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Recurrent and dissipative sets for the Markov shift

by

D.A. Overdijk and F.H. Simons

§ I. Introduction

Let (X,~,m,P) be a Markov process with PI = I and m(X) = I, i.e. (X,~,m) is a

probability space and P a positive linear a-additive operator on £oo(m) , with

PI = I. We consider X as the state space of the process, and form the reali

zation space

00

(Q,6l) = II
i=O

(X, L) .
~

where (X,~). = (X,L)
~

for all ~

Hence a point w € Q is a sequence w = (wO'w
l

,w 2 , ••• ) with wn € X for all n.

We denote by X the projection of Q on the n-th coordinate, i.e. X (w) = w •n n n
In (Q,6l) we consider the shift transformation S defined by

There may .exist a probability M on (Q,6l) such that

(This terminology can e.g. be found in Foguel [2J, mf = f f dm, IAf = IAf.)

It is well known that we can decompose the state space X into a conservative

part C and a dissipative part D for the operator P. A similar decomposition

theorem holds for measurable transformations on measure spaces, hence in par

ticular for S on (Q,6l,M).

The relationship between these decompositions is, under some conditions,

given by Harris and Robbins [5J and slightly extended by Simons [IOJ. In this

note we want to give a faster deduction of this relationship, making use of

a generalization of embedded Markov processes. This deduction will be given

in the third section; in the second section some facts on Markov measures on

(Q,6l) are collected.

To avoid misunderstandings, we remark that all equalities and inequalities

~n this note on sets and functions are valid modulo null sets.
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§ 2. Markov measures on (Q!~)

Let mO be a (not necessarily finite or a-finite) measure on (X,L) with

ma « m. A measure MO on (Q,~) is said to be a Markov measure with initial

measure mO if for all AO,AI, ••• ,An € L we have

(2. I)

(2.2)

It follows that for all nonnegative functions fO, ••• ,fn we have

J fO(wO)fI(w I ) ••• fn(wn)Ma(dw) = mOFOPF I ••• pfn

where F stands for multiplication by the function f.

Let ~a,n be the sub-a-algebra of ~ generated by the sets {XO € Aa' ••• 'Xn € An}.

Application of (2.2) yields

(2.3)

= J fo(wa) ••• f (w )(PF IP ••• Pf )(w )MO(dw) •n n n+ n+m n

Let E~ be the conditional expectation operator in (Q,~,Ma) with respect
O,n

to ~a • Then from (2.3) we conclude,n

(2.4)

Note that the conditional expectation ~s independent of the measure MO.

In general a Markov measure MO with initial measure mO « m need not exist.

However, if the process P is given by a transition probability such that

meA) = a implies P(",A) = a m-almost everywhere, then it follows from the

theorem of Ionesco-Tulcea that a Markov probability M with initial probabi

lity m exists (cf. [8J, V.I). In this case for any initial measure ma « mdma
there exists a Markov measure Ma on (Q,~). In fact, let ~ be the Radon-

Nikodym derivative of mO with respect to m on (X,L) and define the measure

M
O

on (Q,~) by

dMa dmOdM (w) = dm (wO) •
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Then

We conclude this section with two technical results which we shall need ~n

the sequel.

Lemma 2.1. Let MOdmOsuch that < ro
dm

shift if and only

Proof. Put

be a Markov measure on (~,~) with initial measure mO « m

on X. Then MO is a-finite, and MO is preserved under the
. dmO dmO
~f --- P =-dm dm

A
n

ro

then ~ = U An and MO(An) < ro for all n, hence MO is a-finite.
n=1

Suppose MO is shift invariant. Then for all A E E we have

dmoConversely, suppose~ P

der S it suffices to prove

dmo=~ • In order to show that MO is invariant un-
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Lemma 2.2. Let f E £00 and AI, ••• ,An E L. Then for every k we have

...

Proof. Note that

Taking on both sides the conditional expectation with respect to ~O k we ob-,
tain by (2.4)

...

from which the relation follows.

§ 3. Recurrent and dissipative sets for the Markov shift

It is well known how to decompose the state space X into a conservative part

C and a dissipative part D. For a description of this decomposition the rea

der is referred to [2J, chapter 2 or [4J. In this section we mention the

properties we shall need in the sequel.

Lemma 3. I • There exists a partition DI ,D2,··· of D such that

00

L pnl E £ for all 1. .D. 00

n=O 1.
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Proof. See Feldman [IJ, theorem 2.1 or [4J, theorem I.

Lennna 3.2.

+a) For all g E £00 Pg ~ g(Pg ~ g) on C implies Pg = g on C.

b) There exists a function g E £:with Pg ~ g and Pg < g on D.

