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New approach to orientationally disordered molecular crystals

A.P.J. Jansen
Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen,
The Netherlands

(Received 24 July 1987; accepted 23 September 1987)

A new theory is presented for the description of orientationally disordered molecular crystals.
The theory is based on the thermodynamic variation principle with a generalized Ising
Hamiltonian. The optimized single-molecule states are calculated, and the occupation of these
states and the correlation in the occupation for pairs of molecules is determined via the cluster
variation method. The theory is applied to the £ phase of solid nitrogen. A delocalized
orientational probability distribution is found that is formed by six localized states which are

equally occupied. Correlation functions for the orientations of nearest neighbors are given.

I. INTRODUCTION

Interest in orientationally disordered or “plastic” mo-
lecular crystals has been growing over the last years. This
may be partially due to the fact that it is quite common for a
molecular substance to have an orientationally disordered
solid phase. Molecular crystals often show an order—disor-
der phase transition. The disordered phase at the higher tem-
peratures is stabilized by a high entropy. In solid hydrogen
the zero-point motions is so large that even at 7= 0 K the
crystal is orientationally disordered.'

The standard (quasi-)harmonic methods obviously do
not work for the dynamics of these kinds of crystals. No
other method has emerged yet that has been regarded widely
as an appropriate method to describe the reorientations of
the molecules. The most versatile (classical) method is mo-
lecular dynamics. A large number of orientationally disor-
dered molecular crystals has been studied using this method,
notably by Klein ez al.,>® Lynden-Bell et al.,” and Dove et
al.>'° The major drawback of molecular dynamics is that it
is a classical method. It fails where quantum effects are con-
cerned. Furthermore, it is a simulation method, whereas one
often prefers an analytical method in which the relations
between various properties are more transparent.

The only quantum mechanical methods that have been
used to our knowledge are the time independent and time
dependent Hartree approximations, and the pseudo-spin
method. The first two approximations are most frequently
encountered in the form of a susceptibility approach (see the
work of Michel).!!~** In our work we have usually called
them mean field (MF) and random phase approximation
(RPA). These approximations seem to work quite satisfac-
torily. However, as we have shown in the case of 5-N,, there
are crystals where a more sophisticated formalism is needed
to treat the correlation in the occupation of different states.
The pseudo-spin method attempts to do just that.'>'® This
method however is only capable of handling two states per
molecule. We will comment on all these methods later on.

The standard model for an order-disorder phase transi-
tion is the Ising model.'” In this paper we will show how to
extend the Ising model so that it can be applied to molecular
crystals. The main problem is what states to choose for the
individual molecule. We will show how to calculate those
states that yield the minimal free energy. In Sec. IT A the
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method is outlined. In Sec. II B the cluster variation method
for obtaining occupation numbers is presented. In Sec. III
the results of the calculations on 8-N, and the a—-8 phase
transition in solid nitrogen are presented. In Sec. IV the re-
sults are discussed, the method is compared to the methods
mentioned above, and some improvements are suggested.
The appendices serve to clarify some of the problems en-
countered in Sec. II.

Ii. THEORY
A. Derivation of the method

The method that we present in this paper is based on the
thermodynamic variation principle or Gibbs-Bogoliubov
inequality'®

Avar EAO + (EI—I?O)O>A’ (1)
with
A= —B'InTr[e ¥}, (2a)
Ady= —B " 'InTr[e—5%], (2b)
(R)o=—Trle#BR ], (32)
Z,
and
Z, = Trle—#%] . (3b)

Here H is the exact Hamiltonian of the system, 4 is the exact
free energy, and X is any operator. Carets are used to denote
operators. The general form of the exact Hamiltonian can be
written as

I?=22P+

when we assume that there are no three- or more-particle
interactions. The summation indices P and P’ denote the
molecules in the crystal. The one-particle terms L, contain
the kinetic energy and possibly the crystal field. The two-

particle terms <I> pp- contain the intermolecular interactions.
As it is almost always impossible to calculate properties with
the exact Hamiltonian H, we use an approximate Hamilto-
nian H0 for the calculations. The variational method consists
of choosing a (parametrized) functional form for the Hamil-
tonian H0 The “best” Hamiltonian HO is then obtained by

1 ~
= 5 %o )
PP’

®© 1988 American Institute of Physics

Downloaded 29 May 2007 to 131.155.151.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A. P.J. Jansen: Orientationally disordered crystals 1915

varying it and thereby minimizing 4,,.. If a sum of one-
particle operators is chosen for H, then this yields the MF
approximation.'>?° If a harmonic Hamiltonian is chosen for
H, then this yields the self-consistent phonon (SCP) ap-
proximation.?!

We can write the exact Hamiltonian H in terms of an
orthonormal basis of single-molecule states as

A=3 3 @b BE)ED

+1 3 S @PyP) B IBENEP))
2 $F afvn
xEQES, (5)
with
E®=|aP)B®)]. (6)

The states |a(P)) and |B(P)) are the states of the orthonor-
mal basis. N

In our method we approximate the Hamiltonian A by
an operator H, which does not contain any nondiagonal
terms; that is we write

H,= zzc;,:,>E<P>+ by zc;:;”ymEm. 7

In the minimization of 4,,, we vary both the coefficients c{)
and c§) . and the basis of single-molecule states. If there
are only two stateg per molecule then, apart from a constant,
the Hamiltonian H, can be written as an classical Ising Ham-
iltonian

A

Hyg = _;JPP'&Pz&P'z + 8ip EP:HP&&- (8)
The Hamiltonian ﬁo is thus a generalization of the Hamilto-
nian that is used in the pseudo-spin method. Our method can
therefore be regarded as an extension of the pseudo-spin
method. The Ising Hamiltonian and H, have the same prop-
erties. The eigenstates of H,, are product functions

e}l =]] @ la(P), 9

just as for the Ising Hamiltonian. Its eigenvalues are

1
Ey = z z ng)p +—= z Z cﬁx)pp'p,.-
P a 2 PP’ ap

Consequently, the methods that have been devised for the
Ising model to calculate thermodynamic averages (X )o may
be used for H0 as well.

