

Peptides from chiral Calpha, alpha-disubstituted glycines: crystallographic characterization of conformation of Calpha-methyl, Calpha-isopropylglycine [(alphaMe)Val] in simple derivatives and model peptides

Citation for published version (APA):

Valle, G., Crisma, M., Toniolo, C., Polinelli, S., Boesten, W. H. J., Schoemaker, H. E., Meijer, E. M., & Kamphuis, J. (1991). Peptides from chiral Calpha, alpha-disubstituted glycines: crystallographic characterization of conformation of Calpha-methyl, Calpha-isopropylglycine [(alphaMe)Val] in simple derivatives and model peptides. International Journal of Peptide & Protein Research, 37(6), 521-527.

Document status and date:

Published: 01/01/1991

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 04. Oct. 2023

Peptides from chiral $C^{\alpha,\alpha}$ -disubstituted glycines

Crystallographic characterization of conformation of C^{α} -methyl, C^{α} -isopropylglycine [(α Me)Val] in simple derivatives and model peptides*

G. VALLE, M. CRISMA, C. TONIOLO, S. POLINELLI², W.H.J. BOESTEN², H.E. SCHOEMAKER², E.M. MEIJER, and J. KAMPHUIS²

¹Biopolymer Research Centre, C.N.R., Department of Organic Chemistry, University of Padova, Padova, Italy; ²DSM Research, Bioorganic Chemistry Section, Geleen, The Netherlands

Received 17 September, accepted for publication 17 December 1990

The molecular and crystal structures of one derivative and three model peptides (to the pentapeptide level) of the chiral C^{α} -disubstituted glycine C^{α} -methyl, C^{α} -isopropylglycine $[(\alpha Me)Val]$ have been determined by X-ray diffraction. The derivative is mClAc-L- $(\alpha Me)Val$ -OH, and the peptides are Z-L- $(\alpha Me)Val$ -(L-Ala)₂-OMe monohydrate, Z-Aib-L- $(\alpha Me)Val$ -(Aib)₂-OtBu, and Ac-(Aib)₂-L- $(\alpha Me)Val$ -(Aib)₂OtBu acetonitrile solvate. The tripeptide adopts a type-I β -turn conformation stabilized by a 1 \leftarrow 4 N—H ... O—C intramolecular H-bond. The tetra- and pentapeptides are folded in regular right-handed 3₁₀-helices. All four L- $(\alpha Me)Val$ residues prefer ϕ , ψ angles in the right-handed helical region of the conformational map. The results indicate that: (i) the $(\alpha Me)Val$ residue is a strong type-I/III β -turn and helix former, and (ii) the relationship between $(\alpha Me)Val$ chirality and helix screw sense is the same as that of C^{α} -monosubstituted protein amino-acids. The implications for the use of the $(\alpha Me)Val$ residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.

Key words: conformational analysis; crystal state conformation; C^{α,α}-disubstitution glycines; 3₁₀-helix; α-methyl valine peptides; peptide conformation; X-ray diffraction; β-turns

α-Methyl amino-acids have been shown to impart well-defined conformational constraints to the peptide backbone. In particular, the achiral $C^{\alpha,\alpha}$ -dimethyl glycine (a-aminoisobutyric acid, Aib) residue strongly prefers folded backbone conformations in the $3_{10}/\alpha$ helical region of the ϕ , ψ space ($\phi = +60 \pm 20^{\circ}$, $\psi = \pm 30 \pm 20^{\circ}$) (for recent surveys see refs. 2-5). The prototype of chiral amino acids of this family, C^α-methyl, C^α-ethylglycine (isovaline, Iva), appears to be more versatile than Aib, in the sense that it can be accommodate either in a fully-extended conformation (at least in simple derivatives) (6) or in β -turns/3₁₀helices (in small peptides) (7-10). However, on the basis of the crystallographic analyses performed to date it proved to be impossible to establish a clear-cut correlation between Iva configuration and helix handedness.

