

Using turn restrictions for faster route planning with partitioned
road networks
Citation for published version (APA):
Flinsenberg, I. C. M. (2003). Using turn restrictions for faster route planning with partitioned road networks. In
10th Saint Petersburg International Conference on Integrated Navigation Systems (ICNS, Saint Petersburg,
Russia, May 26-28, 2003) (pp. 198-206)

Document status and date:
Published: 01/01/2003

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/55105755-5ae0-4566-9182-37a8d9b727e6

I

I
I..,L Cc~{- :rv.1~av. iv~~"'"t."' ~ S-ao-f,_.,
$~ \:>.:: k.v,,Ju""' (J

USING TURN RESTRICTIONS FOR FASTER ROUTE PLANNING WITH PARTITIONED ROAD NETWORKS#

Ingrid Flinsenberg •
Embedded Systems Institute - Eindhoven University of Technology,

Laplace Building 0.10, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,E-mail:l.Flinsenberg@tue.nl

Abstract
Key words: route planning, tum restrictions, graph partitioning, car navigation systems

We investigate the planning of optimum routes in large real-world road networks, by using a graph partitioning approach.
Very specific for real-world road networks is the presence of tum restrictions. We consider the problem of planning optimum
routes in partitioned graphs, where the original graph, and thus the created reduced graph, contains tum restrictions. We
discuss the consequences of the presence of tum restrictions for the creation of reduced graphs. Then we create a new
reduced graph based on the original graph partition. When constructing this new reduced graph, we use the presence of tum
restrictions in the original graph to our advantage. We develop a new planning algorithm to plan with the new reduced graph
and the original graph partition. We compare the number of function evaluations of this algorithm for the old and new
reduced graph, for several planning criteria on several real-world road networks. We conclude that our algorithm performs
significantly better for the new reduced graph than for the old one. Our algorithm applied to the old reduced graph is, in tum,
faster than the generalized A* -algorithm for unpartitioned graphs.

Introduction

An increasing number of car manufacturers are offering a navigation system as one of the extra features of
their cars. The key components of such a navigation system are positioning, guidance and route planning. In this
paper, we focus on the route planning functionality of a car navigation system. Users of such systems are
becoming increasingly demanding. Because a driver does not like to wait for his route, the route planning
process has to be very fast. Furthermore, the size of road networks available on CD or DVD is increasing. CDs
or DVDs containing the road network of entire Europe are now becoming available. Also, when a driver asks the
system for the fastest route to his destination, he expects the system to present the absolutely fastest route. So
optimum routes have to be planned on very large road networks, in very little time. Because of the increasing
size of available road networks and higher demands on route quality and planning speed, planning optimum
routes in little time is a continuing challenge for companies developing car navigation systems.

Very specific for road networks is the presence of tum restrictions. Tum restrictions can be modeled by costs
on adjacent edges, so that certain turns can be given an additional cost. Turn restrictions have been studied
recently by Schmid [10], Szeider [11] and Winter [12]. Schmid [10) discusses forbidden turns or equivalently,
turn restrictions with infinite costs. He presents several algorithms and graph reformulations for planning
optimum routes if forbidden turns occur in a road network. Winter [12] considers turn costs on pairs of adjacent
edges. He constructs the line graph of the road network, and proves that optimum routes in the original road
network can be planned by applying a standard shortest-path algorithm to the line graph. Szeider [11) considers
the problem of determining whether a simple path exists between two nodes in a road network with turn
restrictions, where a simple path is a route in which each node appears at most once. He proves that this problem
is NP-complete for real-world road networks.

For a car-navigation system, a standard Dijkstra-like algorithm [l], [4] is not fast enough to plan optimum
routes in large real-world road networks. Because of the high demands on planning speed, the route planning
process has to be speeded up, which can be done by pre-processing the roadgraph. Flinsenberg [3] and Jung and
Pramanik [6] describe a cell-partitioning approach to speed up the planning process. They divide the roadgraph
into a number of disjunct subgraphs, called cells, that are connected by a boundary graph. The planning process
is speeded up, by reducing the graph that is needed to plan the optimum route. Kim, Yoo and Cha [7] discuss
handling real-time data in combination with cell-partitions. They add all edges that could be subject to real-time
data to the boundary graph. Benzinger et al [5] use the graph separators of Lipton and Tarjan [8] to achieve a
faster route planning process. Their approach gives efficient theoretic bounds on the running time of the

#This research was performed in co-operation with Siemens VDO Automotive in Eindhoven, The Netherlands.
* M.A.,Ph.D.-student.

algorithm, but we do not consider this approach to be practically feasible. Ertl [2] creates an implicit hierarchy
by creating a 'radius' for every edge. Only if the distance from the start node or destination to the end node of an
edge is smaller than the radius, the edge is evaluated when planning an optimum route between the two nodes.