To facilitate the variation of the basis states {|a(P))},
we introduce a fixed orthonormal basis {|i(P))} that is
known. We define unitary matrices U & by

(10)

la(P)) =3 UL |i(P)). (11)

Using this equation we can effect the variation of the basis
{la(P))} by varying the unitary matrices U . The basis
{li(P))} will be called a reference basis. By substituting Eq.
(11) into Eq. (7), and then substituting the resulting expres-
sion into Eq. (1), we obtain 4,,, as a function of the c}.’s,
the ¢ p.5’s and the U {’s. The functional form is intracta-

ble however, because we obtain thermodynamic averages of
the form (|i(P)){j(P)|), which depend on the c{.’s, the
Chapp’s, and the U {P’s in a very complicated way. Instead,
We express Ho and H in terms of the operators E B, Equa-
tion (5) can be rewritten using the reference basis {|1(P) ¥}

as follows:
H=3 Y EQ T US((PIL | jPHUL
P aBf i

1
+ — E(P)E(P) U(P)‘ (P Dhd
PP D
X i(PYk(P' )|<I>PP [ J(PYI(P' ))U“” ‘P". (12)
Substituting this equation, and Eq. (7), into Eq. (1) we ob-
tain

var _A _22<E(P)

. [c;,:; S US(P) ;i,,lj(P»U;;”]
i
"'_Z z <E(P)E(P) [cl(f'%z)PB z U(P)-U(P )
P oF o

X ({(PYK(P")|®pp. | (PP ULUE"]. (13)

The traces hidden in this expression can be worked out using
the states of Eq. (9). Wethen see that 4, is again a function
of the cf)’s, the ¢f)ps’s, and the US’s, but that 4,
(E Py oand (E PE S )oforall P, P',a,and B depend only
on the c{)’s, and the c}f} ps’S, and not on the matrices U (P
that change when varying the basis. In Eq. (13) only the
matrices U (" change that are explicitly shown. The thermo-
dynamic averages (EP)oand (E & ’E S5 )o will appear fre-
quently. We will call them one- and two partlcle occupation
numbers, respectively.

We minimize A,,, in the form of Eq. (13) by partial
differentiation with respect to the c},.’s, the ¢{2)5.5’s, and the
UPs. We have to remember that 4, and the occupation
numbers are functions of the c§.’s and the ¢{2)  4’s. Differ-
entiating with respect to c{l) yields

Ayur ~
o =B[(H—H)oED),
— ((H-H)EL),], (14a)
and with respect to c{2)p5 yields
3Ava, A ~ ~ A ,
3c§>2)mg =ﬂ [(H - Ho)o(Eg;)Eég )>o
—((H—-HYELEE]. (14b)
It is easy to see that for
o) = (a(P)|Ly|a(P)) (15a)
and .
cspg = (a(P)B(P")|®pp- |@(P)B(P)) (15b)

the derivatives become zero.We can even prove that Eq.
(15) will yield the absolute minimum of 4,,. (see Appendix
A). Wenote that (H Yo= (Ho)o, in contradistinction to MF
where they differ by (12, @ op+ Vo
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¢)
al

Differentiating A, with respect to U _;” yields

aAvar 7 1 o
e (@(P)|Lp|i(P))(E D),

+3 3 (a(PIBP") |y [i(PYBP"))
P B

X(EREE,
and with respect to U 9" yields
aAVaf
auy”

(16a)

= (i(P)|Lp la(P))(E D),

+ 3 3 (i(PIBP") |Bpp. [ (PIB(P"))
P B

X(ELDE )0 (16b)
These derivatives need not be zero, because the matrices

U P must satisfy the restriction that they remain unitary.
We introduce Lagrange multipliers 4,5, and define

-4 =Avar - z zlPaﬁ z Ufzf).Ugf)'
P af i

The derivatives of .« rather than of 4, , must be equated to
zero. We thus find

Apga = (@(P)| L |B(PYYE D,

(17

+3 3 (@(PYY(P") |y |BPYY(P'))
Py

X(EDEE), (18a)
and

Arg = BPVLpla(PED),
+ 35 (BPYY(P)|B e [a(PYP(P'))
Py

X(EDEL), (18b)
By taking the complex conjugate of Eq. (18a) we find
Apag =A Pp- (19)
Interchanging the indices @ and 8 in Eq. (18b) leads to

@P) L BP)YEDYo+ 3 T (a(PYy(P")|Bpp|
Py

X |BPYY(PYIEDEE),
= (a(P)|L, IBPYYE LYo

+3 3 (a(Pyy(P) |8y [BPYY((P))
Py

X(EDE &), (20)
This equation determines the basis {|a(P))}. A method to
solve it is shown in Appendix B. We only want to remark
here that the method of Appendix B enables us also to deter-
mine whether the solution we obtain for Eq. (20) corre-
sponds to a (local) minimum ,{or A,

The “best” Hamiltonian H as given by Eq. (7) can be
obtained by solving Egs. (15) and (20). These equations are
not independent. We solve both via an iterative procedure.
We start by choosing a basis {ja (P) ) }; then we calculate the

ch’s and the ¢f2); 5’s using Eq. (15); then we calculate the
occupation numbers; and finally we solve Eq. (20). This
gives us a new basis {|a(P))}. If this new basis differs little
from the old one, then we have obtained the “best” Hamilto-
nian H,,. If the new basis differs too much then we repeat all
calculations until convergence of the basis is reached. We
have not yet addressed the problem of how to calculate the
occupation numbers once numerical values for the cf’s and
the cf%) p.5’s are known. Neither have we said how to calcu-
late 4,,. The next subsection will deal with these matters.