As part of a program aimed at assessing the minimum length of the R side chain in the -NH-

C(CH₃)R-CO- residue required to induce a preferential screw sense in helical peptides containing chiral amino acids of this family, we describe here the crystal-state structural characterization of the C^{α} -methyl, C^{α} -isopropylglycine [α -methyl valine, (α Me)Val] (L- or S-enantiomer) residue in one derivative and three suitably selected model peptides (to the pentapeptide level) by using X-ray diffraction. (aMe)Val is the next member of this amino-acid series, since it has only one carbon atom in the R side chain more than Iva. The X-ray diffraction analysis of the only (\alpha Me)Val compound reported so far, Z-L-Ile-L-(aMe)Val-benzocaine (Z, benzyloxycarbonyl), shows the formation of a slightly distorted type-III β -turn with the L (or S-) (αMe)Val residue falling in the region of the conformational map where right-handed helices are found (11). The synthesis, characterization, and theoretical and solution conformational analyses of L-(aMe)Val derivatives and peptides have been described in the preceding paper (1).

^{*}Part 235 of the series "Linear Oligopeptides". For part 234 see ref. 1.

TABLE 1 Crystal data for the four L-(αMe) Val derivatives and peptides

-(Aib) ₂ -OtBu Ac-(Aib) ₂ -L-(αMe)Val-(Aib) ₂ -OtBu CH ₃ CN	C ₂₈ H ₅₁ N ₅ O ₇ ·CH ₃ CN 610.8 acetonitrile 1.14 orthorhombic P ₂ / ₂ 1 ₂ 1 4 36.548(3) 10.772(2) 8.976(2) 3533.8 90.0
Z-Aib-L-(aMe)Val-(Aib)2-OtBu	C ₃₀ H ₄₈ N ₄ O ₇ 576.7 methanol 1.10 monoclinic P2 ₁ 2 10.752(2) 15.512(2) 10.454(2) 1742.4 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.1(2) 90.0 92.9 6.8
Z-L-(αMe)Val-(ιAla) ₂ -OMe ·H ₂ O	C ₂₁ H ₃₁ N ₃ O ₆ ·H ₂ O 439.3 acetone/H ₂ O 1.22 monoclinic P2 ₁ 2 10.885(2) 12.618(2) 8.845(1) 1200.9 90.0 98.7(2) 98.7(2) 98.7(2) 98.7(2) 90.0 SHELX S-86 2956 1973 0.77 0.21 -0.22 1 5.6
mClAc-L-(aMe)Val-OH	C ₈ H ₄ NO ₃ Cl 580.5 ethyl acetate 1.28 monoclinic P2 ₄ 2 11.292(2) 8.020(2) 5.951(2) 5.951(2) 5.951(2) 5.951(2) 6.97.3 90.0 94.44(2) 90.0 94.44(2) 90.0 94.44(2) 90.0 94.42 90.0 94.42 90.0 94.44(2) 90.0 94.42 90.0 94.44(2) 90.0 94.44(2) 90.0 94.44(2) 90.0 94.44(2) 90.0 94.44(2) 90.0 96.7 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97
Parameter	Molecular formula M.w.(a.m.u.) Solvent of crystalliz. Density (calc.) (g. cm ⁻³) Crystal system Space group Z(mol/unit cell) a(Å) b(Å) c(Å) v(ų) w(°) \(\eta(°)) \

*Ref. 12. bRef. 13.

EXPERIMENTAL PROCEDURES

Peptide synthesis

The synthesis and characterization of mClAc-L-(α Me) Val-OH (mClAc, monochloroacetyl), Z-L-(α Me)Val-(L-Ala)₂-OMe (OMe, methoxy), Z-Aib-L-(α Me)Val-(Aib)₂-OtBu(OtBu, tert-butoxy), and Ac-(Aib)₂-L-(α Me)Val-(Aib)₂-OtBu (Ac, acetyl) have been reported in the preceding paper (1).

X-ray diffraction

Reflections were collected on a Phillips PW 1100 fourcircle diffractometer, using graphite-monochromatized MoK α radiation ($\lambda = 0.7107 \,\text{Å}$) with the θ -2 θ scan mode to $2\theta = 56^{\circ}$. During data collection three standard reflections were measured every 180 min to check the stability of the crystal and the electronics. Intensities were corrected for Lorentz and polarization effects and put on an absolute scale. No absorption corrections were applied. All non-hydrogen atoms for the four structures were refined with anisotropic thermal parameters by blocked least squares. Hydrogen atoms for mClAc-L-(αMe)Val-OH, Z-L-(αMe) Val-(L-Ala)2-OMe monohydrate, and Ac-(Aib)2-L-(\alpha Me)Val-(Aib)2-OtBu acetonitrile solvate were in part located on a difference Fourier map and refined, and in part calculated. Hydrogen atoms for Z-Aib-L-(αMe)Val-(Aib)₂-OtBu were in part located on a difference Fourier map, but not refined, and in part calculated. Crystallographic data for the four structures are summarized in Table 1. Complete lists of bond lengths, bond angles, torsion angles, and the final positional parameters of the non-hydrogen atoms along with equivalent and anisotropic thermal factors have been deposited at the Cambridge Crystallographic Data Centre.