This paper is organized as follows. In Section 2, we discuss planning optimum routes with turn restrictions.
In Section 3, we introduce a cell-partition, and in Section 4 we discuss the consequences for creating cell
partitions for real-world road networks with turn restrictions. We discuss how turn restrictions can be used to
achieve faster route planning by creating a new boundary graph in Section 5, and in Section 6, we give a new
planning algorithm for planning with this boundary graph. We compare the number of evaluated edges of our
planning algorithm when the old and new boundary graph are used in Section 7. First, we introduce some basic
notation.

1. Basic notation

A road network can be represented as a graph, in which the edges represent the road segments, and the nodes
represent the junctions. Since there may exist parallel and circular roads, we do not exclude parallel edges or
loops. Because one-way roads have to be modeled as well, every edge in a road network is directed. A road
network can thus be represented by a directed multi-graph. Very specific for road networks is the presence of
turn restrictions. Turn restrictions can be modeled by costs on adjacent edges, so that certain turns can be given
an additional cost. Such costs can be used to represent forbidden turns, but also to increase the cost of using a
short-cut instead of the main road.

For an edge e from node u to node v, let J1 (e) denote start node of the edge, and J2 (e) the end node of

the edge, i.e. J1 (e) = u and J2 (e) = v. Formally, we define the roadgraph as a tuple G = (N, E, w, r), where

N denotes the set of nodes, E the set of edges, w(e) the non-negative cost associated with edge e, and

r(e 1, e2) the cost associated with edges e1 and e2 with J 2 (e1) = J1 (e 2) . The cost r(e1 , e2) is called a rule,

and is used to model the additional cost of making a 'turn' from edge e1 to edge e2 . If a turn is not allowed, for

example due to a turn restriction, we call the turn forbidden, and we set r(e1, e2) = 00 • A route in a roadgraph is

a sequence of adjacent edges, p = (e1, ... , ek), where ei EE and J2 (ei) = J1 (ei+l) for i = 1, ... , k-1. The cost

of route p, the route-cost, is equal to c(p) = I.7=l w(ej) + I.7:i1 r(ei, ei+l) . If a route uses two adjacent edges

that are not allowed because of a forbidden turn, the route-cost equals infinity. A route with finite cost is called a
feasible route. A route with minimum cost from start node s to destination node d is called a minimum cost
route or an optimum route.

2. Planning optimum routes in a roadgraph with turn restrictions

Because forbidden turns may be present in a roadgraph, an optimum route may contain a node more than
once. Consider the example in Figure 1, and assume that r(e1, e2) = 00 • The optimum route from node 1 to node

6 is the route through all six nodes, which passes through node 2 twice. Note that this cyclic route is the only
feasible route from node 1 to node 6.

Figure 1: An optimum route with a cycle.

Because an optimum route may contain a node more than once, the standard A* -algorithm [4] cannot be
used to determine the optimum route. However, an optimum route does not contain an edge more than once. In
order to plan optimum routes in a graph with rules, a modified A* -algorithm can be used that evaluates edges
instead of nodes. Schmid [10] and Winter [12] consider turn restrictions on pairs of adjacent edges. Both papers

present polynomial-time algorithms that construct optimum routes that may contain nodes more than once.
Winter [12] uses that an optimum route does not contain an edge more than once by constructing the line graph
of the roadgraph to plan optimum routes.

