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PORTPLAN, decision support system for port terminals 

by 

K .M. van Hee, B. Huitink and D. K. Leegwater 

1. INTRODUCTION 

A decision support system is a computerized system that fulfils three 

types of functions for decision makers: 

a. computing of effects of decisions proposed by the decision maker; 

b. generating of decisions that are optimal with respect to a criterion 

specified by the decision maker; 

c. sensitivity analysis of the decisions by computing the effects of 

changes in parameters. 

In general a decision process is too complicated to describe with one 

mathematical model. Therefore we develop several mathematical models each 

describing some aspects of the decision process. The integrated implemen­

tation of these models is the kernel of a decision support system. 

PORTPLAN is a decision support system to assist decision makers in harbours. 

The system is built from several models developed by us during the last 

five years, for special problems in the harbour. PORTPLAN is meant for 

planning problems with a horizon varying from a month to several years, so 

it cannot be used for the day-to-day planning. Hence the system may be 

used for strategic and tactical planning purposes. The system is used by 

three categories of decision makers or decision analysists: managers of 

stevedoring companies, port authorities and the management of a pool of 

dockers. Although the system is only used for breakbulk terminals we 

expect that it will be useable for the container sector and the bulk 

sector after so~e modifications (cf. [van Hee and Wijbrands (1986)]). 

The type of decisions one can support with the system involve: 

a. capacities of immovables such as sheds and quays, 

b. capacity of human resources and equipment, 

c. periodically allocation of human resources. 
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One of the basic inputs of the system is a forecast of the total tonnages 

per commodity that will pass through the harbour during a period. The 

impact of each such forecast on the utilisation of harbour facilities and 

human resources is one of the main applications of the system. Another 

important application is the optimization of the distribution of the 

dockers over the stevedoring companies in Rotterdam (about 15) and the 

pool of dockers. 

The mathematical models in the system can be split up logically into two 

parts: 

a. Models for the transformation from expected tons to the work-load 
I 

distributions for the human resources and equipment, and the occupa-

tion distributions of immovables. 

b. Models to allocate the human resources capacities under several 

criterions for larger periods. 

The second part consists in fact of two models: 

bl. Simulation model to calculate the characteristic quantities given a 

policy for allocation of the human resources. This model takes into 

account the rules of the day-to-day assignment of human resources 

given the policy. 

b2. Optimization model that simplifies the day-to-day assignment but that 

can be manipulated analytically to determine an optimal policy for 

allocation. 

The models bl and b2 are used in an iterative way. 

The iteration stops when the input variables of the optimization model 

deliver a policy that gives in the simulation model output variable values 

that do not differ too much from the input variables. The first part (a) 

can be skipped and the system can start directly with part b, if the work­

load distributions of the individual stevedoring companies are given. 

The system has integrated several different techniques in a tractable and 

useful way. In the system several heuristics and approximations are imple­

mented. Most of them are tested against real data. Nevertheless we made 

also a general simulation model to check the model (a). In the meantime we 
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have about 5 years of experience and the users have confidence in the 

system. PORTPLAN is implemented in APL and in Basic. 

In section 2 the problem field is surveyed, in section 3 model (a) is 

treated, in section 4 model (b) and finally in section 5 some comments on 

the decision support system are made. 

2. PORT TERMINALS 

Port terminals fulfil two different functions in the transport chain: 

a. Transhipment from seagoing vessels into inland vessels, coasters, 

trains or trucks and vice versa. 

b. Warehousing, first of all to solve the inevitable discrepancies in 

arrival times of seagoing ships on the one hand and the other means of 

transport on the other hand. Secondly the warehouse is also a buffer 

to absorb discrepancies between demand and supply of the stored goods. 

Several statistical investigations on a bulk of data gathered at steve­

doring companies as well as the port authorities in Rotterdam did not give 

information to reject the hypothesis that ships arrive at terminals 

according to a Poisson process. One reason for this behaviour are the random 

interruptions during voyages of ships, due to the weather and waiting times 

in other harbours. Another reason is found in Palm's result (cf. the 
I 

theorem of Grigelious in [Barlow and Prochan 1976]), saying that the super-t 

position of renewal processes tends to a Poisson process. Hence even if a 1# 

stevedore has several independent lines with a very punctual schedule then 

the Poisson character of the arrivals will occur. 

