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Introduction 

The existence of average optimal strategies in Markovian decision processes 

has been investigated frequently. See, for instance, Blackwell [2J 

(finite state space), Ross [5J , Hordijk [3J (countable state space), 

Tijms [7J, Wijngaard [8J (arbitrary state space). Sufficient conditions 

for the existence of an avery optimal strategy consist in general of some 

recurrence conditions and some continuity- and compactness conditions. 

The conditions derived in [8J include for instance the existence of the 

expected time and costs until the first visit to some subset A of the 

state space, the continuity of this recurrencetime and -costs on the 

space of strategies and the compactness of this space. 

If the recurrence conditions are weak or strong depends on the structure 

of the problem. In inventory problems for instance the one-period costs 

are high if the inventorylevel is far from zero •. Tlierefore the good strategies 

have to bring back the inventorylevel near to zero. That means that 

in this sort of problems one may require rather strong recurrence conditions, 

without loss of generality. 

The main point of this paper is the investigation of this last statement. 

In section 3 two sets of conditions are given sufficient for the existence 

of an average optimal strategy for Markovian decision problems with a 

counteble state.space.In section 4 it is shown that these conditions 

are satisfied for inventory processes where one orders at least a certain quantity 

R if the inventory level is below a certain level m. 

In section 5 the problem is considered if the recurrence conditions 

stated in section 3 are satisfied for aIle "good" strategies in inventory 

problems. The one-period costs are assumed to be unbounded on all infinite 

intervals and the existence of at least one strategy a
O 

is required 

such that the avery costs g exist. A good strategy can be defined then 
~O 

as a strategy for which the average cqsts are smaller than Sa • 
o 

2. Preliminaries 

Let V be a countable set. A stationary Markovian decision problem (SMD) 

is defined as a set of pairs {(P , c)}, a € A, where P for a € A is 
a a a 

a Markov process on V and c 
a 

a nonnegative function on V (the costfunction). 

An SMD can be interpreted as a Markovian decision process where only 

stationary strategies are allowed, but the product property is not 

necesserIly satisfied in an SMD. 
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The sum L P (u,v)f(v), for f some function on V and B a subset of V, is 
v€.B a 

denoted by (P Bf)(u). If B = V we will write (P f)(u). 
a a 

The average costs of a, starting in u, are equal to 

1 n-J J/, 
lim - I (P c )(u) 
n-+cO n t-O a a 

if this limit exists, and are denoted by g (u). If P has only one ergodic a a 
set the function g is constant on V. 

a 
A strategy a

O 
E A is called averege optimal if g (u) S g (u) for u E V, a E: A 

a
O 

a 

The concept embedded Markov process h frequently used. 

Let A c V and A':= V \ A. If lim (pnA,l)(u) = O. for all u E V, the 
n~ a 

embedded Markov process of P £n A exists and the transition probability, 

Q"'A' is given by Q_ A (u,v) = L (pn IP Al ) (u), where I is the characteristic 
y ~ 0 aA a v v n-

function of {vL The 

to A, starting in u, 

total expected costs and time until the first visit 
GO 00 

are equal to I (pnA,c )(u) and L (pnA,I)(u). These 
a a 'C! ncO ncO 

sums are sometimes ~denoted by T AC and TAl. 
a a a 

For w a positive function on V the function space B~ is defined as 

space of all complex valued functions f such that Iw~~~lis bounded 

With the norm II fll := sup I f~U~ I this space is a Banach space. 
w w u 

u 

the 

in u. 

For w(u)-l, u E V this space is the space of bounded functions with the 

sup-norm. See L4J, for the use of this sort of function spaces in 

dynamic programming. 

3. Sufficient conditions for the existence of average optimal strategies 

Let {(P ,c )}, a E: A be an SMD on a countable state space V. A set of a a 
rather weak conditions, sufficient for the existence an average optimal 

strategy is the following. 
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There is a finite subset A of~V 

until the first visit to A, L 
n=O 

such that the exoected time and costs ... -\ 00 _ 

(pnA,I)(u) and r (pnA,c )(u), exist 
a n=O a a 

for all starting states u E V and are bounded in a for each u E A. 