3. Cell-partition

Since a driver does not like to wait for his route to be planned, the planning of optimum routes in a roadgraph
has to be done very fast. The route planning process can be speeded up, by pre-processing the roadgraph, as was
shown by Flinsenberg [3] and Jung and Pramanik [6]. They divide the roadgraph into a number of disjunct
subgraphs called cells in order to achieve faster route planning. Let G = (N , E , w,r) be a roadgraph, then a cell-

partition is a set {c1, ... ,Cd where Ci =(Ni,Ei,w,r) is a roadgraph induced by the nodes Ni, such that

Nin N j = 0, for every i * j, and LJ~=l Ni = N. The edge costs and rules of cell Ci are equal to the edge costs

and rules of those edges and rules of G that are completely contained in cell Ci. The edges of cell Ci are called

internal edges, the nodes that only have adjacent nodes in Ci are called internal nodes, and nodes that also have

adjacent nodes outside cell Ci are called boundary nodes. The boundary graph B of a cell-partition

{c1, ... , Ck} is defined by B = (N 8 , E 8 , w, r) with N 8 the collection of boundary nodes and E 8 the collection

of boundary edges with E 8 = E \{LJ~1 Ei} . The edge costs are given by the costs of the corresponding edges in

G , and the rules are given by the rules in G formulated on pairs of edges of which both edges are contained in
B . After the roadgraph has been partitioned into a number of cells, we compute the optimum route cost between
every pair of boundary nodes of a single cell. The optimum routes are represented by edges that we add to the
boundary graph. These edges are called route edges, and the set of route edges of cell Ci is denoted by Ai.

Specifically, we add two directed edges between every pair of boundary nodes of a single cell. The set of route
edges of a single cell thus forms a directed clique. We denote the graph formed by the set of route edges by Ki,

so K i = (N 8 n Ni, Ai, w, r) for each cell Ci . The total set of route edges is denoted by EA = Ui Ai . Define

A= (N 8 , EA, w, r). The cost of a route edge between two boundary nodes of cell Ci is equal to the minimum

route cost in this cell from the start node to the end node of the edge. For a roadgraph without turn restrictions,
A does not contain rules. Finally, we define the searchgraph Cs for planning an optimum route between start

nodes and destination d as Gs =CsuCduBuA\(KsuKd),where Ci isthecellcontainingnode i,and

Ki the graph formed by the set of route edges of cell Ci . Flinsenberg [3] shows that planning a route in

searchgraph G s is much faster than in the entire roadgraph. An example of a cell-partition and the boundary

graph including route edges are given in Figure 2 and Figure 3 respectively. A cell is represented by the graph
contained in an oval. Note that the boundary nodes are black and the internal nodes are white.

Figure 2: A cell-partition. Figure 3: Boundary graph and route edges.

4. Cell-partitions of roadgraphs with tum restrictions

We now elaborate on the use of cell-partitions when tum restrictions are present. In Figure 4 the numbers
next to the edges represent both the edge cost and the edge number. A cell is given by the sub-graph induced by

the nodes contained in an oval. Assume the combination of edges 6,1 corresponds to a forbidden turn, i.e.
r(6,l) = oo. This means that the optimum route from node 4 to node 9 is the route (6,3,4,13), with cost 26. The

optimum route from node 5 to node 8 is the route (1,2), so the searchgraph contains an edge from node 5 to node

8 with cost 3. As a result, a standard route-planning algorithm such as Dijkstra's algorithm [l], planning the
optimum route from node 4 to 9 in the searchgraph, finds a route with cost 22. So in this case, planning an
optimum route with the searchgraph does not lead to a route with the correct minimum route cost. The problems
arise because the optimum route between two nodes contains a route different from the optimum route between
two boundary nodes. This is caused by the turn restrictions imposed on a pair of edges, for which not both edges
are contained in a single cell or in the boundary graph.

Now assume that the turn from edge 6 to edge 7 is also forbidden, i.e. r(6,7) = oo. As a result the optimum

route from node 4 to node 2, is the (cyclic) route (6,3,5,1,7) with cost 22. The searchgraph consists of the cell

that contains node 4, the boundary graph and the route edges, i.e. G s = C 4 u B u A\ K 4 . As a result, G s does

not contain nodes 6 and 7, and a route-planning algorithm can only find a route via node 8. We can solve this
problem, by adding a boundary edge between every boundary node and itself, with as cost the minimum cost of a
path from the boundary node to itself containing at least one edge. However, to overcome all difficulties with
turn restrictions in the cell-partition, we have to modify the partition itself. This is practically feasible because
the number of rules is small compared to the number of edges and nodes in a real-world roadgraph. We modify
the cell-partition so that there are no rules between internal edges and boundary edges, or between two boundary
edges. As a result, every rule of the roadgraph is completely contained in a single cell.

