

A parallel program that generates the Möbius sequence

Citation for published version (APA):
Verhoeff, T. (1988). A parallel program that generates the Möbius sequence. (Computing science notes; Vol.
8801). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0422f9dc-abb5-4591-8045-adaa44b3f0c1

A Parallel Program That Generates

the Mobius Sequence

by
Tom Verhoeff

88/01

January 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing Science Section of the Department

of Mathematics and Computing Science of Eindhoven University of Technol­

ogy.
Since many of these notes are preliminary versions or may be published else­

where. they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB Eindhoven

The Netherlands
All rights reserved

editor: F.A.]. van Neerven

A Parallel Program That Generates
the MObius Sequence

TOM VERHOEFF

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513. 5600 MB Eindhoven. The Netherlands
E-Mail address: mcvax.UUCP!eutrc3!wstomv

January 1988

ABSTRACT

A CSP-like parallel program that generates the Mobius sequence is

derived from its specification. The program has constant response time. It

can be generalized to other sequences based on arithmetical functions. like

the Euler function.

O. INTRODUCTION

We start by defining the Mobius sequence and specifying. in the style of [0]. a computation

that generates this sequence. In the major section of this paper we derive a parallel pro­

gram from that specification. We analyze the response time of the resulting program. We

also indicate how the program can be generalized to generate other sequences. Finally. we

summarize the design techniques that were applied.

For integer n . n '" 1. let 7T(n) denote the number of (distinct) prime divisors of n. Since 1

is not considered prime. we have 7T(1) = O. For n "'2 we have 7T(n)'" 1: for example:

7T(2) = 1. 7T(4) = 1. and 7T(6) = 2. The Mobius function p. is defined for positive integers

by

if (E m : m > 1: m 2
1 n)

otherwise.

Parallel Program lor MObius Sequence

- 2-

where m 2
1 n means "m 2 is a positive divisor of n ". For instance. we have p.(l) = 1.

p.(2) = -1. p.(4) = O. and p.(6) = 1. The sequence p.(n : n ~l) is called the Mbbius

sequence.

We now give a specification for a program that generates the Mobius sequence. In the

next section we shall derive a parallel program satisfying this specification.

The program MobSeq has one external communication port: an integer output port b. The

communication behavior of the program MobSeq is specified by the regular expression

b*.

That is. an unbounded sequence of communications along port b is possible. The value of

the i -th communication Ci ~O) along port b is denoted by b Ci). The input-output reWtion

(or i/o-relation for short) of the program MobSeq is specified by the equation

b (i) = p.(i +1) for i ~O.

The following trivial "solution" gives an idea of what our program texts look like.

com TrivMobSeq(b lint) :

[x : int

;x:= 1 ;(b!p.(x) ;x:= x+l)*

11

moe

We aim at a program that has constant response time under the assumption that integer

addition and comparison are unit-time operations. Roughly speaking. this means that

there is a fixed amount of time between successive external communications. The amount

of computation required to determine p.(n). however. increases with n. Our program.

therefore. will activate more and more processes and distribute the computation among

them. Constant response time is achieved because the processes work harmoniously in

parallel. This cooperation resembles that of a systolic array.

Parallel Program lor MObius Sequence

- 3 -

1. DERIVATION

In this section we derive a parallel program from the above specification. The derivation

goes through a number of refinement steps that isolate design decisions. In the concluding

section we summarize. in more general terms. the design techniques that we applied. We

start our derivation by recalling from Number Theory that for n ~ 1

(Sd:d In :p.(d)) = U(n),

where U(l) = 1 and U(n) = 0 for n > 1 (see Appendix for a proof). Since n I n we now

can write a recurren t relation for jJ.:

p.(n) = U(n) - (Sd:d <n A din :p.(d)).