1b There is a topology on A such that the transition probability QaA(u,v), 

the recurrence time (TaAI)(u) and the recurrence costs (TaACa)(u) are 

continuous in a for all u,v E A. 

Ie A is compact. 

Id QaA has only one ergodic set for all a £ A. 

The proof of the sufficiency of these conditions will not be given here 

(see [8]). It is rather straightforward and based on the fact that one can 

write the average costs as the quotient of the average recurrence costs 

and the average recurrence time, 

I ~ (u)(T AC )(u) 
UEA a a a 

ga = -------------------r tt (u)(T A1)(u) 
u€A a a 

where tt is the unique invariant probability of Q • 
a a 

The condition Id may be replaced by a communicatingness condition, see 

[IJ, [3J, [8]. The communicatingness of a Markovian decision problem 

implies that the set A is dominated by the subset Al of A with 'all a 

such that QaA has only one ergodic set. 

The conditions Ib, c are always satisfied if the number of possible 

actions in each state is finite. 

The diffic~lty with the conditions I is that they are not easy to check. 

Especially the continuity conditions Ib are hard to verify, since they 
n are expressed in infinite sums of Pa,Alf. We prefer continuity conditions 

directly on P ,c • In the following set of conditions this is realised. 
a a 

Ila There is a finite set A c V and a positive function w on V such 

that 1, ca c 8w ' II Call w is bounded on A, p aA' is a bounded linear 

operator in 8 , 
w 

n II p AlII is bounded on A and II p AlII ::; p < 1 for a w a w 

some integer nand p < I, uniform in a. 
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IIa' For each u E V, E > 0, infinite set E c V, there is a finite set 

E c V such that I(p E w)(u) - (P E w)(u)1 < E for all a E A 
ue: a a 

U€ 

lIb P (u,v), c (u) are continuous in a for all u,v E V 
- a a 

IIc See Ie 

IId See ld 

In the next lemma it is shown that the conditions II are stronger than the 

conditions I. 

Lemna The conditions IIa,a',b imply the conditions Ia,b. 

Proof The condition Ia follows directly from the condition IIa. 

From the last part of IIa it follows also that, to prove Ib, it is sufficient 

to show the continuity of (P~A'w)(u) for all u E A and for all n. 

Using lIb it is possible to prove for each e: > 0, n=0,1,2, ••• , the existence 

of finite intervals B1,B2, ••• ,B
n 

such that 

The rest of the proof is straightforward. 

The recurrence conditions IIa look rather strong, but if one considers 

problems with somewhat more structure it turns out that they are not too 

bad. In the next section it is shown that they are satisfied for a 

rather large class of inventory problems. 

4. Inventory problems 

The inventory problems considered in this section are one-point inventory 

problems with leadtime ° and with backlogging. The state of the system 

can be represented by the inventory-position. For convenience we assume 

the existence of an upperbound M on the inventory. The state space V is 

therefore the set of all integers on (--, MJ. 

o 

An action is a quantity to order and a stationary strategy is a nonnegative 

function «(.) on V where a(u) gives the quantity to order in state u. 

The boundedness of the inventory level from above, by M, implies 

u + a(u) $ M. 
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Let <p(.) be the probabilitydensity fuction of the demand per period, 

then P (u,v) = <p(u + a(u) - v). a 
Let r 1(x) be the costs of ordering a quantity x and r

2
(y) the costs of 

having an inventorylevel y (inventory- and stockoutcosts), then 

ca(u) - rl(a(u» + r 2(u + a(u». 

Now it will be shown that the conditions IIa are satisfied for these 

inventory problems if the quantity to order is "large enough" for small u. 