Figure 4: Turn restrictions in a cell-partition.

We also have to introduce rules between route edges in order to guarantee that optimum routes can be
planned. Consider Figure 5 and assume there is a turn restriction between edges e1 and e2 , i.e. r(e1, e2) = 00 •

The routes from node 1 to node 2 and from node 2 to node 3 are feasible, but the route from node 1 to node 3 is
infeasible. As a result, we need to create turn restrictions between the route edges that start and end in node 2, to
prevent the route from node 1 via node 2 to node 3 from becoming feasible.

Figure 5: Turn restrictions between route edges.

Therefore, we also introduce rules r(e1, e2) = 00 , for all route edges e1 and e 2 , such that 62 (e1) = 61 (e2) .

Due to these rules, a feasible route never contains two adjacent route edges. Let A be an algorithm suitable for
planning optimum routes in a graph with turn restrictions. Such an algorithm exists, as was shown by

Schmid [10] and Winter [12]. With the resulting searchgraph, we can plan optimum routes using Algorithm A,
as formulated by Lemma 4.1, where {c1, ... , Ck} is a cell-partition of roadgraph G.

Lemma 4.1

If u7=l {r(e1 'ez) I r(e1, ez) > 0, ei, ez E CJ= {r(e1, ez) I r(ei, ez) > 0, e1, ez E G}' then an optimum route

between start node s and destination node d in roadgraph G with cost c can be planned using algorithm

A , if and only if an optimum route between start node s and destination node d in G s with cost c can be

planned using Algorithm A .

5. Using turn restrictions for faster route planning

As stated in Section 3, Flinsenberg [3] creates two directed edges between all pairs of boundary nodes of a
cell with as cost the minimum path cost within that cell. This leads to a quadratic number of edges between these
nodes. Specifically n(n -1) route edges are created for a cell with n boundary nodes. In this section, we show

that this can be reduced to a linear number of edges, specifically to 2n route edges for a cell with n boundary
nodes. First, we introduce the structure of the new boundary graph, then we demonstrate that using this structure,
the optimum route costs between every pair of boundary nodes remains the same. Finally, we argue how
planning with this new structure relates to planning with the old 'clique graph'.

To create a clique graph, an edge is added between every pair of boundary nodes of a cell, which leads to a
graph as in Figure 6. The n(n -1) route edges can be reduced to 2n route edges by storing the optimum route

costs in a star graph. We create a star graph by adding a dummy node, and two directed edges between the
dummy node and every boundary node, see Figure 7. This leads to 2n route edges. Note that for the clique
graph we had n boundary nodes per cell, and for the star graph we have n + 1 (boundary) nodes per cell.

Figure 6: Clique graph. Figure 7: Star graph.

What remains to be done, is establishing the edge costs of the edges in the star graph such that the costs of
the routes between every pair of boundary nodes remain the same as in the clique graph. We do that by
introducing rules between every pair of adjacent edges in the star graph. Consider a cell Ck with n boundary

nodes, and let ciJ denote the minimum route cost in Ck between boundary nodes i and j with i, j = 1, ... , n

and i * j. We create a star graph Sk = ({1, ... ,n}u{u}, {elJi+l (e) = j, J 2_i (e) = u,i = 0,1, j = 1, ... ,n }, w, r). The

cost of each edge in the star graph is set to half the minimum route cost between all pairs of boundary edges

rounded down, i.e. w(e) = c = mini,}EsJ1cu J for all eE Sk . We introduce rules r(e1, e2) = cij -2c, for every

pair of boundary nodes i and j with i=J1(e1), j=J2 (e2), J 2 (e1)=J1(e2)=u, and itoj. For each

boundary node we introduce two more rules. Specifically, we introduce rules r(e1, e2) = 00 , for route edges e1

and ez in Sk such that i=J1(e1)=82 (e2), and such that J 2 (e1)=J1(e2)=i for every boundary node

i E S k . These last rules, which forbid certain edge combinations, are introduced for the same reason as the rules

in the clique graph. That is, to prevent forbidden routes from becoming feasible, see Figure 5. Using
A= (NA, EA, w, r) =Uk S k, the searchgraph for start node s and destination d is given by

Gs =Cs uCa uBuA\(Ss uSa). With these edge costs and rules, we have that between every pair of

boundary nodes i, j the minimum route cost is equal to cij as it is in the clique graph. This is formally stated in

the next lemma.