Computing U (n) is simple; it will be done in a subprocess. which is designed at the end of

this section. The computation of the quantified sum is delegated to another subprocess.

which will be our main concern in the rest of the derivation. Aiming at a program with

constant response time. this subprocess should not do the entire summation sequentially.

since the domain of the quantified sum increases with n. Therefore. we introduce a

sequence of processes M j • j ~1. where M j has a subprocess of type M j + l . We still have

the freedom to specify processes M j • For that purpose we generalize the quantified sum

by replacing the first occurrence of the variable n by a new variable m:

G (m . n) = (S d : d <m A din: p.(d))

Hence. we have

and

p. (n) = U (n) - G (n . n)

G(1.n)=O forn~1.

for n ~ 1.

for l~m ~n.

G (m + 1. n) = G (m . n) + if min then p.(m) else 0 Ii for 1~m <no

Process M j • j ~ 1. is specified as follows. M j has two external communication ports: an

integer output port c and an integer input port d. Its communication behavior is

(c;d Y.

Parallel Program lor MObius Sequence

- 4 -

that is. communications along ports e and d alternate. starting along e. The i/o-relation

for M j is Ci '" 0)

e(i) = G Ci +l.i + j).

d(i)= jl.Ci +1).

When fed with the values of jl.. process M j will produce the indicated partial sums; M 1

produces the desired values G (n . n) for n '" 1.

We shall now derive the program for M j • j '" 1. Let p be its subprocess of type

M j +1. M j has two internal communication ports to its subprocess p: one input port and

one output port. denoted by p.e and p.d respectively. This means that values coming

from p.e can be used. but also that the proper values for p.d must be supplied-all in

accordance with p·s specification. of course. We first deal with the external output e. dis­

tinguishing the first and succeeding occurrences:

c(0)

= { i/o-relation of M j

G (1. j)

= { property of G

O.

and for i '" 1

c(i)

= { i/o-relation of M j

G(i+l.i+ n
= { property of G

GCi.i+j)+ if i I Ci+ j) thenjl.(;) else Oft

= { property of divisibility and i/o-relation of M j

G Ci . i + j) + if i I j then d (i -1) else 0 ft

= {p.e satisfies i/o-relation of M j +I. hence. p.c(i) = G (i + 1. i + j + 1) }

p.e(i-1)+if i I j thend(i-1) else Oft.

Parallel Program for Mooius Sequence

- 5 -

For the internal output p.d we have Ci ~O):

p.d (i)

= {p.d satisfies i/o-relation of M j +1 }

/lCi + 0

= { i/o-relation of M j

d Ci).

Summarizing these results we now have

c(O) = 0,

di) = p.di -0 + if i 1 j then d Ci -1) else 0 Ii. fori~1. and

p.d (i) = d (i) fori~O,

Taking into account the desired communication behaviors of M j and p. we thus get as

program text for M j :

com M j (c !into d ?int) :

sub p: M j +1 bus

I[i . x . y : int

;i:=O;c!O

moe

; (d?x ; p.c?y

11

; p.d!x ; i: = i + 1 ; c!if i Ij then y +x else y Ii.

)*

Restricted to the ports c and d this program exhibits the communication behavior required

of M j • and restricted to the ports p.c and p.d it adheres to M j +1'S communication

behavior. Notice that the communication actions in the program are ordered more restric­

tively than necessary: for example. d?x and p.c?y could be done concurrently without

violating any of the specifications.

Parallel Program for MObius Sequence

- 6 -

There are. however. two problems with the above program for M,. For one thing the

computation refers to j and therefore the program is not a recursive program in the usual

sense. This could be remedied by distributing the value of j as part of the computation

(add local variable j. j : into and initial communications d? j ; p.d !(j + 0; of course. this

derives from a properly changed specification for Mj). But this phenomenon also disap­

pears when dealing with the second problem.

The second problem is that computing i I j is not a unit-time operation. Defining

a mod b by.

(Eq; ; a = qb+a mod b) /I O~a modb <b.

we observe that

i I j = j mod i = O.

