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Introduction

The existence of average optimal strategies in Markovian decision processes
has been investigated frequently. See, for instance, Blackwell [2]

(finite state space), Ross [5] , Hordijk [3] (countable state space),

Tijms (7], Wijngaard [8] (arbitrary state space). Sufficient conditions

for the existence of an avery optimal strategy consist in general of some
recurrence conditions and some continuity- and compactness conditionms.

The conditions derived in [8] include for instance the existence of the
expected time and costs until the first visit to some subset A of the

state space, the continuity of this recurrencetime and -costs on the

space of strategies and the compactness of this space,.

If the recurrence conditions are weak or strong depends on the structure

of the problem. In inventory problems for instance the one-period costs

are high if the inventorylevel is far from zero. Therefore the good strategies
have to bring back the inventorylevel near to zero. That means that

in this sort of problems one may require rather strong recurrence conditions,
without loss of generality.

The main point of this paper is the investigation of this last statement.

In section 3 two sets of conditions are given sufficient for the existence
of an average optimal strategy for Markovian decision problems with a
counteble state. space.In section 4 it is shown that these conditions

are satisfied for inventory processes where one orders at least a certain quantity
R if the inventorylevel is below a certain level m,

In section 5 the problem is considered if the recurrence conditions

stated in section 3 are satisfied for alle "good" strategies in inventory
problems. The one-period costs are assumed to be unbounded on all infinite

intervals and the existence of at least one strategy &, is required

0
such that the avery costs g, exist. A good strategy can be defined then
-0
as a strategy for which the average costs are smaller than g, °
: -0
Preliminaries

Let V be a countable set. A stationary Markovian decision problem (SMD)

is defined as a set of pairs {(Pa’ Ca)}’ a ¢ A, where Pa for a € A 1is

a Markov process on V and Cy @ nonnegative function on V (the costfunction).
An SMD can be interpreted as a Markovian decision process where only
stationdry strategies are allowed, but the product property is not

necesserily satisfied in an SMD.



The sum E Pu(u,v)f(v), for f some function on V and B a subset of V, isg
veB

denoted by (Pan)(u). If B =V we will write (Pcf)(u).
The average costs of a, starting in‘u, are equal to

L e
lim— } (Ple )(u)
e D=0 % ¢
if this limit exists, and are denoted by ga(u). If P, has only one ergodic

set the function g, is constant on V,

A strategy a, € A is called averege optimal if g, (u) < ga(u) forueV, a e A
0 ;

The concept embedded Markov process is frequently used,

Let A ¢V and A':= V \ A, If lim (PSA,I)(u) = 0. for all u ¢ V, the
e

embedded Markov process of P gn A exists and the transition probability,

. . n . N . .
QaA’ is given by QaA(u,v) ngo(PaA'PaAlV)(u)’ where lv is the characteristic

function of {v}. The total expected costs and time until the first visit
to A, starting in u, are equal to E (e" ¢ Y(u) and Z (Pn (1) (u). These
2=0 oA’ Ta n=0 ol

sums are sometimes . denoted by Ta and Ta

A%q Al'

For w a positive function on V the function space B% is defined as the

space of all complex valued functions f such that l;%%%lis bounded in u.

With the norm Hfuw:= sup ig%%%l this space is a Banach space.
u

For w(u)=1, u ¢ V this space is the space of bounded functions with the
sup-norm. See [ 4], for the use of this sort of function spaces in

dynamic programming.

Sufficient conditions for the existence of average‘optimal gtrategies

Let {(Pa’ca)}’ o € A be an SMD on a countable state space V. A set of
rather weak conditions, sufficient for the existence an average optimal

strategy is the following.



-

Ia There is a finite subset A of V such that the exgected time and costs

until the first visit to A, 2 (PnA,l)(u) and Z (PnA,c Y(u), exist
n=0 ¢ n=0 % @

for all starting states u € V and are bounded in o for each u ¢ A,
Ib There is a topology on A such that the transition probability QaA(u’v)’

the recurrence time (TaAl)(u) and the recurrence costs <Ta ca)(u) are

A
continuous in o for all u,v ¢ A.
Ic A is compact.

———

Id QaA has only one ergodic set for all a ¢ A,

The proof of the sufficiency of these conditions will not be given here
(see [8]). It is rather straightforward and based on the fact that one can
write the average costs as the quotient of the average recurrence costs

and the average recurrence time,

] uzA T, (W(T_,e ) (u)

uEA m (T, 1) (u)

where L is the unique invariant probability of Qa'
The condition Id may be replaced by a communicatingness condition, see

(1], [3], [8]. The communicatingness of a Markovian decision problem
implies that the set A is dominated by the subset A} of A with all o
such that QaA has only one ergodic set.