RESULTS AND DISCUSSION

We have determined by X-ray diffraction the mole-

FIGURE 1 Molecular structure of mClAc-L-(α Me)Val-OH with numbering of the atoms.

cular and crystal structures of the following L-(αMe) Val derivatives and peptides: mClAc-L-(αMe)Val-OH, Z-L-(αMe)Val-(L-Ala)₂-OMe monohydrate, Z-Aib-L-(αMe)Val-(Aib)₂-OtBu, and Ac-(Aib)₂-L-(αMe)Val-(Aib)₂-OtBu acetonitrile solvate. The four molecular structures with the atomic numbering schemes are illustrated in Figs. 1-4, respectively. Relevant torsion angles (14) are given in Table 2. In Table 3 the intraand intermolecular H-bond parameters are listed.

Bond lengths and bond angles (deposited) are in general agreement with previously reported values for the geometry of the Z-urethane (15), acetamido (16), and monochloroacetamido (6, 17) moieties, the ester

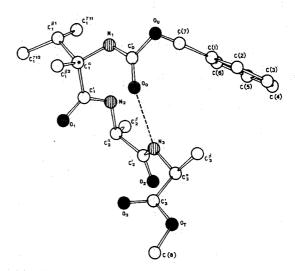


FIGURE 2

Molecular structure of Z-L- (αMe) Val- $(L-Ala)_2$ -OMe with numbering of the atoms. The intramolecular H-bond is indicated as a dashed line.

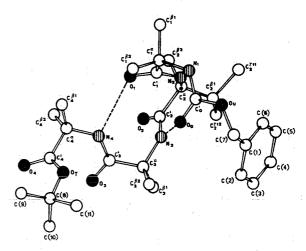


FIGURE 3

Molecular structure of Z-Aib-L- $(\alpha Me)Val$ - $(Aib)_2$ -OtBu with numbering of the atoms. The two intramolecular H-bonds are indicated as dashed lines.

TABLE 2 Relevant torsion angles (°) for the four L-(αMe) Val derivatives and peptides (e.s.d.'s are given in parentheses)

Torsion angle	mClAc-L-(αMe)Val-OH	Z -L-(α Me)Val-(L-Ala) ₂ -OMe H ₂ O	Z-Aib-L-(α Me)Val-(Aib) ₂ -O t Bu	Ac-(Aib) ₂ -L-(«Me)Val-(Aib) ₂ -OrBu ·CH ₃ CN
ρ3		-1.9(11)	-40.6(17)	
θ2		91:9(8)	71.3(12)	-
9	105 7(8)	173.7(7)	-171.4(9)	
5	176.3(7)	- 163.7(6)	-170.1(8)	-173.0(6)
0	-51.7(10)	- 61.0(9)	-60.3(11)	-55.9(6) .
	-41.9(9)ª	-30.7(9)	-28.8(11)	-34.6(6)
[- 8		-174.2(6)	-174.8(8)	-166.1(4)
3 -		-104.1(8)	- 51.4(11)	-58.1(6)
42		10.5(10)	-40.1(11)	-30.9(6)
42	Approximately and the same	170.0(7)	-176.5(8)	-177.8(4)
‰ *		(6)666	-60.7(11)	-50.6(5)
£ 4	i i i i i i i i i i i i i i i i i i i	174 7(7) ^b	-32.0(11)	-41.8(5)
÷ 4		$-178.7(7)^{6}$	-174.2(8)	-168.4(4)
÷ 8			46.4(11)	-75.0(5)
4.4	With the second		47.3(10) ^d	-10.4(5)
φ4	And the second s		$177.1(7)^{6}$	-165.7(4)
° 4				49.7(5)
S +			, proposed and a second	43.7(5) ^f
₩5 8			· · · · · · · · · · · · · · · · · · ·	178.5(4)8
ω_s $\gamma^{1,1}[L-(\alpha Me)Val]$	164.2(8)	53.7(9)	167.6(10)	166.4(4)
$\chi^{1,2}[L-(\alpha Me)Val]$	-68.0(10)	-176.9(7)	-66.6(11)	- 66.6(5)