Lemma5.1

Let u and v be two boundary nodes of cell Ck . There exists a path p from u to v m K k with cost c if
and only if there is a path p' from u to v in S k with cost c.

From Lemma 5 .1 , it follows that Lemma 4.1 remains valid when star graphs are created instead of clique
graphs. When we need to plan a route in a boundary graph that is constructed with these star graphs, we have to
use an algorithm that is suitable for taking restrictions on pairs of adjacent edges into account. However, because
turn restrictions are also present in a normal road network, this is not an additional requirement. Also for the
clique graphs we needed to use an algorithm suitable for taking rules on pairs of adjacent edges into account. So,
in both structures it is necessary to check for rules on pairs of edges. Therefore, the additional turn restrictions do
not influence the speed of a single iteration of the algorithm. Note however that in the star graph, the number of
rules is usually larger.

6. Route planning with star graphs

Dijkstra's algorithm [l] can be used to plan an optimum route in a graph without turn restrictions: it
repeatedly selects the node with minimum cost from the start node to be evaluated. Because we have to take turn
restrictions into account, we evaluate edges instead of nodes, and thus select the edge with minimum cost from
the start node to be evaluated next. In order to reduce the number of evaluated edges, the A* -algorithm [4] uses
an estimation of the cost from the current node to the destination, which is called the h -value. The minimum
cost from the start node to the current node is called the g -value. The A* -algorithm selects the node with

minimum expected cost from the start node to the destination, i.e. the node with minimum g + h-value. Because

of the turn restrictions, we select the edge with minimum expected cost from the start node to the destination.
The A* -algorithm can be used to plan optimum routes if the h -value under-estimates the real cost from the
current node (or edge in our case) to the destination, and if the h-value is a so-called dual feasible estimator.
The Euclidean distance from a node to the destination is an under-estimation of the remaining distance to the
destination, and it is also a dual feasible estimator. For nodes with a geographical location associated with it, the
Euclidean distance to the destination can be determined. Because we are concerned with real-world roadmaps,
every node in the roadgraph has a geographical location. We can use the Euclidean distance as h -value if the
edge costs are equal to the length of the edge. For edge costs equal to the driving time, the Euclidean distance
divided by the overall maximum speed can be used as h -value to plan optimum routes.

As noted in the last section, we need to check the presence of turn restrictions on pairs of adjacent edges, for
both the star and the clique graph. Therefore, both approaches need to evaluate edges instead of nodes. However,
there is a difference with respect to planning with a star graph compared to a clique graph. This difference only
occurs for a planning algorithm that selects the edges to be evaluated partly on the Euclidean distance from the
evaluated edge to the destination. The A *-algorithm that uses a h-value based on the Euclidean distance from
the end node of an edge is such an algorithm. The difference between both structures lies in the fact that the
added dummy nodes in the star graphs do not exist in reality and therefore have no geographic location
associated with them. Without a geographic location, the remaining Euclidean distance is not defined. We first
define the h -value for an edge ending with a dummy node, and then we show that this can be used to plan
optimum routes in a searchgraph that contains star graphs.

Definition 6.1

Let Gs = (N,E, w,r) be a searchgraph that contains star graphs and a set of dummy nodes U. Let h(u)

denote the expected remaining cost from node u E N \ U , to destination d E N \ U .

Define: h(e) = {E(81 (e))-w(e), if 82 (e)E U
h (82 (e)), if 82 (e) EU

The h -value of edge e is equal to the expected remaining cost from the end node of the edge to the
destination. We show that the expected remaining cost defined above is an under-estimation of the actual
remaining cost. Furthermore, a permanent label set by a labeling algorithm is never modified if all rule costs are
non-negative and if the expected remaining cost h(e) under-estimates the remaining cost and is a dual feasible

•

•

estimator. If h (u) under-estimates the remaining cost then h(e) also under-estimates the remaining cost because

the remaining cost from the end-node of e with J 2 (e) EU, is equal to the remaining cost from J1 (e) minus the

cost of edge e, h(J1 (e))-w(e). Remains to be proven that h(e) is a dual feasible estimator and that a

permanent label set by a labeling algorithm is never modified if all rule costs are non-negative and if the
expected remaining cost h(e) is a dual feasible estimator. Recall the definition of a dual feasible estimator, see

also Pearl [9].