The conditions Ib, ¢ are always satisfied if the number of possible

actions in each state is finite.

The difficulty with the conditions I is that they are not easy to check.

Especially the continuity conditions Ib are hard to verify, since they
n

are expressed in infinite sums of PaA

£. We prefer continuity conditions
directly on Pa’ca' In the following set of conditions this is realised.

Ila There is a finite set A ¢ V and a positive function w on V such

that 1, c, © Bw s | is bounded on A, P is a bounded linear

lcaﬂw "

operator in Bm , |IP s p <1 for

. n
aA'”w is bounded on A and "PaA

[
Tw

some integer n and p < 1, uniform in a.
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I1la' For each u e V, ¢ > 0, infinite set E ¢ V, there is a finite set

Eug c V such that }(PaE w)(u) - (PaE w)(u)| < ¢ for all a ¢ A

ue

IIb Pu(u,v), ca(u) are continuous in o for all u,v ¢ V
II¢c See Ic

IId See 1d

In the next lemma it is shown that the conditions II are stronger than the
conditions I.

Lemma 1 The conditions Ila,a',b imply the conditions Ia,b.

Proof The condition Ia follows directly from the condition Ila.
From the last part of Ila it follows also that, to prove Ib, it is sufficient

to show the continuityvof <P2A'w)(“) for all u ¢ A and for all n.

Using IIb it is possible to prove for each € > 0, n=0,1,2,..., the existence

of finite intervals B, ,B,,...,B such that
1772 n

| @) (w) = (B, P

| GBZ"°Eaan)(u)l < e for all & ¢ A, u € A

The rest of the proof is straightforward. 0
The recurrence conditions IIa look rather strong, but if one considers
problems with somewhat more structure it turns out that they are mot too

bad. In the next section it is shown that they are satisfied for a

rather large class of inventory problems.

Inventory problems

The inventory problems considered in this section are one-point inventory
problems with leadtime 0 and with backlogging. The state of the system
can be represented by the inventory-position, For convenience we assume

the existence of an upperbound M on the inventory. The state space V is
therefore the set of all integers on (-=, MI].

An action is a quantity to order and a stationary strategy is a nonnegative
function a(.) on V where a(u) gives the quantity to order in state u.

The boundedness of the inventorylevel from above, by M, implies

u+ alu) < M.,
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Let ¢(.) be the probabilitydensity fuction of the demand per period,
then Pa(u,v) = g(u + alu) - v).

Let rl(x) be the costs of ordering a quantity x and rz(y) the costs of
having an inventorylevel y (inventory- and stockoutcosts), then

ca(u) = rl(a(u)) + r2(u + a(u)),

Now it will be shown that the conditions IIa are gatisfied for these

inventory problems if the quantity to order is 'large enough" for small u.

Theorem 2 Let L 5T, € Bw with w(u):=elul, u e (=o,M].

o0
. . R
If there exist integers m < 0, R > 0 such that Z exw(x) < e
x=0
and if for all a ¢ A, a(u) 2 R for u < m, then the inventory problem satisfies
the condition IIa with A:= [m+l,M] and w(u) = e vl

|u]

Proof Since e > 1 the function ! is an element of Bw.

From rl(u(u)) < Hrlﬂwea<u) < HrlnweM_u

[uta(u) |

M|yl
and rz(u+a(u)) < Hrzﬂwe < Hrzuwe e

it follows that ¢ ¢ B and llc |l bounded in «a.
a w o w

Now we have to consider PaA'f for £ ¢ Bw.
«Q

m
@)W = ] £(W)e( uta(u)-v) = 1 £ (uta (u)-x) 9(x)
v=—o x=u+a{u)~m

Hence, for u < m,

¢ ,£){uw ® ‘
(1) l A lul l= l—u ~ z f(u*‘q(U)-x)fP(x) <
e e 'x=uta(u)-m
m L m [
< el - W) < el e ] o))
—» Y x=uta(u)-m —~ Y x=0
m
where WEll = sup lE%E%L
co @ ye(me,m] ©C8

Form < u £ M wve get,

P £ ®
(2) l FaprD (W) l < mnfu A ; e U lWHx Ly <
e‘ul —~ Y gTY x=u+g (u)~m
m et m =
T S A R IO E R 10
e x=0 —e x=0

From (1) and (2) it follows that PaA‘ is indeed a bounded linear operator in



B and that [P _,,| is bounded in a.
w aA" w

o

Let r:= e-R. Z e* 9(x), themn by (1)
x=0
n
(P“A,f)(u) m
<sr lfl forus<m
4] Vel for v
and by (2)
n
Po £)(u)
§(GA' n R m
sr.e ., Ifll form<u<M
Tu He,

These two relatioms imply the existence of an integer n and a p < 1

such that UP < p <1 for all a € A, which completes the proof of

m o
aA"
condition 1la. 0
Since the set of pogsible actions in each state is finite, the conditions
Ilb,c are always satisfied and the condition IIa' is satisfied as sovon as

IIa is satisfied. The condition IId is satisfied for instance if ¢(x) > 0
for all x = 0,1,2,...