Although the Poisson behaviour is nice for mathematical modeling it causes 

bad utilisation of resources at the terminals. The coefficient of variation 

of the workload for human resources is large. Ships do not like to wait at 
terminals, and therefore the stevedore has to have available enough man-

power and equipment to handle the ships. Ships for which there is no free 

berth usually go to another stevedore for discharging and may be considered 

as 'lost calls'. The large variation in the production speed of gangs of 

dockers forms a special difficulty for the operational management of 
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stevedoring companies. Variations of 50 percent for one type of commodity 

is not unusual. Causes for these variations are: the way ships are stowed, 

the composition of the gang and traffic congestion at the terminal. 

Another factor that complicates the daily planning of terminals is the 

weather. In principle ships are ser~ed at maxi=al speed, this means that 

at the heavy holds (i.e. the hold that contains the most work) always a 

gang and a crane are working in the working hours. If the terminal is very 

busy then a small delay is acceptable. 

To avoid idleness of human resources the stevedores in many harbours 

created pools of dockers. The Rotterdam pool operates in the following 

way. Each stevedore that participates in the pool guarantees the cost of 

a portion of dockers in the pool. The whole pool is guaranteed by the 

stevedores. For each day- or nightshift the stevedores demand for a number 

of dockers from the pool (a shift is a period of eight hours). The Dutch 

government supports the pool by subsidizing the idleness (upto 50%) in the 

pool. The assignment of dockers from the pool to the companies is rules by 

a set of formulas. These rules are als9 applicable to other pool systems 

(c£. section 4). 

For fork lift trucks one may organ1ze a pool as well. In Rotterdam this is 

not done. Here private companies are hiring out these trucks. For other 

production factors as the immovables and the cranes, it is impossible to 

exchange capacities from time to time. Here it is only possible to share 

workload. 

3. MODELS FOR CAPACITY UTILISATION AND WORKLOAD 

A model is described by a set of scenario or input variables and a set of 

transformations on these variables. 

Each function from the set of variables to a set of values is called a 

scenario and determines a model-instance or model state. 

First of all the set of scenario (or input) variables is described. Then, 

in a dataflow diagram, the usage of these data and transformations (or 

computations) are presented. Finally, in section 3.3, the transformations 

are treated in detail. 
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3.1 Variables and transformations 

Scenario variables: 

S1 Total tonnage per commodity type, expected to flow in the planning 

period through the harbor, divided into import and expor~. 

S2 Fractions of these flows that will pass through each terminal. 

S3 Fractions of tons per type of manipulation per terminal (e.g. from 

ship to shed, from ship to railway, from ship to truck, from ship to 

coaster). 

S4 Production speed per commodity, i.e. time a gang needs to move one 

ton, depending on the type of commodity and the type of manipulation. 

These speeds are random variables and the mean and variance are 

required. 

55 Number of dockers in a gang per commodity-type. 

S6 Residence time distribution of cargo on the terminal, per commodity 

and per direction (import or export). 

S7 Tonnage per commodity-type per ship per stevedore. From these random 

variables the mean and the covariance matrix are required. 

S8 Fraction of tons in the heavy hold per ship, i.e. the hold containing 

the most work to load or unload. From this random variable F the mean 

and variance are required and also the mean and variance of l/F. 

S9 Number of berths per terminal. 

510 Storage capacity per terminal. 

S11 Acceptable ships delay, as a percentage of the mean service time of 

ships, per terminal. 

The variables 81, S2, 83 characterize the cargo flow, the variables S4, 

85, 86 characterize the handling of cargo on the terminal, 87, S8 charac­

terize the ships arriving at the terminals, S9, S10 and S11 characterize 

the terminal. 

Most of the values of the scenario variables can be obtained from recording 

of activities in the past. The terminals and the port authorities are 

assumed to maintain databases in which they record the cargo movements and 

the amount of work per ship. If, for a future period changes of the varia­

bles are expected, then the registered values from the past may be used to 

produce forecasts. 
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Transformations: 

Tl Expected number of ships per terminal. 

T2 Mean and variance of service time of the ship if it is serviced at 

maximal speed. From these values the parameters of the service dis­

tribution function are derived. 