B. The cluster variation method

One has only been able to calculate the thermodynamic
averages (X ), for one- and some two-dimensional cases.??
The calculations of these thermodynamic averages pose
what is called the Ising problem. Although few of these cal-
culations have been done exactly, numerous approximation
methods have been devised.?® This subsection will deal with
one of them; the cluster variation method.?*** We have de-
cided against using more accurate methods, because they
would probably become too involved for our purpose.
Simpler approximations cannot be used as they would yield
results similar to MF.? Furthermore, we have assumed that
all molecules are equivalent. By this we mean that for any
pair of molecules there is a symmetry operation of the system
that relates the two molecules of the pair to each other. We
then have to choose only the states of the basis {|a(P) )} for
one molecule. The states of all other molecules are deter-
mined by symmetry.

To simplify our notation we define

Xa = (E 2
and

pr5<gég)ié§))o- (21b)
Here Q is a fixed molecule that is used for reference. The
choice of Q is arbitrary as all molecules are considered to be

equivalent. We note that in general y,5p #yg,p- The x,’s and
the y,zp’s are not independent. The following relations hold:

(21a)

zxa = 1, (22)
Xo =Y Vagps (23a)
B
and
xa - Zyﬁapo (23b)
B

Equations (23a) and (23b) are not independent, as 2y _5p
=x, foreverya,and 2,5, = x4 for every § # 1, implies
zay alP = x 1

The cluster variation method tries to answer the follow-
ing question: “Given all one-, two-, and more-particle occu-
pation numbers, what is the free energy?” It is fairly easy to
write down an expression for the energy. The problem is the
entropy. For a linear chain we can use the cluster variation
method for the Ising model without modifications (see Refs.
24 and 25). We derive an expression for the entropy of an
ensemble of M linear chains. The total number of ways an
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ensemble of M linear chains with given occupation numbers
X, and y,gp can be constructed if there are N molecules per
chain and if we ignore end effects is

I, (Mx, ) 1%
G= [__(i‘)_] , (24)
I, (My,gp)!
The entropy for the ensemble is given by
S=kInG. (25)

Equation (24) yields the exact entropy if there are only near-
est-neighbor interactions.’*> No method has been found yet
to determine G for an ensemble of two- or three-dimensional
systems. Following Refs. 24 and 25 an approximation for G
can be obtained by multiplying the right-hand side of Eq.
(24) by a correction factor

e
.5 (My,gp)! I, (Mx )v

for different nearest neighbors. The introduction of I is
called the Bethe approximation.’*?* The expression for G
becomes

= (I, (Mx_)!)*~! N ”
L (MM (My,ge D V2(M ) VP51 ] 27

with z the number of nearest neighbors. Using Stirling’s ap-
proximation for the factorials we find for the entropy per
molecule

S=k(z—1)Y x, Inx, —ikZZyaB}, Iny,gp.
a 2 Fe

(28)
The expression for the energy per molecule is
E=3 cpx, +%ch$}ﬁyaﬂ,. (29)
P aff

With these expressions we can determine the occupation
numbers x, and y,;p by minimizing the free energy
A=E-—T8S.

We perform the minimization procedure again by dif-
ferentiating. Because of the relations Egs. (22) and (23) we
introduce Lagrange multipliers A, z,,, and vp,. We define

A=A —ina —;Z,upa(xa —zﬁ:yaﬁp)
=3 Y Vra(Xa — > Voar)- (30)
P a#\ B

The derivatives of o/ with respect tox,, and y s, forall P, a,
and B must be zero. Solving the resulting equations we find

X, = exp —1+‘E,‘,”+fl+2(,a,,a +17,,,,)] (31a)
P
and

Vopr =€xp[ — 1+ 5

+2(z — Dfipy +2(z— D, ], (31b)
with
1 = Cou , (32a)
“ kT(z—1)

- 1
Copp = — Y7 CGars » (32b)
A= —* (32¢)
kT(z—1)

- Hpa

= — ——, 32d
He Tz —1) ( )

and
~ VPa
R L E— 32

e (32¢)

Here k& denotes the Boltzmann constant. In writing down
these equations we have put v, = 0. The Lagrange multi-
pliers can be obtained by substituting Eq. (31) in Egs. (22)
and (23). We then get the following set of nonlinear equa-
tions:

A +1nzexp[5;”+; (fipe +v,,,,)] =1, (33a)
A—=2(z— Djip, +EP + ; (fpg + Vpra)

—ln};exp[c‘z’ +2(z—1)¥p] =0, (33b)
A—2z— ¥y, +8P + ; (Bpg + Vpa)

anexp[c(z’ +2(z—Djipg] =0. (33c)