Theorem 2 Let r
1
,r

2 
€ Bw with w(u):=e 1ul , u € (-~,M]. 

co 

If there exist integers m < 0, R > 0 such that L 
x=O 

x e <!lex) 
R 

< e 

and if for all a € A, a(u) ~ R for u :s; mJ then the inventory problem satisfies 

the condition IIa with A:= [m+l,M] and w(u) = e 1ul • 

Proof Since e 1ul ~ 1 the function 1 is an element of B • w 

it follows that c € B and II c" bounded in a. a w a w 

Now we have to consider PaA,f for f € Bw' 
m 00 

(PaA,f)(u) = I f(v)<p( u+a(u)-v) = L f(u+a(u)-x)<p(x) 
x=u+a(u)-m v=-oo 

Hence, for u :s; m, 

(1) l_ul Y f (u+a(u)-x)<p (x) I :s; 
e x=u+a(u)-m 

m 
:s; II fll 

w 
Y ex-a(u)cp(x) :s; mllfllw' e-R.( Y eXcp(x» 

x=u+a(u)-m -00 x=O 

where mllfll _ sup ~ 
-00 w uE(-CO,m] w(u 

For m < u :s; M we get, 

(2) 

m 00 

II fll w • L 
-~ x=O 

m 
II fll w 

1 
0-

-u e 

x,...a(u) ( ) e cp x :s; 

00 ! e-u-a(u)+x cp(x) :s; 

x=u+l;t(u)-m 

From (1) and (2) it follows that PaA, is indeed a bounded linear operator in 
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B and that liP A,II is bounded in a. 
CAl a CAl 

-R Let r:- e 2 x e ~(x), then by (1) 

and by (2) 

x=o 

m 
n 

-'-----r-,---l- ::;; r II ill CAl for u ::;; m 
-co 

n R 
~----~~~ ::;; r .e • 

m 
II fll form < u ::;; M 

CAl 

These two relations imply the existence of an integer n and a p < 1 
n such that II P aA ,II.~ ::;; p < 1 for all a € A, which completes the proof of 

condi tion IIa. o 

Sinee the set of possible actions in each state is finite, the condi.tions 

IIb,c are always satisfied and the condition Ual is satisfied as soon as 

IIa is satisfied. The condition lId is satisfied for instance if ~(x) > 0 

for all x = 0,1,2, ••• 

5. Exclusion of bad strategies 

In inventory problems the one-period costs are usually assumed to be 

high for low inventory levels. That gives the idea that the recurrence 

conditions in I, II and theorem 2 are not so strong. Strategies under 

which the inventory level stays too low can not be good ones. 

This will be formalized in this section. 

First we state a new set of conditions. 

IlIa There is a positive function h on V (=(~,MJ) such that 

i c (u) ~ h(u) for all u € V 
a 

ii h has a positive lower bound but is unbounded from above 

on each infinite set. 

IIIb There is a strategy aa with average costs 'a 
o 

IIIe i ~(x) > a for all x = 0,1,2, ••• 

ii there is an integer N such that ~(x) is decreasing in x for 

x > N. 
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. The conditions III imply that under strategies with average costs less 

than g there has to be a certain recurrency to finite sets. 
a O 

Theorem 3 Let the conditions III be sacisfied and define At
:- {a IE Ala $ a }, 

a oJ 
then the condition IIa are satisfied for the inventory problem with A' 

as set of strategies. 

Proof Choose the real number b such that h(u» 2g for all u € (-<lO,b-I]. aO 

Let B:m(-oo,b-l] and A:m[b,M]. Then for all a € A', u IE v, lim (P:BI)(u) < t~ 

Let t B(u):m lim (pnBl)(u). 
a 'u 

n~ 

Since R.aB(u) ... (PuBtaB)(u) = lim (P:BR,aB)(u) this implies that taB(u) m 0 
~ 

for all u IE V,(the inventorylevel returns to A almost surely). 

By condition IIIc i the embedded Markov process QaA has a unique invariant 

probability ('IT ). 
a 

Now the following modification of the process P is considered: 
'u 

As soon as the process is N periods outside of A the transitionprobability 

QaA is applied instead of the transitionprobability Pa' That means that 

the state of the system jumps back to A without changing the embedded 

Markov process on A. The one-period costs are also changed, outside of A 

the costs are assumed to be equal to 2g and on A equal to zero. 
. a O 

The average costs of the modified process are equal to 

( 1 ) 

2g",.L 'IT (u)tN(u) 
N ~O u€A a aNN 

g :- -...;;....;.;.....;;..;;.....-~-- where t (u):- L (pn 1) (u) 
a L 'IT (u) (l+tN(u»' a n=i aB 