T3 Number of gangs simultaneously at work per ship. 

T4 Berth utilisation distributions, and expected number of lost calls, 

in two situations: ships are served at maximal speed, or ships delay 

is at maximal acceptable level. 

T5 Utilisation distributions of sheds and excess probability of the 

storage capacity (for both situations of T4). 

T6 Workload distribution of dockers (for both situations of T4). 

Report variables: 

Rl Berth utilisation and expected number of lost calls. 

R2 Utilisation of sheds. 

R3 Workload distribution for dockers. 

3.2 Data flow diagram 

We adopt the data flow diagram notation to express the relationships 

between the models that form the first part of the decision support 

system. 
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Note: S1, S2 and S3 are given for the whole harbour, all other values and 

calculations are per stevedore. 
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3.3 Models underlying the data transformations 

In this section the transformations are treated in some detail and special 

attention is paid to the model assumptions. 

All random variables are indicated by capitals, other variables usually by 

undercasts. Letter lE is reserved for the mathematical expectation and 0'2 

for the variance of a random variable. 

3.3.1 T1: Computation of the expected number of ships per ter.minaZ 

Let for some terminal: 

TT ... the total tonnage of commodity type J during the 
J 

planning period. 

T .... the tonnage of commodity j in ship i 
lJ 

(note that T .. , i = 1,2, ••• " are i.d.d. random variables) 
lJ 

N .. the number of ships destinated to this terminal. 

Then the following relation should hold: 

TT ... 
J 

and therefore 

N 

I 
i=l 

T .. 
lJ 

lETT. = lEN· lET .. 
J lJ 

It is assumed that the random variables TT. are observable (scenario 
J 

variable 51). This assumption says that the total tonnages per commodity 

type that will pass through the harbour in the future period are predict­

able. Of course the prediction of such an aggregate is more precise than 

the forecasts of the tonnages per commodity per terminal. Further an 

estimate for lE T .. is known from the past (collected in 57). 
lJ 

Note that 

lEN .. At 

where A is the Poisson arrival rate of this terminal and t the planning 

period. 
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The parameter A is estimated by minimization of 

2 I. (TT. - At·lE T, .) 
J 1J 

J 

Hence the estimate ~ becomes: 

~ ... t I TT. lET .. / I (lET. ,)2. 
j J 1.J j 1.J 

Of course the estimator is unbiased. It is not difficult to compute also 

the variance of the estimator if the covariance matrix of TT. is available. 

3. 3.2 T2: Service time distributions by rrr::z::ima 1. speed 

Let for some terminal 

F = fraction of tonnage in the heavy hold(s) 

~ ... fraction of tonnage of manipulation type k 

(assumed to have no variance) 

J 

Sjk = production speed per commodity j and manipulation type k. 

Time a ship i needs to be served: 

FIT .. ·lm. S'k' 
j 1.J k K J 

The random variables F, Tij and Sjk are assumed to be mutually independent. 

This assumption is motivated by statistical inferences. Further, 

cov(Sjk,Sj'k') ... 0 for j 1 j' and k , k't however, cov(Tij,Ti'j') ~ O. 
The mean time needed for service is: 

a = :IE F I (lE T .. • I m. :IE S 'k) 
j 1J k K J 

and it is straightforward to express the variance: 

where 

and 

P ... I IT .. m. SJ'k 
j k 1.J K 

lE P = I I lE T •. m. lE SJ' k 
j k l.J K 
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and 

L ~~, cov(T",T",,):IE (S'k S"k') 
k, k' 1.J 1. J J J 

k"k' 

+ \' '" 2 '( 2{ ... ','"'1'1':'''' )2,,2, ... , '-S ,2, l. 1. ~ to .1. .. )"'\=.1. •• l\o,o.')'k'+\J.W 'k' J 
j k 1.J 1.J J J 

2 2 
- (:IE T .. ) (:IE S 'k) } 

1.J J 

All these quantities can be obtained from the scenario variables as 

indicated in section 3.2. 

The service of ships, lower than maximal speed is treated by the descrip­

tion of T4. 

In T4 we consider a queuing model, where the service time distribution is 

needed. Up to now we only have the mean and variance of this distribution. 