 $^{k}\psi_{1} = \psi_{\tau}(N_{1} - C_{\tau}^{s} - C_{\tau}^{s} - O_{\tau}), \ ^{b}\psi_{3} = \psi_{\tau}(N_{3} - C_{3}^{s} - O_{\tau}), \ ^{c}\omega_{3} = \omega_{\tau}[C_{3}^{s} - C_{3} - O_{\tau} - C(8)], \ ^{d}\psi_{4} = \psi_{\tau}(N_{4} - C_{4}^{s} - C_{4}^{s} - O_{\tau}), \ ^{c}\omega_{4} = \omega_{\tau}[C_{3}^{s} - C_{5}^{s} - O_{\tau}], \ ^{c}\omega_{5} = \omega_{\tau}[C_{3}^{s} - C_{5}^{s} - C_{5}^{s} - O_{\tau}], \ ^{c}\omega_{5} = \omega_{\tau}[C_{3}^{s} - C_{5}^{s}$

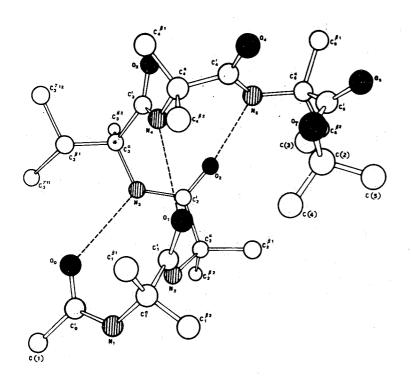


FIGURE 4

Molecular structure of Ac-(Aib)₂-L-(α Me)Val-(Aib)₂-OtBu with numbering of the atoms. The three intramolecular H-bonds are indicated as dashed lines.

TABLE 3 Intra- and intermolecular H-bond parameters for the four L-(αMe)Val derivatives and peptides

Compound	Donor D-H	Acceptor A	Symmetry equivalence of A	Distance (Å) D A
mClAc-L-(αMe)Val-OH	N_1 - H_1	O _i	x, y, 1 + z	2.943(8)
Z-L-(αMe)Val-(L-Ala) ₂ -OMe H ₂ O	N_3 - H_3 N_1 - H_1 N_2 - H_2	O_0 O_2 O_w	x, y, z x, y, z-1 1-x, y-1/2, 1-z	3.077(7) 2.875(6) 2.955(7)
$Z(Aib)$ -L- $(\alpha Me)Val$ - $(Aib)_2$ - $OtBu$	N_3 - H_3 N_4 - H_4 N_1 - H_1	$egin{array}{c} O_0 \ O_1 \ O_3 \end{array}$	x, y, z x, y, z x, y, 1 + z	3.187(9) 2.941(7) 2.963(6)
Ac- $(Aib)_2$ -L- (αMe) Val- $(Aib)_2$ -OtBu CH ₃ CN	N_3 - H_3 N_4 - H_4 N_5 - H_5 N_1 - H_1 N_1 - H_1	O ₀ O ₁ O ₂ O ₃ N(CH ₃ CN)	x, y, z x, y, z, x, y, z, x, y-1, z 1/2-x, - y, z-1/2	3.328(5) 3.017(4) 3.179(5) 3.061(5) 3.170(9)

group (18), the peptide unit (19), and the Aib (20, 21) and Ala residues.

The -L-(α Me)Val-L-Ala- sequence of the tripeptide is folded in a type-I β -turn conformation (22–24) stabilized by a 1 \leftarrow 4 N-H ... O=C intramolecular H-bond. The (peptide) N₃ ... O₀ (urethane) separation is 3.077(7) Å (25,26). The tetra- and pentapeptides form regular right-handed 3₁₀-helices (27) in their -(Aib)_n-L-(α Me)Val-(Aib)₂- (n = 1,2) sequences with two and

three consecutive intramolecular H-bonds, respectively. The pertinent N...O distances range from 2.941(7) Å to 3.328(5) Å. The latter H-bond, characterizing the N-terminal -Aib-Aib- sequence of the pentapeptide, is extremely weak (25, 26).