These equations can be solved numerically via the Newton-
Raphson method.?” Equation (31) can then be used to ob-
tain the occupation numbers. The energy and entropy are
obtained via Eqgs. (28) and (29). As a final remark we want
to point out that if cZ) 3 = c53p, for all @ and B, for a
certain P, then y.gp = Yg,p. FOr suppose y,gp #Vg.p for
some a and S, then the substitution y,gp = 1(Vegr + Var)
will yield the same energy, and a larger entropy, and hence a
lower free energy. However, in general we have y,gp #yg,p.

iil. RESULTS

We have applied the method described in the previous
section to the librational motions in 5-N,. At low pressures
this phase exists between T'= 35.6 K and T'=63.1 K. At
elevated pressures this phase exists even at temperatures as
high as room temperature.”® The space group is P 6;/mmc,
and there are two molecules per unit cell (see Fig. 1).2%3! X-
ray diffraction experiments have shown no preferred orien-
tation for the molecules. There only seems to be a slight
preference for an angle of 56° between the molecular axis and
the crystallographic ¢ axis. Different models have been con-
trived to account for the x-ray?*-*! and neutron>? diffraction
measurements, and also for the nuclear magnetic resonance/
nuclear quadrupole resonance experiments.*® One model as-
sumes that the molecules process freely or only slightly hin-
dered around the c axis.?>->>** Another model assumes that
the molecules “choose” at random one out of a number of
fixed orientations.’*! And a third model assumes jumps
between these orientations.>®

In a previous paper we have reported the results of MF
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B-N;,P6; /mme (Z=2)
a=4.050R&, c=6.604 A

FIG. 1. The structure of 5-N,.

calculations on the librations in 8-N,.* We found two possi-
ble orientational probability distributions for the molecules.
If the local reference frames of the two molecules in the unit
cell were chosen to be identical, then a disordered phase with
delocalized orientations of the molecules was found (see Fig.
2 of Ref. 35). If the local reference frames of the two mole-
cules in the unit cell were allowed to rotate with respect to
each other, then an ordered phase with localized orienta-
tions of the molecules was found (see Fig. 3 of Ref. 35). The
orientations of the two molecules in the unit cell were found
to be rotated by 180° about the ¢ axis. The ordered phase was
about 0.87 kJ mol~! lower in energy at 7= 0 K, but had
also a much lower entropy. At high temperatures (above
T =120 K) the ordered phase showed an order—disorder
transition to the disordered phase. Neither of the phases
howeyver, showed a transition to the a phase at any reasona-
ble temperature. For all temperatures at which the MF cal-
culations were done the a phase had a lower free energy. The
results of the MF calculations were thus incorrect in two
aspects: the molecules were found to have a preferred orien-
tation in the B phase, and no a—f3 phase transition was
found. We therefore introduced the following ad hoc hy-
pothesis. There are six localized orientations that are solu-
tions of MF. These six orientations can be transformed into
each other by rotations of multiples of 60° around the c axis.
We assumed that there are free jumps between these six ori-
entations. These free jumps yielded a delocalized picture for
the orientations of the molecules. They also yielded an extra
k In 6 for the entropy. This lowered the free energy of the 8
phase so much that a phase transition to the a phase at
T = 35 K was found. A theoretical foundation for the hy-
pothesis could not be given, however.

As our new method is more complicated than the MF
calculations we have had to limit the number of states and
the number of molecules in the lattice sums. We have used

FIG. 2. Orientational probability distribution of 8-N, according to the new
method for T'> 30 K. The dashed contours denote a low probability; the
solid contours denote a high probability. Subsequent contours differ by
10% of the maximum of the probability distribution.

six states |a(P)) per molecule in most of our calculations,
and only interactions with the 12 nearest neighbors have
been taken into account. But already in this “small” calcula-
tion a set of 133 nonlinear equations has to be solved in order
to obtain the occupation numbers [see Eq. (33)]. Further-
more, we have assumed that all molecules are equivalent. We
thus need only states for one molecule in the calculations.
The states of the other molecules can be obtained via (prop-
er) rotations. Equations (15a) and (20) have to be solved
for only one molecule, and the right-hand side of Eq. (15b)
has only to be calculated for one molecule and its nearest
neighbors. In Appendix B, Eq. (B6) must be augmented
with the restriction that X {? = X (" for all i, j, P, and P".
Even with the restriction that all molecules must be equiva-
lent there are various possibilities for the number of sublat-
tices and their configuration. We have found however, that
the sublattices that yield the ordered phase in the MF calcu-
lations (see above) give the lowest free energy at low tem-
perature. At high temperatures it becomes irrelevant how
the sublattices are chosen (see below). The results that are
presented in this paper have been obtained with the intermo-
lecular potential of Berns and van der Avoird.>® We have
also done some calculations with the newer ab initio poten-
tial of van der Avoird et al.’” The results of these calcula-
tions, however, do not differ qualitatively from those ob-
tained with the Berns—van der Avoird potential. We have
therefore done the calculations with the simpler potential.
We have started the calculations by choosing states for
our reference basis {|i(P) ) }. As the calculations can only be
done with a limited number of states some care must be tak-
en in choosing these states. Although the states |a(P)) are
improved in the iterative procedure that has been described
in the paragraph following Eq. (20), one has to bear in mind
that one is restricted to the space that is spanned by the states
|i(P)). The final states will always be linear combinations of
the states of the reference basis {|i(P))}. For the calcula-
tions on B-N, we have chosen a reference basis that might
yield ordered as well as disordered phases. We have calculat-
ed the localized MF ground state at 7= 0 K in a basis of
spherical harmonics Y, with/_,, = 10 (see Ref. 35). From

J. Chem. Phys., Vol. 88, No. 3, 1 February 1988
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this state we have generated five other states by five subse-
quent rotations of 60° around the ¢ axis. The six states thus
obtained we have orthogonalized. These orthogonal states
form our reference basis {|i(P)}}. The final states |a(P))
can be localized or delocalized. If the calculations yield lo-
calized states of which only one is occupied then we have
obtained an ordered phase. A disordered phase results when
the localized states are equally occupied or when the final
states are delocalized.

