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ABSTRACT 

A CSP-like parallel program that generates the Mobius sequence is 

derived from its specification. The program has constant response time. It 

can be generalized to other sequences based on arithmetical functions. like 

the Euler function. 

O. INTRODUCTION 

We start by defining the Mobius sequence and specifying. in the style of [0]. a computation 

that generates this sequence. In the major section of this paper we derive a parallel pro­

gram from that specification. We analyze the response time of the resulting program. We 

also indicate how the program can be generalized to generate other sequences. Finally. we 

summarize the design techniques that were applied. 

For integer n . n '" 1. let 7T(n ) denote the number of (distinct) prime divisors of n. Since 1 

is not considered prime. we have 7T(1) = O. For n "'2 we have 7T(n)'" 1: for example: 

7T(2) = 1. 7T(4) = 1. and 7T(6) = 2. The Mobius function p. is defined for positive integers 

by 

if (E m : m > 1: m 2
1 n) 

otherwise. 
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where m 2
1 n means "m 2 is a positive divisor of n ". For instance. we have p.(l) = 1. 

p.(2) = -1. p.(4) = O. and p.(6) = 1. The sequence p.(n : n ~l) is called the Mbbius 

sequence. 

We now give a specification for a program that generates the Mobius sequence. In the 

next section we shall derive a parallel program satisfying this specification. 

The program MobSeq has one external communication port: an integer output port b. The 

communication behavior of the program MobSeq is specified by the regular expression 

b*. 

That is. an unbounded sequence of communications along port b is possible. The value of 

the i -th communication Ci ~O) along port b is denoted by b Ci). The input-output reWtion 

(or i/o-relation for short) of the program MobSeq is specified by the equation 

b (i) = p.(i +1) for i ~O. 

The following trivial "solution" gives an idea of what our program texts look like. 

com TrivMobSeq(b lint) : 

[x : int 

;x:= 1 ;(b!p.(x) ;x:= x+l)* 

11 

moe 

We aim at a program that has constant response time under the assumption that integer 

addition and comparison are unit-time operations. Roughly speaking. this means that 

there is a fixed amount of time between successive external communications. The amount 

of computation required to determine p.(n). however. increases with n. Our program. 

therefore. will activate more and more processes and distribute the computation among 

them. Constant response time is achieved because the processes work harmoniously in 

parallel. This cooperation resembles that of a systolic array. 
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1. DERIVATION 

In this section we derive a parallel program from the above specification. The derivation 

goes through a number of refinement steps that isolate design decisions. In the concluding 

section we summarize. in more general terms. the design techniques that we applied. We 

start our derivation by recalling from Number Theory that for n ~ 1 

(Sd:d In :p.(d)) = U(n), 

where U(l) = 1 and U(n) = 0 for n > 1 (see Appendix for a proof). Since n I n we now 

can write a recurren t relation for jJ.: 

p.(n) = U(n) - (Sd:d <n A din :p.(d)). 

Computing U (n ) is simple; it will be done in a subprocess. which is designed at the end of 

this section. The computation of the quantified sum is delegated to another subprocess. 

which will be our main concern in the rest of the derivation. Aiming at a program with 

constant response time. this subprocess should not do the entire summation sequentially. 

since the domain of the quantified sum increases with n. Therefore. we introduce a 

sequence of processes M j • j ~1. where M j has a subprocess of type M j + l . We still have 

the freedom to specify processes M j • For that purpose we generalize the quantified sum 

by replacing the first occurrence of the variable n by a new variable m: 

G (m . n ) = (S d : d <m A din: p.(d )) 

Hence. we have 

and 

p. (n ) = U (n ) - G (n . n ) 

G(1.n)=O forn~1. 

for n ~ 1. 

for l~m ~n. 

G (m + 1. n) = G (m . n ) + if min then p.(m) else 0 Ii for 1~m <no 

Process M j • j ~ 1. is specified as follows. M j has two external communication ports: an 

integer output port c and an integer input port d. Its communication behavior is 

(c;d Y. 
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that is. communications along ports e and d alternate. starting along e. The i/o-relation 

for M j is Ci '" 0) 

e(i) = G Ci +l.i + j). 

d(i)= jl.Ci +1). 

When fed with the values of jl.. process M j will produce the indicated partial sums; M 1 

produces the desired values G (n . n ) for n '" 1. 