Exclusion of bad strategies

In inventory problems the one-period costs are usually assumed to be
high for low inventory levels, That gives the idea that the recurrence
conditions in I, II and theorem 2 are not so strong. Strategies under
which the inventorylevel stays too low can not be good‘ones.

This will be formalized in this section.

First we state a new set of conditions.

IIIa There is a positive function h on V (=(-~,M]) such that
i ca(u) z h(u) for all u e V

i
ii h has a positive lower bound but is unbounded from above

on each infinite set,

II1Ib There is a strategy o, with average costs g,

Q

11Ic i ¢(x) > 0 for all x = 0,1,2,...

ii there is an integer N such that ¢(x) is decreasing in x for

x > N.



. The conditions III imply that under strategies with average costs less

than Sa there has to be a certain recurrency to finite sets.
0

Theorem 3 Let the conditions III be sacisfied and define A':= {a ¢ AIBQ S8, },
. e . . )
then the condition IIa are satisfied for the inventory problem with A'

as set of strategies.

Proof Choose the real number b such that h(u)> 2ga for all u € (-»,b-1].
0

Let Bi=(~»,b-1] and A:=[b,M]. Then for all a ¢ A', u e V, lim (P:Bl)(u) < 4.
nre

o= 3 n
Let zaB(u). lim (PQBI)(u).

oo

» = = R n » - N =
Since QGB(u) (PaBzaB)(u) iiz (3aB£aB)(u) this implies that RQB(u) 0

for all u € V,(the inventorylevel returns to A almost surely).
By condition IIIc i the embedded Markov process Q,, has a unique invariant
probability (na).

Now the following modification of the process Fa is considered:

As soon as the process is N periods outside of A the transitionprobability
QaA is applied ins;ead of the transitionprobability Pa' That means that
the state of the system jumps back to A without changing the embedded
Markov process on A, The one-period costs are also changed, outside of A

the costs are assumed to be equal to 2g0£ and on A equal to zero.
‘ 0

The average costs of the modified process are equal to

N
N Zg“o'uzA o (M5 (W) N ¥ oon
g 1= » where t_(u):= Y (Pg V(W

o N L
uzA ﬂa(u) (l+ta(u)) n=1

1If gi > - then also ga > ga , hence
» 4] 0

z wa(u) tﬁ(u) < 1 for all a € A', N =1,2,3,..., and
ucl

(1) (T (W) =1 + nzlczf;B D) €1+ == fora e A', ue A

a



B

To get an upperbound for the recurrence costs we consider the same modified’
process, but with the costs changed in another way. The one-period costs,

cg(u), are assumed to be equal to ca(u) if ca(u) < K and equal to K if

ca(u) > K (for some K > 0). The average costs are then equal to

)3 T (u) CSK(u)

N
NK A NK K
8, = e N , Where <, (u):= Z (PZBCG)(u);
3w (u)(1+t (u)) n=0
a o
ueh
If gNK > g then also g > g hence .
o o a Gy

E 7 (u) cNK(u) < 2g for all o ¢ A', K > 0, N=[,2,3,..., and
o a a
ueA 0
zga 0 '
(2) (TaAca)(u) £ E;TET foro e A, ueA

USing‘the conditions IIIc it is straightforward now to complete the proof. [

Notice that in the derivation of the relations (1) and (2) of the proof -
only the conditions III a,b are used and the inventory structure is not

essential in these conditions.

In the rest of this section the conditions III a,b,c are assumed to be
satisfied.

The set A is chosen as in the proof of theorem 3. The conditions la are
satisfied for this set A with A' as set of strategies. Now an extra con-
dition (IIIb') is considered which implies that the stronger recurrence
conditions Ila are also satisfied.

I1Ib' There is an L > O such that (Ta 4%, Y(u) < L.h(u) for all u e V,

0" "0

This condition implies that the recurrence costs (to A) are of the
same shape as the one-period costs. This condition is only satisfied in
general if it is possible to reach A in a finite number of steps, independent

of the starting state. It is related to the Doeblin condition.

Before continuing with this condition it has to be remarked that the
conditions Ia and Id imply the existence and uniqueness of the relative

values of «, va(u), and that



va(u) = ca(u) ol (Pava)(u) = TaA(c - 8 Y(u) + (Q NS ) (u).