Proof.

00Foguel [2J, chapter 2, theorem Band (2.9).

D1,D Z' ••• be the partition as ~n lerrnna 3.1. Put ct i =" I pnl D IL,
00 00 n=O i

and define f = I ~ ID,. Then g = L pnf ~ I and g - Pg = f > 0 on D.
i=l 2~ct. ~ n=O

~

a) See

b) Let

Lennna 3.3. The conservative part of X with respect to pn is the conservative

part of X with respect to P.

Proof. Let D(pn) be the dissipative part of X with respect to pn • Then there
, f' £+. n . ( n)

ex~sts a unct~on g E 00 w~th P g ~ g and the < s~gn holds on D P •
, n-I, n-I n

Put g = g + Pg +••• + P g, then Pg Pg +••• + P g + P g, hence Pg' ~ g',

and the < sign holds on D(pn). It follows that D(pn) C D.

Conversely, let h E o£: satisfy Ph ~ h, with < on D. Since P is a positive

operator, we have h ~ Ph ~ p~, hence h > pnh on D and therefore D c D(pn).

In the next lemma we introduce a rather queer type of Markov process, which

will turn up in the proof of theorem 3.2. Some special cases of this type of

Markov operator however are well known. If n = I and H = lA' then HC = I and
AC

QH is the embedded process; if n = I and H is the multiplication by a function

f with 0 ~ f ~ I, then QH is the operator Tf as studied by Foguel and Lin [3J

and Lin [7].

Lennna 3.4. Let Hand HC be Markov processes on (X,I,m) such that H + H
C

Define for E o£+every g 00

n-]
P •

00
QH(g) = L (PHc)kpHg ,

k=O

then QH is a Markov process satisfying H(I - QH)l = 0 on C.
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Proof. Since P, Hand HC are Markov operators, the operator QH is positive,

linear and a-additive. It remains to show that QHI ~ I. This follows from

the following relation, which is easily verfified by writing out, by taking

j -+ 00:

(3. I) i (PHc)kpH1 + (PHc)j+11 =

k=O
I •

Put (PHc)jl = g., then it also follows that (g.) is a nonincreasing sequence
J J

of nonnegative functions, hence lim g. = g exists.
j-+oo J

n c
P g. = PHg. + PH g. = PHg. + gJ'+1 •

J J J J

Let j -+ 00, then we obtain

Png PH'" g + g ,

from which n and therefore by lemma 2.3 and lemma 3.2a)we conclude P g ;:: g,
n

C, PHg '" 0 on C. Again by lemma 3.2a) this implies Hg = 0P g = g on on c.
Since g = 1 - QH1, we obtain H(I - QH) 1 = o on C.

After these preliminaries, we turn to the ma1n subject of this section. We

start with a definition.

Definition 3.1. Let S be a measurable transformation on a (finite or a-fini

te) measure space (st,IR,M). A set WEIR is said to be wandering if W n S-~ = 0

for n = 1,2, ••• , or equivalently, if {w E W I Snw E W for some n ;:: 1} = 0.
E IR is said to be dissipative if A is a countable union of wandering

set A E IR is said to be recurrent if {w E A I Snw E A i.o.} = A.

A set A

sets. A

(Snw E A 1.0. (infinitely often) means that there exists a sequence
nk

such that S W E A for all k ~ I.)

Recall that the conservative part of Q with respect to S is characterized by

the fact that all its subsets are recurrent, while the dissipative part of ~

with respect to S, i.e. the complement of the conservative part, indeed is

dissipative (cf. [6J, [9J). Obviously, a countable union of dissipative sets

again is dissipative, and a countable union of recurrent sets is recurrent.

Note, however, that a dissipative set may be recurrent. This is for instance

the case if st = land Sn = n+ 1 for all n E ~. Then {n} is wandering for all

n E l, hence st is a recurrent dissipative set.
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From now on we shall assume that (n,~,M) is the realization space of

(X,~,m,P), where M is the Markov measure on (n,~) for P with initial measure

m.

Theorem 3.1. Let (X,~,m,P) be a Markov process with m(X) = 1 and PI = I, let

(n,~,M) be the realization space where M is the Markov probability for P with

initial measure m, and let D be the dissipative part of X with respect to P.

Then {XO E D} is a dissipative set in ~ for the shift S in (n,~,M).

Proof. Let DI ,D2, ••• be the partition of D as in lemma 3.1. Then

co

m( L
n=O

pnl ) =
D.
~

co

L
n=O

M{X
n

E D.}
~

< co ,

and therefore by the Borel-Cantelli lemma

M{X E D. i.o.} = 0 •
n ~

It follows that

co co

{XO E D} = U U {X
O

E D., XED. for exactly k integer m > O}.
i=1 k=O ~ m ~

Obviously, every set on the right hand side is wandering under S. Hence

{XO E D} is a dissipative set.