M j ·s subprocess M j +1 is therefore interested in (j + 1) mod i. which is easily computed

from j mod i. Working with the less obvious but as useful value of (- j) mod i turns

out to give a slightly more compact program. Hence. we introduce another external input

port e (and internal output port p.e) to distribute the values of (- j) mod i. Further­

more. to eliminate the local computation for variable i we introduce external input port f

that distributes i .

The adapted specification for M j is as follows. M j • j ~ 1. has four external com­

munication ports; integer output port c and integer input ports d . e . and f. Its commun­

ication behavior is given by the extended regular expression

(c;d .e./)*.

where the comma indicates arbitrary interleaving of the communications along ports d . e.

and / (expressing the possibility of concurrency). The i/o-relation is given by the equa­

tions

c (i) = G Ci + 1.i + j).

d(i)= lL(i+1).

eCi) = (- nmod Ci +1). and

f (i) = i +1.

Parallel Program for MObius Sequence

- 7-

for i ;;'0. We can now refine the previous program for M j . Regarding the external output

e we have for i ;;, 1

eli)

= { see above derivation}

p.eCi-l) + if i I j then dCi-1) else 0 ft

= { property of divisibility}

p.di-1) + if (- nmod i = 0 then d Ci -1) else 0 ft

= { i/o-relation of M j }

p.di -1) + if e Ci -1) = 0 then d (i -1) else 0 ft.

The internal output p.d is computed as before. For the new internal output p.e we derive

for i;;'O

p.e Ci)

= {p.e satisfies i/o-relation of M j +1 }

(-j-l)mod U+l)

= { property of mod

if (- j) mod Ci + 1) = 0 then i else (- j) mod Ci +1)-1 ft

= { i/o-relation of M j }

if e(i) = 0 then I (i)-1 else e Ci)-1 ft

= { distribution }

if e Ci) = 0 then I (i) else e(i) ft - 1

For the new internal ouput p.I we derive for i ;;, 0

p.f (i)

= {p.f satisfies i/o-relation of M j +1 }

i+l

= { i/o-relation of M j }

I (i)

Parallel Program for MObius Sequence

- 8 -

Summarizing these results we now have. for i ~ O.

ceO) = O.

c (i + 1) = p.cCi) + if e (i) = 0 then d (i) else 0 Ii.

p.d (i) = d (i).

p.e(i) = if e (n = 0 then f Ci) else e (i) Ii - 1. and

p.f (i) = f (i).

Taking into account the communication behaviors of M j and p. we thus get as program

text for M j :

M (,. d?' ? f1') . com j C .lnt, . Int. e .1nt, .lnt.

sub p: M j + 1 bus

I[w.x.y.z : int

;c!o

;(d?w .e?x. f?y .p.c?z

; if x = 0 then x • z : = y • z +w Ii

;p.d!w .p.e !(x -1).p.f !y.c!z

)*

11

moe

The above program for M j has as primitive operations only communication actions and

integer comparison. addition. and subtraction. Notice also that the computation of M j

now no longer refers to j. Hence. the indices can be omitted (from M) and we have an

ordinary recursive program. This program. therefore. satisfies for all j ~ 1 the

specification of M j (which does contain j). We are only interested in MI. but to realize

that specification we introduced the others.

Let us now deal with the simpler subprocess USeq of MobSeq that computes U(n). We

work from the following specification for USeq. USeq has one external integer output port

Parallel Program for MObius Sequence

- 9-

a, communication behavior a', and i/o-relation aCi)= UCi+1) for i ,",0. The program

then directly derives from the definition of U:

com USeq (a !int) : a!1 ; (a 10)' moe

The program for MobSeq is now a matter of combining USeq and M l' Let q be the subpro­

cess of type USeq and let r be the subprocess of type MI' MobSeq must supply r with

the proper input values in order to have it produce the sequence G (n ,n). Denoting the

internal output ports to r by r.d , r.e, and r.! the obligation of MobSeq is obtained by

instantiating the corresponding i/o-relations of M j with j = 1. For i ,",0 this yields:

r.d (i) = p.Ci + 1),

r.e Ci) = (-1) mod Ci + 1) = { property of mod } i, and

r.j(i)=i+1.