All four L-(α Me)Val residues, including that of the monochloroacetyl derivative, prefer ϕ , ψ backbone torsion angles in the right-handed helical region of the conformational map. The average ϕ , ψ values are

 -53.7° , -38.6° . The critical $\tau(N-C^{\alpha}-C')$ bond angle for the L-(α Me)Val residues deviates only slightly ($\pm 1.2^{\circ}$) from the regular tetrahedral value (109.5°), an additional indication of the helical preference of this amino acid (3, 28). The conformation of the L-(α Me)Val isopropyl side chain ($\chi^{1.1}$ and $\chi^{1.2}$ torsion angles) is the common (t, g^-) conformation (29, 30) in the monochloroacetylated derivative and in the tetraand pentapeptides; however, this disposition is (g^+ , t)

in the tripeptide.

The conformation of the two Z-urethane groups is the usual trans, trans (θ^1 and ω_0 torsion angle) or type-b conformation (15). A very large deviation from planarity is seen for the urethane amide (ω_0) torsion angle of the tripeptide. Also the values of the θ^2 and θ^3 torsion angles are typical for the Z-urethane group (15). The θ^1 torsion angle of mClAc-L-(αMe)Val-OH, characterizing the disposition of the Cl-C(1) bond with respect to the C₀-N₁ bond, is 105.7 (8)°, thus precluding the onset of the intramolecular Cl... H-N H-bond found in mClAc-D-Iva-OH (6). The amide, peptide, and ester groups (ω torsion angles) are trans, as expected, in all the four compounds, but three peptide bonds (ω_1 , ω_3 , and ω_4 torsion angles) of the pentapeptide show significant distorsions from planarity. The θ , ψ torsion angles of the C-terminal L-Ala residue of the tripeptide suggest that it is semiextended. On the other hand, the C-terminal Aib residues of the tetra- and pentapeptides are helical, but the signs of their ϕ , ψ torsion angles are reversed with respect to those of the preceding residues, a common observation for 3₁₀-helix-forming peptides (31). In mClAc-L-(αMe)Val-OH the carboxylic acid group adopts a conformation with respect to the $C_1^{\alpha} - N_1$ bond between the antiplanar and anticlinal conformations (32), the N_1 - C_1^{α} - C_1' - O_1 torsion angle being 139.9(8)°.

In the crystals of mClAc-L-(α Me)Val-OH rows of molecules are generated in the z-direction through N-H...O=C (acid) intermolecular H-bonds. The O-H function and the carbonyl group of the amide moiety do not participate in a H-bond. This is an unusual packing motif of N^{α}-acylated α -amino acids

(33-35).

In the packing mode of Z-(L- α Me)Val-(L-Ala)₂-O₁Bu monohydrate we find a linear array of molecules in the z-direction linked together by a (urethane) N₁-H₁...O₂=C₂ (peptide) H-bond. The water molecule plays the role of the acceptor of the H-bond from (peptide) N₂-H₂ (36).

The Z-Aib-L- (αMe) Val- $(Aib)_2$ -OtBu molecules pack into the unit cell in rows parallel to the z-direction via (urethane) N_1 - H_1 ... O_3 = C_3 (peptide) H-bonds. The (peptide) N_2 - H_2 does not seem to be in-

volved in the H-bonding scheme.

The molecules of Ac-(Aib)₂-L-(α Me)Val-(Aib)₂-OtBu acetonitrile solvate form rows along the y-direction with H-bonds of the (amide) N₁-H₁...O₃=C'₃

(peptide) type. A three-centre (bifurcated) H-bond (37) is generated by the N_1 - H_1 group, in which the proton forms an additional weak interaction with the acetonitrile nitrogen atom (38, 39). As in the tetrapeptide, the (peptide) N_2 - H_2 is free.

