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Samenvatting 

Traditionele methoden voor het bepalen van materiaalparameters gaan in het 
algemeen uit van proefstukken met een streng voorgeschreven vorm. Het is de 

bedoeling dat deze vorm te zamen met de wijze van belasten leidt tot een 

eenvoudige, meestal homogene, rek- en spanningsverdeling in een deel van het 
proefstuk. Door de rek te meten en de spanningen uit evenwichtsbeschouwingen te 

bepalen, kunnen dan de gewenste materiaal parameters worden bepaald. Bij het 

toepassen van deze werkwijze bij sterk anisotrope en inhomogene materialen, 
treden er een aantal problemen op: het is vaak onmogelijk een homogene 

rekverdeling te verkrijgen, het maken van de proefstukken leidt tot een 
beschadiging van de interne struktuur van het materiaal en er is een groot aantal 

experimenten nodig voor het kwantificeren van complexe materiaalmodellen. 

In dit proefschrift wordt een alternatieve aanpak voorgesteld en uitgewerkt, die 

gebaseerd is op een combinatie van drie elementen: (i) het gebruik van digitale 

beeldanalyse om inhomogene rekdistributies te meten van multi-axiaal belaste 
proefstukken met arbitraire geometrie, (ii) eindige elementen modellering en (iii) 
toepassingen van methoden uit de systeem identificatie. 

De aanpak is praktisch getest door middel van experimenten met een orthotroop, 
elastisch membraan. Uitgaande van één experiment worden vijf materiaalpara

meters tegelijk bepaald. Een vergelijking met traditionele trekproeven gaf goede 

resultaten te zien. 
De werkwijze voor inhomogene materialen is onderwcht met behulp van numerieke 

simulaties. Er is verondersteld dat de inhomogeniteit van het materiaal beschreven 
kan worden met een continue functie. Het is mogelijk om dit functionele verband 

samen met de materiaalparameters te identificeren, gebruikmakend van de 

meetgegevens van één experiment. In een alternatieve uitwerking wordt het 
inhomogene gedrag gekarakteriseerd door het proefstuk in gebieden te verdelen, 

waarbij in elk gebied homogeen gedrag verondersteld wordt. Deze laatste aanpak 

biedt voordelen als de randvoorwaarden onbekend zijn of wanneer de geometrie 

van het proefstuk moeilijk te meten is (bijvoorbeeld bij biologische materialen). 

De voorbeelden demonstreren dat de gepresenteerde numeriek-€xperimentele 
aanpak nieuwe mogelijkheden biedt voor het karakteriseren van materialen. 
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Summary 

For the determination of material parameters it is common practice to use 

specimens with wel! determined geometries. The design of the samples and tbe 

choice of the applied load are meant to lead to a simpte, often homogeneous, stress 

and strain clistribution in a part of the sample. Combining the results of a number 
of carefully chosen tests can lead to a fairly accurate characterization of the sample 

materiaL Application to highly anisotropic and inhomogeneous materials, raises a 

number of problems, like: homogeneaus strains in an experimental setup cannot be 

obtained, the internat structure is disrupted when test samples are manufactured, 

and many experiments are necessary to measure all parameters for complex 
material models. 

In the present thesis a different approach is presented based on the combination of 

three elements: (i) the use of digital image analysis for the measurement of 

non-homogeneaus strain distributions on multi-axially loaded objects with 

arbitrary geometry, (ii) finite element rnadeling and (iii) application of systems 
identification. 

The identification approach is tested in practice by means of experimcnts on an 
orthotropic elastic membrane. Five parameters are identified using the 

experimental data of one single experiment. A comparison with classica! tensite 

tests yields good results. 

The application of the metbod for inhomogeneous materials is demonstrated by 
means of numerical simulations. Assuming that the inhomogeneity of the material 

can be described by some continuous function, it is shown that this function 
tagether with the material parameters can be identified using the data of one 

experiment. In an alternative approach the inhomogeneous behavior is identified 

by dividing the sample in regions. In each of these regions homogeneaus material 
properties are assumed. The latter approach is favorable in situations where the 

boundary conditions of the sample are unknown or where the geometry of the 

sample is ill defined (e.g. for biologica! materials ). 

The examples show that the presented approach offers new possibilities for the 

characterization of solid materials. 
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Notation 

a, A scalars 

a column 

A matrix 

I unit matrix 

0 zero column or matrix 

A-1 inverse of A 

lAl determinant of A 

lal, lAl absolute value of a scalar a or A 

trA trace of A 
AT transpose of A 

E{A} expectation of A 
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1 Introduetion 

1.1 Characterization of the mechanical behavior of solid ma.terials 

The present thesis deals with the development of a new metbod for the 
experimental characterization of solids with complex properties. Common features 

of the solids under consideration are anisotropical behavior and properties that can 
vary with position; the materials behave inhomogeneously. Examples are nearly all 

biologica! tissues but can also be found in technica! materials like injection 

moulded products with short fibers and long fiber composites. 
The methad is aimed at an experimental quantitative determination of material 

parameters in constitutive equations. It is assumed that preliminary research 

yielded a fairly good idea of what type of constitutive equation is suitable to 

describe the behavior of the material under consideration. That experiments for 

parameter determination can lead to adjustments of the constitutive cquations is 
not ignored, but is not a main topic of the thesis. 

Traditional ways for a quantitative determination of material parameters have 

some features in common that lead to insoluble difficulties when applied to 
complex solids with fiber reinforcement and inhamogeneaus properties. A closer 

look at the familiar uniaxial strain test wil! make this clear. Specimens with a well 
determined shape are manufactured under the assumption that they are 

representative for the mechanica! properties of the materiaL The design of the 

samples and the choice of the applied Ioad are meant to lead to a homogeneaus 

strain distribution in a central region of the sample. Due to the homogeneaus strain 

di stribution a fairly large area can be used to measure the displacements and, 

indirectly, the stra in in the central region. 

Another key element in such experiments is the hypothesis of a homogeneaus stress 

distribution, which enables the determination of the stress in the central region by 

dividing the applied load by the cross-sectional area of the specimen perpendicular 

to the applied load. The sample has to have a sufficiently large aspect ratio for the 
stress in the central region to be purely tensile. If this is not so, then the boundary 

conditions may have a considerable effect on the stress field in that part of the 

sample. 

The imposition of a homogeneaus stress and strain field is relatively easy for 

isotropie materials. Increasing attention for the development of constitutive 

theories for composite materials, including biologica! materials, has required a 
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Figure 1.1.1: Measured strain distribution according toPeters (1987). 

re-€xamination of this kind of testing. Peters (1987) demonstrated that special care 

must be taken to assure that the desired information is obtained. By using an 

image processing system the strain distribution on the surface of a collagenous 

connective tissue structure under uniaxial load was visualized. Figure 1.1.1 shows 

the positive principal strains in a tissue specimen in a uniaxial strain test. It is 

clear that the strains are far from homogeneous. He also showed that averaging the 

strains to obtain averaged properties was not worthwhile. Because the large 

difference in stiffness between fibers and matrix it appeared that inhomogeneous 

boundary conditions due to clamping did affect the strains in the whole tissue. St. 
Venants principle was not valid for these types of materials. Moreover, because 

fibers were not unidirectional, the disruption of the structure by cutting fibers in 

the manufacturing of the samples caused that only a part of the fibers was loaded 

in the uniaxial strain test. 

In technica! applications the materials under consideration are less complex than 
biologica! materials. The difficulties recognized by Peters, however, exemplify the 

problems in the characterization of complex materials in generaL For fiber 

reinforeed composites, e.g., it is known that the extraction of the samples can also 

result in a destruction of the internal coherence of the structure, which makes the 

strain test not representative for the material under consideration. 

The problems with tensile testing for relatively complex materials also applies to 

other common mechanica] tests, such as circular rods in torsion, beams in bending 

and some biaxial tests, which we wil! refer to M"traditional tests". 

In the next section a generalization of the traditional approach is presented. It is 
expected that this approach creates more freedom for experiments and thus offers 

new possibilities for the characterization of complex materials. 
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1.2 Identification metbod 

In the present thesis a methad for the experimental characterization of biologica! 

tissues and composites is presented, which solves a number of the probieros 

mentioned in the previous section. In this section the principle of the method, the 

arguments that lead to the methad and some of the consequences will be discussed. 
The basic assumptions of the metbod are: 

• Some mathematica! model is available, which gives a reasanabie description of 
the behavior of the material under consideration. The problem is to 

quantitatively determine the material parameters in these constitutive 

equations. 

• An accurate and efficient computational algorithm is available for the salution 
of the boundary value problem. 

There is one important difference between this method, which will be called 

"identification metbod", and the traditional methods. For the identification 

method we no Jonger demand that the strain field is homogeneaus in some part of 
the loaded specimen under investigation. On the contrary, it is preferabie that the 

strain field is inhomogeneous. There are several arguments for this: 
• It is impossible to obtain a homogeneaus strain field for materials that have 

inhamogeneaus properties. Moreover, one might wonder if it is allowed to 
disrupt the· internal structure of some types of fiber reinforeed composites in the 

process of manufacturing test samples. 

• Inhomogeneous strain fields contain a lot more information about the material 

properties of some specimen than a homogeneaus strain field does. This opens 

the way to a much more effective determination of properties than is possible 

with traditional tests. 

• When inhomogeneous strains are allowed, extra freedom arises for the design of 
experiments with optimized performance. In the long run it may even be 

possible to think of the use of large construction parts in their natura! 

environment in technica! applications, or of in-vivo tests when biologica! tissues 

are the subject of the investigation. 

Although the use of inhomogeneous strain fields opens new perspectives, it raises 

three new problems: 

• The inhomogeneous strain field bas to be measured and it is necessary to apply 

loads in a more general way than in traditional testing. 
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experiment measured 

strain data 

parameter model data 
adjustment error correlation 

l parameters 

mathematica! computed 

algorithm strain data 

Figure 1.2.1: Diagram for the identification method. 

• The analysis of the experimental set-up becomes complex and can only be done 

in a numerical way with a computer. 
• A methad has to be developed to confront the experiments with the (numerical) 

analysis and to determine the unknown material parameters from the data. 

The salution of the above three probierus in fact embodies the "identification 
method". The identification method is visualized in figure 1.2.1. The actual strain 

distribution is measured and the model strain distribution is calculated as a 
function of the values of the parameters. The error in the model is then used for a 

further adjustment of the parameters. 

To visualize inhomogeneous strain fields there are at the present time a number of 

methods ava.ilable like holography, Moiré, laser-speckle interferometry and other 

grid methods. The method used in the present thesis can be classified as a grid 

method and uses a large number of small markers attached to the surface of the 

specimen. The displacementsof these markerscan be measuredoptically. Although 

optica! methods differ in speed, accuracy and resolution, they can measure a 

detailed strain distribution over a broad area of a specimen, which for example is 
not possible with strain gauges. However, they all have the disadvantage that at 

this time it is only possible to measure on the outer surface of the specimen. This 

means that the surface field has to contain enough information for a sufficient 
characterization. When the surface strain field is the only property that can be 

measured the method is restricted to plate- or shell-like objects and membranes. 

Which is less a limitation than it seems, because many modern products made of 
composites are thin walled structures. 
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The analysis of an experiment as described above can only be performed 
numerically. Nowadays this is not a problem, since adequate procedures to analyze 

inhamogeneaus specimens with complex geometries under arbitrary loads are 

available. The Finite Element Methad is very suitable for these types of problems. 

A numerical analysis however, can only be performed for a given set of the 
(unknown) parameters. This means that initia! values should be available. Then, 

using an iterative procedure, better estimates of the parameters are obtained. 

When models are complex, this leads to limitations with regard to computer time 
and memory requirements. Although this puts a limit on the complexity of the 

applications it can be expected that future developments wil! certainly extend the 

possibilities considerably. 

The confrontation of the measured strain field with the calculated strain field 

should lead toa quantitative determination of the unknown material parameters. It 
is necessary to find algorithms that lead to a fast convergence of the parameters, 

preferably with estimates of their confidence. In the field of systems identification 

this is a wel! known estimation or reconstruction problem. The estimation problem 
deals with the determination of those physical quantities that cannot be measured 

from those that can be measured. 

1.3 Literature survey 

Although the importance of an identification approach in continuurn mechanics has 

been recognized (Pister 1974, Distefano 1974), the subject has got little attention in 

literature. 

Early attempts for such an approach have been publisbed by Kavanagh (1971, 1972, 

1973) who discussed the identification problem for plane, anisotropic materials. The 

materials are assumed to be linear and time-independent. His metbod is based on 

rearranging the constitutive equations to obtain an iterative procedure for the 

determination of the material parameters. He employed a least-squares norm and 
discussed the interaction of analysis and experiment. 

Vettramand Vinson (1979) used this technique for the determination of orthotropic 

elastic moduli for the left ventricle. Their goals at that time were rather ambitieus. 

The material properties of the myocardium are very complex because of physically 

nonlinear behavior. With their lioear elastic approach, model errors wil! strongly 

distort the parameter estimation process. Moreover the large observat ion errors 
makes parameter estimation even more questionable. 
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The idea developed by Kavanagh is also used by Hermans et. al. (1982). The 
authors propose a combined use of strain measurements and boundary element 
methods. As the experimental strains they used were strains wh.ich were previously 

computed using the real material constants, Hermans et. al. conclude that they do 

not yet know in what way their metbod is sensible to experimental errors. 

Liu et al (1975, 1978) and Lin et. al. (1978) minimized a criterion based on the sum of 
squares of the differences between calculated and measured displacements to obtain 

material properties of an intervertebral joint. The methad had limited success, 
because the data did not contain enough information to identify all parameters. 

Iding et. al. (1974) extended the use of fini te element discretization by introducing a 

technique of material parameterization that utilizes finite elements over the 
domain of the deformation invariants. The metbod is focussed on incompressible 

elastic materials subjected to plane stress. A numerically simulated experiment on 

an isotropie solid is used to show that it is possible to obtain strain energy 

functions from the measurement of an inhomogeneous strain field, without choosing 

beforeband a functional relationship between the strain energy and strain 
invariants. 
Wineman et. al (1979) presented an application of the non-parametrie metbod of 

Iding. Wineman et. al. used an identification experiment based on inflation by 

lateral pressure of an initia! flat circular membranous specimen. Also this paper 

makes use of a simulated experiment. 

Maier et. al. (1982), Bittanti et. al. (1985) and Nappi (1988) used an identification 
approach for the determination of yield- limits in elastic- plastic structural models 

from measured displacements. After a state representation of the model is derived, 

the inverse problem is solved by an extended Kalman filter method. Numerical 

examples illustrate and test the methodology. 

Recently developed methods publisbed by Sol (1988), Pedersen (1988, 1990) and 
Thomson (1990) make use of experimentally measured frequencies to determine 

stiffness parameters. Although their methods are not based on measured strain or 

displacement data, their work is of interest becaus_e the me_thods also contrast with 

the traditional testing idea. 

Sol and Pedersen presented a metbod which determines the elastic properties of a 
composite material plate, using experimentally measured resonant frequencies. The 

benefits of the metbod are that it requires a simple test set- up and that it is fast. 

The measurement of the frequencies and the identification of the parameters only 

requires a few minutes. The disadvantages are that linear material behavior is 

assumed and that only specimens in the form of a rectangular plate of uniform 

thickness are considered. In a recent paper (1990) Sol extends the metbod for the 
identification of linear viscü-€lastic behavior. 
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Thomson uses observed frequencies for the determination of unknown parameters 
in an elastic, transversely isotropie model of human long bones. Ris methad 

assumes that the Poisson ratios are known beforehand. In addition a relationship 
between the Young's moduli and the shear modulus is assumed. The remaining 
parameters could not be identified uniquely from the frequencies measured. In 

order to make the estimation possible, prior knowledge of the unknown parameters 
is specified. Subjective expectations to the parameters values were created by 

scanning relevant literature. The subjective a priori knowledge is utilized by 

making use of a Bayesian estimator. 

It turns out that there is an increasing interest for the identification methad in the 
realm of the continuurn mechanics. Many authors in the field conneet this with the 
ability of powerful numerical methods and the developments in computer 
technology. Parallel to this, developments in experimental methods and 

instrumentation meant that theoretica! model predictions could also be verified 

experimentally (Peters, 1987). Nevertheless it is remarkable that, in contrast with 

the typical hybrid numerical--experimental property of the subject, a majority of 
the authors present numerical experiments only. 