For reasons of mathematical tractability we only consider phase-type dis­

tributions with maximal two phases: in parallel or serial. This assump­

tion is better than the usual 'assumption of an exponential distribution, 

and we can compute the berth occupation and lost calls with a Markov 

process having a two dimensional state space (see section 3.3.4). 

The coefficient of variation of the service time, v , determines the 
s 

structure of the phase-type distribution. Note that v - ~/a. 
s 

1. If v2 
> 1 then it is assumed that the service distribution is hyper­s 

exponential with two parallel exponentially phases with mean values: 

== a + yl:a /Hb-a2) 

- -
where a free and a, b are the mean, respectively variance, of the time 

needed to handle the heavy hold. 

We choose a = ! to get a minimal difference between lip and l/v. 

2. If! ~ v2 
< 1 then the service distribution is assumed to consist of s 

two exponential phases in series with mean values: 
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• a --v II 

2 
If v < i we choose: 1/11 = 1iv = ai2, which choice gives the minimal 
2 s 

v in the class of two phase distributions. s 

3. If v; • 1 then the service distribution is assumed to consist of only 

one exponentially phase with mean value a. 

The interpretation of the two phases is the following: if stevedores have 

a hyperexponential service distribution then they are assumed to have two 

types of vessels (large ones and small ones), so with probability 0 a 

ship is of type one and with probability 1-0 it is of the other type. 

If the service distribution consists of two phases in series then the 

first phase may be considered to be the import cargo handling and the 

second one the export cargo handling. 

3.3.3 T3: Number of dbakers simuZtaneousZy working on a ship 

In the models we need to know the distribution of gangs working simul­

taneously on a ship. In practice this will depend on all kinds of influence~ 

such as the availability of pool dockers and the other vessels at the quay. 

However, we choose in the models an assignment rule that guarantees that 

"the maximal number of gangs working simultaneously is minimal under 

the condition that the berth of the ship time is minimal lt
• 

Before we will consider the rule in more detail, we note that in several 

terminals the planners are using this rule to compute the needed capacity 

in the short run. 

The assignment rule 1S defined by: 

let w be the total number of gang-shifts to work on the ship; 

let y be the total number of gang-shifts to work in (one of) the heavy 

hold(s); 

assume wand yare integers and w • ay + k, 0 ~ k ~ y-l; 

the rule is: 

assign during the first y-k shifts a gangs and during the next k 

shifts a+1 gangs~ and assign at least to all heavy holds a gang. 
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Note that the total amount of work done by this rule is w. We will show 

that this rule is always applicable. 

Define: 

W I: W - na 
n 

if n I: O,l, ••• ,y-k 

.. W + Y - k - n(a+l) if n .. y-k+l, ••• ,y 

and 

y .. y - n • 
n 

First we note that Wo = w, Yo - y and for n < y-k: 

w div y = a n-- n 

and for n ~ y-k: 

w = y (a+l) • n n 

THEOREM. Under the rule defined above we have for n .. 0,1,2, ••• ,y: 

at the end of shift n: 

(i) the total amount of work ~s w • 
n' 

(ii) the work in a heavy hold is Yn; 

(iii) there are at least a (if n < y-k) or a+l (if n ~ y-k) holds with 

work; 

(iv) the number of heavy holds is not greater than a (if n < y-k) or a+l 

(if n ~ y-k). 

PROOF. For n - 0 (i) and (ii) are obvious. Assume the number of heavy 

holds ~ a+l~ then W ~ (a+l)y. However, w - ay+k < (a+l)y. Hence (iv) is 

true. Assume (iii) does not hold. Then the number of holds with work < a 

and then w < ay. However, w = ay+k. Hence (iii) is true. 

Assume (i) (iv) are true for n. Then the rule is applicable in period 

n+1 so (i) and (ii) are true. 