At low temperatures we have found an ordered phase
with only one of the six initial states appreciably occupied.
The other initial states are mixed to yield new but only slight-
ly occupied states. The orientational probability distribution
resembles closely that of Fig. 3 of Ref. 35. The phase is thus
almost identical to the ordered phase of MF. Above 7' = 30
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FIG. 3. Correlation function as given by Eq. (36) with 8, = 8, = 55°. The
reference frame is oriented with the z axis along the crystallographic ¢ axis,
and the x axis along the projection on the ab plane of the intermolecular
vector R,, = R, — R,. Solid contours denote a high value of the correlation
function, and dashed contours denote a low value. Subsequent contours dif-
fer by 10% of the maximum of the correlation function. The correlation
function for in-plane nearest neighbors (a) and nearest neighbors in adja-
cent layers with molecule 2 higher than molecule 1 (b) are shown.

K this ordered phase becomes unstable. Instead we have
found a disordered phase (see Fig. 2). The states of this
phase are the initial states which have become equally occu-
pied.

This is of course radically different from MF where no
stable disordered phase has been found below 7"= 120 K.
Whereas the (unstable) disordered phase in MF has a high
energy, the disordered phase in the new method has a very
low energy. At T'= 30 K the energy of the disordered phase
is even lower than the energy of the ordered phase at7’ =0
K. The reason for this difference is that there is a very large
correlation in the occupation of the various states for nearest
neighbors, i.e.,

ELED)HED)(ES (34)
while in MF the left- and right-hand side of Eq. (34) are

intrinsically equal. We can define the orientational correla-
tion function for a pair of molecules 1 and 2,

Pp(Q40,)
_ 3, exp( —BE,) fdQ; --dQy|¢, (Qy; . . . ;QN)I2
2, exp(—pBE,) ’

(35)
with Q, = (6,,4,) and dQ; =sin 6, d6, dp;. The summa-
tion in this equation is over the exact eigenstates of the Ham-
iltonian H. In our model we approximate this function by

ZOEREDY (EDED)olta (0180 2lts (8,82
(36)

The functions ¢, correspond to the states |a(P)). A con-
tour plot of this function with 8, = 8, = 55°, which corre-
sponds to the maximum of the orientational probability dis-
tribution, is shown in Fig. 3. We see that in the new method
nearest neighbors within the ab plane prefer to be parallel to
each other, but at the same time not perpendicular to the line
that connects their centers of gravity. In the preferred orien-
tations the molecules are only a few degrees from the abso-
lute minimum of the intermolecular potential. The preferred
orientations of the nearest neighbors in adjacent layers, with
respect to each other, vary. The difference of ¢, and ¢,
ranges from 0° to 360°.

The free energy of 5-N, as a function of temperature is
shown in Fig. 4. We note that there is an unphysical discon-
tinuity at 7= 30 K. This discontinuity is caused by the clus-
ter variation method. A close inspection of the expression for
the free energy that results from Eqgs. (28) and (29) reveals
that the free energy has two different minima at low tem-
perature. One of them corresponds to the ordered phase. The
other corresponds to the disordered phase. The free energy
of the disordered phase is lower also at low temperatures.
However, below T'=26 K the entropy of the disordered
phase, Eq. (28), becomes negative. We recall that in the
derivation of Eq. (28) we introduced a correction [see Eq.
(26)]. It is easy to see that this correction yields a negative
contribution to the entropy. If the correction becomes too
large then the total entropy can become negative. It is ob-
vious that when the entropy becomes negative the cluster
variation method can no longer be used. Unfortunately, it is
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FIG. 4. Free energy of a- and 5-N, calculated using Eqs. (28) and (29).

not clear what the free energy of the phases would be if better
expressions were available. It might be that the disordered
phase is the stabler one also at temperatures below 30 K but
that is by no means certain.

Also shown in Fig. 4 is the free energy of a-N, as calcu-
lated with the new method. The calculations have been per-
formed again using the Berns—van der Avoird potential and
only nearest neighbors interactions. Four states have been
used. These states have been obtained in the same way as the
states in B-N,. The only difference is that rotations of 90°
around the ¢ axis (instead of 60°) have been used. We note
that the free energy curve is an almost horizontal line. The
molecules are very localized. Even at high temperatures only
one of the states is occupied. The new method predicts an a—
B phase transition at about T,z = 72 K, which is quite rea-
sonable, given the approximations made in the calculations
(e.g., only nearest-neighbors interactions ). One might argue
that this phase transition is rather artificial. As the mole-
cules in the a phase are localized a better (i.e., lower) esti-
mate for the free energy would be obtained when some of the
lower excited MF states would be included in the calcula-
tions. This is undoubtedly the case. However, inclusion of
excited MF states would also lower the free energy of 8-N,.
We think therefore, that as long as calculations with a large
number of states is unfeasible, that it is best of perform the
calculations with similar states.