In addition it appears that many of the methods published are restricted to special 

classes of material behavior or to special types of (non-traditional) experiments. 

These specialized approaches may lead to successful results (e .g. the work of Sol 

and Pedersen). 
In genera!, fairly simple material behavior is considered. The identification of 

inhamogeneaus material behavior has hardly attracted any attention. An exception 
is an example presented by Nappi (1988) of a geotechnical problem. Finally it is 

interesting to note the diversity of the research objects ( composite materials, 

biologica! materials, rock). Apparently there is a wide interest in the identification 
problem in solid mechanics. 

1.4 Purpose and scope of the present research 

The objective of the present research is the characterization of highly complex 
composites and biological materials. Hence a generally applicable identification 

methad is required, which allows the characterization of visco--elastic, anisatrapie 

materials with (possibly) inhamogeneaus properties. By means of a study of 

materials with increasing complexity the influence of model and observation errors 

on the parameter estimation is investigated. This will partly be done by means of 
numerical simulations, partly by means of experiments. The present thesis focuses 
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on the identification of inhamogeneaus anisotropic elastic materials, which are 
plate--, shell- or membrane-- like. 

Chapter 2 presents a detailed description of the identification methad used. In 
chapter 3 the metbod is tested for experiments on an orthotropic elastic membrane. 

It is shown that tbe displacement field contains sufficient information to estimate 
tbe unknown material parameters of the membrane. Chapter 4 deals with the 

problem of the identification of inhomogeneous material behavior. The 
applicability of the metbod for inhamogeneaus materials is demonstrated by means 

of numerical simulations. Chapter 5 discusses some application aspects of the 
identification approach in continuurn mechanics. In addition the conclusions of the 
present research and some recommendations for future research are given. 
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2 Identification method 

2.1 Introduetion 

The identification method is based on the combination of three elements: (a) The 

measurement of a detailed strain distribution over a broad area of the specimen. 

(b) Finite element modeling. (c) A technique to adapt the material parameters in 
the finite element model by means of a comparison between the experimental data 

and the outcomes of the fini te element model. 
The three elements are described in the sections 2.2, 2.3 and 2.4 respectively. The 
third element of the identification method is probably the most unfamiliar to 
researchers in the field of constitutive modeling. For this reason a relatively large 

part of this chapter is devoted to parameter estimation. 

2.2 Measurement of inhomogeneous strain distributions 

For the measurement of strain distributions, optica! methods seem most suitable. 

The main reasons are: measurements can be done contactless, a broad area can be 

analyzed in one step, and large objects as wel! as small objects can be studied with 

the same technique. 
In principle, many techniques are suited for the identification method. Weil known 

techniques are: Moiré interferometry, holography, laser-speckle interferometry and 

image correlation techniques. The methods differ in resolution , accuracy, speed 

and user convenience. 

The end objective of the present research leads to a number of demands on the 
strain measurements: 

• The materials under consideration are soft biologica! materials and polymers 

that can undergo strains up to 5 %. The method has to be suited for these 

strains. 

• Because of visco-elastic properties the strain fields vary in time. Hence, the 
speed of the strain measurement is important. A fast method enables the 

measurement of strain distributions as a function of time. 

• Ideally, the strain data should be available immediately. In this case the strain 

data can be exam.ined in real-time. This enables a user to judge an experimental 

result on its suitability for identification and, if necessary, to adjust the load 

to improve or optimize its performance. 
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Figure 2.2.1: "Window scan" of the Rentschel system with 5 windows. 

• The instrument must be transportable and may not require a special 

environment. 
The methad in the present thesis uses a large number of smal! markers, attached to 

the surface of the specimen of which the displacements are to be measured (Peters, 

1987) . The positions of the markers are determined by a video tracking system 

(Video interface 84.330, Rentschel GmbH, Hannover) based on random access 

cameras (Hamamatsu CII81). The photo sensitive part of a random access camera 
is a phot~mitter. For this reason it can be used as a non-storing device with the 

advantage that there is no need of a total scan of the target surface like in normal 

TV-cameras. This makes selective scanning of an image possible. In normal 

TV-cameras a total scan is always necessary to prevent charge build-up and 

selecting of parts from an image has to be performed after a total scan is made. 
Because of the possibility of selective scanning the access time of points in an 

image, taken by a random access camera, is short compared to a standard 

TV-camera. Moreover, it is not necessary to use a lar.ge memory for data storage 

(Zamzow, 1990). A disadvantage is the low sensitivity of the cameras compared to 

normal cameras. 

The video tracking system is developed in order to measure the position of markers 

in space and time. For this it is necessary that the intensity of the light, reflected 

by the markers in the image, is higher than that of the environment. This can be 

achieved by using markers of a retro reflective tape (tape that reflects light in the 

direction of irradiation) and by direct illumination from the camera position. 
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Before a measurement starts a so called "search scan" is performed, scanning the 
whole image. Every time the system detects a marker, a window is defined withits 
centroid at the centroid of the marker and with a size, larger than the diameter of 

the marker. The markers have to be spaeed at least 7 times the marker diameter, 

because the windows are not allowed to overlap in search scan mode. The size of a 
window can be adjusted by the user of the system. When all markers are found, the 

system can be put in "window scan" mode, which scans only the windows. During 

loading the markers will undergo a displacement. When the centroid of the marker 

no Jonger coincides with the centraid of the window between two scans, the 

position of the window is automatically adjusted. This is illustrated in figure 2.2.1. 

It will be clear that a marker is not allowed to leave a window between two scans . 
After each scan the position of a marker is send to a personal computer memory. 

The scan frequency inside a window can be chosen by the user, but is fixed during 

the window scan mode and is independent of the window size. A high frequency 

leads to a high accuracy, as the scanning of the shape of the marker improves 
(Zamzow, 1990). The highest accuracy can be obtained with a small window and a 
marker with a large diameter compared to the window size. However, in that case, 

the marker can only move over a short distance between two scans. For large 

movements with high speed the marker has to be smal! compared to the window. 

Consequently the user has to compromise between accuracy and speed. 

For the application of the present research, speed is not important because the 

experiments are quasi-static and the displacements are smal!. When a high 

frequency scan inside a window is chosen (high accuracy) a long time is needed to 

scan a whole image. 

The number of windows which is, of course, equal to the number of markers, is 

limited to 126. The maximum scan frequency is 7500 Hz for an image with one 

marker, and 59.5 Hz for an image with 126 markers. The image size is often 

expressed in pixels (picture elements). The number of pixels in the whole image is 

32768x32768. The ratio of the smallest possible change in distance between two 
markers against the length of the total image, is measured as 1:13100. This 

corresponds to a resolution of 2.5 pixels. Other Iabaratory tests were focussed on 

errors due to lens distartion and camera deflections (van der Velden, 1990). The 

maximum error of the position of the markers was 0.45% of the total image length 

and was found at the edge of the image. The geometrie distartion was stable. 

Fluctuations on the deflections of 3.9 pixels were measured. This is almost equal to 
the camera resolution. When large rigid motions occur in the image, it is necessary 
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(and very well possible) to correct for the geometrie distortion. For the 
experiments described in chapter 3 no such a correction was used, because only a 
small rigid body motion occurred and the object was in the center part of the 

image, where distortions are smal!. 

2.3 Finite element modeling 

The finite element methad is used to analyze the structure and boundary 

conditions. It is a suitable tooi for the analysis of samples with complex geometry 
under arbitrary boundary conditions. Moreover, it can deal with inhamogeneaus 
materials. 

A thorough study of the integration of identification algorithms and finite element 

methad definitely wil! imprave the identification method. The main purpose here, 
was, however, to develop the identification methad as a whole and to demonstrate 

its value. A standard finite element code is used, which enables varied model 
facilities. For the calculations DIANA (Borst et. al., 1985) is used. DIANA 

incorporates pre- and postprocessing facilities, and supplies a variety of element 

types and material models. 

The major practical problems of the finite element rnadeling do refer to the 
rnadeling of the geometry of the sample and the boundary conditions. 

The techniques used for measuring the geometry of samples of biologica! materials, 

but also of technica! materials, are poor, due to the complexity of the geometries 

involved and due to the fact that they deform easily under the external load. In the 
present thesis additional marks on the edges of the sample surface were used to 
measure the sample geometry. 

Moreover, the boundary conditions for clamped edges are hard to model, due to the 

Jack of exact data. Fibers in the material may cause that only a part of the 

clamped edge is actually loaded. Slip in the ciarups may also introduce inaccuracies 
in the rnadeling of the clamped edges. 
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sample f1n1te element model 

Figure 2.3.1: Finite element modelfora part of the sample. 

A possible salution for these problems is rnadeling of only a part of the sample. A 

selected set of markers may be used to define the edges of the part of the sample 

under consideration (figure 2.3.1). An advantage of this metbod is that the 
geometry of the model is relatively wel! defined. The boundary conditions, in the 
finite element model, are based on the displacements of the edge markers. A 

consequence of this approach is that only displacements can be used as boundary 

comditions and no farces . It is obvious that, with such a model, no stiffness 

parameters can be deterrrtined, although it is still possible to estimate the ratios 
between the different stiffness parameters. (An example of this approach can be 

found in chapter 4) 

2.4 Parameter estim.ation 

2.4.1 Introduetion 

The third subject of the identification methad camprises of the comparison between 

the experimental data and the outcomes of the finite element model, foliowed by 
the determination of updated estimations of the material parameters. It will be 

shown that the subject of parameter estimation can be approached by both the 

deterministic methad of least squares or via a statistica! formulation. In this thesis 

the first approach is prefered. Many important results, including theorems of 

recursive estimation, do not require any statistica! concepts or assumptions e.ither 

in the formulation or in their proof. For those results which do require statistica! 
formulation, the good majority does not require the assumption of Gaussian 
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statistics. All this is rather obvious when the subject is approached via least 

squares. (Swerling, 1971) 

The problem definition is presented in section 2.4.2. In section 2.4.3 the traditional 

least squares theory is dealt with. This is the starting point for the unbiased 

minimum-varianee theory of section 2.4.4. The basic difference with the previous 
section is that the statistics of the observation error, is assumed to be known. It is 

good policy to make use of all a priori information, hence an estimate is sought 

that utilizes the statistics of the observation error. Minimum-varianee parameter 

estimates, achieve this objective. Section 2.4.5 descri bes a so called sequentia! 

version of the minimum-varianee estimator, which simplifies the computations. 
Section 2.4.6 deals with the subject of the divergence of the estimation results. The 

validation problem is the subject of section 2.4.7, which provides confidence in both: 

the model and the values of the estimated parameters. Section 2.4.8 embodies an 

example, connected to the problem of ordering the experimental data in a 

sequence, suitable for the recursive estimator. Section 2.4.9 summarizes the 

identification theory. The chapter concludes with a description of the numerical 
implementation of the estimator. 

The theory is presented as an introduetion to the field of parameter estimation. 

Proofs of theorems are put in the appendices. For researchers familiar with the 

identification theory, ju st the sections 2.4.2 and 2.4.9 wil! supply sufficient 

information in order to understand the parameter estimation technique used in this 
thesis. 

2.4.2 Statement of the problem 

Assume that the observational data consist of a finitesetof columns yk, k= l, ... ,N. A 

common way of ordering the complete set of observations is: interpreting k as a 

discrete time parameter. However, here k indicates a load case oft·he experiment 

under investigation. A column yk = (y , ... ,y )Tk will contain displacement 
I m · 

components of material points, but other measurable properties , like forces, 
veloeities and pressures, are also allowed. For the development of the method, it is 

notimportant what the precise physical mean.ing of the observed quantities is. It is 

noteven required that two distinct observational veetors yk contain the sametypes 

of data. The quantitative behavior of the material is represented by a finite set of 

unknown quantities x., i=1, ... ,n. These parameters define a column x with unknown 
I 

material parameters. It is assumed that some algorithm is available to calculate yk 

when x is known. This algorithm, based on the finite element method, is 
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symbolized by a function hk(x). Function hk(x) describes the dependenee of the 

k-th observation on x if there were no observation errors. These errors will be 

presented by a column vk. 

(2.4.1) 

where: 
x= (x , ... ,x )T is a column with material parameters. 

1 n 
vk is a column of observation errors. 

Column x wil! be called the 11 parameter column11 and contains for example Youngs 

moduli, time constants, Poissons ratios or a nonlinear function of these material 

properties. It is allowed that each datum yk has a different functional dependenee 

on x, indicated by the subscript k on h. This means that different finite element 

models may be used, indicated by k, if the observational data are obtained from 

different experiments. In that case, for each experiment, an appropriate finite 

element model is used. 

In the case of linear dependenee on x, ( 2.4.1) takes the form: 

(2.4.2) 

where Hk is a prescribed matrix. In recursive estimation procedures, such as the 

Kalman filter theory (Ka lman, 1960, 1963), Hk represents the measurement matrix. 

In regression analysis, familiar to statisticians, Hk is known as the design matrix, 

and x. (i=1, .. n) are the regression coefficients. The difference between the two points 
1 

of view, only is a difference in terminology. This point is demonstrated by 

Diderich(1985), Duncan(1972), Swerling(1971) and Welch(l987). From regression 

analysis the interpretation is adopted, that the design matrix is a matrix of 

regressors, i.e., it might be possible to improve the performance of Hk by changing 

the experimental setup (Schoofs, 1987). Consiclering that the restrictions on the 

classica! experiments are relaxed in this thesis, as described in the introductory 

chapter, this point of view is important. 

The basic estimation problem is twofold: One problem is the use of the measured 

displacements yk to estimate the parameter column x. The estimator can be 

specified from the mathematica! model (2.4.1) or (2.4.2), an uncertainty model for vk 

and a priori knowledge of x. Another problem is to determine how close the 

estimate x is to the true value of the parameter column, x . Since the numerical 
true 

value of the error, (x - x), is not known, the problem is to develop an 
true 
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uncertainty model for (x -x). 
true 

In the generalized least-squares theory of the next section no roodels for the, a 

priori, knowledge of x and the uncertainty in vk are used. Instead of explicit 

roodels for the uncertainty, "reasonability" arguments are used. 

2.4.3 Generalized least-squares estimation 

Consicier the problem as formulated in (2.4.1) for one observation yk. A "generalized 

least-squares" procedure for obtaining an estimate ~ of the parameter column x 

from the k-th datum is defined as follows. Define a non-negative function \ by 

(2.4.3) 

where: 

W k is a positive definite symmetrie weighting matrix. 

Then, by definition, a procedure in which the estimate xk is obtained by 

minimizing Sk with respect to x, is a generalized least-squares procedure. The 

adjective "generalized" is used because classical least-squares procedures utilize 

<liagonal matrices W k' while here W k is allowed to be nondiagonal. Notice that 

there is no loss of generality by choosing W k symmetrie. For this nonlinear case, 

many methods can he found in literature for minimizing S by various iterative 

procedures, such as Newtons method, the gradient method, etc. (see e.g. Fletcher, 

1987) 

For the Iinear case described in (2.4.2): 

(2.4.3a) 

the least-squares estimator is linear too, i.e. xk is a linear function of y k and given 

by the explicit formula (see appendix A): 

(2.4.4) 
where 

(2.4.5) 

The inverses in (2.4.4) and (2.4 .5) exist if W k is positive definite and if rank(Hk)= n 

(see e.g. Siegel, 1961). If measurements are spaeed too closely together, the rows of 
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Hk will become too similar. Hence measurements must be spaeed far enough, which 

means that the measured inhomogeneous strain fields contain sufficient information 

to estimate the parameters. At this point some discussion on the dimensions of x 

and yk, respectively the number of unknown material parameters n and the number 

of observations (displacements) m, is in order. If m<n, there are fewer equations 
than unknowns. Such an underdetermined system of equations does not lead to a 
unique or very meaningful value for x. If m=n, there are exactly as many equations 

as unknowns and x can be solved exactly as: 

i = n-1 y = x + H-k1 vk 
k k k true 

(2.4.6) 

It can be observed that the characteristics of the observation error greatly effect ik, 

which is not desirable. If m>n, 

(2.4. 7) 

there are more equations than unknowns, and within this overdetermined 

structure, it can be attempted to diminish the effect of the observation error vk. 

This is the case of real interest to the generalized least-squares estimation 

(Mende!, 1973). 