Suppose (iii) does not hold at the end of period n+1. If n+1 < y-k then 

the number of holds with work < a. Hence the total amount of work 

wn+l S (a-1)Yn+l" However, wn+l :0: aYn+1 +k. 
If n+1 ~ y-k then the number of holds with work < a+l. Hence the total 

amount of work w 1 S ay 1" However, w 1 :0: (a+l)y l' Therefore (iii) is n+ n+ n+ n+ 
true for n+1. 
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Suppose (iv) does not hold at the end of period n+1. If n+1 < y-k then 

the number of heavy holds > a. Hence wn+l ~ 

wn+1 .. aYn+1 +k < (a+1)Yn+1' 
If n+1 ~ y-k then the number of heavy holds 

(a+1)Yn+1' However, 

> a+1. Hence w 1 ~ (a+2)y l' n+ n+ 
However, wn+1 = (0+1)'n+1' Therefore (iv) is true. This proves the induc-

tion hypothesis. 

The random variable l/F equals w/y. Hence this is a good approximation of 

the number of gangs working simultaneously. 

3.3.4 Berth utiZisation and Zost aaZZs 

We assume that the arrival process for each terminal is a nonhomogeneous 

Poisson process with arrival rate A(t) at time t. The service distribution, 

described in section 3.3.2, is a hyperexponential distribution or a 

serial-twe-phase distribution. The average amount of werk in a heavy hold 

has two exponentially distributed phases with averages 1/~ and l/v, 

respectively. (For the mathematical treatment of Markov processes we refer 

to [Kleinrock (1970)].) 

In case of the hyperexponentiaf distribution we also have to indicate the 

probability of each phase a for the first, l-a for the second one. 

Ships are assumed to be served at maximal speed or to wait until a service 

unit is available. A service unit consists of a number of gangs; each gang 

has equipment at its disposal (for instance a crane). The number of gangs 

is determined by l/F (cf. section 3.3.3). 

Here we are only interested in the berth occupation distribution, however, 

in section 3.3.6 we consider the workload distribution expressed in 

dockers and equipment. 

Let A(t) be the number of service units available at time t. We may model 

the process of the number of ships at the terminal as an inhomogeneous, 

continuous time Markov chain with state space: 

s .. {(k,R.) I k,R. €:N A k+R. :s c} 

where k,R.are the number of ships in phase 1, respectively phase 2, and c 

is the berth capacity. The infinitesimal generator at time t, Qt' of this 

Markov chain is given by three transitions in case of the serial-two­

phases. 

IJ 
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Transition Probability rate 

(k~i) to (k+l"O Ht) (a) 

to (k-l ~t+1) k·lJ·s(t,k,t) (b) 

to (k,i-O t -\1 • S ( t, k, t) (c) 

where 

s(t,k,t) :- min ( 1 '~~~1 . 

Note that these formulas hold provided that the states rema1n in the state 

space. In case k • c, (a) has to be replaced by 0, if k = 0, (b) becomes 0 

and if t • 0 then (c) becomes O. 

In case of a hyperexponential distribution Qt is determined by: 

Transition Probability rate 

(k,t) to (k+l,t) o.A(t) 

to (k,t+1) ( 1-0.) A (t) 

to (k-l ,t) k·lJ·s(t,k,t) 

to (k,t-l) Q..\1es(t,k,R.) 

(a) 

(b) 

(c) 

(d) 

provided both states remain in the state space. In case k+£ • c, (a) and 

(b) become 0, if k • 0 then (c) becomes 0, if R. = 0 then (d) becomes O. 

It is assumed that A and A are periodically. Usually the periodicity is 

one week. This implies that we may model the process as a homogeneous 

Markov process with state space 

{(k,t,t) I k,t €::N A k+t ~ CAt € [O,T)} , 

where T is the periodicity. 

To compute the stationary distribution of this process we will consider an 

approximation of the original process, obtained by discretizing time. We 

take the time unit so small that the probability of making two or more 

transitions within this time unit is neglectable. In practice the time 

unit is about one hour. Now we may consider the transition rates multi­

plied by the time unit h as transition probabilities of a homogeneous 

Markov chain with discrete time and state space: 

{(k,t,t) I k,t,t €::N A k+i :i CAt < T'} 

where Tt - rT/hl, and transition probabilities: 
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P«k,i,t),(k',!',t'» - Qth«(k,t),(k',l'».h 

for t' = (t+l) mod Tf, Q defined above and h the time unit. 

For this transition matrix P we may determine the stationary distribution 

~ by solving ~ '" ~P by some standard technique. However, the state space 

becomes very large if the time unit is decreased and the computation must 

be carried out frequently on a micro computer in an interactive session 

with a planner. Therefore we have chosen an other solution method. 

