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Summary. In this paper we demonstrate model order reduction of a nonlinear
academic model of a diode chain. Two reduction methods, which are suitable for
nonlinear differential algebraic equation systems are used, the trajectory piecewise
linear approach and the proper orthogonal decomposition with missing point esti
mation.

1 Introduction

The dynamics of electrical circuits at time t can be generally described by
the nonlinear, first order, differential-algebraic equation (DAE) system of the
form: :tq(x) + j(x) + Bu(t) = 0, (1)

where x E JRn represents the unknown vector of circuit variables in time t,
the vector-valued functions q,j : JR x r -+ JRn represent the contributions
of, respectively, reactive elements (such as capacitors and inductors) and of
nonreactive elements (such as resistors) and B E lRnxm is the distribution
matrix for the excitation vector u : lR -+ JRm. There are several established
methods, such as sparse-tableau, modified nodal analysis etc. which generate
the system (1) from the netlist description of electrical circuit. The dimension
n of (1) is of the order of the number of elements in the circuit, which means
that it can be extremely large, as today's VLSI circuits have hundreds of
millions of elements.
Mathematical model order reduction (MOR) aims to replace (1) by a system
of much smaller dimension, which can be solved by suitable DAE solvers
within acceptable time. At present, however, only linear MOR techniques
are well-enough developed and properly understood to be employed [1]. To
that end, we either linearise the system (1) or decouple it into nonlinear
and linear subcircuits (interconnect macromodeling or parasitic subcircuits
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[2]). The nonlinear MOR techniques are less developed and less understood
than the linear ones. In this paper we present the application of two most
promising nonlinear reduction methods on an academic diode chain model.
These are the trajectory piecewise linear approach (TPWL) [3] and the proper
orthogonal decomposition (POD) [4] supported by missing point estimation
(MPE) technique [5].

2 Trajectory Piecewise Linear Model Order Reduction

The idea behind the TPWL method is to linearise (1) several times along a
training trajectory (corresponding to some typical input). The local systems
are then used to create a global reduced subspace. The final TPWL model is
constructed as a weighted sum of all local linearised reduced systems.

2.1 Creating the locallinearised models

The disadvantage of standard linearisation methods is that they deliver good
results, only in the surrounding of the chosen linearisation tuple (LT)(x(ti), ti)'
To overcome this, in TPWL approach several linearised models are created.
This guarantees the quality of the results whenever the solution stays close to
one of the chosen LTs. The procedure for selection of LTs can be described
by the following steps:

1. Set an absolute accuracy factor £ > 0, set i = 1.
2. Linearise the system around the i-th LT (Xi, ti)' This implies:

G(X +Gix +Biu(t) = 0 (2)

with Gi = 88 q(t, x) I . t. andGi = 88 j(t,x)1 . t.' where Xi stays for X(ti)'
Z Xl'l X X"'l

Save Gi , Gi and Bi.
3. Reduce the linearised system to dimension r « n with an appropriate lin

ear MOR method, like "Poor Man's TBR" [6] or Krylov-subspace methods
[7]. This implies:

(3)

where G[ = V;TGiV, G~ = v?Gi'Vi, B[ = ViTB with Vi E ~nxr, z E ~r

and x ~ Viz. Save the local projection matrix Vi.
4. Integrate both, the reduced system (3) and the original system (1) choos

ing the same time-steps tk. When lIV;zrl~?t~~ft.)11 > £ chose (X(tk)' tk) as
i + I-th LT . Set i = i + 1. Go to step 2.

The steps 2 to 4 are repeated until the end of the given trajectory has been
reached. In this way,s local reduced subspaces with bases VI, ... ,Vs are created.
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2.2 Creating the global reduced subspace

All local reduced subspaces are merged into the global reduced subspace and
each local linearised system (2) is now projected onto this global subspace.
The procedure can be described by the following steps:

1. Define V = [VI, ... ,V.].
2. Calculate the SVD of V: V = U17WT with U = [Ul, ... , Un] E ~n ,17 E

~nxr. and W E ~r.xr•.

3. Define new global projection matrix Vg as [Ul, ... , u r ].

4. Project each locallinearised system (2) onto Vg •

2.3 Creating the TPWL model by weighting

All local reduced linearised reduced systems are combined in a weighted sum
to build the global TPWL model:

• •L wNg
T CNgz +L wNg

T GiVgZ +L Wi Vg
T Biu(t) = O. (4)

i=l i=l i=l

A weight Wi determines the influence of the i-th local system to the global
system. The weights can be chosen by making them distance depending, which
means that Wi is chosen large if the solution Z of (??) is close to the i-th LT,
else the weight should be small. For more details on how to chose weights, see
[8].

3 Proper Orthogonal Decomposition combined with
Missing Point Estimation

The idea behind POD is to directly project the original nonlinear system (1)
onto some subspace with smaller dimension. As this, however, does not lead
to the reduction of the computational time, MPE is used to speed up the
simulation.