The theory of the next section is a seemingly dissimHar approach to parameter 

estimation. However, it will be shown that minimum varianee estimation is a 

special case of generalized least-squares estimation. The basic difference is the 
assumption of a model for the uncertainty of the observation error vk. This extra 

information willlead to stronger results on the properties of the estimation ik. 

2.4.4 Unbiased minimum-varianee parameter estima.tion 

The equations presented in section 24.3 are not statistica! statements. These 

equations hold whether or not the quantity vk is regarcled as a statistica! variable. 
In this section vk is regarcled as a statistica! variable. Suppose vk has zero mean 

and has a covariance matrix Rk: 

(2.4.8) 

Here and throughout, E denotes the expected value. Note that the statistics of vk is 

only defined by equation (24.8). (In the next section it will be assumed also that 
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the noise sequence vk, k=l, .. ,m is whlte, i.e. vk is uncorrelated with v1 for kj!. 
Hence no correlation is assumed between displacement data from successive 

experiments or load cases. Note that }\ represents the correlation between the 

noise variables all from one experiment.) It is not required that vk has Gaussian 

statistics, nor are statistics associated to x. 

Consider the linear case (2.4.2) for a fixed k: 

(2.4.9) 

where yk is the observation column, Hk is the full rank measurement matrix, x is 
an unknown (and nonrandom) parameter column. The best linear unbiased 

estimator (abbreviated to BLUE), ~ of x is given by: 

(2.4.10) 

where 

(2.4.11) 

(Unbiased means E{i -x }=0 and "best" is meant in the sense of minimum 
k true 

varianee estimator, i.e., minimizing the expected length of the estimation error 

(:îc:k-x ) whlch is equivalent to minimizing the trace of the covariance matrix of 
true 

the estimation error). The matrix P k is the covariance matrix of the estimation 
error; that is, 

Pk = cov( :i-x ) = E{( :îc: -x )( :îc: -x )T} 
k true k true k true 

(2.4.12) 

A proof of this theorem is given in appendix B. There is an important conneetion 

between this result and the least-squares estimate of the previous section. The 

unbiased minimum-varianee estimate of x is the special case of the general 

least-squares estimate of x, if 

W = R-1 
k k 

(2.4.13) 

The proof of this conneetion between two seemingly dissimHar approaches to 

parameter identification is obvious. The minimum- varianee estimate minimizes 

tbe weighted sum of squares: 

(2.4.14) 
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Weighted least-squares estimation replaces modeling and optimality arguments by 

the intuitive judgement, that given the observations yk a "reasonable" estimate of 

the parameter column x would be obtained by choosing the value of x that 

miniruizes (2.4.14), where W k is a positive definite matrix chosen on the basis of 

engineering judgement (Schweppe, 1973). 

A minimum-varianee estimator for the nonlinear case (2.4.1) is not devised yet. 

Hence the use of the linear estimator has to be extended for the nonlinear case. 

Therefore an observation matrix is defined which depends also on x: 

H (x)= ohk(x) 
k ox (2.4.15) 

Substituting Hk(x) for Hk, the statements that (2.4 .11) yields the covariance of the 
estimation error, and that ik according to (2.4 .10) is BLUE hold only asymptotically 

(x___,x ) and are subjected to regularity conditions (Swerling, 1971 ). Now: 
true 

H = H (x ) 
k k true 

(2.4.16) 

is not directly usable, as the partial derivatives are evaluated at the true and hence 

W1known x . However a way to proceed is to make use of a previous estimate 
true 

(2.4.17) 

The previous estimate x01d can be based on a priori information on x. In the next 

section it is assumed that an a priori estimate i 01d=ik-t basedon the observational 

data y , ... ,yk is available. The sequentia] technique shows a way of combining this 
I -1 

a priori information and the information included in yk and vk. 

2.4.5 Sequentia! estimation based on prior knowledge of the parameters 

Assume that a priori information of x is available. This knowledge may be based 
on previous experiments on the material under consideration. A possible way of 

modeling this information is the following. Let ik be an a priori estimate of x; that 

is, 

(2.4 .18) 
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where ek is an estimation error of mean 0 and covariance P k: 

E{ ek } = E{ ik-x } = 0 true 

E{ ekekT} = E{( i-x )( i-x )T} = Pk 
k true k true 

(2.4.18a) 

Notice that the statistics of ek are only defined by first- and second order

moments. Letting, in some sense, P k -+co, would mean that no a priori information 

of x is available. 

Let yk be observational data in the linear form 
ti 

y = H x+ V 
k+l kt! k+l 

where vk is an observation error of zero mean and covariance Rk : 
tl +I 

E{ vk 1 } = 0 ; E{ vk v Tk } = Rk • tl tl tl 

(2.4.19) 

(2.4.19a) 

A method of combining the information in equations (2.4.18) and (2.4.19) is desired. 

For the time being, x is assumed to be a nonrandom parameter vector. One way of 

combining the information is to minimize, with respect to x, the following 

quadratic form S defined by: 

Sk = (ik- x)T P:""k1 (ik- x) + (y H x)T R-1 (y H x) 
k+l k+l k+l k+l k+l 

(2.4.20) 

Thîs problem can be solved by differentiating thls function, setting the derivative 

to 0, and solving the resulting equations. Another approach, due to Goldberger and 

Theil (Toutenburg, 1982), is to reduce the problem by writing (2.4.18) and (2.4.19) as 

a single matrix equation 

(2.4.21) 

It is apparent that the a priori statîstics of x enter in the quadratic form as 

additional observations. Using the superscript "a", denoting augmented, (2.4.21) is 

notated as: 

(2.4.22) 
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In addition it is assumed that the observation error vk is uncorrelated with the a 
+I 

priori estimation error ek. Hence, an augmented covariance matrix of the 

augmented observation error is defined: 

Ra = E{ va vaT } 
-K+l k+l k +I 

= [ ~+1 0 ] 
0 pk 

(2.4.23) 

Note that Ha is of full rank because of the presence of the identity matrix I. Then 

application of the estimator (2.4.10) and (2.4.11) to the augmented system (2.4.21) 

and (2.4.23) yields the nr. 'JE ik+! and es ti mation error covariance matrix P k•t" 

(2.4.24) 

where 
p = ( HaT R-a Ha )-1 

kt! k+1 kt! k+1 
(2.4.25) 

Eliminating the augmented veetors and matrices yields the Goldberger-Theil 

estimator: 

(2.4.26) 

pk+l ( ~k1 + HT R-1 H )-1 
kt! -""k•l k+l 

(2.4.27) 

Note that ik•t is BLUE only if (2.4.18) and (2.4.19) hold exactly. If ~.1 and P k are 

not the covariance matrices as in (2.4.18a) and (2.4.19a) is stated, but (reasonable) 

weighting matrices, then ik is the least-squares estimate using the expression 
+1 

(2.4.20). In that case matrix Pk does not denote the covariance of the estimation 
+I 

error in ik . 
+1 

The estimator (2.4.26) and (2.4.27) is used sequentially: The a posteriori estimate 

~.1 and matrix P k•1 can be used as a priori information when new observations 

yk•2, from another experiment, become available. A consequence of the assumption 

that the observation error vk.1 is uncorrelated with the a priori estimation error ek, 

is that the noise sequence vk is white (i.e. vk is uncorrelated with v 1 for kil). 

To obtain more obvious and handsome expressions instead of (2.4.26) and (2.4 .27) 

two substitations are applied: 

(2.4.28) 

and 
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(I - K H ) = P p-l 
k+l k+l k+! k 

(2.4.29) 

The latter can be found by multiplying (2.4.27) on the right by Pk1 and substituting 

(2.4.28). The substitution in (2.4.26) yields the updating equation: 

i = i + K (y - H ~ ) 
k+! k k+l k+! k+! k 

(2.4.30) 

The term Hk+t.i:k represents the expected observation datum, based on the a priori 
estimate Xk. Sirree the term yk represents the actual observed value the difference 

+1 
(yk -Hk i) represents the new information. This difference is multiplied by a 

+1 +1 k 
weighting matrix Kk and farms the innovation for the new estimate ik . 

+1 +1 
Substitution of (2.4.27) in (2.4.28) yields the weighting or gain matrix 

(2.4.31) 

According to (2.4.29) the covariance update can be calculated with 

P = (I-K H ) P 
k+! k+1 k+! k 

(2.4.32) 

Hence insteadof the Goldberger-Theil estimator, (2.4.26) and (2.4.27), an alternative 

formulation cantairring an estimation update (2.4.30) , a covariance update (2.4.32) 

and a gain matrix according to (2.4.31) is obtained. Especially in the cases were the 
dimension of the observation column (m) is less than the dimension of the 

parameter vector (n) computation time can be reduced, because a smaller matrix is 

to be inverted. It can be shown that (2.4.31) can be replaced by (appendix c): 

K = P HT (R + H P HT )-1 
k+! k k+l k+! k+! k k+! 

(2.4.33) 

For the nonlinear case 

Y = h (x) + v 
k+l k+! k+l 

(2.4:34) 

the asymptotically correct expressions (2.4.15) and (2.4.16) of the previous section 
can be used. A practical linearization for the gain matrix and covariance update 

calculation is: 

(2.4.35) 

Instead of the estimation update (2.4 .30) the linearized minimum- varianee 
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estimator uses: 

(2.4.36) 

See appendix D. As a result of this extension of the minimum-varianee estimator 

for nonlinear cases the estimator is no Jonger the optimum in the sense of being 
BLUE. The performance of the extended estimator will improve for .ik----~x . For 

true 
this goal it might be necessary to use the observed data more than once. 

2.4.6 The influence of modeling errors on sequentia! estimation 

In some applications one finds that the actual estimation errors exceed the values 

which would be theoretically predicted by the error varianee P k (2.4.32). In fact the 

actual error may become unbounded, even though the error varianee P k is smal! 

(Sage and Melsa, 1971). This can affect the usefulness of the sequentia! estimator. 

This section embodies a practical solution of this problem, which may be caused 
by: 

i) inaccuracies in the modeling process used to determine the observation 

model (2.4 .1). We may know too little about the detailed behavior of the 

materiaL The model may have been chosen Jinear or !ow-order, because 
modeling effort is limited or a simple model is required. 

ii) errors due to the linearization (2.4.35). 

iii) errors in the statistica! modeling of the observation error (2.4.8). 

iv) errors in the statistica! modeling of the a priori information of x (2.4.18). 

The presented estimation theory does not consider these errors, but is based on on 

the assumption that the models are perfect. The effect is that Kk tends to become 

very smal! and that too little weight is being put to the new data. 

A possible modification which may be made to the sequentia! estimator to put 

more weight to the new data is to use the following quadratic form S 

Sk = (.ik-x)T (Pk+Qk)-1 (.ik-x) (2.4.37) 

+ (y H x)T R-1 (y H x) 
k+l k+l k+l k+l k+l 

instead of (2.4.20). Here Qk is a nonnegative symmetrie matrix. It is obvious that 
the introduetion of Qk makes it possible to put less weight to the a priori estimate 
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~ (and more weight to the new datum). The exact choice for Qk, which may differ 
for each k, is still unspecified, and one usually must resort totrial and error. 

The introduetion of (2.4.37) leads to slightly different results. Instead of (2.4.32) and 

(2.4.33) modified equations are obtained: 

(2.4.38) 

(2.4.39) 

It could be argued that the estimator (2.4.30) tagether with the equations above is 
no Jonger BLUE. However, neither was the original estimator, due to the mentioned 
causes of divergence. In some applications the nonoptimum result of this section 

may be superior. 

In appendix E it is shown that matrix Qk wiJl appear more naturally if statistics 

are associated to the parameter column x and the model inaccuracies are described 

in statistica! terms. 

2.4.7 Valida.tion 

This section includes a selection of validation checks applied to results from actual 
measurements. These tests are mostly quite informal, and are meant to bring out 

typical weaknesses in the model. Forma! hypothesis testing (Sage and Melsa, 1971) 

usually requires that the conditional densities of the measurements are known. This 
sort of tests may have a role in refining an already good model, but in earlier stages 

of model validation less forma! checks, less reliant on idealizing assumptions are 

more to the point. Norton (1986) suggests five tests: 

i) The measurements y k' before doing anything with . them:-- In the case of 

measurements on a non-homogeneaus strain field, plots of the strain 

distribution may help checking the measurements. 

ii) The parameter estimates ~, in the light of background knowledge: The 

relativeness of this t est is made clear by the fact that a model with a bad set 

of parameter estimates, or even with a physically non-realistic set of 
estimates, may have a good behavior as a whole. 

iii) The fit of the model to the measurements, through the residuals: An easily 

overlooked point is the difference between the residuals yk-hk(.i:N), and 

the innovations of the estimation algorithm yk- hk(xk_1). Note that iN is 
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the final estimate, and xk is the most recent estimate during the 
-I 

estimation. Excessive correction may give that yk-hk(xk_1) is small but that 

yk-hk(xN) is large. This is particular likely when matrix Q is large. 
iv) The covariance of the estimation errors PN: Note that PN itself is also an 

estimate. A better, but uncommon, notation would be PN" The estimate PN 

could be biased, caused by the reasons mentioned in section 2.4.6. 

v) The behavior of the model as a whole: A test revealing whether a model 
works is to try it on measurements different from those used to estimate it. 

from. The validity of the model can be measured for instanee by the mean 

square of the residuals: 

g2 (2.4.40) 

where m is the dirneusion of the new measurements y1, ... ,yN" For the 
ideal case without model errors and using the actual parameter column 
x , the theoretica! expectation of the mean square error would be: 

true 

N 

E{s2} = ~N L tr(Rk) (2.4.41) 

k =I 

Here the observation errors are assumed to be mutually independent. The 

actual covariancé of the observation errors, Rk, could be replaced by its 

estimated value to approximate the expected mean square error. 

These tests may detect a poor performance of the model. Unfortunately, the action 
needed will vary. It is hard to predict the best technique in a particular case . Prior 

experimentation with simulated measurements can be necessary. 
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2.4.8 Example: sequencing the observed data 

In section 2.4.2 it is stated that the observed data consist of columns yk, k=l, ... ,N. 

Evidently the complete data set is divided in N parts, in a specific order. In this 

section the effects of this data ordering are illustrated and discussed for an 

example, i.e. a visco-elaBtic bar in tension: 

§..f-----------1 -
F(t) 

Figure 2.4.1: A visco-elastic bar in tension. 

Figure 2.4.1 shows the bar with constant cross section A, loaded by an axial force 

F(t), where t represents the time. In this example, a creep test with a load step of 

magnitude F at t=O is simulated. The strain is referred to as c(t). For the creep 
behavier of the material the following relation is assumed: 

(2.4.42) 

where E is a known elasticity modulus. The quantitative behavier of the material is 
described with the parameters Xj. Next, it is assumed that the strain is only 

measured at discrete moments in time: 

q = c(j 6.t) ; j=l, .. ,lO (2.4.43) 

These measured data are simulated according to (2.4.42) where xT =(0.1, 0.2, 0.3), 

6.t=l.O and E=F /A. Figure 2.4.2 shows the simulated data. In the figure physical 

interpretations of the parameters are given. Evidently, the behavior for t=O and for 

t=oo is totally determined by the parameters Xt and x2 respectively. 

Reeall that the sequential theory of the present chapter doesn't require a temporal 
use of the measured data. Hence, there are many possibilities in which the data will 

be ordered for use in the sequentia! estimator. For illustrative reasans we will 

present four cases in this example: 
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Figure 2.4.2: Observed strain data. The strain for t=O corresponds 

to Xt while the strain for t=oo corresponds to x2. 

case 1: Yk = (k ; k=l, .. ,lO 
case 2: Yk = (H-k ; k=l, .. ,lO 

case 3: Yk = fk ; k=1,3, .. ,9 

Yk = ft2-k ; k=2,4, .. ,10 

case 4: YI = (fJ, . . ,(JO) ; k=l, .. ,lO (2.4.44) 

In the first case, the observations are gathered in temporal order. This case is 

common for filter applications for control situations, where the observations 

become available in time. In the second and third case, k represents an ordering 

variabie rather than a discrete time. In case 2 the observations are ordered in 

decreasing temporal ordeL Case 3 is some alternating combination of the cases 1 

and 2. Finally case 4 may be described as the batch case: the total set of 

observations is gathered in one single column. 