CONCLUSIONS

The results of the present X-ray diffraction analysis. together with those reported in the literature (11), indicate that the L-(\alpha Me)Val residues of the five derivatives and peptides examined adopt in the crystal state ϕ , ψ backbone torsion angles in the right-handed helical region of the conformational space. It may be concluded that this $C^{\alpha,\alpha}$ -disubstituted glycine: (i) is a type I/III β -turn and helix former much stronger than L-Val (40-44), and (ii) forms helices of the same handedness as that exhibited by the helix former Camonosubstituted protein amino acids. In addition, a comparison with the results of Iva (7-10), the lowest member of this family of chiral -NH-C(CH₃)R-COamino acids, suggests that a side chain R of three carbon atoms is the minimal requirement to induce a preferential screw sense in the helical structures.

Therefore, the incorporation of an (αMe) Val residue into a bioactive peptide might result in a significant stabilization of a β -turn and/or a $3_{10}/\alpha$ -helix. In this connection, it is worth noting that the aspartame analogue H-L-Asp-D- (αMe) Val-OiPr (OiPr, isopropyloxy) is sweet (45) and the L- (αMe) Val replacement at position 4 of vasopressin is compatible with

potent biological activity (46, 47).

ACKNOWLEDGEMENTS

We thank Miss C.H.M. Schepers and Mr. B.H.N. Dassen (DSM Research) for their technical assistance.

REFERENCES

- Toniolo, C.A., Crisma, M., Bonora, G.M., Klaic, B., Lelj, F., Grimaldi, A., Rosa, A., Polinelli, S., Boesten, W.H.J., Meijer, E.M., Schoemaker, H.E. & Kamphuis, J. (1991) Int. J. Peptide Protein Res. 38, in press
- Venkataram Prasad, B.V. & Balaram, P. (1984) CRC Crit. Rev. Biochem. 16, 307-348
- Toniolo, C. & Benedetti, E., (1988) ISI Atlas of Science: Biochemistry 1, 225-230
- 4. Karle, I. & Balaram, P. (1990) Biochemistry 29, 6747-6756

i. Toniolo, C. (1989) Biopolymers 29, 247-257

- Bosch, R., Brückner, H., Jung, G. & Winter, W. (1982) Tetrahedron 38, 3579–3583
- Marshall, G.R., Clark, J.D., Dunbar, J.B., Jr., Smith, G.D., Zabrocki, J., Redlinski, A.S. & Leplawy, M.T. (1988) Int. J.

· Peptide Protein Res. 32, 544-555

Valle, G., Crisma, M., Toniolo, C., Beisswenger, R., Rieker.
 A. & Jung, G. (1989) J. Am. Chem. Soc. 111, 6828-6833

- Valle, G., Crisma, M., Toniolo, C., Beisswenger, R., Rieker, A. & Jung, G. (1989) Liebigs Ann. Chem., 337-343
- 10. Bardi, R., Piazzesi, A.M., Crisma, M., Toniolo, C. & Mutter, M., in preparation
- 11. Wipf, P., Kunz, R.W., Prewo, R. & Heimgartner, H. (1988) Helv. Chim. Acta 71, 268-273
- 12. Sheldrick, G.M. (1985) in Crystallographic Computing 3 (Sheldrick, G.M., Kruger, C. & Goddard, R., eds.), pp. 175-189, Oxford Univ. Press, Oxford
- Main, P., Fiske, S.J., Hull, S.E., Lessinger, L., Germain, G., Declercq, J.P. & Woolfson, M.M. (1980) MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Univs. of York, England and Louvain, Belgium
- 14. IUPAC-IUB Commission on Biochemical Nomenclature (1970) Biochemistry 9, 3471-3479
- Benedetti, E., Pedone, C., Toniolo, C., Dudek, M., Nemethy, G. & Scheraga, H.A. (1983) Int. J. Peptide Protein Res. 21, 163-181
- Chakrabarti, P. & Dunitz, J.D. (1982) Helv. Chim. Acta 65, 1555–1562
- 17. Valle, G., Bonora, G.M., & Toniolo, C. (1984) Gazz. Chim. Ital. 114, 481-486
- 18. Schweizer, W.B. & Dunitz, J.D. (1982) Helv. Chim. Acta 65, 1547–1554
- Benedetti, E. (1982) in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins (Weinstein, B., ed.), Vol. VI, pp. 105-184. Dekker, New York
- Paterson, Y., Rumsey, S.M., Benedetti, E., Nemethy, G. & Scheraga, H.A. (1981) J. Am. Chem. Soc. 103, 2947-2955
- 21. Valle, G., Crisma, M., Formaggio, F., Toniolo, C. & Jung, G. (1987) Liebigs Ann. Chem., 1055-1060
- 22. Venkatachalam, C.M. (1986) Biopolymers 6, 1425-1436
- 23. Toniolo, C. (1980) CRC Crit. Rev. Biochem. 9, 1-44
- Rose, G.D., Gierasch, L.M. & Smith, J.A. (1985) Adv. Protein Chem. 37, 1–109
- 25. Ramakrishnan, C. & Prasad, N. (1971) Int. J. Protein Res. 3,
- Taylor, R., Kennard, O. & Versichel, W. (1984) Acta Crystallogr. B40, 280-288
- 10gr. B40, 280–288 27. Donohue, J. (1953) Proc. Natl. Acad. Sci. US 39, 470–478
- Ashida, T., Tsunogae, Y., Tanaka, I. & Yamane, T. (1987)
 Acta Crystallogr. B43, 212-218
- Benedetti, E., Morelli, G., Nemethy, G. & Scheraga, H.A. (1983) Int. J. Peptide Protein Res. 22, 1–15
- Gould, R.O., Gray, A.M., Taylor, P. & Walkinshaw, M.D. (1985) J. Am. Chem. Soc. 107, 5921–5927
- 31. Toniolo, C., Bonora, G.M., Bavoso, A., Benedetti, E., Di