We shall now derive the program for M j • j '" 1. Let p be its subprocess of type 

M j +1. M j has two internal communication ports to its subprocess p: one input port and 

one output port. denoted by p.e and p.d respectively. This means that values coming 

from p.e can be used. but also that the proper values for p.d must be supplied-all in 

accordance with p·s specification. of course. We first deal with the external output e. dis­

tinguishing the first and succeeding occurrences: 

c(0) 

= { i/o-relation of M j 

G (1. j) 

= { property of G 

O. 

and for i '" 1 

c(i) 

= { i/o-relation of M j 

G(i+l.i+ n 
= { property of G 

GCi.i+j)+ if i I Ci+ j) thenjl.(;) else Oft 

= { property of divisibility and i/o-relation of M j 

G Ci . i + j) + if i I j then d (i -1) else 0 ft 

= {p.e satisfies i/o-relation of M j +I. hence. p.c(i ) = G (i + 1. i + j + 1) } 

p.e(i-1)+if i I j thend(i-1) else Oft. 
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For the internal output p.d we have Ci ~O): 

p.d (i) 

= {p.d satisfies i/o-relation of M j +1 } 

/lCi + 0 

= { i/o-relation of M j 

d Ci). 

Summarizing these results we now have 

c(O) = 0, 

di) = p.di -0 + if i 1 j then d Ci -1) else 0 Ii. fori~1. and 

p.d (i) = d (i) fori~O, 

Taking into account the desired communication behaviors of M j and p. we thus get as 

program text for M j : 

com M j (c !into d ?int) : 

sub p: M j +1 bus 

I[i . x . y : int 

;i:=O;c!O 

moe 

; (d?x ; p.c?y 

11 

; p.d!x ; i: = i + 1 ; c!if i Ij then y +x else y Ii. 

)* 

Restricted to the ports c and d this program exhibits the communication behavior required 

of M j • and restricted to the ports p.c and p.d it adheres to M j +1'S communication 

behavior. Notice that the communication actions in the program are ordered more restric­

tively than necessary: for example. d?x and p.c?y could be done concurrently without 

violating any of the specifications. 
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There are. however. two problems with the above program for M,. For one thing the 

computation refers to j and therefore the program is not a recursive program in the usual 

sense. This could be remedied by distributing the value of j as part of the computation 

(add local variable j. j : into and initial communications d? j ; p.d !(j + 0; of course. this 

derives from a properly changed specification for Mj). But this phenomenon also disap­

pears when dealing with the second problem. 

The second problem is that computing i I j is not a unit-time operation. Defining 

a mod b by. 

(Eq; ; a = qb+a mod b) /I O~a modb <b. 

we observe that 

i I j = j mod i = O. 

M j ·s subprocess M j +1 is therefore interested in (j + 1) mod i. which is easily computed 

from j mod i. Working with the less obvious but as useful value of (- j) mod i turns 

out to give a slightly more compact program. Hence. we introduce another external input 

port e (and internal output port p.e) to distribute the values of (- j ) mod i. Further­

more. to eliminate the local computation for variable i we introduce external input port f 

that distributes i . 

The adapted specification for M j is as follows. M j • j ~ 1. has four external com­

munication ports; integer output port c and integer input ports d . e . and f. Its commun­

ication behavior is given by the extended regular expression 

(c;d .e./ )*. 

where the comma indicates arbitrary interleaving of the communications along ports d . e. 

and / (expressing the possibility of concurrency). The i/o-relation is given by the equa­

tions 

c (i) = G Ci + 1.i + j). 

d(i)= lL(i+1). 

eCi) = (- nmod Ci +1). and 

f (i) = i +1. 
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for i ;;'0. We can now refine the previous program for M j . Regarding the external output 

e we have for i ;;, 1 

eli) 

= { see above derivation} 

p.eCi-l) + if i I j then dCi-1) else 0 ft 

= { property of divisibility} 

p.di-1) + if (- nmod i = 0 then d Ci -1) else 0 ft 

= { i/o-relation of M j } 

p.di -1) + if e Ci -1) = 0 then d (i -1) else 0 ft. 

The internal output p.d is computed as before. For the new internal output p.e we derive 

for i;;'O 

p.e Ci) 

= {p.e satisfies i/o-relation of M j +1 } 

(-j-l)mod U+l) 

= { property of mod 

if (- j) mod Ci + 1) = 0 then i else (- j) mod Ci +1)-1 ft 

= { i/o-relation of M j } 

if e(i) = 0 then I (i)-1 else e Ci )-1 ft 

= { distribution } 

if e Ci) = 0 then I (i) else e(i) ft - 1 

For the new internal ouput p.I we derive for i ;;, 0 

p.f (i) 

= {p.f satisfies i/o-relation of M j +1 } 

i+l 

= { i/o-relation of M j } 

I (i) 
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Summarizing these results we now have. for i ~ O. 

ceO) = O. 

c (i + 1) = p.cCi ) + if e (i ) = 0 then d (i) else 0 Ii. 

p.d (i) = d (i). 

p.e(i) = if e (n = 0 then f Ci) else e (i) Ii - 1. and 

p.f (i) = f (i). 