The one-particle properties in the disordered phase in 5-
N, do not change with temperature. This is a consequence of
the fact that the occupation (E {7), of the states does not
change with temperature. In order to study the temperature
dependence of the orientational probability distribution we
have done calculations including the spherical harmonic
Y,0 as an extra state. With this spherical harmonic the
orientational probability distribution can become broader.
The thermodynamic averages of some tesseral harmonics
are shown in Table I. We note that the results seem to be
somewhat better than the MF results, although due to the

TABLE I. Orientational form factors (S,,,) of 8-N,. The S,,,’s are real
linear combinations of spherical harmonics.*

Theory
MF, Ref. 35
Experiment
Delocalized  Localized  This paper Ref. 32

T= 30K 30K 30K 30K
(S0) —0027 0.048 0.042

(Se0) —0.082 —0.233 ~0.244

(Ss0) 0.029 0.042 0.057

{Ses) —0.016 —0.035 —0.062

T= 55K 55K 55K 55K
(S0) —0.020 0.032 0.040 0.004 + 0.085
{S.0) —0.060 —0.167 —0.235 —0.311 +0.326
(S0) 0.020 0.023 0.055 0.990 + 1.950
(Se¢) —0013 —0.013 —0.061 — 0.180 4+ 2.300

*Reference 35.

large errors in the experimental results no definite conclu-
sion can be drawn. The effect of temperature is very small.
Probably more states need to be included for this kind of
calculation.

IV. DISCUSSION AND CONCLUSIONS

We have presented in this paper a new method that can
be used to calculate the properties of orientational disor-
dered (and also ordered) molecular crystals. The states of
the crystal are represented in this method as products of one-
molecule states. A method that is improved with respect to
MF because it includes the orientational pair correlations
between the molecules has been used to calculate thermody-
namic averages. The states are optimized in order to yield a
lowest possible free energy. We have applied the new method
to the librational motions of the molecules in the 8 phase of
solid nitrogen. Two very important improvements with re-
spect to prior MF calculations have been obtained. A stable
disordered phase has been found at all temperatures where
B-N, exists, and an a—f8 phase transition has been found at
the reasonable temperature 7,; = 72 K. In this section we
will compare our new method with other methods that have
been used to calculate properties of orientationally disor-
dered molecular crystals. We will also discuss improvements
that can be made and to what other systems the method can
be applied.

The method that has been proven to be most useful for
the calculations of properties of orientationally disordered
molecular crystals is molecular dynamics.>”’° The major
drawback of this method is that it is a classical method.
Therefore, at low temperatures and for light molecules it
may give incorrect results because of quantum effects.

The most popular analytical method is a method that is
unfortunately also called the MF approximation.*® It differs
from what we have called MF in the previous sections. Our
definition of MF refers to the time-independent Hartree
method, whereas the definition of MF in Ref. 38 refers to the
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time-dependent Hartree method (TDH), which we call
RPA.** Since in Ref. 38 the TDH or RPA method has
been written in terms of susceptibilities we shall call this
method in what follows the susceptibility approach. It is of-
ten used as follows. A free molecule susceptibility is calculat-
ed, corresponding to our definition of MF theory (or time-
independent Hartree). The susceptibility for the crystal,
corresponding to the TDH or RPA model, is calculated us-
ing the free molecule susceptibility and the intermolecular
potential. The properties of the crystal can then be calculat-
ed from the crystal susceptibility. For example, the order—
disorder phase transition temperature can be determined by
looking for soft modes. We want to point out that this is
totally incompatible with our present method. The suscepti-
bility approach assumes that the states of the molecules are
adapted to the site symmetry; i.e., delocalized states for dis-
ordered crystals.’> We have shown however, that the states
of the molecules in the disordered phase can be localized.
When looking for soft modes the susceptibility approach
only tests whether these states are stable, but it does not take
into account the correlations between the occupations of
these states. It implicitly assumes that when the states of the
molecules become localized that one of these states becomes
predominantly occupied. This means that only certain or-

der—disorder phase transitions can be described by the sus-
ceptibility approach. We have shown in a previous paper

that soft modes in the time-dependent Hartree approxima-
tion indicate an unstable MF state.® This means that the
susceptibility approach and MF will yield identical results,
because when the susceptibility approach predicts a phase
transition then MF should also show that phase transition.
Our method, which is an improvement of MF, shows totally
different phase transitions.

A method that resembles our method is the pseudo-spin
method. One can even look upon our method as a general-
ized pseudo-spin method.'>'® In the pseudo-spin method the
exact Hamiltonian is rewritten, making suitable approxima-
tions, in the form of the Ising Hamiltonian Eq. (8). Proper-
ties are then calculated using one of the approximations that
have been devised for the Ising problem. One of the weak
points theoretically of the pseudo-spin method is that there
is no fixed rule for rewriting the Hamiltonian. Hence, one
ends up with a Hamiltonian of the form of Eq. (7). The
coefficients and the states of this Hamiltonian have however,
not been optimized, but have been obtained in a more or less
arbitrary way. Furthermore, the pseudo-spin method is re-
stricted to two states per molecule. Both these deficiencies
have been removed in our method.

In order to obtain also quantitatively meaningful results
it is necessary to extend the calculations that have been pre-
sented in the previous section. The lattice sums have been
restricted to only nearest neighbors. It is in principle possible
to include more molecules in the lattice sums of Egs. (28)
and (29). In Eq. (28) z then becomes the number of terms in
the lattice sums. This would of course lead to a much larger
set of equations for the Lagrange multipliers, Eq. (33). How
many molecules one can include in the lattice sums depends
therefore first of all on the amount of computer time one
wants to spend. A much more serious problem is that the

problems with negative entropies may become worse. We
will show below that these problems arise because some re-
strictions on the two-particle occupation numbers are miss-
ing. The errors that result from neglecting these restrictions
may become larger when the lattice sums are extended.