- Blasio, B., Pavone, V. & Pedone, C. (1983) *Biopolymers* 22, 205-215
- Dunitz, J.D. & Strickler, P. (1968) in Structural Chemistry and Molecular Biology (Rich, A. & Davidson, N., eds.), pp. 595– 602. Freeman, San Francisco
- Berkovitch-Yellin, Z., Ariel, S. & Leiserowitz, L. (1983) J. Am. Chem. Soc. 105, 765-767
- 34. Chen, C.S. & Parthasarathy, R. (1978) Int. J. Peptide Protein Res. 11, 9-18
- 35. Etter, M.C. (1982) J. Am. Chem. Soc. 104, 1095-1096
- Yang, C.H., Brown, J.N. & Kopple, K.D. (1979) Int. J. Peptide Protein Res. 14, 12-20
- Taylor, R., Kennard, O. & Versichel, W. (1984) J. Am. Chem. Soc. 106, 244-248
- 38. Nyburg, S.C. (1961) in X-Ray Analysis of Organic Structures, p. 306, Academic Press, New York
- Donohue, J. (1968) in Structural Chemistry and Molecular Biology (Rich, A. & Davidson, N., eds.), pp. 595-602, Freeman, San Francisco
- 40. Chou, P.Y. & Fasman, G.D. (1974) Biochemistry 13, 211–222.
- 41. Toniolo, C., (1977) in *Bioorganic Chemistry* (van Tamelen, E.E., ed.), Vol. 3, pp. 265-291, Academic Press, New York
- 42. Lifson, S. & Sander, C. (1980) J. Mol. Biol. 139, 627-639
- 43. Ashida, T., Tanaka, I. and Yamane, T. (1981) Int. J. Peptide Protein Res. 17, 322-329
- 44. Chou, K.C., Nemethy, G. Scheraga, H.A. (1983) *Biochemistry* **22**, 6213-6221
- Miyashita, Y., Takahashi, Y., Takayama, C., Sumi, K., Nakatsuka, K., Okhubo, T., Aben, H. & Sasaki, S. (1986) J. Med. Chem. 29, 906–912
- Moore, M.L., Huffman, W.F., Bryan, W.M., Silvestri, J., Chang, H.L., Marshall, G.R., Stassen, F., Stefankiewicz, J., Sulat, L., Schmidt, D., Kinter, L., McDonald, J. & Ashton-Shue, D. (1985) in *Peptides: Structure and Function* (Deber C.M., Hruby, V.J. & Kopple, K.D., eds.), pp. 607-610, Pierce Chem. Co., Rockford, IL
- 47. Moore, M.L. & Huffman, W.F. (1988) in *Peptides: Chemistry* and *Biology* (Marshall, G.R., ed.), pp. 438-440, ESCOM, Leiden

Address:

Prof. C. Toniolo
Biopolymer Research Centre, CNR
Department of Organic Chemistry
University of Padova
Via Marzolo 1
35131 Padova
Italy