Taking into account the communication behaviors of M j and p. we thus get as program 

text for M j : 

M ( ,. d?' ? f1' ) . com j C .lnt, . Int. e .1nt, .lnt. 

sub p: M j + 1 bus 

I[w.x.y.z : int 

;c!o 

;(d?w .e?x. f?y .p.c?z 

; if x = 0 then x • z : = y • z +w Ii 

;p.d!w .p.e !(x -1).p.f !y.c!z 

)* 

11 

moe 

The above program for M j has as primitive operations only communication actions and 

integer comparison. addition. and subtraction. Notice also that the computation of M j 

now no longer refers to j. Hence. the indices can be omitted (from M) and we have an 

ordinary recursive program. This program. therefore. satisfies for all j ~ 1 the 

specification of M j (which does contain j). We are only interested in MI. but to realize 

that specification we introduced the others. 

Let us now deal with the simpler subprocess USeq of MobSeq that computes U(n). We 

work from the following specification for USeq. USeq has one external integer output port 
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a, communication behavior a', and i/o-relation aCi)= UCi+1) for i ,",0. The program 

then directly derives from the definition of U: 

com USeq (a !int) : a!1 ; (a 10)' moe 

The program for MobSeq is now a matter of combining USeq and M l' Let q be the subpro­

cess of type USeq and let r be the subprocess of type MI' MobSeq must supply r with 

the proper input values in order to have it produce the sequence G (n ,n). Denoting the 

internal output ports to r by r.d , r.e, and r.! the obligation of MobSeq is obtained by 

instantiating the corresponding i/o-relations of M j with j = 1. For i ,",0 this yields: 

r.d (i) = p.Ci + 1), 

r.e Ci ) = (-1) mod Ci + 1) = { property of mod } i, and 

r.j(i)=i+1. 

For MobSeq's external output b we have for i ,",0: 

b(i)= p.(i +1) = UCi+1)-GCi+l.i+1)= q.a(i)-r.c(i). 

Combining this knowledge with the required communication behaviors gives rise to the 

f oHowing program text for MobSeq: 

com MobSeq (b !int) : 

moe 

sub q : USeq , r : M 1 bus 

[x,y,z: int 

;x:= 0 

;(q.a?y,r.c?z ;y:= y-z 

;bly,r.dly,r.elx,r.j l(x+1) ;x:= x+1 

)' 

II 
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2. RESPONSE TIME 

The response time of the program for MobSeq is critically dependent only on the response 

time of the program for MI' We analyze the response time of M 1 by giving a sequence 

function U j for M j that indicates at what moments the communications could be 

scheduled. taking into account the ordering imposed by the program. The i -th communi­

cation along port c of M j is scheduled at "time" U j (c . i ). 

Since the communications along ports d. e. and f can all take place "at the same 

time". due to concurrency. we consider only ports c. d. p.c. and p.d. For these ports the 

program of M j imposes the ordering expressed by 

c;(d .p.c ;p.d .c)'. 

We therefore suggest the sequence function defined. for j '" 1 and i '" O. by 

Uj(c.O)= j-l. 

U j (d . i ) = U j (p.c • i) = 2i + j. and 

U j (p.d . i) = U j (c . i + 1) = 2i + j + 1. 

Because the communication actions along port p.c of M j coincide with those along port c 

of M j +1. they must have been scheduled at the same time by cr (and similarly for ports 

p.d and d). Thus we need to verify 

U j (p.c . i) = 2i + j = U j +I Co . i) and 

U j (p.d . i) = 2i + j + 1 = U j +I(d . i) 

in order for U to be an admissable sequence function. 

From this sequence function we can derive that MI produces G(i+1.i+l) at 

moment U 1 (c . i ) = 2i. Hence. the amount of time between external outputs is constant. 

that is. M 1 has constant response time. Furthermore. we see that M j is activated at 

moment uj(c.O)= j-1. Solving 2i = j-l for j. tells us that 2i+l subprocesses have 

been activated when M 1 does its i -th external output. 