For MobSeq's external output b we have for i ,",0:

b(i)= p.(i +1) = UCi+1)-GCi+l.i+1)= q.a(i)-r.c(i).

Combining this knowledge with the required communication behaviors gives rise to the

f oHowing program text for MobSeq:

com MobSeq (b !int) :

moe

sub q : USeq , r : M 1 bus

[x,y,z: int

;x:= 0

;(q.a?y,r.c?z ;y:= y-z

;bly,r.dly,r.elx,r.j l(x+1) ;x:= x+1

)'

II

Parallel Program for MObius Sequence

- 10-

2. RESPONSE TIME

The response time of the program for MobSeq is critically dependent only on the response

time of the program for MI' We analyze the response time of M 1 by giving a sequence

function U j for M j that indicates at what moments the communications could be

scheduled. taking into account the ordering imposed by the program. The i -th communi­

cation along port c of M j is scheduled at "time" U j (c . i).

Since the communications along ports d. e. and f can all take place "at the same

time". due to concurrency. we consider only ports c. d. p.c. and p.d. For these ports the

program of M j imposes the ordering expressed by

c;(d .p.c ;p.d .c)'.

We therefore suggest the sequence function defined. for j '" 1 and i '" O. by

Uj(c.O)= j-l.

U j (d . i) = U j (p.c • i) = 2i + j. and

U j (p.d . i) = U j (c . i + 1) = 2i + j + 1.

Because the communication actions along port p.c of M j coincide with those along port c

of M j +1. they must have been scheduled at the same time by cr (and similarly for ports

p.d and d). Thus we need to verify

U j (p.c . i) = 2i + j = U j +I Co . i) and

U j (p.d . i) = 2i + j + 1 = U j +I(d . i)

in order for U to be an admissable sequence function.

From this sequence function we can derive that MI produces G(i+1.i+l) at

moment U 1 (c . i) = 2i. Hence. the amount of time between external outputs is constant.

that is. M 1 has constant response time. Furthermore. we see that M j is activated at

moment uj(c.O)= j-1. Solving 2i = j-l for j. tells us that 2i+l subprocesses have

been activated when M 1 does its i -th external output.

We should point out. however. that such a sequence function places only an upper

bound on the response time complexity of the parallel program.

Parallel Program for Mooius Sequence

- 11 -

3. GENERALIZATION

Integer functions on the positive integers are arithmetical functions. The Mobius function

is an example. For an introduction to the theory of arithmetical functions consult [1]. We

treat only a very small part of it in this section.

The (Dirichlet) convolution of arithmetical functions f and g is defined by

ct*g)(n) = (S k • m : km = n : f (k)g (m)) forn~l.

The result is again an arithmetical function. Convolving is associative and symmetric.

The function U. defined at the beginning of Section 1. is the unit: f*U = f .

If we define the arithmetical function E by E(n) = 1 for n ~ 1. then the Theorem of

the Appendix can be succinctly expressed as J.L*E = U; that is. J.L and E are each others

inverse under convolution. The derivation in Section 1 shows how to solve J.L from

J.L *E = U. It would equally apply to the problem of solving g from the equation g*E = f
for arbitrary given arithmetical function f. Since the solution of this equation is f* J.L

(convolve both sides with E- 1 = J.L). we have a way of computing f* J.L. For example. the

Euler function </> satisfies the equation </>*E = I. where I is defined by l(n) = n for n ~ l.

A generalized specification for program ConvMob could be: integer input port a and

integer output port b. communication behavior (a ; b)*. and i/o relation Ci ~ 0)

a Ci) = f Ci + 1) and

b (i) = ct* J.L)(i +1).