The estimation results for the four cases are presented in figure 2.4 .3. Here a 

straightforward application of the estimation theory of the previous section is used 

(for a detailed description see appendix G). In the cases, the same initia! guess for 
the parameter column is used: :ÎC.~=(0.4, 0.4, 0.4) . 

It can be observed that in case 1 x1 converges relatively fast to its actual value, 

where it converges slow in case 2. This corresponds to its physical interpretation. 

Apparently Xt is not adjusted until the observations contain information about the 

parameter. In a similar way x2 may be considered. The results of case 3 don1t show 
these phenomena as aresult of the alternating character of the data sequence. 
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Figure 2.4.3: Estimation results as a function of ordering index k for the 

cases 1, 2 and 3, and as a function of the number of iterations in case 4. 

In the first three cases the estimation results for x3 are poor. The observations are 

nonlinear in this parameter. Due to this, it is necessary to use the observed data 

more than once, for instanee by iterating at each observation. Another possibility is 

to repeat the estimation with the previous estimation results as improved initia! 

guesses. In that case also x3 wil! converge to its actual value. 

The results of casé "4 appear to be superior. This, however, may be a misleading 

conclusion . In case 4 in each step of the estimation algorithm the total set of 
observations is used. Hence in each step a IO-dimensional function h(x) is 

evaluated, where in the previous cases only scalar observation functions are 

evaluated. Hence consictering the computing time needed for each step, case 4 may 

even be considered as inferior to the scalar cases. On the other hand, if enough time 

is available for the calculations case 4 would be attractive. 

This example shows that there is much freedom in ordering the measured data. In 
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practical applications this choice wil! depend on the structure of the model. For 
instance, for complex visco---elastic models it is of great importance whether or not 

a recurrent version of the model exists, which solves the field equations for 

successive points in time. If not, one would strongly tend to choose a batch 

algorithm as in case 4. However, besides the above considerations on computing 

time also the computing memory may be a decisive factor for choosing an 

identification algorithm. 

2.4.9 Summary 

In this section, the basic identification equations are summarized. For nonlinear 

problems the following updating equation is used: 

x = x + K (y - h (i.)) 
k+l k k+l k+l k+l k 

(2.4.45) 

where k is the ordering variabie for the observations. The difference yk+l-hk•l(~) 
represents the new information. This difference is multiplied by the gain matrix 

Kk , given by 
tl 

(2.4.46) 

An alternative is equation (2.4.31). The matrix P k in this expression is updated by: 

P = (I-K H )(P +Q )(I - K H )T + K R KT 
kt! k+l k+l k k k+l k+l k+l k+l k+l 

(2.4.4 7) 

or alternatively by (2.4.32). The initia! conditions x0 and P0 and the weighting 

matrices Qk and Rk for k=l, ... ,N should be specified. The equations (2.4.45) through 

(2.4.47) define a least-squares estimator or a minimum varianee estimator, 

depending on the interpretation of P, Q and R. In sequentia! least-squares 

estimation, P, Q and R have no physical meaning. However P k' k=O, ... ,N has a very 

important meaning in the case of sequentia! minimum varianee estimation, since 

then it is the covariance of the estimate xk: 

(2.4.48) 

A guide for choosing P 0 is that each principal diagonal element of P 0 should not be 

41 



smaller than the square of the largest initia! error which would he unremarkable 
(Norton, 1986). Generally: the larger P 0, the smaller the influence of x0. 

~ represents the covariance matrix of the error in observation yk. It is assumed 

that the noise in all observations is white. Note that the covariance ~ is between 

noise variables all at one observation yk, and does not describe correlation between 

successive observations. 
In practice Qk prevents that the parameter error covariance P k becomes too smal!. 

Andersou (1973) advises to choose Qk smal! but not zero, even if the model is 

perfect. 

2.4.10 Numerical implementation 

The estimator is implemented as an extra module PAREST in the finite element 

code DIANA, which is also used for the finite element modeling. PAREST wil! be 

used to campare tbe experimental data witb the outcomes of fini te element models. 

In the present section a description of PAREST is given. 
In DIANA each module perfarms a specific task from the users point of view. User 

commands are grouped tagether per module. Each module is sub--divided in 

segments. A segment may be considered as an executable image (a program). 

Module PAREST is divided in 9 segments. Since segments are programs, the 

segments must be executed in a distinct sequence, derived from the user
commands. Figure 2.4.4 shows a typical sequence of PA REST segments. Here the 

segments are indicated witb a short description of their purpose. A more detailed 

description of the steps of the numerical process is included. The essence of module 

PAREST is that it also uses segments from other DIANA modules. These modules 

are normally used for linear and nonlinear finite element analysis. In this way 
PAREST ensures the varied model facilities of DIANA. A comprehensive description 

of PAREST is given in Courage (1989), who also gives some applications. 

The following descriptions of tbe PAREST segments are numbered with reference to 
figure 2.4.4: 

1) Input of marker coordinates, marker displacements Yk and weighting 

matrices Rk. 

2) Input of initia! guesses for the parameter column X:o and the matrices Po 
and Qk. 

3) Verification to which elements the markers belang. 
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observations 
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pertubat ien of the value of one parameter 
6 

c omplete linear or nonlinear analysis 7 

with standard DIANA- segments 

calculation of one the observation matrix 
e 

n 

y 

y 

Figure 2.4.4: Flow diagram of a typical sequence of segmentsin module PAREST. 

4) The structure of PAREST implies, that the measured data are ordered in 

such a way, that each column observation Yk represents the observations of 

one moment in time or of one loading case. The ordering of the observations 

Yk is not restricted. 
5) Two alternatives are available. Either in each iteration the linearized 

observation matrix Hk is determined, or Hk is updated only after some 
i ter ations. 

6) Perturbation of the parameter values for the numerical differentiation of 

hk(x). For the approximation of the derivative the finite difference quotient 

is used: 

Column j o/Hk (2.4.49) 
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where ei is the j-th unit column and si is the step size. The total numerical 

error is the summation of the truncation errors and round-off errors. A 

decrease in the step size leads to a decrease in the truncation errors. The 

dilemma is, that this willlead to an increase of the round off errors. In order 

to save computing time, no optimization schemes are used for the 

determination of an optima! step size. Instead, the step size is chosen in 

accordance with the trial and error solution: 

si= o.ooo1 if l(xk-t)ïl $ o.ooo1 
si= (xk-l)j o.ooo1 if l(xk-t)ïl > o.ooo1 (2.4.50) 

7) Here standard DIANA segments are used for a completelinearand nonlinear 

analysis. For a nonlinear analysis the number and sizes of the time- and 

Ioad- steps are adjusted, according to the current observation Yk· 

8) Numerical differentiation of h(x) according to equation (2.4.49). 

9) Parameter estimation as presented in section 2.4.9. 

10) Convergence check with respect to the size of the parameter innovations. 

The identification metbod as described in this chapter, is tested in the next 

chapter. For this purpose, experiments with a homogeneaus membrane will be used 

with elastic, orthotropic material behavier will be used. 



3 Testing of the identification method, using 
an orthotropic elastic material 

3.1 Introduetion 

In this chapter the identification method, as described in the previous chapter, is 
tested. For this purpose a homogeneaus membrane is used with orthotropic, elastic 

material behavior. Traditional experiments can be performed, in order to compare 
the results with those of the identification method. The aim of the chapter is not 

the testing of this particular material, but is the testing of the identification 
method. 

Section 3.2 describes the experimental setup. This includes a description of the 

material, the sample geometry and boundary conditions and a description of the 
strain distribution measurement. Then, section 3.3 presents the finite element 

models. Section 3.4 describes the estimation of the five unknown material 
parameters, presenting results of different initia! guesses and of different finite 
element models. The main issue of section 3.5 is an evaluation of the results. This 
includes validation tests on the parameters and tests on the model behavior as a 

whole. In addition simulation studies are presented to study the parameter 

identifiability. Finally section 3 6 resumes the identification results of the present 

chapter. 

3.2 Experimental setup 

3.2.1 The material 

The material used in the identification experiment, is a woven and calendered 

textile. Figure 3.2.1 shows the structure of the material. The figure shows an 

interlacing structure of warp and weft yarns. The warp and weft yarns are 

interlaced in a regular sequence. On a scale large enough to average Jocal 
properties, the material can be regarded to be homogeneous. Because of this 

structure, an orthotropic model for the mechanica! behavior with €h, ih and (h 
(figure 3.2.1) as directions of symmetry seems appropriate. Moreover the textile 

samples used can be considered as membranes under plane stress conditions. 

Despite a slightly visc()-€lastic behavior linear elastic properties were assumed. 
The strain-stress relations under plane stress conditions are given by: 
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Figure 3.2.1: Structure of the material with two axes of material symmetry . 
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Figure 3.2.2: Traditional testing of the material in three directions. 

The dots represent the positions of the markers. 
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Figure 3.2.3: Relaxation experiment with an elangation of 3%. 



where 

[ 
cos2a 

T = sin2a 
-sina cosa 

si n2a 
cos2a 

sina cosa 

(3.2.1) 

2 si na cos al [ 1/Et -Vt2/Et 0 I 
-2 si na cos a ; S = -vt2/Et 1/E2 o 

2 cos 2 a - 1 o o 1/Gt2 

fx, fy and /xy are the strain components in an arbitrary coordinate system (x,y,z) 

and ax, ay and Txy are the stress components. S is the compliance matrix 

containing four independent parameters Et, E2, 1112 and Gt2· T is a transformation 

matrix from the model coordinate system to a coordinate system that matebes the 

axes of symmetry of the material, where a is the angle from the arbitrary model 

x-axis to the material 1-axis. 

Three uniaxial tension tests have been performed on flat pieces of the material, on 

a tensite test machine (Zwick 1434). The dimensions of the samples were 200 mm x 

20 mm x 0.25 mm. The first two tests are in material 1-direction and 2-direction, 

todetermine the Youngs moduli E1 and E2 and the Poissons ratio v12. In the third 

case the loading is at 45° to the material 1-direction (figure 3.2.2) to determine the 

shear modulus Gt2· The three tests are repeated with similar samples of the 

materiaL To each sample 9 markers were attached. The displacements of these 

markers were measured with a video tracking system, in order to determine the 

principal strains near the central marker. The video tracking system is described in 

section 2.2. The load was applied in steps. After each step the material was relaxed 

for 180 seconds before the strains were measured. In this way a reproducible state of 

the material is obtained, for which an elastic model can be used. As a characteristic 

of the visco-elastic properties, figure 3.2.3 shows the result of a relaxation 

experiment, performed with an elangation step of 3%. Figure 3.2.4 gives plots of the 

data that were used for the determination of Eh E2, 1112 and G12 respectively. For 

the determination of the parameters, strains up to 0.025 are considered. In this 

range, the material behaves approximately linear. In table 3.2.1 the results of 

classica! testing are summarized. The accuracy is specified by means of standard 

deviations. Possible systematic errors may be caused by the extraction of the 

sample, leading to a destructien of the structure. In addition, out of plane 

displacements of the sample may lead to bias in the measurement of the strains. 

The measurement data contain more information than necessary for the 

determination of the four parameters. From the tensile test in material 1-direction, 

also a parameter 1121 can be determined (v2t=0.13). For orthotropic behavier this 
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Figure 3.2.4: Determination of the parameters E1 and E2 (upper panels), 

and v12 and G12 (lower panels) respectively .. 

Parameters Traditional testing 

Xj unit (x t) i Sj 

Et [kN/mm2] 0.62 0.05 

E2 [kN/mm2] 0.52 0.06 

Vt2 (-] 0.21 0.01 

Gt2 [kN/mm2] 0.080 0.005 

Table 3.2.1: Traditional testing results. The accuracy of 

the traditional testing results is specified by means of a 
standard deviation, basedon repetitions of the experiment. 



parameter depends on the other parameters (v2FE1v12/E2). Elaboration of this 

internal check leads to contradictory results (E,v12/E2=0.25), which questions the 

validity of the traditional testing. Apparently the traditional testing is influenced 

by the destruction of the internal coherence, as discussed in the introductory 

chapter. 

3.2.2 Sample choice and boundary conditions 

The identification methad allows the use of objects of arbitrary shape with 

inhamogeneaus strain distributions. The only demand on the strain distribution is, 

that it contains enough information to make the determination of the material 

parameters possible. Hence, it is sensible to perfarm some numerical simulations 

with known parameters in advance. The data from these simulations can be 

disturbed by random noise. When the parameters can be traeed back from these 

disturbed data, there is a good chance that this is also possible in the real 

experiment. By using noise with different amplitude, the influence of the 

observation error can be investigated. 

In our set-up, we used a membrane of 100 mm x 100 mm x 0.25 mm (figure 3.2.5). 

The membrane was clamped along one edge and was free to deform on the other 

sides. One material axis is oriented at about 45° from the clamped edge 

(figure 3.2.6). 

The membrane was loaded with two forces, F 1=0.l kN and F2=0.0S kN, in the plane 

of the membrane. This resulted in strains, up to a maximum of 0.03. With this 

load, wrinkling of the membrane was avoided. 

The strain distribution and the shape of the free boundary, were measured with 

markers on the surface of the membrane. The next section describes the 

measurement of the positions and displacements of these markers. 
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Figure 3.2.5 (left panel): Schematic drawing of the identification experiment. 
The dots represent the positions of the markers. 

Figure 3.2.6 (right panel): The material orientation in the experimental setup. 
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Figure 3.2. 7: Principal strain distribution based on the measured 

displacementsof the markers. Solid lines represent positive 

principle strains, dotted lines represent negative strains. 



3.2.3 Strain distribution measurement 

The positions of the markers are measured both in the reference situation (figure 

3.2.5) and in the deformed situation. In the second case, the measurement is carried 

out after a fixed period of 180 seconds after loading the membrane. This should lead 

to the same material state as in the traditional experiments. In both cases 140 

window scans are carried out, i.e. the positions of the markers are measured 140 

times. The scan frequency for the whole image was 7.07 Hz. This results in two sets 

of measured data: 

pij ; qii i=l..m, j=l..n. (3.2.2) 

where p .. denotes the measured position of the i-th marker in the reference 
IJ • 

situation, in the j-th window scan; q .. denotes the measured position in the 
IJ 

deformed situation, m is the number of markers (m=79) and n is the number of 

samples (n= 140) . Both p .. and q .. are columns of length 2. The components of 
IJ IJ 

these columns are the cartesian coordinates of the centraids of the markers. 

It is assumed that the positions of the markers didn't change substantially in the 

time the sampling took place (the total acquisition time was 19.8 seconds). The 

sample means of p .. and q .. are used as estimates for the actual positions of the 
IJ IJ 

markers: 

- t" - In . 
p. =- ~ p.. ; q. = - ~ q.. ,I=l..m 

1 n T IJ 1 n T IJ 
(3.2.3) 

Based on n samples, it is possible to estimate tbe varianee of the measurement 

error. Furthermore, it is possible to estimate the varianee of the error of p. and q .. 
I I 

These estimates are described in appendix H, where it is assumed, that the samples 

are mutually independent random variables. The error estimate is expressed in 

pixels (picture elements) and sbould be compared to tbe number of pixels in the 

whole image, 32768><32768. For the experimental set-up used, this resulted in the 

following estimates: 

s2 = 51.9 pixels2 (s 
82 0.37 pixels2 (8 

7.2 pixels) 

0.6 pixels) 

(3 .2.4) 

where s2 is the sample varianee for the components of the samples p .. and q .. and 
IL IJ 

82 is the sample varianee for the components of the means p. and q .. The accuracy 
I I 

of the assumption of the mutually independent sampling is critica! fora proper 
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Figure 3.2.8: Domain of the principal strains. 
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Figure 3.3.1: measurement of the geometry of the sample: Image coordinates of the 
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Figure 3.3.2: finite element models with respectively 100, 400 and 1600 elements. 
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interpretation of these variances. The actual errors may be larger (e.g. due to lens 
distortion). 

If necessary, we might estimate confidence intervals for the means p. and q .. These 
1 1 

quantitative statements reference to a certain clistribution (e.g. a normal 

distribution) of the samples. Note that the sample mean and varianee (eq. 3.2.4) are 

derived, without referencing to the distri bution of the samples. 
The data handling continues with the determination of the displacements of the 

markers. These displacements are calibrated and rotated: 

d. = p. - q. = Tc p. -Tc q. ,i=l..m 
1 1 1 1 1 

(3.2.5) 

where cis the calibration factor (c=5.96xJ0-3 mm/pixel) and T is a rotation matrix. 