3.1 "Classical" POD

The POD projection basis VPOD is an orthonormal basis, which is derived
from the collected "snapshots" at the time points ti:

x = [X(tl) ... x(t.)] (5)

The POD basis is found from the SVD of X: X U17WT with U =
[Ul, ... ,un] E ~n ,17 E ~nx. and W E ~., as VPOD = [Ul, ... ,Ur ] with
r << n. Finally the original system is replaced by the following Galerkin
projection
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3.2 Missing Point Estimation

In the projection schemes, usually the original numerical model is projected
onto the chosen subspace. In the case of linear systems, i. e. when q(x) = ex
and j(x) = Gx the projections VJODq(VPODZ) and VJODj(VPODZ) can be
computed "in advance" and will deliver the matrices of the reduced system
(as in (3)). For the nonlinear systems however, the projection requires the
complete evaluations of q and j and hence, the solution of (6) will not be
faster than the solution of (1). In order to speed it up, a so called missing
point estimation can be applied. Assume that:

(7)

where P E {O,l}gxn is a selection matrix with ppT = 19. Now in
troduce the restricted basis VMPE = PVPOD. Then VJODq(VPODZ) :::::
VJOD PT Pq(PTPVPODz) = V~PEPq(PTVMPEZ) and similar for j. Hence,
only 9 elements of q and x have to be evaluated, which is much cheaper than
evaluating q and j if 9 << n.

We use an iterative version of the greedy algorithm [5J in order to find a
selection matrix P with minimal dimension g, such that

(8)

is fullfiled.

4 Numerical results

We considered the academic diode chain model shown in Fig. 1, which is
described through the following equations:

c

Is=1e-14 A
VT=O.0256V
R=1e4
C=1e-12

c

v""

Fig. 1. Structure of the test circuit

Vl - Uin(109 t) = 0,
iE - g(Vl, V2) = 0,

g(Vl , V2) - g(V2, Vs) - CV2 - i V2 = 0,

g(VN-l, VN) - g(VN, VN+l) - CVN - iVN = 0,
g(VN, VN+l) - CVN+l - i VN+l = 0,

g(Va, Vb) =

{
~

(I.e VT - 1) if Va - Vb > 0.5
o otherwise

{

20 if t < 10
Uin(t) = 170 -15t if 10 < t ~ 11

5 ift>l1
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Fig. 2. Numerical solution of the full-scale nonlinear diode chain model (left) and
the eigenvalues of the correlation matrix ~X X T (right).

Fig. 2 (left) shows the numerical solution (nodal voltage in each node) of
the original model, computed by the Euler Backward method with fixed step
sizes of 0.1 ns. It further indicates (right) the redundancy of the model, as
most of the eigenvalues of the correlation matrix ~X X T can be neglected.
Figure 3 shows the relative errors over all nodes in the time interval [0,70 ns],
defined as E:r = II~i,:ji", for the reduced models of different orders constructed
by TPWL (left) and POD (right). For TPWL the relative error is most of the
time lower then the chosen error bound E: = 0.025. Furthermore, for higher
order reduced models, a smaller number of LTs has been used than for the
reduced models with lower order, as the local systems with higher orders are
more accurate. E.g. for a reduced model of order 100 we have used 42 LTs
and for smaller reduced models 60 LTs. The POD models are, as expected,
more accurate, but much slower to simulate than the TPWL models (see the
corresponding extraction and simulation times in Table 1). A significant speed
up has been achieved by combining the POD with MPE.

6 72 3 4

Time (10-8 5)

10-'

10'"

_ 10-"
W

10.8

10-10

7
10-120

.......
--,=10
--, = 15
-,=25
-,=50
-,=100

1O-10,:--,:-__~__~~---,

023 4 5 6
TIme (10-8 5)

10"

.10-4
W

Fig. 3. Relative errors over all nodes for the reduced models created by TPWL
(left) and by POD (right).
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Table 1. Comparison of extraction and simulation times in seconds.

Model IT IExtr. timelSim. timellModel IT 19 IExtr. timelSim. time

Original 3020 142 POD 10 302 142 168
TPWL 10 290 1.1 POD 25 302 142 182
TPWL 25 285 1.5 POD + MPE 10 32 146 74
TPWL 50 206 2.3 POD + MPE 25 55 151 123

5 Conclusion and outlook

The TPWL method seems to be a promising technique to reduce the simula
tion time for nonlinear DAE systems. It's main advantage is the application of
well-developed linear model reduction techniques. The POD method delivers
reduced models which are more accurate but also much more expensive to
compute. Hence, the missing point estimation is necessary to achieve a reduc
tion of simulation time at all. Both techniques offer a good starting point for
further research on MOR of non-linear dynamical systems.
Finally, we would like to thank Dr. B. Tasic for his help with the diode
chain model and to acknowledge the ED support through the COMSON RTN
project.
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