A solution could be:

Parallel Program for MObius Sequence

com ConvMob (a ?int, b lint) :

sub r: M, bus

I[x , y ,z : int ; x : = 0

:(a?y,r.c?z :y:= y-z

- 12 -

;b!y,r.d!y,r.e!x,r.f !(x+l) :x:= x+l

)*

11

moe

A nice challenge is finding a parallel program with constant response time that computes

the Dirichlet convolution of two arbitrary arithmetical functions.

4. CONCLUSION

We would like to conclude by summarizing the design techniques that have made their

appearance in our derivation. In hindsight they very much resemble techniques familiar

from sequential progra,mming and functional programming.

The first technique is the introduction of subprocesses to isolate concerns. We have

no general heuristics to obtain the specifications of the subprocesses from those of the ori­

ginal process. A second technique is the introduction of an infinite nested chain of sub­

processes. Their specification can often be obtained by generalizing the original

specification, for example, by the introduction of a new variable. This resembles the way

in which invariants are derived from the postcondition when designing a repetition for a

sequential program. In order to define the infinite nested chain by a recursive program it is

necessary to find a suitably parameterized specification. Finally, we have seen that the

introduction of additional ports can be helpful to improve the efficiency of a program.

This resembles the introduction of auxiliary variables and the strengthening of an invari­

ant for a sequential repetition, or the introduction of additional parameters in a recursive

function of a functional program.

Parallel Program lor MObius Sequence

- 13-

Formal methods are important in the design of good programs. This is even more

true for the design of parallel programs. because any operational approach is bound to con­

fuse the designer; our mind cannot cope with the operational complexity of concurrency.

Although we do not claim to have presented the ultimate tools for the design of parallel

programs. we do think that our approach gives further insight in the requirements of a

useful formalism.

ACKNOWLEDGMENTS

Rudolf Mak suggested the problem of writing a parallel program to generate the Mobius

sequence from its recurrent relation. Martin Rem and other members of his VLSI club

have critically examined earlier presentations of this material.

REFERENCES

[0] M. Rem. "Trace theory and systolic computations". in O.Ooos and J. Hartmanis

(eds.). PARLE: Parallel Architectures and Languages Europe. Proceedings 1987.

Vol. I. Lecture Notes in Computer Science 258. Springer-Verlag. 1987. pp. 14-33.

[1] P.J. McCarthy. Introduction to Arithmetical Functions. Springer-Verlag. 1986. Ch. 1.

APPENDIX

The following three lemmas follow from the Fundamental Theorem of Arithmetic (unique

prime factorization).

Lemma 0

din:;> 7T(d)<S;7T(n)

Lemma 1

p.(d)¢ 0 '" d is the product of 7T(d) distinct primes

Parallel Program jor MObius Sequence

- 14-

Lemma 2

(S d : din 1\ /L(d)'" 01\ ?T(d) = i : 1) = (?T(n) choose;)

Theorem

(S d : din: /L(d)) = U (n)

Proof We derive

(S d : din: /L(d))

= { algebra}

(S d : din 1\ /L (d)'" 0 : /L (d))

= { term grouping according to ?T(d). using Lemma 0 }

(S i: O~i ~?T(n): (Sd: d In 1\ /L(d)"'O 1\ ?T(d) = i :/L(d)))

= { definition of /L }

(S i: O~i ~?T(n): (Sd: din 1\ /L(d)",O 1\ ?T(d)= i : (-lY))

= {Lemma2}

(S i: O~i ~?T(n): (?T(n) choose i)(-1)')

= { Binomial Theorem }

(l_1)rr(n)

= { definition of U }

U(n)

(End of Proof)

Parallel Program lor MObius Sequence

In this series appeared :

No. Author(s) Title

85/01 R.H. Mak The formal specification and derivation of

CMOS-circuits

85/02 W.M.C.J. van OvelVeld On arithmetic operations with M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation of flow films