This rotation is used to match the coordinate system of the video system with the 

coordinate system of the finite element models, which are described in the next 

section (rotation angle: 0.82°). Neglecting the influence of this smal! rotation, the 

resulting covariance of the displacement components can be estimated by: 

(3.2.6) 

Finally, the columns d. are collected in one single observation column y of 
1 I 

dirneusion 2m: 

(3.2.7) 

For the parameter estimation scheme, the above colurrm of observations is 

considered. However, for an examinatien of the strain field a plot of the principal 

strain distribution is of major importance. Figure 3.2.7 shows a strain distribution 

based on the displacementsof the markers measured. Figure 3.2.8 shows the domain 

of the observed principal strains. This domain gives some information about the 

inhomogeneity of the strain field. 

3.3 Numerical model 

The experiment of the previous section is modeled by means of the finite element 

method with 4-noded, isoparametric, plane stress elements. The geometry of the 

sample is measured by putting additional markers on the edges of the surface 

(figure 3.3.1). Moreover, markers are attached on tbe strings inducing the two 

forces, in order to measure the direction of the forces. Figure 3.3.2 shows three finite 
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Figure 3.3.3: modeled strain distribution. Solid lines represent 

positive principle strains, dotted !i nes represent negative strains. 
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Figure 3.3.4: parameter study of the 89-th component of function h1(x). 
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horizontal displacement of marker 45. This marker is accentuated in figure 3.2.5. 



element models with increasing fineness . Figure 3.3.3 shows a typical modeled strain 
distribution. 
The material behavior is assumed to be orthotropic, linear elastic. Moreover, the 
material is assumed to have homogeneous properties. The quantitative behavior 
can bedescribed with 5 parameters (see section 3.2.1): two Young's moduli (E1 and 
E2), one Poisson ratio (v12), one shear modulus (Gt2) and the tangent of the 
positive rotation of the material axis from the arbitrary model axis (tan(a)): 

(3.3.1) 

Using the finite element method , the displacements are calculated in the nodes of 
the model only. The calculation of the displacements of the markers requires an 
interpolation of the nodal displacements. This makes it necessary to determine for 
each marker to which element it belongs. This is done with help of the 
interpolation functions of the elements: 

(3.3.2) 

where p. is the position of marker i according to (3.2 .5); n~ are the coordinates of 
I J 

the nodes of element e, and f. ( ~) are interpolation functions using a material 
J 

coordinate system f Marker p. is said to be in element e when (3.3.2) has a solution 
I 

for ~. within its domain. Although interpolation (3.3.2) is linear, the solution of~ is 
a nonlinear problem. In order to solve ~. Newtons method is used (see e.g. Gill, 
1981). The solution is used for modeling the displacementsof the markers: 

(3.3.3) 

where ~ . is the solution for marker p., and u~(x) are the nodal displacementsof the 
I I J 

corresponding element . The observation function h1(x) is constructed using the 
functions d .(x) . The observation function is highly nonlinear. Figure 3.3.4 shows 

I 

some nonlinear aspects of this function . The nonlinearity is influenced by the 
parameterization (3.3.1) . It is worth consiclering to choose other parameterizations 
x=g(x) : 

ht(x) = ht(g-1(x)) = ht(X:) (3 .3.4) 
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Parameters Initia! guess Estimates 

Xj 

Et 

E2 

llt2 

Gt2 

tan( 0') 

unit (xo)i JcPo)ii (xt)i J(Pt)ii 

[kN/mm2] 0.70 0.10 0.56 0.009 

[kN/mm2] 0.30 0.10 0.57 0.004 

[-] 0.30 0.10 0.22 0.006 

[kN/mm2J 0.10 0.10 0.080 0.0004 

[-] 1.50 0.10 1.05 0.007 

Table 3.4.1: Parameter estimation results using the 
100 elements model of figure 3.3.2, after 15 iterations. 

Et E2 llt2 Gt2 tan( 0') 

Et 74 . 6. -40. -3.0 -36. 

E2 19. 14. 0 . 1 21. 

llt2 42 . 0.4 2 . x 10-6 

Gt2 0 .2 2 . 
t an( 0') ( symme t ric) 50. 

Table 3.4.2: Covariance matrix P 1 after 15 iterations. 
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Figure 3.4.1: Parameter estimation with reasonable initia! guesses (table 3.4.1). 



whlch may reduce the nonlinearity of h1(x), without changing the function 
intrinsically. In this case the pragmatic choice is made for the parameterization as 

it is implemented in the DIANA-code (equation 3.3.1) . 

Ideally, their should be no model errors with respect to the material behavior. 

However, in practice it is an arduous task to find a material that approximately 
behaves linear, orthotropic elastic. The textile used satisfies these demands fairly 

well. Nevertheless, some remarks are appropriate: 

• The material is assumed to have homogeneaus properties. Repetitions of the 

classîcal experiments with different samples confirm this assumption. 

• Figure 3.2.3 reveals visco-elastic properties of the materiaL By using a standard 
relaxation time for each experiment, this behavior is ignored. 

• The material parameters, obtained in the classica! experiments, are based on 

strains up to 0.025. Due to the slightly nonlinear behavior the parameters wil! 
vary with the strain range used (figure 3.2.4). Although the precise choice of this 

range is arbitrary, the strains observed in the identification experiment 
(figure 3.2.8) justify the range used. 

During the rnadeling many simplifications are introduced. Besides the rnadeling of 

the behavior of the material, the rnadeling of the geometry and the boundary 

conditions, the assumed two-<limensional character of the experiment and 
lubrication probieros may also lead to model errors. The consequences of these 
model errors are hard to predict. The severeness of the model errors mentioned wil! 

be investigated in the next section. Here the effect of the rnadeling errors on the 
estimation results will appear. 

3.4 Parameter estima.tion 

To initiate the recursive parameter estimator, an initia! guess :i:o for the parameter 

values and an initia! guess for the error covariance of :i:o are needed. We consider 

the initia! errors of the parameters to be mutually independent, i.e. we consider Po 
to be diagonal. The diagorral elements correspond with the squared errors expected 

in the initia! guess. In table 3.4.1 the values for :i:o and Po are given. 

The accuracy of the measured displacements can be taken into account in the 
covariance R1. We assume that the observation errors are mutually independent. 
The diagorral elements are set to 10-4 [mm2). 
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Parameters Initia! guess Estimates 

Xj unit (xo)i J(Po)ii (xt)i J(Pt)ii 

Et [kN/mm2] 2.00 0.10 0.57 0.009 

E2 [kN/mm2] 4.00 0.10 0.57 0.004 

Vt2 [-) 0.25 0.10 0.22 0.006 

G12 [kN/mm2J 0.50 0.10 0.080 0.0004 

tan( a) [-) 1.00 0.10 1.05 0.007 

Table 3.4.3: Parameter estimation results using the 100 elements model 
offigure 3.3.2, and with bad initia! guesses, after 15 iterations. 

2r-~~----------------------------. 

1/) 

Q) 
Qî 
E 1 
l1l 
iiï 
n. 

I' 11 
I ~ 
I 11 
lil 
( I 

1\ I 
I 11 

I 11 

~ ~ 
~----. ,,' 

' .. 
' ' ..._ 

"'- - . - -~- - . - -

0 2 3 4 5 6 7 8 9 10 

lterations 

Figure 3.4.2: Parameter estimation with poor initia! guesses (table 3.4.3). 



Our confidence in the model assumed can be expressed by a proper selection of the 

matrix Q. Note that even with a perfect model it is advisable to make Q smal! but 

not zero, because of convergence reasans (Anderson, 1973). In the analysis we will 
take Q diagorral with Q= r10-4, 10-4, 10-4, 10-4J . This value is rather arbitrary. 

Figure 3.4.1 shows the estimates of the five material parameters as a function of the 
iteration counter, starting with the initia! guess :Xo. It can be observed that the 

estimates converge. The parameter estimates resulting after 15 iterations are given 

in the third column of table 3.4.1. Anticipating the validation of these estimates in 

section 3.5, we will examine the parameters in the light of background knowledge. 

In order to avoid the creation of energy some thermadynamie constraints on the 
values of theelastic constants must be satisfied: 

(3.4.1) 

The estimates of table 3.4.1 satisfy these conditions. It can be observed that there is 
only a slight difference between the Young's moduli Et and E2, which is in 

agreement with the structure of the materiaL The shear modulus of the textile 

structure is low: approximately 100 % lower than the conesponding isotropie value 

(which is E/2(1+v)). This is typical for plain weave structures (Chou, 1989). Finally 

the estimate for tan( a) agrees with the rotation of the material axes of about 45°. 

In the last column of table 3.4.1 rough guesses of the associated parameter 

estimating errors are given, based on the estimated Pt matrix (table 3.4.2). The 
table shows that the E2 estimate is more accurate than the Et estimate. A possible 

explanation is that the strains in the material 2-direction are larger than in the 

material 1-direction (figure 3.2.7). Hence the relative errors on the measured 

displacements in material 1-direction are smaller. 

The initia! guesses for io and Po are in fact poor reflections of the a priori 
knowledge of these parameters. For instanee the a priori knowledge that Et and E2 

wil! only differ slightly could have been expressed by identical initia! guesses for E1 

and E2 and by choosing the corresponding non-diagonal element of Po large. In 
many practical situations however such a priori information is not available. 

Table 3.4.3 and figure 3.4.2 present results with the same model and observation 

data, but with a worse initia! guess :Xo. It can be observed tbat the parameters 

converge to the same values. Note that not only io is a bad initia! guess, but that 
also Po is a bad estimate for the assumed estimation errors of :Xo. 
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Parameters 100 elements 400 elements 1600 elements 

Xj unit (it)i [CPt)ii (it)i [cPt)ii (xt)i [CPt)ii 

Et [kN/mm2] 0.56 0.009 0.59 0.009 0.60 0.009 

E2 [kN/mm2J 0.57 0.004 0.61 0.005 0.62 0.005 

VJ2 [-] 0.22 0.006 0.19 0.007 0.18 0.007 

G12 [kN/mm2] 0.080 0.0004 0.081 0.0004 0.081 0.0004 

tan(a) [-] 1.05 0.007 1.08 0.006 1.08 0.006 

Table 3.4.4: The influence of the fini te element model on the estimation results. 
The initia! conditions are the same as in table 3.4.1. 

Table 3.4.4 shows the influence of the choice of the model on the results of the 
estimation. Models with increasing fineness, as described in section 3.3, are used. 
The table shows that the estimates for the Youngs moduli slightly increase and the 

Poisson ratio slightly decreases, if the number of elements increases. This can be 

explained by the decrease of the stiffness of the structure, as it is modeled with 

more elements. The interpretation of the mesh dependent results of the 

identification is one of the subjects of the next section. 
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3.5 V alldation 

The main issue of this section is an evaluation of the identification results of the 

previous section. Section 3.5.1 compares the results of the identification approach 

with these of traditional testing, see section 3.2.1. Section 3.5.2 validates the model 

and parameters by checks on the residuals. Section 3.5.3 shows the prediction of 

another experiment with the identified model. Finally section 3.5.4 presents results 

of simulation studies, in order to examine the influence of observation errors on the 

identifiability of the model with the used experiment. 

3.5.1 Identification approach versus traditional testing 

In table 3.5.1 the results of the traditional testing are summarized, together with 

the results of the identification approach. As a part of the traditional testing, the 

symmetry axes of the material are determined optically. 

Good agreement exists between the results of the two approaches. For parameter 

E1 the agreement is better when the 1600-element mesh is used for the modeling. 

Apparently, the estimate from the finite element model with a fine mesh is more 

consistent with its physical interpretation. However, for parameter E2 the 

deviation is rather large. The structure of the woven textile is such that two equal 

Youngs moduli would be expected. For this reason, the results of traditional testing 

are considered to be more doubtful than the identification results. In section 3.5.3 it 

will be shown, that the identification results are more reliable than the traditional 

testing results. 

Parameters traditional testing 100 elements 1600 elements 

Xj unit (x I) i Sj (x I) i J(Pihi (x1h J(P1)ii 

E1 [kN/mm2] 0.62 0.05 0.56 0.009 0.60 0.009 

E2 [kN/mm2] 0.52 0.06 0.57 0.004 0.62 0.005 

V12 [-] 0.21 0.01 0.22 0.006 0.18 0.007 

G12 [kN/mm2] 0.080 0.005 0.080 0.0004 0.081 0.0004 

tan( a) [-] 1.00 0.1 1.05 0.007 1.08 0.006 

Table 3.5.1: Comparison with traditional testing results. 
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3.5.2 Residuals 

An indication of the reliability of the parameters, is a comparison between 

experimental and calculated displacements, using the estimated parameters in the 

latter. This comparison is made through the residuals. The distribution of the 

residuals over the sample surface will be discussed. The size of the residuals is 

evaluated with help of the sample mean and standard deviation (see equation 

2.4.40) of the residuals. 

Figure 3.5.1 shows the deseending mean and standard deviation of the residuals 

during the parameter estimation. The statistics of the residuals after 15 iterations 

are given in table 3.5.2. Here also the results with the finer finite element models 

are presented. The standard deviations for the fine element models are hardly 

smaller than for the 100-element model. Furthermore, it can be observed that the 

standard deviations in table 3.5.2 differ significantly from the estimate given in 

equation (3.2.6), representing the standard deviations of the measurement error, 

based on the sample variance. Besides model errors, a possible explanation is an 

underestimation of the measurement error. 

Finite element model s2 s mean 

100 elements 0.00220 [mm2] 0.047 [mm] 0.006 
400 elements 0.00217 [mm2] 0.047 [mm] 0.008 
1600 elements 0.00217 [mm2] 0.047 [mm] 0.008 

Table 3.5.2: Statistics of the residuals after 15 iterations. 
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Figure 3.5.1: Standard deviation of the residuals as a function of the 

iteration counter. Here the results with the 1600-element mesh are used. 
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Model deficiencies can be detected by noting place-structured residuals. Here it is 
assumed that the measurement system causes mutually independent errors for the 
positions of the markers. Hence lens distartion and perspective distorsion are 

denied. On the other hand, if a priori information was available that the 

measurement system does cause place-structured observation errors, this could 

have been discounted in the covariance matrix R1, by choosing it nondiagonal. 
Figure 3.5.2 is a plot of the residuals, where the estimates presented in the last 

columns of table 3.5.1 are used. The filled circles in the figure represent the 
measured positions of the markers, when the sample is loaded. The open circles 

represent the calculated positions of the markers. In order to obtain useful 

information from the picture, the distances between the open and filled circles are 
multiplied by a factor 100. Some structure can be distinquisbed in the residuals of 

the two bottorn rows. A possible explanation is a deficiency in the modeling of the 

clamped edge. On the whole, it can be stated that the residuals are smal! and seem 

to have a random distribution. An objective measure, however, for the structure in 

the residuals is desired. 
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Figure 3.5.2: Plot of the residuals after 15 iterations. 

A way to quantify possible place-structured residuals, is to use a function, inspired 

on the discrete autocorrelation function, with the distance between the markers as 
variable: 
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p 

r(ds) 1 ~ (residual of marker i)T (residual of marker j) (3.5.1) 
2P /-. 

(i , j) 

The function r is defined for the meao values: 

The summation is defined with respect of all pairs of markers (i,j) for which the 

mutual distance is in the interval [ds-!,d6]. The disjunct intervals are chosen in such 

a way that each interval represents the same number of pairs of markers (P). A 

plot of function r is given in figure 3.5.3, where P=79. The value for as=O 

corresponds with the standard deviation given in table 3.5.2. The figure shows that 
there is a positive correlation between the residuals of markers at a relative short 

mutual distance, and a negative correlation between the residuals for relative long 

distances. This is an indication for model errors. 

These model errors may partly be caused by imperfections of the constitutive 
model. The identification approach for parameter estimation, provides more 

information about the correctness of the model than the classica! approach does. 

N 

1 
~N 

0.25 r-- -------- -------, 

0. 15 

.· 
0.05 

... . · ...... 
C I 
Qw n; -
"ê -0.05 ·- ... 
0 
u ... 