Definition 6.2

An estimator h(u) is called a dual feasible estimator if h(J2 (e))-h(J1 (e)) ~ w(e) for every e E E of

roadgraph G=(N,E,w,r).

This definition can be easily generalized for estimators for edges. Pearl [9] proves that for roadgraphs
without turn restrictions, a permanent label set by a labeling algorithm is never modified if the expected

remaining cost h (u) is a dual feasible estimator. This can be easily generalized to road graphs with turn

restrictions if all rule costs are non-negative. Finally, we can show that the estimator defined in Definition 6.1 is
a dual feasible estimator.

Lemma6.1

Let G=(N,E,w,r) be a roadgraph. lf h(u) is a dual feasible estimator, then h(e) is a dual feasible

estimator.

Figure 8 shows algorithm T * for planning optimum routes in searchgraphs with turn restrictions that contain
stars.

Input: Cell-partition {c1, ... , Ck} , boundary graph B, roadgraph A = LJ~=l Si, start node s and destination d.

l. Create the search graph.
Gs = (N,E, w,r) =Cs uCd uBuA \(Ss uSd) .

2. Create sets of unexpanded edges.
s E = {eE BI J1 (e)E Cs}, DE = {eE BI J2 (e)E cd }, H =E.

3. Initialize all costs.

c(e) = oo, Ve , en (u) = 00, Vu, e(e) = w(e) + h(e) for all edges adjacent to node s, and en (s) = h (s) .

4. Select the edge e from H with minimum cost e(e) .

5. If ell (J2 (e));?: en (d) , or no edge is selected, then stop.

6. For every (allowed) adjacent edge e1 in G s of edge e , update the minimum cost e(e1), and

ell (J2 (e1)) , using the h -value of Definition 6. l.

7. Update the sets of unexpanded edges.
SE = SE \ {e}, DE = DE \ {e}, H = H \ {e}.

8. If possible, reduce the set H of unexpanded edges.
If (Cs 1:- Cd)A(SE =0) then H = H\Es . If (Cs 7:-Cd)A(DE = 0) then H = H \ (Es u EA) .

9. Go to Step 4.

Output: minimum route cost en (d).

Figure 8: Algorithm T * .

Algorithm T * uses the dual feasible estimator of Definition 6.1 to direct the planning process to the destination
(Step 6). In Steps 5, 7 and 8, we use that the used estimator is dual feasible. It also uses the fact that for every
route between two nodes in different cells, the start cell has to be left and the destination cell has to be entered
(Step 8). As soon as all minimum cost routes to the end nodes of edges leaving the start cell have been found, no

more internal edges of the start cell have to be evaluated. As soon as all minimum cost routes to the end nodes of
the edges entering the destination cell have been found, no more route edges or boundary edges have to be
evaluated. Furthermore, it is relatively easy to let the algorithm select only allowed adjacent boundary edges in
Step 6. Therefore, the turn restrictions between edges from and to the dummy node in the star graph do not have
to be created explicitly anymore. Assuming the turn restrictions can be checked efficiently for a pair of edges,
the next lemma holds.

Lemma6.2

Algorithm T * is a polynomial time algorithm of order O(R + m log m) that gives as output the minimum

route cost between two nodes in a searchgraph that may contain stars. The number of edges is given by

m = 2maxzlE;j+IEBJ+2IN BI, and the number of rules by R =l{Ce1 ,e2)E ExEuEA xEA I r(e1,ez) > o] .

7. Comparing stars and cliques

In this section we compare the number of evaluated edges of algorithm T * using as input the searchgraph
where Ai =Si for all cells, with an input searchgraph where Ai = Ki for all cells. Note that the number of

evaluated edges by algorithm T* represents the number of iterations of the algorithm and is thus an objective
measure of the run time of the algorithm. For our comparison we use four partitioned real world road networks,
the networks of Sophia, Eindhoven, G3 and G2, see Flinsenberg [3]. Sophia is a city in the south of France. Its
cell-partition consists of 14 cells and the entire road network contains approximately 2,000 edges. Eindhoven is a
city in the south of The Netherlands. Its cell-partition consists of 9 cells and the entire road network contains
approximately 15,000 edges. As an illustration, a cell-partition of Eindhoven is given in Figure 9. G3 is a road
network in the west of Germany containing approximately 24,000 edges. Its cell-partition consists of 18 cells.
Finally, G2 is a road network also in the west of Germany that contains G3. It consists of approximately 88,000
edges, and its cell-partition consists of 28 cells.