UE:A a a 

then also g > g , hence 
a a O 

I 'IT (u) tN(u) S 
a a 

1 for all a IE A', N ml,2,3, ••• , and 
ulEA 

00 

(TaAl)(u) = 1 + L (P~B l)(u) S 
n=l 

+ 'IT 
1 
(u) f or a IE A', u IE A. 

a 
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To get an upperbound for the recurrence costs we consider the same modified 

process, but with the costs changed in another way. The one-period costs, 

cK(u) , are assumed to be equal to C (u) if c (u) S K and equal to K if a a a 

c (u) > K (for some K > 0). The average costs are then equal to 
a 

I 'IT (u)cNK(u) 
NK u€A a a 

g : = .......;.~-----::N~-' 
a l 'IT (u)(I+t (u» 

NK where c (u):= 
a 

UEA a a 

then also g > g 
a 0.0 , hence. 

N K I (pnBc )( u) • 
O a a n= 

2g for all a E A', K > 0, N=I,2,3, ••• , and 
aO 

2g 
0.

0 
(2) (T AC )(u) ~ () a a 'IT u 

a 

, 
for a E A , U E A 

Using the conditions II Ie it is straightforward now to complete the proof. 0 

Notice that in the derivation of the relations (I) and (2) of the proof 

only the conditions III a,b are used and the inventory structure is not 

essential in these conditions. 

In the rest of this section the conditions III a,b,c are assumed to be 

satisfied. 

The set A is chosen as in the proof of theorem 3. The conditions Ia are 

satisfied for this set A with A' as set of strategies> Now an extra con­

dition (IIIb') is considered which implies that the stronger recurrence 

conditions IIa are also satisfied. 

There is an L > 0 suc~ that (T AC )(u) < L.h(u) for all u E V. 
aO 0.0 

This condition implies that the recurrence costs (to A) are of the 

same shape as the one-period costs. This condition is only satisfied in 

general if it is possible to reach A in a finite number of steps, independent 

of the starting state. It is related to the Doeblin condition. 

Before continuing with this condition it has to be remarked that the 

conditions Ia and Id imply the existence and uniqueness of the relative 

values of a, v (u), and that 
a 
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v (u) = c (u) - g + (P v )(u) = T A(c - g )(u) + (Q AV )(u). 
a a a ~ a a a a a a 

Furthermore, if ~aA(e - g )(u) + (Q AV )(u) ~ v for all u E V a a O a a O a O 
then g ::;; g (a sort of policy improvement). This is easily seen by 

a a
O 

substituting the inequality v 
ao 

in its righthand 

side, 

hence 

n-) 
o ~ lim.!.. l QR-A(T_Ae -g • T AI) = 

n~ n 1=0 a ~ a a O a 
I ~ (u){(T_~c )(u)-g .(T_Al)(u)} 

UEA a ~ a ao ~ 

and 

L ~ (u)(T AC )(u) 
UEA a a a 

,ga ... -I-'1\'--( u-)-CT-
a
-
A
-}-) -( u-)-::;; gao 

UEA a 

T.he conditions Ia and Id are'satisfied (by theorem 3 and condition lIIc i) 

and this policy improvement property will be used to construct a set of 

strategie~, A* ~ smaller than A '~ which also idom~nates A. 

Define A*:={ a E A' T A(c - g ) + Q_.A V ::;; T A(c - g ) + Q AV } a a a ~ a a O a O a a o a 

Lemma 4 * * * Ai' dominates A I, for each a I E A' there is an a E A such that 

g * ::;; g ,-a a 

Proof If T 'A(e - g ) (u) + (Q AV )(u) < T_A (c ,- g )(u) + (Q AV ) (u) for 
"aO a O a a O a ~ a a a a 

* some U E V it is possible to construct a strategy a such that 

for'" a11": u~ ~ V(a result of negative dy~amicc' p'rb~i_ing, see Strauch [6J). 