Theorem 3.2. Let (X,~,m,P) be a Markov process with m(X) = I and PI = I, let

(n,~,M) be the realization space where M is the Markov probability for P with

initial measure m, and let C be the conservative part of X with respect to P.

Let AO"" ,An- 1 E ~ be given such that AO c C. Then {XOEAO"" ,Xn_ l E: An_I}

is a recurrent set in ~ for the shift S in (n,~,M).

Proof. We consider the following sets in ~.

x A
n-I'

(~+jn""'~+n-I+jn) ~ AO x ••• x An_1

{(Xk'''''~+n_l) E AO x ••• x An_I'

(X
k

. , ••• , X
k

+ I • ) ~ AO x ••• x A I+In n- +In n-

for I $ j $ R,}

for all J ~ I} •
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Using lemma 2.2 we obtain

+ C n-lfor all g E £00. Hence also H = P - H is a

follows that

Define Hg = I A P ••• PIA g for all g E £:,
o n-I

(X,~,m) satisfying Hg ~ pn-I g

Markov process on (X,L,m). It

then H is a Markov process on

k.. c!l.
M(Bk,!I.) = mP-H(PH ) 1 •

If !I. + 00 we get, using (3.1) in the proof of lemma 3.4

Since H(I - QH)I = 0 outside AO' and AO C C, it follows from lemma 3.4 that

H(I - QH) I = 0 on X, and therefore, M(Bk ,) = O.

Put B = {Xo E AO, ••• ,Xn_ 1 E An_I}' then ~e have M{w E B I Skn E B for fini

tely many kJ = O. It follows that

B = {w E B

= {w E B

hence B is recurrent.

Skn E B for infinitely many k}

SkW '" B; }"" .... 0. ,

Theorem 3.2 does not exclude that a set {XO E AO, ••• ,Xn_ 1 E An-I} is dissi

pative, since dissipative sets can be recurrent. Therefore in general we

cannot conclude that {XO E C} belongs to the conservative part of Q with

respect to S. However, Harris and Robbins [5J have shown that, under the con

dition that P admits a finite or a-finite invariant measure on C, the shift

S is conservative on {XO E C}. Their proof rests on the following lemma.

Lemma 3.5. Let S be a measure preserving transformation in a finite or a

finite measure space UG,tH,M
O
). Let at be an algebra generating tH such that

every A E ~ is recurrent. Then S is conservative on 5/.

Proof. Let Wbe a wandering set of finite measure. Choose s > 0 and A E Ot

such

that

that MO(A~W) < E.
N -n

M
O

(A \ uSA) <
N-I

Since A C

s. Then

u
n=1

s-nA, there exists an integer N such
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-N
N-)

> MOCS-NA n
N-I

0 MOCS W n u S-~w) u S-~W) - e:
i=O i=O

N-I -N S-iW)
N-I

M CSi-NAL MOCS A n - ('; L n W) - e:
i=O i=O a

N
~ MaC u S-~A n W) - e: > MaCA n W) - 2e: •

i= 1

Hence

It follows that MOCW) = a and S is conservative on ~.

Theorem 3.3. (Harris-Robbins [5J). Let (X,~,m,P) be a Markov process with

m(X) = I, PI = 1. Let C be the conservative part of X with respect to P. Let

C~,~,M) be the realization space of P where M is the Markov probability with

initial measure m. Suppose there exists a function u with a < u < 00 on C,

u = a on D such that uP = u. Then {Xo E: C} ~s the conservative part of ~ for

the shift Sand {X
O

E: D} is the dissipative part of ~ for the shift S.

u(wo), then MO is a Markov
dmO

determined by u = dmmeasure for P with initial measure mO' where mO 1S

By lemma 2.1 MO is a-finite and invariant under S.

It fallows from the definition of MO that MO is equivalent to M on {XO E C}

and MO = 0 on {XO E: D}. Hence the algebra ex of finite unions of sets

{XO E: AO",.,Xn E: An} with AO C C generates (mod MO) ~. By theorem 3.2 all

elements ofOlare recurrent, and therefore by lemma 3.5 S is conservative

on (~,~,MO). Hence, for every wandering set Wc {Xo E: C} we have MO(W) = 0,

and therefore M(W) = O. It follows that {XO E: C} belongs to the conservative

part of (~,~,M). On the other hand, by theorem 3.1 {XO E D} belongs to the

dissipative part of (~,~,M). This completes the proof of the theorem.

dMOProof. Define the measure MO on (~,~) by dM (w)
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