Figure 9: Cell-partition of Eindhoven.

For each road network, we have planned 400 routes, minimizing both the route length and the travel time,
between randomly selected start- and end-nodes. These 400 routes are divided in four groups of 100 routes each.
The first 100 start nodes and destinations (Route type Random in Table 1) have been chosen completely at
random. The second group of 100 routes (Route type Commuter in Table 1) consists of start and end nodes, of
which 55% is part of an urban area, and 45% has a Euclidean distance of at most 50 kilometers. This group is
believed to represent a distribution of start and end nodes as they occur in real life for a commuter. The third
group of 100 routes (Route type Rural in Table 1) has only start- and end nodes in rural areas, and the last group
(Route type Urban in Table 1) has only start nodes and destinations in urban areas. Consider Figure 10. On the
vertical axis, the gain in efficiency of the star graph approach relative to the efficiency of the clique graph
approach is displayed. So a y -value of 25% means that with star graphs the algorithm evaluates only 75% of the

edges that are evaluated with clique graphs. On the horizontal axis the 100 routes of a single type have been
sorted on increasing y -value for each road network. Figure 10 is characteristic for all considered route types and

planning criteria. All results are briefly summarized in Table 1. For each network, type of routes and planning

,

criterion, the table presents the mean, minimum and maximum percentage of additional edges that have to be
evaluated by the clique approach.

Figure 10: Percentage of additional edge evaluations of the clique approach, for fastest commuter routes.

Network Route tvoe Criterion Mean Min. Max. Network Route tvoe Criterion Mean Min. Max.

Sonhia Random Len!!th 0.38 -7.50 14.70 03 Random Len!!th 7.01 -0.92 53.23

Time 0.64 -3.48 14.70 Time 7.46 -0.83 47.16

Commuter Leni:rth 0.21 -3.33 7.61 Commuter Len!!th 10.24 -0.76 35.53

Time 0.24 -4.05 6.70 Time 10.74 -0.72 37.07

Rural Len!!th 0.04 -6.67 17.00 Rural Len!!th 10.50 -0.48 48.80

Time 0.29 -5.56 17.13 Time 10.91 -0.23 43.66

Urban Len!!th 0.47 -3.43 7.34 Urban Len!!th 8.23 -0.74 40.78

Time 0.60 -5.06 8.09 Time 8.88 -0.38 43.47

Eindhoven Random Len!!th 3.80 -0.70 20.90 02 Random Length 12.23 -0.55 51.03

Time 2.69 -9.05 17.35 Time 11.92 -0.35 50.23

Commuter Len!!th 6.97 -1.13 36.77 Commuter Len!!th 13.86 -0.38 59.30

Time 6.30 -1.60 36.10 Time 13.35 -0.27 59.89

Rural Len!!th 9.60 -0.39 71.15 Rural Len!!th 15.84 -0.28 62.04

Time 9.16 -5.72 71.15 Time 15.47 -0.63 60.33

Urban Len!!th 4.54 -1.13 25.63 Urban Len!!th 11.20 -0.44 57.06

Time 3.65 -2.55 26.84 Time 10.87 -0.43 55.11

Table 1: Percentage of additional edge evaluations of the clique approach.