- 0.1 5 

-0.25 L_ __ ._ __ ._ __ ._ __ ._ _ __J 

0 20 40 60 80 100 

mutual distance d [mm] 

Figure 3.5.3: Correlation of the residuals over the surface of the sample. 



3.5.3 Prediction 

A direct test of whether a constitutive model works or not, is to use it on an 

experiment different from that it . was estimated from. Figure 3.5.4 is a schematic 

drawing of a second experiment. For this experiment the same sample is used. The 

membrane was clamped along one edge and was free to deform at the other edges. 
It was loaded with three farces (Ft=60 kN, F2=100 kN and F3=30 kN). The 
displacementsof the markers wil! be predicted with the finite element model shown 

in figure 3.5.5. In this model two sets of material parameters will be used: one set, 

determined with the traditional approach, and one set, determined with the 

identification approach (according to the fifth column of table 3.4.4) 
Table 3.5.3 shows the statistics of the residuals. It can be observed that the model 
with the traditionally determined parameters yields less good results than the 
model derived with the identification approach. 

Parameters s mean 

Traditional 0.00388 [mm2] 0.062 [mm] 0.022 [mm] 

Jdentification 0.00321 [mm2] 0.058 [mm] 0.018 [mm] 

Table 3.5.3: Statistics of the residuals in the case of prediction. 

Figure 3.5.4 (left panel): Experimental setup. 
Figure 3.5.5 (right panel): Fini te element model. 
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3.5.4 Simwation studies 

In simulation studies, siinulated experiments are considered. These are carried out 

by computing a set of displacements with a given constitutive model and by using 

such displacements as fictitious 'measured data' for parameter estimation. 

In this section simulation studies are used to check whether the model can be 

identified uniquely with the used experiment. For linear parameter estimation, the 

experiment and model structure yield unique parameters in principle, if the 

observation matrix is of maximum rank . The rank of the linearized observation 

matrix, with respect to the optimal parameter column, indeed equals five. 

However, identifiability also depends on the quality of the observations, the 

nonlinearity of the problem, properties of the estimation algorithm and ex.isting 

knowledge of the model (Norton, 1986) . In the simulation studies, some of these 

factors are singled out. 

Perfect observations were simulated by using the 100- element model of figure 3.3.2. 

In table 3.5.4 the actual parameters, used for the simulation, are given. In order to 

determine the influence of observation noise, the experiment was simulated two 

times with artificially disturbed measured data. To each element of column Y1> 

realizations of a zero mean normal (Gaussian) distribution with standard 

deviations of respectively 0.0025 [mm) and 0.025 [mm) were added. The average 

displacement of the markers is 0.25 [nun) . In order to determine the influence of 

modeling errors, errors are simulated by using a finite element mesh more coarse 

than the mesh from which the data were obtained (respectively the 100- and 
400-element meshof figure 3.3.2). 

Parameters Actual Perfect (J = 0.0025 U=0.025 Model 

Xj val u es observations [mm) [mm) errors 

-·· -· ·-· · - ·-·-· 

E, 0.500 0.502 0.499 0.469 0.470 

E2 0.500 0.503 0.503 0.503 0.478 

V12 0.200 0.197 0.200 0.236 0.233 

G12 0.100 0.100 0.100 0.100 0.100 
tan(CI') 1.000 1.005 1.007 1.032 0.969 

Table 3.5.4: Simulation results after 15 iterations. 

The initia! guesses are the same as in table 3.4.1 
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Table 3.5.4 shows the estimates of the parameters after 15 iterations, together with 

their actual values. It can be observed that the smaller the observation noise, the 

better the estimates. Even with a high noise-signal ratio (10%) the identification 

method works good. However, a good general rule of thumb is that structural 

rnadeling errors are more important than statistical errors (Schweppe, 1973). It is 

obvious, that the results are slightly biased in the case of modeling errors. However 

we emphasize, that one has to be careful camparing the estimates with the 'actual' 
values, in case of modeling errors. The biased parameters may give better results in 
the coarse finite element model than the 'actual' parameters. 

Summarizing, it can be stated that in the idealized situations of this section, the 

model can be identified with the used experiment. By singling out some factors, the 
identifiability was analyzed. Ideally, simulations studies are used for the selection 

and design of the identification experiment (see section 3.2.2). 

3.6 Discussion 

The aim of this chapter was the testing of the identification method, using a 

material that also can be studied with traditional means. In the example of the 
present chapter, the material direction of an orthotropic membrane is estimated, 
together with the other four engineering parameters, from one experiment. There is 

a good agreement with the results of traditional testing. The contradiction between 

the estimation results for E2 is merely considered as a result of imperfections of the 
traditional testing. 

A major part of the chapter was used for demonstrating confidence in the 

estimation results. For this validation problem, a number of tests were carried out. 

The interpretation of the results of the tests was hampered by the nonlinearity of 

the estimation problem and by the modeling errors. A widely applicable 

identification technique for nonlinear problems does not exist. Also the related 

validation problem is more difficult for nonlinear systems. Tests as presented in 

this chapter, can help to detect weaknesses in the model. The identification 

approach provides more information about the correctness of the model. 
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4 Identification of inhomogeneous matenals 

4.1 Introduetion 

Material properties in plant and animal tissues can vary with the anatomical site. 
For biologica! materials, the ability to adapt to its mechanica! environment is wel! 
recognized. Also teehuical materials may have inhamogeneaus properties, e.g. 

reinforeed composites with short fiber like particles, processed by a molding 
operation. These composites may be described in terms of effective mechanica! 
behavior, i.e. composites are considered on a scale, several times the dimensions of 
the constituent materials. On this scale, a certain smoothness of the material 
properties is assumed. The inhomogeneity refers to a larger scale and may, for 

instance, be caused by different orientations of the alignment of the fibers in the 

materiaL Ideally, the inhomogeneity of the material properties meets the 
mechanica! demands of the product. 
Mathematica! rnadeling of inhamogeneaus materials, e.g. by means of a finite 
element model, does not lead to fundamental problems. Experimental 
determination of inhamogeneaus properties, ho wever, is an arduous task. A 
possibility to measure some of tbe inhamogeneaus properties by means of 
traditional testing, is to extract samples at different positions in the materiaL A 

disadvantage of this approach is the, already mentioned, disruption of the structure 
by cutting fibers in the manufacturing of the samples. Particularly for 
inhamogeneaus materials, an experimental-numerical approach offers better 
possibilities than traditional testing. 
Ideally, the material properties are determined with respect to each point of the 
materiaL In practice, ho wever, regions surrounding a point are considered. 
Approaches for the identification of inhamogeneaus materials can be distinguished 
by the size of these regions and by the inbomogeneity assumed in each region. In 

such a region, homogeneaus material properties can be assumed. The 

inhamogeneaus properties of the sample as a whole can be estimated by 

determining the properties of the defined regions of the sample. 
Instead of homogeneaus properties, also a certain type of inhomogeneity can be 
assumed in each region. This inhomogeneity may be described with a continuous 

function over the region. The assumed inhomogeneity should depend on the size of 
the region and the actual the inhomogeneity. Clearly, there is a great variety of 

possible approaches for the identification of inhamogeneaus materials. In this 
chapter this wil! be illustrated by means of two examples. 
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Attention is focussed on an orthotropic material, where the local axes of material 

syrrunetry vary with the position in the structure. We will use a numerically 

simulated experiment. Observation errors are simuJated by means of an artificial 

disturbance of the "measured" data. The experiment is described insection 4.2 and 

is the basis for the two examples in the remaining sections. 

In the first example, described in section 4.3, a model of the entire sample is 

confronted with the "experimental" data. The inhomogeneous properties are 
modeled with help of a continuous function over the sample surface. This function 

will be identified together with the stiffness parameters. The influence of the model 
errors, depends on the suitability of this function to descri be the true 

inhomogeneity. 

In the second example, described in section 4.4, only a part of the sample is 
modeled and confronted with conesponding "experimental" data. The properties of 

this region are assumed to be homogeneous, which leads to model errors, depending 

on the size of the modeled sample part and the level of inhomogeneity. Section 4.5 

discusses the results of this chapter. 

4.2 Numerical experiment 

Curvilinear orthotropy is the term used to describe a material, in which the 
orientation of the orthotropic syrrunetry coordinate system is different from point 

to point (Cowin, 1989) . 

//////////////////________ --/////////////////// __________ _ 
/////////////////// __________ _ 
/////////////////// __________ _ 
//////////////////// _________ _ 

{x//////////////////// _________ _ 
///////////////////// ________ _ 
/////./././////////////---------~ · ///////////////////// ________ _ 
///////////////////// ______ ·-

Figure 4.2.1: Sample shape and orientation of local planes of symmetry. 

70 



Figure 4.2.1 shows a flat membrane ( dimensions: 1 x 3 x 0.02) with curvilinear 
orthotropic behavior. An orthotropic material has three mutually perpendicular 
planes of symmetry with respect to each point of the materiaL In the present 
example, it is assumed that one plane of symmetry coincides with the plane of the 

sample. One of the normals of the other planes of symmetry, is indicated in figure 
4.2.1 with a short line. These lines may be interpreted as the orientation of fiber 
like particles in a reinforeed composite. Givler et. al. (1983) show fiber orientations 
in a steady shear flow which results in similar patterns as in figure 4.2.1. 

The axes shown in figure 4.2.1 are tangent to concentric circles, where (3 ,3) denotes 
the center of the circles. This type of circular orthotropy, sometimes called 
circumferential orthotropy (Kennedy, 1985), is typical for wood, were one axjs is 
tangent to the growth rings. 
The membrane is clamped along one side and is free to deform at the other sides. It 
is loaded with two forces : Ft = 0.001 and F2 = 0.001, in the plane of the 
sample.Figure 4.2.2 shows the finite element model of the sample, used for the 
artificial generation of the measured data. The model consists of 4-noded plane 
stress elements. 
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Figure 4.2.2: Fini te element model of the loaded sample. 
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Figure 4.2.3: Principal strains in the loaded sample. 

In each point of the sample the material properties with respect to the local 

symmetry axes, are the same. The material is assumed to be orthotropic linear 

elastic. The material parameters are chosen arbitrarily: E1 = 1.0, E2 = 0.2, 1112 = 0.3 

and G12 = 0.2, where E1 is the stiffness in material 1-dir~ction as indicated in figure 

4.2.1 and E2 is the stiffness in perpendicular direction. The parameters are defined 

in equation (3.2.1). Figure 4.2.3 shows the calculated principal strain distribution in 
the sample. It can be observed that, despite of the symmetrie loading, the sample 

deforms nonsymmetrically. 

Figure 4.2.4: Measured marker displacements for example 1. 

Figure 4.2.5: Measured marker displacements for example 2. 
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Two sets of measured displacements will be distinguished . The first set consists of 

the displacements of 128 markers, as shown in figure 4.2.4. The initia! marker 

positions are a realization of a 2-dimensional uniform random distribution . These 

measured displacements wiJl be used in "example 1" of the next section. The 

second set of measured displacements, demonstrated in figure 4.2.5, wiJl be used in 
"example 2" of section 4.4 . 

4.3 Example 1 

In this example, the inhomogeneity of the entire sample is described by means of a 

continuous function . This function is identified together with the stiffness 
parameters. 

4.3.1 Numerical model 

Two models will be considered . For both of the models the same finite element 

model as is shown in figure 4.2.2 is used. The models distinguish by the way the 

inhomogeneity of the material is modeled. Model I is given by: 

a(e) = { -arctan(~x~x)/(~y~y) for ~yfCy 
1 /2 1r for ~y=Cy 

(4 .3.1) 

Model 2 is given by: 

(4 .3.2) 

where o $ ~x $ 1 and o $ ~Y $ 3. In these equations a denotes the positive rotation of 

the material 1-direction from the model x-axis. This rotation is a function of the 

position coordinates ~x and ~y · 

Equation (4 .3.1) describes the material circularly orthotropic, where the parameters 

Cx and Cy are the coordinates of the centroid of the concentric circles. This equation 

represents the actual inhomogeneity. The bilinear function (4.3.2), with unknown 

parameters b0 , bx and by, is used to investigate the influence of model errors. 

Hence two models of the experiment described in section 4.2 will be used, with the 
following parameterizations respectively: 

(4 .3.3) 

( 4.3.4) 

73 



4.3.2 Parameter estimation 

Table 4.3.1 shows the estimates of the parameters according to equation (4.3.3), 

tagether with their true values. The first coltunn shows the true values of the 
parameters, while the second column shows the initial guesses for these parameters. 

Matrix Po is choosen diagonal with all diagonal elements equal to 10-4, 

conesponding with the expected squared errors of the initia! guesses. Matrix Q is 

also diagonal with w-4 for all diagonal elements, but this value is an arbitrary 

choice. In genera!, good results have been achieved by setting Q equal to P 0. Trial 

and error studies have shown that the estimates are not very sensitive for these 

choices. In the third column of table 4.3.1, the estimates after 10 iterations are 

presented (after 10 iterations the estimates obtained stationary values). The 

estimation required about 2 hours on an Alliant-fx/4 minisupercomputer. In 
addition to the case of perfect observations, estimations are performed using 

artificially disturbed data. To each element of the observation column, realizations 

of a zero meao normal distribution were added. The standard deviations of the 

noise were 0.001 and 0.01 respectively, while the average displacements of the 

markers was 0.1. These estimation results are shown in the last two columns of 
table 4.3.1. It can be observed that the identification approach works well, even 

with a noise-signal ratio of 10%. Apparently, the measured displacements contain 

sufficient information to estimate six unknown parameters, and the estimation is 

only slightly sensitive to random observation errors. 

Parameters True Initia) Estimates Estimates Estimates 

Xj values guess (No noise) (C1 = 0.001) (0"=0.01) 

Et 1.000 0.666 1.000 0.993 0.931 

E2 0.200 0.133 0.200 0.200 0.198 

Vt2 0.300 0.200 __ 0.300 0.301 0.305 

Gt2 0.200 0.133 0.200 0.201 0.211 

Cx 3.000 2.000 2.998 3.004 3.055 

Cy 3.000 2.000 2.999 3.010 3.106 

Table 4.3.1: Simulation results, using the tangential function (4.3.1). 
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Table 4.3.2 shows the estimation results of the parameterization (4.3.4). Here similar 

estimations are presented as in table 4.3.1, but now for the 7-parameter model. 

Although the term "true" with respect to the parameters is dubitable in a case 

with model errors, true values for the first four parameters are presented in 

column 1. The confidence in the initia! guesses, presented in the second column, is 

expressed by setting matrix Po. Po is considered to be diagonal: 

(4.3.5) 

From the square root of these values, ''two-sigma" ranges may be derived, which 

indicate the reliability of the initia! guesses. In this example the initia! guesses for 

the parameters bi are considered as rather reliable guesses. Again matrix Q is set 

equal to P0. The last three columns of table 4.3.2 show that the estimation results 

for the stiffness parameters Et. E2, v12 and Gt2 are remarkably well comparable with 

the "true" values. 

Parameters True Initia! Estimates Estimates Estimates 

Xj values guess (No noise) (11 = 0.001) (11=0.01) 

Et 1.000 0.666 1.031 1.022 0.944 

E2 0.200 0.133 0.199 0.199 0.200 

Vt2 0.300 0.200 0.294 0.296 0.304 

Gt2 0.200 0.133 0.193 0.194 0.209 

bo - 0.785 (~?r/4) -0.755 - 0.753 - 0.735 

bx 0.262 (~?r/12) 0.200 0.199 0.193 

by - 0.262 (~?r/12) -0.274 - 0.273 - 0.263 

Table 4.3.2: Simulation results, using the bilinear function ( 4.3.2). 

75 



////////////////////______ --////////////////// ___________ _ 
////////////////// ___________ _ 
////////////////// ___________ _ 
/////////////////// __________ _ 
////////////////////// _______ _ 
/////////////////////// ______ _ 
/////////////////////// ______ _ 
////////////////////// _______ _ 
//11/////////////////// ______ _ 

////////////////________ --/////////////////// __________ _ 
//////////////////// _________ _ 
//////////////////// _________ _ 
//////////////////// _________ _ 
////////////////////// _______ _ 
////////////////////// _______ _ 
/////////////////////// ______ _ 
//////////////////////// _____ _ 
//////////////////////// _____ _ 

Figure 4.3.1: Actual inhomogeneity of the material symmetry axes (upper panel) 
and estimated inhomogeneity using a bilinear function (lower panel) 

In figure 4.3.1 these estimation results are visualized. The upper panel shows the 

actual inhomogeneity, according to equation (4.3 .1), where Cx = 3 and Cy = 3. The 

lower panel shows the estimated inhomogeneity, according to (4.3.2), with the 
parameters according to the third column of table 4.3.2. It can be observed that 

there is a good agreement between the estimation results and the actual situation. 