The pol~cy, improvement property then 1·m 1·' ' " "<' ;,' 0 p 1es.g *"_ g • 
a a 
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Now it will be shown that the conditions IIa are satisfied for the problem 

with A* as set of strategies if the condition IIIb' is also satisfied. 

Theorem 5 Let the condition IIIb' be satisfied, then the conditions IIa 

are satisfied for the problem with A* as set of strategies and w: = h. 

Proof From condition IIlc i it follows that Iv (u)1 is bounded on A' 
a 

for all u € A. Let K > 0 be such that Iv (u)1 < K for all u € A, a E Al • 
a 

Since c (u) > h(u) > 2g ~ 2g for u E B, a € A' we get 
a a

O 
a 

!(T AC )(u)-K ~ T A(c -g )(u)+(QaAv )(u) S a a a a a a 

* for u E B, a € A • 

S Loh(u)+K 

Together with the boundedness in a of (T AC )(u)for all u E A, this implies 
a a 

the existence of a y > 0 such that 

* (TaAca)(u) s y'h(u) for all a € A , U E V 

Hence (since c 
a 

~ h ~ (T c).!..) 
aA a y 

Now it is easy to prove that IIa is satisfied for w:= h. 

1 1 
PaBh S PaB(TaAca ) S (1 - y)TaAca S (I - y)yh, 

hence II P :xBU h is bounded on A*. 
1 :rtf; 

Choose f; > 0 such that ey < 1 and let n be such that ( 1 - -) < £ 
E Y 

* then for all u E V, a E A 

n 
Hence P E 

aB 
of a. 

is a contraction in Bh and the contractionfactor is independent 

o 
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We have proved now that the condition~ IIIa,b,b',c imply condition IIa. 

But it is possible to proof that the conditions III imply all conditions II 

and hence the existence of an optimal strategy. 

Corollary 6 The conditions IIIa,b,b' ,c imply the conditions IIa,a I ,b,c,d 

for the problem with A* as set of strategies. 

Proof Let the conditions IIIa,b,b',c be satisfied. Then the condition IIa 

is satisfied by theorem 5. Together with the finiteness of the numbers of 

possible actions in each state, this implies that the condion IIa' is 

also satisfied. Condition lId is satisfied by condition IIIc i. The 

finiteness of the set of possible actions implies the continuity of 

P (u,v) and c (u) on A and the compactness of A.Since A* c A condition lIb 
a a 

is satisfied. The only point to prove yet is the compactness of A* or, 

since A is compact, the closedness of A*. 
* . Let 0. 1' 0. 2, 0. 3 ••• E A converge to some a Eo' A. 

From theorem 5 we have the existence of an integer N and a p < 1 such that 

pN B h S ph for all i=I,2, •••• Using methods as in the proof of lemma"l 
o.. 

J. 

it is possible to show that pN Bh S ph. Together with the continuity of 
a O 

p (u,v) and c (u) in a this implies that 0.
0 

is also an element of A*. 0 
a a 



-12-

REFERENCES 

[IJ Bather, J. (1973): Optnnal decision procedures for finite Markov 

chains, part II: communicating systems. Adv. in Appl. Prob.1, 

521-540 

[2] Blackwell, D. (1962): Discrete dynamic programming, Ann.Math. 

Statist, 33, 719-726 

[3J Hordijk, A. (1974): Dynamic programming and Markov potential theory. 

Math. Centre Tracts, no. 51, Amsterdam 

[4J van Nunen, J.A.E.E. and Wessels J. (1975): A note on dynamic 

programming with unbounded rewards, Eindhoven University 

of Technology, Dept. of Math. (Memorandum COSOR 75-13) 

[5J Ross, S.M. (1968): Nondiscounted denumerable Markovian decision 

models. Ann. Math. Statist. 39, 412-423 

[6J Strauch, R.E. (1966): Negative dynamic programming. Ann.Math.Statist. 

~, 871-889 

[7J Tyms, H.C. (1975): On dynamic programming with arbitrary state space, 

compact action space and the average return as criterion. 

Report BW 55/75, Math. Centre, Amsterdam 

[8J Wijngaard, J: Stationary Markovian decision problems and Perturbation theory 

of linear operators. Math. of Opere Res. (to appear). 