One would also like to include more states per molecule
in the calculations. The problem is again that the calcula-
tions become larger, now even in two ways. Again the num-
ber of Lagrange multipliers Eq. (33) increases, but also the
number of equations for the states Egs. (20), (B4), (BS),
and (B6) increases. However, a reduction in the number of
states that have to be solved is obtained when from the total
number of states only a limited number is allowed to be occu-
pied. The number of Lagrange multipliers in Eq. (33) isonly
determined by the number of occupied states. The number of
equations for the optimization of the states, Egs. (20), (B4),
(B5), and (B6), is still determined by the total number of
states, but they simplify appreciably, which can be of help in
solving them.

The most important improvement will probably be a
better method for obtaining occupation numbers. The only
restrictions are given by Egs. (22) and (23). As was men-
tioned above, there may be more. This is most easily seen by
considering three-particle occupation numbers. These are
related to the two-particle occupation numbers via

EPEL =S ERELEL 0 (37)
Y

forany P, P', P " a,and B. Itis easy tosee that it is not possible
to_haye three-partlcle occupatlon numbers that yield
(ng)E(P»O 1, (Egll”)E(P ))0_1 and (Eg’)E(P )>0
= 1. This means that such a combination of two-particle
occupation numbers must not arise in the calculations. How-
ever, the cluster of two nearest neighbors is simply too small
to prevent these inconsistencies. These inconsistencies cause
the negative entropies. The cluster variation method can
thus be improved by using larger clusters; in particular
closed clusters. This will involve three- and more-particle
occupation numbers, however, which may complicate the
calculations considerably.

An alternative for obtaining the occupation numbers
may be the Monte Carlo method.*! With this method it is
possible in principle to obtain the occupation numbers with
any accuracy. There are no fundamental restrictions on the
number of states per molecule and the number of molecules
in the lattice sums. Furthermore, the method is rather
straightforward. There are however two drawbacks. One of
them is that Monte Carlo is a very time consuming method.
The other is that it is difficult to obtain values for the entropy
and hence for the free energy. That means that the method is
not suited when we want to study phase transitions like the
a—f3 phase transition. Nevertheless, we think that the Monte
Carlo method is the most appropriate method for obtaining
quantitative results.

We want to comment finally on some projects that may
be taken up using the new method that we have presented in
this paper. First of all the method might be applied to all the
other orientationally disordered molecule crystals. Thereby,
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the improvements mentioned above must be studied. But the
method can also be applied to other systems. It would for
example be very interesting to use it to study the cooperative
Jahn-Teller effect. Some work has already been done in ex-
tending the method to fermion and boson systems. Hence, it
may be worthwhile to apply the method to solid helium. For
finite systems there is no Ising problem as the thermodynam-
ic averages, Eq. (3a), can be obtained by direct calculation
of the traces. This means that for example the correlated
rotations of methyl groups in organic molecules can be stud-
ied advantageously using our method. It may even be possi-
ble to extend the method to calculate collective excitations.
There is a close relation between the second-order variation
of the density operator in the free energy in MF, and the
collective excitations as calculated in the time-dependent
Hartree approximation. We think that there may be a simi-
lar relation between the second-order coefficients of Eq.
(B5) and collective excitations.
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APPENDIX A

In this Appendix we will prove that the coefficients giv-
en by Eq. (15) yield the absolute minimum of 4,,,. We will
denote here by H,, the Hamiltonian of Eq. (7) with the spe-
cific coefficients of Eq. (15). The following definition will
simplify our notation:

Jé’(ﬁl}az) =Ay + <§1 "‘ﬁz)f'}ga (AD)
with

Ay = —B! InZg, (A2)

(H)p, =Z 7' Trle~BX ], (A3)
and

Z;, = Tr[e—#%:]. (A4)

This definition implies that we can write 4,,, = & (I,} ?I ).
We now suppose that there are coefficients cj,)” and
c&, pp» different from those of Eq. (15), that yield a lower
4,4, - The corresponding Hamiltonian will be denoted by
H'j. The basis {la(P))} of H is the same as that of H,.
Using Eq. (A1) we can write

o (HH ) < o (HH). (AS5)
It is easy to see that

o (HuH,y) = o (HHy) (A6)
and

o (HeH ) = o« (HH}), (AT)

because the nondiagonal terms of Hin Eq. (5) vanish. Using
Eqgs. (A6) and (A7) we obtain

o (HuH ) < o (HyH,). (A8)

A. P. J. Jansen: Orientationally disordered crystals

This however is clearly impossible. We have o/ (I/'?o,ﬁo

= Ag,, whereas according to the Gibbs-Bogoliubov in-
equality Eq. (1) .« (HO,H 0)>Ajz, should hold. This means
that Eq. (A5) cannot hold and that consequently the coeffi-
cients cf;) and cf2) .5 that are related to the basis {|a(P))}
by Eq. (15) yield the absolute minimum of 4,

APPENDIX B

The derivation of Eq. (20) from Eq. (16) was meant to
yield a basis {|a(P))} that minimizes 4,,.. As only (H ),
depends directly on this basis we can also say that we have
tried to find the basis that minimizes (¥ ),. Because the basis
must be orthonormal we introduced Lagrange multipliers in
Eq. (17). In this Appendix we will introduce new variables
for which no restrictions hold. Consequently, we will be able
to minimize (H ), via direct methods. We will show that we
can solve Eq. (20) and we will also prove that the solution
corresponds to a minimum of (H ), and 4,,, .