The estimation are neither very sensitive to this type of model errors, nor are they 

very sensitive for the combination cJ model errors and random observation errors. 

4.4 Example 2 

In the previous section it is assumed that the total shape of the sample is known. 

Usually this_ will not be the case for biological samples, due to the tissues 1 complex 

geometries and the fact that they deform easily under an applied external load (Lee 

and Woo, 1988). Data on the mechanica) properties of soft connective tissues have 

been compromised by the lack of a generally accepted metbod of measuring in-situ 
the geometry of connective tissues before mechanical testing (Shrive et. al., 1988). 

In addition, considerable care has to be taken on the boundary conditions applied 

during the meebankal test, because the approach also assumes that the boundary 
conditions are known. 
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The approach of the present section meets the problems mentioned above. In this 

approach only a part of the sample is modeled. For this part of the sample the 

kinematic boundary conditions are considered, which has experimental advantages. 
An additional advantage is that the finite element models are relatively small. And 

finally, due to the local character of the approach, it is no langer necessary to 

define, a priori, parameterizations of the inhomogeneity like in the equations (4.3.1) 

and (4 .3.2). 

As an mustration of the approach, section 4.4.1 presents a model of a part of the 
sample, described in section 4.2, while section 4.4.2 presents the identification 

results. 

4.4.1 Numerical model 

The numerical model is based on the measured displacements , shown in figure 
4.2.5. The figure shows that the markers are positioned in a square. For this square 

a finite element model is derived (figure 4.4.1). The displacements along the four 

edges are derived from the displacements of the outer markers (figure 4.4.2). The 
displacements of the inner markers are considered as measured data. It is assumed 
that the material properties, the material orientation included, are homogeneaus 

over the sample part. 

d' .. ~ / I I I 
.. ... / / I I I 
.-'////// 
/////// 

////o/",--_ 

//.r""o/.....-........,.__ 

//./0"'"'""...--._, 

Figure 4.4.1 (left panel): Finite element model of a square part of the sample. 

Figure 4.4.2 (right panel): Kinematic boundary conditions and measured data 
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It is obvious that stiffness parameters can not be identified with the model 

presented here, since no farces are measured. In the presented simulation we will 

investigate whether or not the combination of model and measured data does 

contain information about the ratios between the stiffness parameters. In the 

present example the following parameters will be identified: 

(4.4.1) 

where E2 and Ö12 denote a relative, dimensionless, stiffness and shear modulus 

respectively: 

( 4.4.2) 

1!!2 represents the Poisson ratio as defined in section 3.2.1, while a denotes the 

positive rotation of the material axes system. 

4.4.2 Parameter estimation 

Table 4.4.1 shows the estimation results for the dimensionless parameters. The true 

values of the parameters are given in the first column. For the cotangential value of 

the rotation of the material symmetry axes, a range is given representing the true 

occurring values. In the case of perfect observations, it can be observed that there 

is a good agreement between the estimation results and the true parameters, 

although the comparison is less fa\orable as in the first example. The estimation 

needed about 30 minutes on an Alliant-fx/4 minisuper computer. 

However, also here a discussion on the specification of "true" parameter values is in 

place. In the model, it is assumed that the sample part has homogeneaus 

properties. This model error makes the term "true" misleading. The slightly biased 

parameters of column 3 may give.better results in the homogeneaus model than-the 

true parameters. 

To test this hypothesis and, at the sarne time, to validate the estimation results, 

hypothetical experiments are performed on the actual, inhomogeneous, part of the 

sample. Figure 4.4.3 shows the finite element roodels of the tests. In these roodels 

the displacements of the nodes on the edges are tied to ensure that they remain 

straight. The tests lead to three "experimental" observations, respectively: dx = 
0 219, dy = 0.051 and d,., = 0.219 (rad]. 
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Parameters True Initia! Estimates 

Xj 

E2 
Vt2 

G12 

cotan( a) 

val u es guess (No noise) 

0.200 0.133 0.216 

0.300 0.200 0.322 

0.200 0.133 0.202 

(-0.444 ,-û .052] -0.100 - 0.093 

Table 4.4.1: Estimation results after 10 iterations, 

using a homogeneous modelfora part of the sample. 

dx 

Estimates 

(u= 0.001) · 

0.221 

0.330 

0.220 

- 0.096 

f 

Figure 4.4.3: Tests on the selected part of the sample. 

For two homogeneous models, the ability to predict these results is investigated. In 

the former model, the estimation results of the third column of table 4.4.1 will be 

used. In the latter model, the "true" values are used, where cotan( a) = -0.2 

conesponding with its true value at the center of the square sample part. In table 

4.4.2 the results are summarized. It can be observed that the biased estimation 

results indeed lead to better predictions than the "true values". In addition it can 

be observed that the homogeneous model, as a whole, gives good predictions in 

situations different from where it is estimated from. 
Returning to the results of table 4.4.1, it can be observed that the results for the 

cases with disturbed data are less favorable. lf the standard deviation of the noise 

is 1% of the average displacement of the sample, the estimation results differ 

slightly from the results in the perfect observation case. However, if the standard 

deviation increases to 10% the estimation algorithm fails after two iterations, sirree 

12 becomes negative. 
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dx dy d4> [rad] 

true observations according to the inhamogeneaus model 0.219 0.051 0.219 

predictions using the estimated homogeneaus model 0.218 0.051 0.216 

predictions using the "true" values in tbe bomogeneaus model 0.229 0.050 0.225 

Table 4.4.2: Validation of the estimation results. 

Apparently, this approach is more sensitive to measuring errors than the approach 

of example 1. A possible explanation is that in the approach of example 2 

measurement errors on the displacements of the markers enter as model errors via 

the specification of the kinematic boundary conditions. Hence the originally 

random observation errors cause systematic errors in the model. 

4.5 Discussion 

For the identification of inhomogeneous materials a mixed numerical-experimental 

approach is favorable. Via two approaches, but using the same identification idea, 

it is shown that a nondestructive characterization is possible. 

The advantages of the approach of the first example, where the entire sample is 

identified, compared to the second example are: 

• The procedure leads to a complete quantification of the ent i re sample. 

• The identification appeared to benot sensitive to observation errors and to 

model errors as presented in section 4.3. 

The advantages of the approach of the second example compared to the first 

example are: 

• The a priori specification of a function representing the inhomogeneity can be 

omitted. 

• The fini te element models are smaller. 

• In general the models contain less parameters. 

• The metbod meets to practical problems of determining the exact geometry and 

boundary conditions. 
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The two exarnples are in fact extreme cases and that also mixed forms are possible. 
The boundary conditions may partly be kinematic and partly dynarnic. In addition, 

also local approaches with an inhamogeneaus model can be considered. 
Experimental investigations, however, have to learn whether model errors, different 
from those which were simulated in the exarnples, will disturb the estimation of the 
parameters. 
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5 Discussion, conclusions and recommendations 

5.1 Discussion 

General discussion 
The hybrid experimental-numerical method described in this thesis offers new 

possibilities for the experimental characterization of complex materials. The 

technique has been Iabaratory tested for a homogenrous materiaL For the 

characterization of inhomogeneous materials it is shown that the identification 
method is favorable, compared to traditional testing. Moreover, with this technique 

more material parameters from one material sample can be determined than with 

traditional tests. An additional advantage is its ability to analyze arbitrarily 

designed specimens. 

Although the value of the identification method is demonstrated, the present 
research does not pretend to supply a straightforward applicable technique for new 

situations with other materials and other experimental conditions. For instanee it 

is quite conceivable that the identification results, in a case with inhomogeneous 

material properties, will depend on the type and smoothness of the inhomogeneity. 

By means of simulations and Iabaratory tests with a variety of materials more 
experience should be gained on the applicability of the identification method. 

An advantage of the method is that it offers a check between experiment and 

analysis in a complex toading condition. It is important to note that the error 

measure alone is not a sufficient criterion for validating a material law. However, 
the fit of the experimental and numerical data may indicate that the material law 

used is not suitable for the material under investigation. In which way this can lead 

to adjustments of the constitutive equations was not a topic of the present thesis, 

but is of course of major importance. 

A fundamental question is whether it is possible to obtain reliable estimates of the 

parameters with the experiment chosen. The free choice of the sample geometries 

and loads applied is helpful, in genera!, to ensure that the inhomogeneous strain 

distribution contains enough information to obtain the material parameters. It is 

obvious that, for example, a single traditional tensile test does not provide 

sufficient information to quantify orthotropic behavior. In general however, the 

question whether the experiment provides sufficient information is more 
complicated. In systems identification this problem is known as identifiability. 

Identifiability is a joint property of the experiment and the model of the 

experiment. Identifiability establishes that the model parameters can be estimated 

adequately from the experiment. The model and experiment need not be 
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complicated fora test of their identifiability to be non-trivia! (Norton, 1986). If the 

model is linear in the parameters, conditions can be derived under which the 
unknown parameters can be determined, given the data structure and assuming 

that the model and data were exact. Mathematically this means that the rows of 
the observation matrix are mutually independent, which implies that the number 

of observations should be at least equal to the number of parameters. An 

overdetermined case with more observations than parameters is favorable, because 

then it can be attempted to diminish the effect of the observation error. In the 

examples presented in this thesis the situation is more complicated. When the 

model is nonlinear in the parameters, a rank test on the columns of the linearized 

observation matrix is more a sensitivity analysis than an identifiability test, as it 
applies only over an infinitesimal small portion of the parameter values. 
In practice also the magnitude of the observation error and the model errors wil! 

influence the identifiability. In our cases simulation studies have been used to 

study the identifiability for specific situations. Simulation studies can be used with 

a variety of sample geometries and boundary conditions in the search for suitable 

experiments. In future research it may be possible that demands with respect to 

the mea.<mred inhomogeneous strain field can be derived, such that the 
identifiability can be studied a priori. In that case a reai-time examination of the 

strain fields is important as it may lead to adjustments in the loading of the 
sample. 

Discussion on the experiments 
The use of a video tracking system appears to be a suitable tooi for the 

measurement of inhomogeneous sLain distributions on plate- or membrane- like 

objects. However, some discussion on the experiments is in place. The major 

experimental problem is not a proper measurement of the strain distribution, but 

the measurement of the boundary conditions and sample shape. In chapter 3 the 

geometry of the sample was measured by putting additional markers on the edges 

of the sample_surface. In order to. measure the directlans oLthe applied(orces, also 

markers were attached on the strings inducing the forces. The major inaccuracy, 

however, is probably caused by the measurement of the boundary condition near 

the clamped edge. A way to avoid this problem is demonstrated in the second 

example of chapter 4. In order to keep the identification method generally 

applicable, a further development of experimental techniques to determine 

boundary conditions is necessary. 
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Although the strain distribution measurement system satisfies its requirements, 
future use of the system may confront the researchers with its restrictions. 

Disadvantages of the system are that the markers have to be spaeed far enough 
(7 times the marker diameter) and that a high light intensity and contrast of the 

image is necessary. 

Discussion on the analysis 

The finite element methad is a suitable tool for the analysis of realistic samples. 

Especially for the rnadeling of inhamogeneaus behavior the finite element methad 

proved its value. 
A simple procedure to input the experimental data in the finite element model is 
still lacking. Provided that sufficient computer facilities are available, this 

procedure can result in a situation where the material parameters can be estimated 

in a reasonably short period of time after the experiment was performed. 

The major problems with reference to the analysis reflect the experimental 

problems concerning the determination of the sample geometry and the exact 
boundary conditions. 

Discussion on the identification 

A sequentia! minimum-varianee estimator is implemented as an extra module in 

the finite element code. Via an initia! guess of the parameters and the 

corresponding reliability matrix the a priori knowledge of the quantitative behavior 
of the material can be specified. The present thesis does not contain a thorough 
study of the influence of the initia! conditions. In the presented identifications it is 

assumed that at least a vague idea of the values ofthe parameters is available. The 

specification of the matrix Q is more doubtful. Here one must resort on trial and 

error studies. Chosing Q equal to Po usually leads to an acceptatle performance of 
the estimator. 

The identification algorithm requires the first derivatives of the observation 

function. These derivatives are approximated numerically by means of differential 

quotients. As a consequence, the calculation of the derivatives are responsible for 

the major part of the tata! computing time. In future research it can be worthwhile 
to investigate the possibilities of other ways to determine the derivatives for some 

classes of experiments and material behavior, for instanee with the help of a 

symbolic mathematica! manipulation program. 

It may be worthwhile to search for parameter transformations or redefinitions: by a 

proper transformation of the parameters the nonlinear model may become linear or 
it may lead to a reduction of the nonlinearity (assuming some measure for the 
nonlinearity). For example a transformation might be, that not a Youngs modulus 
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is considered as the unknown parameter, but its redprocal value. 
Note that the use of the term linear may cause some confusion. In the field of 

continuurn mechanics the most common interpretation refers to the 

strain--displacement relation or the relation between dependent and independent 

quantities, e.g. the stress-strain relation. For parameter estimation however 

linearity refers the relation between the observed quantities (the marker 

displacements) and the parameters. 

5.2 Conclusions 

General conclusions 
• For the characterization of complex material behavior a hybrid numerical

experimental approach, allowing specimens of arbitrary sha.pe under arbitrary 

loading condition, is necessary. 

• It is demonstrated that the identification method indeed offers new possibilities 

for the characterization of complex materials. 

• Implicit in the identification method is a check on the validity of the used 

material law. The method does not lead to adjustments of the constitutive 

equations. 

Conclusions with respect to the testing ofthe identification method (eh. 3}. 
• The identification has been laboratory tested for a textile materiaL The 

example with an orthotropic elastic membrane shows that the identification 

method can be applied successful:y. 

• It is possible to determine five independent material parameters (including the 

material orientation) of orthotropic plane stress behavior, using the 
experimental data of a single experiment. 

• There is a good agreement between the identification method results and the 

traditional testing results. 

Conclusions with respect to the identification ofinhomogeneous materials {eh. 4). 
• Numerical examples show that the identification approach can be applied for 

inhomogeneous materials. It is noteworthy that in this case traditional testing 

clearly does not suffice. 

• The advantage of an approach where the entire sample is considered, is that 

identification is not very much affected by the observation noise and model 

errors, provided that a reasonable function for the description of the 
inhomogeneity is available. 
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• The advantages of an approach where the sample is divided in regions are that a 
priori assumptions for the inhamogeneaus fiber directions are not necessary, that 

in general the models contain less parameters and that the finite element models 

are smal! and simpte. 

• It seems that an approach where displacements are used as boundary conditions, 

is sensitive to observation noise. 

5.3 Recommendations 

General recommendations 
• The ability to characterize inhamogeneaus materials is a key property of the 

identification method. In the present research this possibility has slightly been 

investigated. In future research more experience on this subject should be 

gained, including Iabaratory tests. An important aspect is the a priori 
specification of functions representing the inhamogeneaus behavior. Simulation 
studies of the injection moutding process may result in general ideas about the 

type of functions that should be considered. 

• It is well known that a large class of materials exhibit time-dependent behavior, 
e.g. visc~lastic behavior. It is important to extend the application of the 

identification methad to the characterization of such materials. For nonlinear 
visc~lastic materials the advantage of using inputs of prescribed form (e.g. 
step functions or sinus waves) to simplify the identification process is very 

limited. Especially for nonlinear materials we shall obtain better results as the 

identification is performed using realistic inputs trying to simulate actual 

conditions (Distefano, 1974). 

Recommendations with respect to the experiments 
• A logica! generalization of the work presented here relates to the use of 

3-dimensional data from two or more cameras with different positions. This 

enables the measurement of out of plane displacements and the measurement of 

strain distributions on slightly curved objects. 
• The identification methad allows experiments on multi- axially loaded objects 

with arbitrary geometry. To exploid this, multi- axial testing machines should 

be developed. 