We should point out. however. that such a sequence function places only an upper 

bound on the response time complexity of the parallel program. 

Parallel Program for Mooius Sequence 
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3. GENERALIZATION 

Integer functions on the positive integers are arithmetical functions. The Mobius function 

is an example. For an introduction to the theory of arithmetical functions consult [1]. We 

treat only a very small part of it in this section. 

The (Dirichlet) convolution of arithmetical functions f and g is defined by 

ct*g )(n ) = (S k • m : km = n : f (k )g (m )) forn~l. 

The result is again an arithmetical function. Convolving is associative and symmetric. 

The function U. defined at the beginning of Section 1. is the unit: f*U = f . 

If we define the arithmetical function E by E(n) = 1 for n ~ 1. then the Theorem of 

the Appendix can be succinctly expressed as J.L*E = U; that is. J.L and E are each others 

inverse under convolution. The derivation in Section 1 shows how to solve J.L from 

J.L *E = U. It would equally apply to the problem of solving g from the equation g*E = f 
for arbitrary given arithmetical function f. Since the solution of this equation is f* J.L 

(convolve both sides with E- 1 = J.L). we have a way of computing f* J.L. For example. the 

Euler function </> satisfies the equation </>*E = I. where I is defined by l(n) = n for n ~ l. 

A generalized specification for program ConvMob could be: integer input port a and 

integer output port b. communication behavior (a ; b )*. and i/o relation Ci ~ 0) 

a Ci ) = f Ci + 1) and 

b (i) = ct* J.L)(i +1). 

A solution could be: 
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com ConvMob (a ?int, b lint) : 

sub r: M, bus 

I[x , y ,z : int ; x : = 0 

:(a?y,r.c?z :y:= y-z 

- 12 -

;b!y,r.d!y,r.e!x,r.f !(x+l) :x:= x+l 

)* 

11 

moe 

A nice challenge is finding a parallel program with constant response time that computes 

the Dirichlet convolution of two arbitrary arithmetical functions. 

4. CONCLUSION 

We would like to conclude by summarizing the design techniques that have made their 

appearance in our derivation. In hindsight they very much resemble techniques familiar 

from sequential progra,mming and functional programming. 

The first technique is the introduction of subprocesses to isolate concerns. We have 

no general heuristics to obtain the specifications of the subprocesses from those of the ori­

ginal process. A second technique is the introduction of an infinite nested chain of sub­

processes. Their specification can often be obtained by generalizing the original 

specification, for example, by the introduction of a new variable. This resembles the way 

in which invariants are derived from the postcondition when designing a repetition for a 

sequential program. In order to define the infinite nested chain by a recursive program it is 

necessary to find a suitably parameterized specification. Finally, we have seen that the 

introduction of additional ports can be helpful to improve the efficiency of a program. 

This resembles the introduction of auxiliary variables and the strengthening of an invari­

ant for a sequential repetition, or the introduction of additional parameters in a recursive 

function of a functional program. 
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Formal methods are important in the design of good programs. This is even more 

true for the design of parallel programs. because any operational approach is bound to con­

fuse the designer; our mind cannot cope with the operational complexity of concurrency. 

Although we do not claim to have presented the ultimate tools for the design of parallel 

programs. we do think that our approach gives further insight in the requirements of a 

useful formalism. 
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APPENDIX 

The following three lemmas follow from the Fundamental Theorem of Arithmetic (unique 

prime factorization). 

Lemma 0 

din:;> 7T(d)<S;7T(n) 

Lemma 1 

p.(d )¢ 0 '" d is the product of 7T(d) distinct primes 
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Lemma 2 

(S d : din 1\ /L(d)'" 01\ ?T(d) = i : 1) = (?T(n) choose;) 

Theorem 

(S d : din: /L(d)) = U (n ) 

Proof We derive 

(S d : din: /L(d)) 

= { algebra} 

(S d : din 1\ /L (d )'" 0 : /L (d )) 

= { term grouping according to ?T(d ). using Lemma 0 } 

(S i: O~i ~?T(n): (Sd: d In 1\ /L(d)"'O 1\ ?T(d) = i :/L(d))) 

= { definition of /L } 

(S i: O~i ~?T(n): (Sd: din 1\ /L(d)",O 1\ ?T(d)= i : (-lY)) 

= {Lemma2} 

(S i: O~i ~?T(n): (?T(n) choose i)(-1)') 

= { Binomial Theorem } 

(l_1)rr(n) 

= { definition of U } 

U(n) 

(End of Proof) 
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