-dimensional case (d = 1), U : IR −→ Symn(IR), since then
simplifications occur. Only one spatial derivative appears, and the expressions
containing the matrix ∂x commute. Hence, in those expressions the symmetric
multiplication “•“ collapses to ”·”, facilitating the analysis. The equation for the
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matrix-valued self-snakes in one space dimension simplifies to

∂tU = |∂xU | • ∂x

(
g((∂xU)2)

|∂xU |
· ∂xU

)
.

However, even in this simplified setting this type of data exhibits directional
(through eigenvectors) as well as shape information (through eigenvalues) which
allows for the appearance of new phenomena. The partial derivative ∂x of a
signal U of symmetric matrices results again in symmetric matrices, ∂xU(x) ∈
Symn(IR). Hence we have ∂xU(x) = Ṽ �(x)diag(λ̃i(x))Ṽ (x) with Ṽ (x) ∈ O(n)
for all x ∈ Ω. We observe that g((∂xU)2)

|∂xU| is also diagonalised by Ṽ ,

g((∂xU)2)
|∂xU |

= Ṽ �diag

(
g(λ̃i

2
)

|λ̃i|

)
Ṽ ,

and introducing the abbreviation h(s2) := g(s2)√
s2 it follows that h((∂xU)2)·∂xU =

Ṽ �diag
(
h(λ̃i

2
) · λ̃i

)
Ṽ . We introduce a flux function Φ by Φ(s) := s · h(s2)

which gives d Φ
d s (s) = Φ′(s) = 2s2h′(s2) + h(s2) at least for s �= 0. In order to

treat the singularity at s = 0 it is customary to regularise h in one way or the
other to make h differentiable in [0, +∞[. Keeping numerical issues in mind we
also adopt this point of view, rather than interpreting the derivatives in the
following calculations in the distributional sense. The product rule for matrix-
valued functions and incorporating Φ then yields, if we suppress the explicit
dependence of V and λi on x notationally, the following matrix-valued version
of the self-snakes equation

∂tU = |∂xU | •
(
∂xṼ diag(h(λ̃i

2
)·λ̃i)Ṽ � + Ṽ diag(h(λ̃i

2
)·λ̃i)∂xṼ � (6)

+ Ṽ diag(Φ′(λ̃i) · ∂xλ̃i]) Ṽ �
)

(7)

We infer that the matrix-valued data allow for a new phenomenon: unlike in
the scalar setting, a matrix carries directional information conveyed through
the eigenvectors as well as shape information mediated via eigenvalues. The
evolution process described in (6) and (7) displays a coupling between shape
and directional information by virtue of the simultaneous occurrence of terms
containing ∂xṼ (x) in (6) and ∂xλ̃(x) in (7). Clearly there is no equivalent for
this in the scalar setting.

4 Matrix-Valued Numerical Schemes

In the previous sections the guideline to infer matrix-valued PDEs from scalar
ones was, roughly speaking, analogy by making a transition from the real field
IR to the vector space Symn(IR) endowed with some ‘symmetric‘ product ”•”.



A Generic Approach to the Filtering of Matrix Fields with Singular PDEs 563

We follow this guideline also in the issue of numerical schemes for matrix-valued
PDEs.

For the sake of brevity we restrict ourselves to the TV-type diffusion, which
means h(s2) = 1√

s2 (or in its regularised form h(s2) = 1√
ε2+s2 with 0 ≤ ε � 1)

and two space dimensions (d = 2). The necessary extensions to self-snakes in
dimensions d ≥ 3 are immediate. A possible space-discrete scheme for the scalar
TV-diffusion can be cast into the form

du(i, j)
dt

=
1
τ1

(
h(i +

1
2
, j) · u(i + 1, j) − u(i, j)

τ1
− h(i − 1

2
, j) · u(i, j) − u(i − 1, j)

τ1

)

+
1
τ2

(
h(i, j +

1
2
) · u(i, j + 1) − u(i, j)

τ2
− h(i, j − 1

2
) · u(i, j) − u(i, j − 1)

τ2

)
,

where h(i, j) and u(i, j) are samples of the (regularised) diffusivity h and of u

at pixel (i, j) and, for example, h(i ± 1
2 , j) := h(i±1,j)+h(i,j)

2 . According to our
preparations in Section 2 its matrix-valued extension to solve the TV-diffusion
equation in the matrix setting reads

dU(i, j)
dt

=
1
h1

(
H(i +

1
2
, j) • U(i + 1, j) − U(i, j)

h1
− H(i − 1

2
, j) • U(i, j) − U(i − 1, j)

h1

)

+
1
h2

(
H(i, j +

1
2
) • U(i, j + 1) − U(i, j)

h2
− H(i, j − 1

2
) • U(i, j) − U(i, j − 1)

h2

)
.