• A reai-time examination of the strain data enables the user to judge an 

experiment and if necessary to adjust the toading . condition to imprave its 
performance. 
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Recommendations with respect to the analysis 
• The derivation of a finite element model based on the experimental 

measurements is a rather cumhersome task. In the present thesis an ad hoc 

program is used to input the experimental data in the finite element model. For 

future research a generally applicable program is preferable. 

• It should be investigated whether it is possible to calculate the derivatives of the 
observation function in a more clever way than a straightforward application of 

finite differences. This may lead to analytica! or partly analytica! approaches for 
some well defined classes of material behavior. 

Recommendations with respect to the identification 
• An important problem refers to the choice of the sample geometry and the 

boundary condition. It may be possible that demands can be derived on the 

identifiability of the model with the experiment under consideration, referring to 

characteristics of the strain field. 

• Sophisticated estimation algorithms which require also higher order derivatives 

should be avoided, as the calculation of the derivatives requires fairly much 
computing time. 

• In future research it will be necessary that in addition to displacements also 

other quantities are measured and used in the identification. In particular this 

may meet the probierus in the determination of material parameters, using test 

specimens that are not plate-, shell- or membrane-like. In those cases for 
instanee the measurement of pressures in the interior of the sample may be 

necessary, in order to achieve identifiable models. 
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Appendices 

A Least-squares estima.tion 

Here we shall obtain the estimate xk that minintizes (2.4.3a): 

(A.l) 

Two vector derivatives shall be used. Namely: 

a a. Tb 

a b 
a. 

and 
f) bTA b 

2Ab 
f) b 

Expand the quadratic form (A.l) to give 

Next take the vector derivative of Sk with respect to x, and set the result to zero: 

(A.3) 

The solution of this equation is xk, hence: 

(A.4) 

That xk in (A.4) does indeed minimize (and not maximize) (A.l) is clear from the 

fact that 

(A.5) 

which is true if W k is positive definite, assuming that Hk is of maximum rank. 

89 



B Minimum-varianee estimation 

Assume that the observation model is 

y = Hx +v 
true 

(B.l) 

with the following known observation error statistics 

E{ V } = 0; E{ VVT } = R (B.2) 

We shall obtain the BLUE (best linear unbiased estimator) i:. An estimator for i: is 

linearif it relates i: linear toy, i.e. 

i: = Ay (B.3) 

An optimum choice if A is desired, one that makes use of the statistics of the 

observation error. Unbiasedness means that: 

E{i:} = 
From (B.3) and (B.l) we find 

x 
true 

E{ i: } = E{ A y } = E{ A H x + A v } = A H x + A E{ v } 
true true 

Using the statistics (B .2) we obtain 

E{ ;, } = AH x 
true 

Hence an implication of the unbiasedness constraint is, for x :fO 
true 

AH= I 

(B.4) 

(B.5) 

(B.6) 

Where I is the nxn unit matrix. For the case where m=n (n represents the 

dimeosion of x, and m represents the dimeosion of y) equatioo (B.6) provides us the 

following solutioo for A: 
(B.7) 

For m>n A is oot determined uniquely by this relatioo. The remaioiog freedom 

will be used to mioimize the error covariaoce of each parameter, subject to the 

uobiasedness coostraint (B.6). The estimatioo error of the parameters is: 
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x-x = Ay-x = AHx +Av-x 
true true true true 

x +Av-x = Av (B.8) 
true true 

The covariance of the estimated parameters is: 

P = E{( x-E{i} )( i-E{x} )T} = E{ AvvAT} = ARAT (B.9) 

It will be convenient to partition the A matrix in rows a.~ 
I 

(B.lO) 

In order to minim.ize the error covariance of parameter x., which corresponds with 
I 

the i-th diagonal element of P, we write for this diagonal element: 

P .. =a.~Ra.. 
ll 1 1 

(B.ll) 

The unbiasedness constraint fora.. is now (B.6 and B.lO) 
I 

a.~ H = e~; HT a.. = e. 
I I I I 

(B.12) 

were e . is the i-th column of the unit matrix. Column a.. is determined such that 
I I 

the performance function 

J. = a.~ R a. + À~ (HT a. - e.) 
I I I I I I 

(B.13) 

is minimum for i=1,2, .. . n. Column À. is a mxl column of Lagrange multipliers, 
I 

associated with the i-th unbiasedness constraint. A necessary condition for 

m.inimizing J. is: 
I 

Hence 

a J i 

a a.i 

a. 
I 

2 Ra. + H À. 
I I 

-1 -1/z R H À. 
I 

A second necessary condition for minimizing J . is 
I 

a J i = HT a.. - e. = 0 
a À i I I 

Hence 

HT a . = e. 
I I 

0 (B.14) 

(B.15) 

(B.16) 

(B.17) 
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The unknown column of Lagrange multipliers À. is found, from (B.I5) and (B.l7), to 
I 

be 

À. = -2 (HT R-1 H)-1 e. 
I I 

(B.l8) 
whereupon we find 

(B.l9) 

The reconstruction of A is as follows: 

AT= (a la2 l···la) 
I n 

= R-1 H (HT R-1 H)-1 (e I e2 I ... Ie ) 
I n 

(B.20) 

He nee 
(B.21) 

Substituting in (B.9) yields the (minimum) error covariance 

(B.22) 

Summarizing: the BLUE estimator is 

(B.23) 

where P is the estimation error covariance according to (B .22) 

C Alternative gain matrix calculation 

In this appendix it is shown that equation (2 .4.32): 

K = ( p-I + HT R-1 H J-1 HT R-1 (C.l) 
k+l k k+l k+l k+l k+l k+l 

can be substituted by equation (2.5.33): 

K = P HT R + H P HT J-1 
k+l k k+l -"'k+l k+l k k+l 

(C.2) 

The starting point is the covariance update equation (2.4.32): 
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p bi = ( I- Kk•t Hk•l ) p k (C.3) 

Multiplying (C.3) on the rightby HTk leads to 
+I 

P HT = P HT - K H P HT 
k+l k+l k k+l k+l k+l k k+l 

(C.4) 

P HT R-1 R = P HT - K H P HT (C 5) 
k+l k+l k+l k+l k k+l k+l k+l k k+l . 

Using equation (2.4.28): 

K = P HT R-1 
k+l k+l k +1 k+l 

(C.6) 

in (C.5), and solving for Kk gives 
+1 

K = P HT R + H P HT ]-1 
k+l k k+l k+l k+l k k+l 

(C.7) 

which is the desired result. 

D Linearized minimum-varia.nce estima.tion 

In this appendix we willlinearize the nonlinear model 

(D.l) 

in order to use the results from chapter 2 on the linearized model, and to derive an 

approximate estimation solution. Assume that a guess x for the actuaJ parameter 

column x is available. For the deviation óx we write 

óx = x-x (D.2) 

If the deviation is small enough the observation yk is given by 

(D.3) 

for 11 óxll -+ 0, where Hk is defined by: 

(D.4) 
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With the notations 
(D.5) 

and 
(D.6) 

we obtain from (0.3): 

(D.7) 

Next, note that (0.6) represents a linear system (i.e. 8yk depends linear on the 

deviations 8x). The determination of the minimum-varianee estimator for the 

system (0.6) is a trivia! task: 

(D.8) 

K = P HT (R + H P W )-1 
k+! k k+! k+! k+! k k+l 

(D.9) 

P = (I-K H ) P 
k+! k+! k+! k 

(D.lü) 

where Sik represents an estimation for the deviation 8x based on the observations 

{8y1, ... ,8yk}. Insteadof equation (0.8) an estimation update for x, rather than for 

óx is desired. Therefore four substitutions are used: 

According to (0.2): 

8i 

According to (0.7): 

k+! 
x -x and Sik 

k+! ~-x 

And finally according to (0.3): 

H sx ~ h (x) - h (x) - h (x) -y-
k•l k+l k+! - k+l . k+!. 

The substitution in (0.8) yields the estimation update: 

x = x + K (y -h (x )) 
k+! k k+l k+l k+l k 

(D.ll) 

(D.12) 

(D.l3) 

(D.l4) 

Equation (0.14), (0.9) and (0.10) is an approximate linearized minimum- varianee 

estimator. For x the previous estimate xk can be used. Finally matrix P k is 

considered, which has a physical meaning: 
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P k E{(8ik-8x)(8ik-óx)T} = E{(ik-x-x+x)(ik-x-x+x)T} 

= E{(ik +x)(ik +x)T} (D.l5) 

Hence, matrix P k represents the estimation error covariance for the estimation ik. 

E Kalman filtering 

In the discrete-time version of the Kalman filter considered in (Kalman, 1960) and 

Kalman and Bucy (1961), the state of the model is assumed to evolve according to 
the linear equation: 

(E.l) 

where Fk denotes the system matrix and wk denotes a random noise. The state 
~ ~ 

noise wk represents some inherent randomness in how the state of the system 
-1 

evolves. Column wk_1 is independent of xk_1 and zero mean. Here we shall use a 

special case of (E.1), namely: 

x-x.. +w 
k - k-1 k-1 ' 

(E.2) 

Notice that if matrix Q is zero the state xk is modeled as (constant) parameters. 

Alternatively, ~ may be referred to as (time-varying) parameters. Suppose we 

have a previous unbiased estimate ik of a column xk with a covariance matrix 
-1 -1 

Pk_1. We receive noisy observations making up yk, and suppose that the relation 

between yk and xk is linear. 

(E.3) 

The observation noise vk has zero mean and covariance Rk, and is assumed to be 

uncorrelated with the error in ik . We wish to combine ik and yk linearly (to 
-1 -1 

keep the computation and analysis simple), forming an estimate \ of xk. In other 

words we want 

(E.4) 

with matrices Jk and Kk chosen to make~ a good estimate. If we ask for ik to be 
unbiased, and using eqs. (E.2) through (E.4), it means that for any x and given Hk 
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(E.5) 

Hence 
(E.6) 

and so 

(E.7) 

Our new linear and unbiased estimate xk of xk must therefore add to the estimate 

i of xk a correction proportional to the prediction error between the new 
k-1 -1 

observation and its value predicted by xk-t" We have yet to choose Kk. We ask for 
~ to have the smallest possible covariance. The estimation error is: 

(E.8) 

Hence its covariance is: 

P k = E{ (X:k- Exk)(X:k- Exk)T } 

= (I- KkRk)(P k-1 + Qk-t)(I- KkHk)T + KkRkKkT (E.9) 

We can find the Kk that miniruizes P k by writing down the change t.P k due to a 

small change t.Kk and choosing Kk to make the rate of change of P k with Kk zero. 

The so found optima! gain matrix Kk is: 

(E.lO) 

Equations (E.7), (E.9) and (E.IO) are a special case of the discrete Kalman filter. 
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The equivalence of (E.9) and (2.4.39) is shown in appendix F. 

F Alternative covariance matrix calculation 

Here we wil! show that (E.9) 

is equivalent t.o (2.4.39) 

p 
k+l 

Expand (F.l), obtaining 

+ K H ( P + Q ) HT KT + K R KT 
k+l k+l k k k+l k+l k•l k+l bi 

However, from (2.4.33) we know that 

(F.2) 

(F.3) 

Thus substituting equation (F.4) into the third term on the righthand side of 

equation (F.3), we find 

(f.5) 
which is equation (F.2). 

G Identification of a visco-elastic material 

This appendix embodies a description of the estimations presented in section 2.4.8. 

Using a proper choice for the reference elasticity E in equation (2.4.42) the model for 
the creep behavior turns out to be: 
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t( t) = x + (x -x ) e-tx3 
2 I 2 

(G.l) 

Let t .(t) be the derivative of c(t) with respect to parameter x .. In an obvious 
•1 1 

notation we write for the equidistant time steps: 

f. = t(j .6.t) ; ( .. = ( .(j .6.t) 
J J•1 ,1 

(G .2) 

Perfect observation were simulated according to (G.2a), where xT=(O.l, 0.1, 0.1) and 

.6.t=l.O. The observation function and its derivatives are defined according to the 

observation sermences in equation (2.4.44): 

case 1: hk(x) = tk Hk(x) = ( tk,t' tk,2' tk,3) ; k=l, .. ,lO 

case 2: hk(x) = fli-k Hk(x) = ( tll-k.t' tu-k.2' fli-k) ; k=l, .. ,lO 

case 3: hk(x) = tk Hk(x) = ( tk,t' tk,2' ck) ; k=l,3, .. ,9 

hk(x) = tt2-k Hk(x) = ( ft2-k.t' tt2-k.2' ft2-k.3) ; k=2,4, .. ,10 

[ '•" ft .2 '•·'] case 4: hk(x) = (t1, .. ,t10) H1(x) = : 

~10.3 
; k=l, .. ,lO (G .3) 

flO.I ft0 .2 

The estimations shown in section 2.4.8 are the result of a straightforward 

application of the estimation theory, using the equations (2.4.45) up to (2 .4.47), 

where Rk =0.0001 (for the scalar observation cases), Rk =diag(O.OOOl) (for case 4) and 

P 0 =diag(O.Ol). In case 4 matrix Q is applied because of convergence reasans 

(Q=diag(0.01)). 

H Sample varianee of measured data 

In this appendix it is assumed that the sampling of the marks is carried out in such 

a manner that it may be assumed that the samples, {Pij} and {Qij} for j=l..n, are 

mutually independent . The varianee of the estimation error will be estimated with 

help of the estimators sp2 . and s~.: 
I l 

{H.l) 
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For s~. a similar expression is used. The varianee for the mean values of Pi and Qi 
I 

ean be estimated with: 
-2 1 2 . 1 
Spi = n Spi j I= .. m (H.2) 

sinee the sampling is assumed to be random. Again a similar expression for 8~. is 
I 

used. The above estimators lead to a great number of estimations. For eaeh 
component of eaeh mark the varianees are ealculated, both in the referenee 
situation as in the deformed situation. For eonvenienee only the mean values are 

presented: 

51.9 pixeJs2 
0.37 pixels2 

(s 
(s 

7.2 pixel) 
0.6 pixel) (H.3) 

where s2 refers to the varianee of the sampling noise and 32 refers to the varianee of 

the mean values Pi and Qi· 
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STELLINGEN 

behorende bij het proefschrift 

IDENTIFICATION OF THE MECHANICAL BEHAVIOR OF SOLID MATERIALS 

1) Het is een illusie om te streven naar homogene rek- en spanningsvelden bij 
experimenteel onderzoek van composiet-materialen (biologische materialen incluis) 
ten einde deze materialen te karakteriseren. 

Dit proefschrift, hoofdstuk 1. 

2) Inhomogene rek- en spanningsvelden bevatten informatie over het 
materiaalgedrag. Deze informatie te benutten om het materiaalgedrag te 
karakteriseren is de uitdaging. 

Dit proefschrift, hoofdstuk 2. 

3) Simulatiestudies zijn van essentieel belang voor het ontwerpen van een 
experiment. 

Dit proefschrift, hoofdstuk 5. 

4) Het wezenlijke van een numeriek-€xperimentele aanpak, zoals beschreven in dit 
proefschrift, is de symbiose. 

Dit proefschrift, hoofdstuk 1. 

5) Toepassingen van methoden uit de systeemidentificatie voor het karakteriseren 
van visc0-€lastische materialen zijn veelbelovend en onontkoombaar. 

Distefano, N., 1974, 11 Nonlinear processes in engineering11 , Academie Press, 
New York. 



6) De snelle ontwikkelingen op het gebied van de numerieke mechanica zullen de 

experimentele mechanica onontbeerlijk maken. 

Laermann, K.H., 1990, 11 0n the importance of experimental mechanics 

under international aspects11 , Proceedings of the 9th international 

conference on experimental mechanics, Kopenhagen. 

7) Ontwikkelde computerprogrammatuur op het gebied van de numerieke mechanica 

dient aan te sluiten bij een goed gedocumenteerd en onderhouden 
programma-pakket. 

8) Wapening tegen misleiding is iets dat een mens zeker moet verwerven. Ook in het 

mechanica-Dnderwijs kan en mag zoiets geoefend worden, maar het is niet iets dat 

thuis hoort in examens. 

9) Anders dan in de natuur, zijn technische producten waarbij inhomogene 
materiaaleigenschappen tegemoetkomen aan de plaatselijke mechanische belasting 
zeldzaam. 

10) Ondanks de invoering van het internationaal eenhedenstelsel (S.I .), wordt er in de 

wereldpolitiek met verschillende maatstaven gemeten. 

Eindhoven, januari 1991 Max Hendriks 