From these results, it is clear that for road networks of different sizes, for different planning criteria, and
different types of routes, the star approach outperforms the clique approach. The star approach requires much
fewer edge-evaluations in general. For cell-partitions with cells with more boundary nodes, the star approach is
most effective. This can be explained by the fact that the larger the number of boundary nodes is, the larger is the
difference between the number of edges in both structures. Furthermore, the larger the network is, the more
effective the star approach becomes. This is probably related to the fact that the efficiency gain is higher for long
routes than for short routes, because for larger networks, the routes get longer and the number of long routes
increases. When we took a closer look at the rural routes in the city of Eindhoven, it appeared that almost all start
and end nodes were located on the border of the map, leading to relatively long routes for this road network.
From the results of these routes, we can conclude that the efficiency gain is higher for long routes than for short
routes. The larger efficiency gain for long routes can be explained by observing that for long routes, more cells

have to be traversed to reach the destination cell. If no edges in the boundary graph are evaluated to find the
minimum cost route, then the change from a star to a clique graph does not make any difference. This is most
likely to occur for a start node and destination node that are contained in a single cell. This explains, for the
networks of Eindhoven and Sophia, the larger number of routes for which there is no difference between both
approaches with respect to the number of evaluated edges. Because the cell-partitions of these networks contain
only a few cells, the chance that the start node and destination are contained in the same cell is relatively high.

In normal road networks, only for a few routes, the star approach leads to a small increase in the number of
edge evaluations. This is caused by the difference in the evaluation of the edges of a clique and a star graph. The
difference in the number of evaluated edges for a star and clique graph depends, among others, on which edges
of the clique graph are evaluated and on the costs of the edges in the star graph. Compared to the gain in edge
evaluations for other routes, the increase in the number of evaluated edges for these few routes is negligible. We
can safely conclude that using star graphs is the better way to store the minimum path costs between every pair
of boundary edges in a cell.

Conclusions

Schmid [10] and Winter [12] have shown that in real-world road networks that contain turn restrictions,
optimum routes can be planned. We can speed up the route planning process by creating a cell-partition. When
we create this cell-partition, we have to take the turn restrictions into account, if we want to guarantee that
optimum routes can still be planned. We have shown that the minimum route costs can be stored in a so-called
star graph, and that optimum routes can be planned using this structure, if they can be planned using the standard
method of storing the minimum route costs. Furthermore, we developed an algorithm for planning optimum
routes with a searchgraph that contains star graphs. By planning optimum routes for different road networks,
different planning criteria, and different route types, we have shown that our new algorithm is generally
considerably faster for real-world road networks, using our new boundary graph with star graphs than using the
old boundary graph with clique graphs. In the future, we will investigate whether different cell-partitions can be
created that allow an even better performance of our new planning algorithm, in combination with using a star
graph to store the minimum route costs between boundary nodes of a single cell.

References

l. E.W. Dijkstra. A Note on Two Probiems in Connexion with Graphs, Numerische Mathematik 1: 269-271, 1959.
2. Gerhard Ertl. Shortest path calculation in large road networks, OR Spectrum 20: 15-20, 1998.
3. Ingrid Flinsenberg. Graph Partitioning for Route Planning in Car Navigation Systems, to appear in: Proceedings of the 11 th IAIN

World Congress, Berlin, Germany, October 2003.
4. G. Galperin. On the Optimality of A*, Artificial Intelligence 8(1): 69-76, 1977.
5. Monica R. Henzinger, Philip Klein, Satish Rao, Sairam Subramanian. Faster shortest-path algorithms for planar graphs,

Journal of Computer and System Sciences 55: 3-23, 1997.
6. Sungwon Jung, Sakti Pramanik. An Efficient Path Computation Model for Hierarchically Structured Topological Road Maps,

IEEE Transactions on Knowledge and Data Engineering 14(5), September/October 2002.
7. Kihong Kim, Seungwon Yoo, Sang K. Cha. A partitioning scheme for hierarchical path finding robust to link cost update, in

Proceedings of the 5th world congress on ITS, Seoul, Korea, October 1998.
8. Richard J. Lipton, Robert Endre Tarjan. A separator theorem for planar graphs, SIAM Journal of Applied Mathematics 26(2):

177-189, April 1979.
9. Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, Massachusetts,

1984.
10. Wolfgang Schmid. Berechnung Kiirzester Wege in StraJ3enetzen mit Wegeverboten, Ph.D.thesis, Universitiit Stuttgart,

Breitwiesenstr. 20/22, D-70565 Stuttgart, July 2000.
11. Stefan Szeider. Finding paths in graphs avoiding forbidden transitions, Discrete Applied Mathematics 126: 261-273, 2003.
12. Stephan Winter. Modeling Costs of Turns in Route Planning, Geolnforrnatica 6(4): 345-360, December 2002.

! '