Fur thermore, if IGA(ca - gao)(u) + (QaAvuO)(u) < vao for all_u eV

then g, < gy (a sort of policy improvement), This is easily seen by
0

substituting the inequality vao 2 TGA(CG - gao) + QaAvuO in its righthand

side,
n~1
vao = TaA(Ca - g“0> + Qquao Z oveews 2 Z QaA aA( - g 0) + Q vy

hence

e B g=0 0 ueA

0= 11m 2 QaA( 0% & aAl) = 2 LS (u){(T )(u)-—gaé(l‘GA

and

Lo, (@(T e ) (w)

- ued ¢

8 =g
R MO R PICY %o
ad :
ued *
The conditions Ia and Id are satisfied (by theorem 3 and condition IIIc i)
and this policy improvement property will be used to construct a set of
‘strategieg;A*, smaller than A', which also dominates A.
I 1 i *'= ’ 4 - v i -
Define A :={ a € A' | TaA(Ca 8,0 t QY < TQOA(CQO g, * anAva}
Lemma 4 VAf dominates A', for each a' ¢ A' there is an o ¢ A® such that
ga* s gu,y:?
Proof 1If Tm{r)A(cm0 - g )y + (Q v, (w < T (c g + (Q v () £

some u € V it is possiblg~to construct a strategy «* such that

T *A(c * g )(u)+(Q * )(u)

S‘M”f S IR )

in AT, e, ga”“)*(%A"q’(“'TaOA(%O“ga““) + (anva)(u)}
for»aiT‘u 3 V(a result of negat1Ve dynamxcxﬁrogrammlng, see Strauch [6l1).
The polmcy ;mprovement property then 1mp11es g * g .'7 a 0

s

%0

D(u)}

or
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Now it will be shown that the conditions IIa are satisfied for the problem

. * . . - . . e
with A" as set of strategies if the condition IIIb' is also satisfied.

Theorem 5 Let the condition IIIb' be satisfied, then the conditioms Ila

PR . * .
are satisfied for the problem with A as set of strategies and w: = h.

Proof From condition IIIc i it follows that Iva(u)| is bounded on A'
for all u € A. Let K > 0 be such that }va(u)l < K for all ue A, a € A",

Since ¢ (u) > h(u) > 2g =2 2g for ue B, a ¢ A' we get
a g o

%(TaAca)(U)'-K < TGA(CG*SG)(u)'*(QaAva)(u) < TGOA(cao-ga)(uﬂ(anAva) < Leh(u)+K
for ue B, a ¢ A",

Together with the boundedness in o of (TaAca)(u)for all u ¢ A, this implies

the existence of a y » 0 such that

(TaAca)(u) < yeh(u) for all a e A", ue V

. 1
- —
Hence (since c,z2hz (TaAca) Y)

P (T

1
B ) =T ¢ c, < (1 ?) TQAc

c
A o oA o o

and P is a contraction in B with w:=T ¢ .
oB W oA a

Now it is easy to prove that Ila is satisfied for w:= h.

TaAcu € Bh implies that ¢, € Bh.

., <v, o ¢ A

It is shown already that ”Tcha h

1 1
Pgh s PaB(TaAca) < (1 ;JTQACQ < (1 —’?)yh,

hence [P _ll. is bounded on A*.
2B h

Choose ¢ > 0 such that ey < | and let n_ be such that (1 ~ %& €<

then for all ue V, o ¢ A*

n Il n
(B () = Puy(T e 2(w) < (1= 2) S(T e )(w) s (T e )(w) < eyehiw)

n
£ . . . . . ‘
Hence PaB 1s a contraction in Bh and the contractionfactor is independent
of a. 0
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We have proved now that the conditions IIla,b,b',c imply condition IIa.
But it is possible to proof that the conditions III imply all conditions II

and hence the existence of an optimal strategy.

Corollary 6 The conditions IIIa,b,b',c imply the conditions Ila,a',b,c,d

for the problem with A* as set of strategies.

Proof Let the conditioms I1la,b,b',c be satisfied. Then the condition Ila
is satisfied by theorem 5. Together with the finiteness of the numbers of
possible actions in each state, this implies that the condion IIa' is

also satisfied. Condition IId is satisfied by condition ITIc i. The
finiteness of the set of possible actions implies the continuity of

Pa(u,v) and ca(u) on A and the compactness of A,Since A* ¢ A condition IIb
is satisfied. The only point to prove yet is the compactness of A* or,
since A is compact, the closedness of A",

Let Gps Gpy Qg eee € A* convefge to some a e A, .

From theorem 5 we have the existence of an integer N and a p < 1 such that

PN h < ph for all i=1,2,... . Using methods as in the proof of lemma !
o.B .

it is possible to show that P§ Bh < ph. Together with the continuity of
0 .

. . . . . *
Pa(u,v) and ca(u) in o this implies that o. is also an element of A".

0
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