The new variables are the matrix elements of matrices
X® that are defined by*>**

UP = exp(XPD). (B1)
Here U'® is a matrix with matrix elements U . The matrix
U in Eq. (B1) is unitary if and only if the matrix X® is
anti-Hermitian. We take the lower triangle matrix elements
of the X‘P’s as our new unrestricted variables, noting that
the diagonal elements are purely imaginary. (H ), will thus
be interpreted as a function of these variables.

In order to find the minimum of (H ), we will employ
the iterative Newton-Raphson method for finding mini-
ma.?” In each iteration step (H ), is expanded as a Taylor
series in X© around a trial basis.Cubic and higher order
terms are discarded and the remaining quadratic expression
is minimized to obtain an improved basis. To be more specif-
ic we rewrite (H Yo asin Eq. (13):

(H)o= 33 (ED), S UL Lo j(PHUS

5 3 S EBLEE,
PP’ aff

XS UDUL " G(PYK(P) [ Bpp | @

oKl

X| PP NUPUL". (B2)
We identify the reference basis {|z(P) )} with our trial basis.
The coefﬁclents in the Taylor series, which are the deriva-
tives of (H ), with respect to X‘P, taken at X' = 0, are
most easily calculated by first determining the derivatives of
U LD with respect to the X {7’s. We find

aU(I?) aU(P)’
= = 8pp:8.;Os (B3a)
(), = (), oot
Uy aup”
(aX(P )') X0 (3X(P)) - = '—5PP'6ak6ij) (B3b)
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ULy *uL”
(ax;,f’"‘ax,(,’:")x=o B (3X % X E,f.’")x=o
_ ( arue” ) = }0pp-Bpp- (a8l + 8ombybis), (B3e)
XX (77 ) x o where for all X {* i>j holds. The calculation of the deriva-

=16pp 8pp- (840imbis + 64040, ), (B3c) tives of (H ), is lengthy but straightforward. We find for the
first derivatives

R
(ax;,f'>axg,¢:'>')x=o (3(1?)0) _ (3(1?!)0)*
32U P* X P Jx_o X" Jx_o
) (aXﬁf’ Toxi” ) = (P L /P (E Yo — (ESP)o]
= —16pp Bpp- (8,y8u8km + BamBuby1), (B3d) _ A
%PP PP ( j “ilY & k<l +22(l(P)k(Q)|q>pQ|j(P)k(Q))
Uy ) cx
(ax,f:'”ax;::"' Xx=0 X[(EPED),— (EPED)]. (B4
|

We note the resemblance to Eq. (20). The second derivatives are given by
( 3*(H ), ) =( IUH ), )
X PIXE )x_a \IXP'AXE )y,
= 18pp [8 (I(PY Lo [1(PY) — 8, k(P Lp| J(PY) ] [(E Yo — (BP0 — (B DYo + (EP)o]
+%5,,,,. 33 (84 (i(PYM(Q)|Bpp lI(PYM(Q)) — 8, (k(PYM(Q)|®pp| j(PYM(Q))]
Q m
X[(EPED)o— (EPED)— (BEDER),+ (BEPE@),]
+ (((PYK(P")|Dpp. | J(PYI(P"))
XUELEL Yo+ EPEF o~ EPEFYo— EPEL ), (BSe)

and

( 3%(H), ) =( XH ), )
AXPOXE Jy_o \OXPOXE )y,

= — Bep [ GiP)| Lo k(P)) — 8 5 (U(P)| Lo | JPY)] [(E PYo— (B SPYo + (E DYy — (E o]

- %5”' )P [8 (i(PYM(Q) | B pg |k (PYM(Q)) — 8, I(PYM(QD)|B 0| (PYM(Q))]

X [(EPEL)o— (EPELY e+ EDER),— (BEPED),]
+ (PY(P")|®pp. | /(PYE(P"))
X [(EPELY o+ (EPEF)e— BPEF ) — EPEL,]. (B5b)

The following set of linear equations has to be solved in each a( ol Yo ALY 554 Yo
iteration step: (8X T )x . + ; % [sz (_—BX Ff’aXf‘f")x .
i = ] =

I(H), o (_9%H), ) kol
(o). 23 [ Grpar)... " (Far), | o
azka\l aX:,)aX,(d ) X=0
+X50" (—-——<_H o , ) ] =0, (B6a)  Convergence of the Newton-Raphson method is reached in
X POX " Jx—o the nth iteration step when for the solution X¢” of this equa-
and tion in the nth step X" = 0 holds. This condition can only
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be fulfilled when the first derivatives in Eq. (B6) become
zero. Hence, the Newton—-Raphson method yields a solution
of Eq. (20). Furthermore, the second derivatives in Eq.
(B6) must form a positive definite matrix, because the solu-
tion must correspond to a minimum of {H ), The second
derivatives thus yield a test that we can use to determine
whether we have really found a minimum for 4., .

We want finally to comment on how to obtain the uni-
tary matrices U'® from the anti-Hermitian matrices X(?.
The matrices iX " are Hermitian and can thus be diagonal-
ized. This means that X{. can also be diagonalized. We
define the unitary matrices V{” and the diagonal matrices
AE]P) by

XS,P)V;P) —_ VS]P)AS'P). (B7)

The diagonal elements of A” are purely imaginary. The
matrices U'P can be defined by

UP = V{Pexp(ALP)VDT, (B8)
The matrices U are then given by
U = Uff) . .UgP)UgP), (B9)

where n’ denotes the step in which convergence has been
reached.
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