The arithmetic mean H(i ± 1
2 , j) := H(i±1,j)+H(i,j)

2 ∈ Symn(IR) approximates
the diffusivity H(|∇U |2) between the pixels (i±1, j) and (i, j). However, for the
numerical treatment of MCM and self-snakes the usage of the properly defined
harmonic mean instead of the arithmetic mean is advised. In the scalar setting
this was already observed and put to work in [18].

5 Experiments

In our experiments we used a 3-D DT-MRI data set of a human head consisting
of a 128×128×38-field of positive definite matrices. The data are represented as
ellipsoids via the level sets of the quadratic form {x�A−2x = const. : x ∈ IR3}
associated with a matrix A ∈ Sym+(3). By using A−2 the length of the semi-axes
of the ellipsoid correspond directly with the three eigenvalues of the matrix. How-
ever, for a better judgement of the denoising qualities of the smoothing processes
we utilise also artificial data sets.

In Figure 1 below we compare the results of matrix-valued TV- and BFB-
diffusion. The noise is removed while the edge is preserved, in very good agree-
ment with the well-known denoising properties of their scalar predecessors.

Another set of artificial data, depicted in Figure 2, is used to demonstrate exem-
plarily the denoising capabilities of matrix-valued self-snakes, see Figure 3.Figure
4 juxtaposes matrix-valued linear diffusion, and smoothing with MCM and self-
snakes. The smoothing as well as the convexifying and shrinking of image ob-
jects to circular structures known as features of scalar mean curvature motion
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Fig. 1. (a) Top row, from left to right: Original matrix field. TV-diffusion on the
noisy image after t = 5, and t = 100. (b) Bottom row, from left to right: Original
polluted additively with a random matrix field R. The eigenvalues of R stem from a
Gaussian distribution with vanishing mean and standard deviation 100, its normalised
eigenvectors have uniform spatial distribution. Then BFB-diffusion on the noisy image
after t = 0.5, and t = 10.

Fig. 2. Left: Original matrix field. Right: Original polluted additively with a random
matrix field R as in Figure 1.

Fig. 3. From left to right: Filtering results for the polluted image of Figure 2 with
self-snakes (λ = 2000) after t = 5, t = 10, and t = 100
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Fig. 4. Smoothing of image (a) in Figure 2. (a) First column, top to bottom:
Linear Diffusion. Stopping times t = 10, and t = 100. (b) Second column, top to
bottom: Mean curvature motion. Stopping times t = 10, and t = 100. (c) Third
column, top to bottom: Self-snakes with λ = 2000. Stopping times t = 10, and
t = 100.

Fig. 5. (a) Top row, from left to right: Original: 2D slice of a 3D DT-MRI image
of a human brain. Smoothing with self-snakes (λ = 2000) after t = 5, and t = 50. (b)
Bottom row, from left to right: Enlarged section of the original. Smoothing with
TV-diffusion after t = 5, and t = 50.
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and self-snakes are clearly discernable in our matrix-valued setting. Finally, in
Figure 5 the smoothing and enhancing properties of matrix-valued self-snakes and
TV-diffusion are juxtaposed while acting on a 2-D slice of a real 3-D DT-MRI data
set. The matrix-valued extensions inherit the filtering capabilities of their scalar
counterparts.

It is worth mentioning that the results are in good agreement with the results
in [11] and [16]. However, the framework presented here is generic, hence more
general, and does not rely on any notion of a potentially parameter-steered
structure tensor.

6 Conclusion

In this article we have presented a novel and generic framework for the exten-
sion of singular PDEs to symmetric matrix fields in any spatial dimension. We
focused on the extension of scalar TV/BFB-diffusion, mean curvature motion,
and self-snakes as leading examples. The approach takes an operator-algebraic
point of view and ensures appropriate channel interaction without the use of
a structure tensor. Experiments on positive semidefinite DT-MRI and artificial
data illustrate that the matrix-valued methods inherit desirable characteristic
properties of their scalar valued predecessors, e.g. very good denoising capa-
bilities combined with feature preserving qualities, and the absence of tuning
parameters. In future work we will investigate how this framework can help to
extend other scalar PDEs and more sophisticated numerical solution concepts
in image processing to the matrix-valued setting.
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