85/04 T. Verhoeff Delay insensitive directed trace structures satisfy

H.M.J.L. Schols the foam rubber wrapper postulate

86/01 R. Koymans Specifying message passing and real-time

systems

86/02 G.A. Bussing ELISA, A language for formal specifications

K.M. van Hee of information systems

M. Voorhoeve

86/03 Rob Hoogerwoord Some reflections on the implementation

of trace structures

86/04 G.J. Houben The partition of an information system in

J. Paredaens several parallel systems

K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual modeling of

Kees M. van Hee discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence created by

concealment in CSP

86m R. Gerth On proving communication closedness

L. Shira of distributed layers

- 2 -

86/08 R Koymans Compositional semantics for real-time

RK. Shyamasundar distributed computing (Inf. & Control 1987)

W.P. de Roever

R Gerth

S. Arum Kumar

86/09 C. Huizing Full abstraction of a real-time denotational

R Gerth semantics for an OCCAM-like language

W.P. de Roever

86/10 J. Hooman A compositional proof theory for real-time

distributed message passing

86/11 W.P. de Roever Questions to Robin Milner - A responders

commentary (IFlP86)

86/12 A. Boucher A timed failures model for extended

R Gerth communicating processes

86/13 R Gerth Proving monitors revisited: a first step towards

W.P. de Roever verifying object oriented systems

(Fund. Informatica IX -4)

86/14 R.Koymans Specifying passing systems requires

extending temporal logic

87/01 R. Gerth On the existence of a sound and complete

axiomatizations of the monitor concept

87/02 Simon J. Klaver Federatieve Databases

Chris F.M. Verbeme

87/03 G.J. Houben A formal approach to distributed

J. Paredaens information systems

87/04 T. Verhoeff Delay-insensitive codes -

An overview

87/05 R. Kuiper Enforcing non-determinism via linear time

temporal logic specification

87/06

87m

87/08

87/rfJ

87/10

87/11

87/12

87/13

87/14

87/15

87/16

87/17

R. Koymans

R. Koymans

H.M.J .L. Schols

J. Kalisvaan

L.R.A. Kessener

W.J.M. Lemmens

M.L.P van Lierop

F.J. Peters

H.M.M. van de Wetering

T. Verhoeff

P. Lemmens

K.M. van Hee

A. Lapinski

J. van der Woude

J. Hooman

G. Huizing

R. Gerth

W.P. de Roever

H.M.M. ten Eikelder

J.e.F. Wilmont

K.M. vanHee

G.J. Houben

J.L.G. Dietz

- 3 -

Temporele logica specificatie van message passing

en real-time systemen (in Dutch)

Specifying message passing and real-time

systems with real-time temporal logic

The maximum number of states after projection

Language extensions to study structures

for raster graphics

Three families of maximally nondeterministic

automata

Eldorado ins and outs.

Specifications of a data base management

toolkit according to the functional model

OR and AI approaches to decision support

systems

Playing with patterns, searching for strings

A compositional proof system for an occam­

like real-time language

A compositional semantics for statecharts

Normal forms for a class of formulas

Modelling of discrete dynamic systems

frameworlc and examples

- 4 -

'~~.

87/18 C.W.A.M. van Overveld An integer algorithm for rendering

curved surfaces

.. ~

87/19 A.J. Seebregts Optimalisering van file allocatie in

gedistribueerde database systemen

87(20 GJ. Houben The R 2-Algebra: An extension of

J. Paredaens an algebra for nested relations

87!2l R. Gerth Fully abstract denotational semantics

M. Codish for concurrent PROLOG

Y. Lichtenstein

E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the

Mobius Sequence

88/02 K.M. vanHee Executable Specification for Information

G.J. Houben Systems

L.J. Somers

M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

	Abstract
	0. Introduction
	1. Derivation
	2. Response time
	3. Generalization
	4. Conclusion
	Acknowledgments
	References
	Appendix