We consider the inhomogeneous Markov chain with the original state space 

{(k,R.) I klO! €:N A k+t ~ c} 

and transition matrix Pt obtained from P by fixing parameter t (0 ~ t < T'). 

Let ~O be an estimate of the stationary distribution and define 

~t+l '" ~t Pt mod Tf , t = 0,1,2, ••• 

We stop the iteration at t = nT' if 

is sufficiently small. 

In practice this criterion ~s reached after a few weeks because the 

influence of the ship handling in past weeks on the handling in an actual 

week is small. 

We call this distribution the stationary distribution and we denote it by 

n. So ~t(k,l) is the probability to have k ships in phase 1 and R. in phase 

2 at time point t in the period {O,l, ••• ,T'-l}. 

We will aggregate this distribution to obtain the distributions per shift. 

There are N shifts per week. In practice N '" 21. This is done by taking 

the average: 

ps (k,R.) 
n :-~ 1: 

t€[~ (n+1)T') 
N' N 

where N is the number of shifts per period, n = 1,2, ••• ,N. 

In practice we only obtain data for A(t) and A(t) per shift, therefore 

these functions are constant per shift. 



We define: 

T N 
A :="""2 I A (n) 

N n=1 

c 
L := r 

m=O 
mp(m) 

5e 1 1 := - +-
J.l 'J 

W 
L := -
A 
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(average arrival rate) 

(the probability of m ships at 
the quay) 

(average quay occupation) 

(average net service time per ship) 

(average sojourn per ship, Little's formula). 

Now we can express the number of lost calls: 

per shift: 

Lc(n):= r pSn(k,t)A(n) ~ 
k+R,=c 

on average: 

1 N 
Lc := N I Lc(n) • 

n=1 

It is obvious that Lc, L, W depend on A. In the model we assume: 

ACt) = ef(t) , 

where f is determined by a labour scheme that cannot be influenced by the 

terminal planner. 50 the only control variable is e. Therefore we write 

Lce , Le , We· The minimal service time W is the minimum of We over a. 
Note that a € {O,l, ••• ,c}. 

The planner will consider for each choice of a: 

We 
LCe 
cost of having handling capacity B (cf. sections 3.3.6 and 4). 

He will compare W with 5e and We with W. 
Note that We and LC a are descending if e grows and that the cost is 

ascending. 
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3.3.5 T5: Storage utiZiaation 

The process of storing shiploads into sheds and on yards is considered in 

order to compute the capacity needs. A shipload is defined as the total 

amount of carge to be stored for the ship. We may distinguish import and 

export separately and we will consider import first. 

Although the arrival process of ships is Poisson, due to the lost calls, 

the arrival process of import shiploads is not Poisson anymore. However, 

we approximate this process with a Poisson proces with parameter (cf. 

section 3.3.4): 

,.... 
A :- N A - Lc -

T 

We consider a shipload to consist of units of the same S1ze. The number 

of units per ship is an independent random variable V from which we only 

use the mean and variance. Further we need the residence time of the cargo 

units. We assume they have a distribution G, so G(x) is the probability 

that the residence will not be longer than x time units. Both, the moments 

of V and G have to be estimated from the scenario data (cf. section 3.1). 

We will compute the mean and variance of the total amount of units in 

storage at an arbitrary moment. From these numbers one may, using the 

normal approximation, calculate the probability of overflow of a g1ven 

storage capacity. The next theorem is treated in a different way in 

[Holman (1983»). 

THEOREM. The mean and variance of the required storage capacity are, 

respectively: 

CD 

r lE V J (1-G(x) )G(x)dx + A lE v2 

o 

CD 

J (1-G(x»2 dx 

o 

CD 

where PG • the mean of G, i.e. Of (t-G(x»dx. 

PROOF. First we consider a new, fictive process, namely the process of 

shiploads in the storage. We further assume that a shipload remains in the 

system for a fixed period of time d. According to the assumption of 
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Poisson arrivals we know that the distribution of shiploads in storage is 

again Poisson (cf. [Kleinrock (1976)]) with parameter rd. Let V. be the 
1. 

remaining number of units in shipload i at time t. The r-th moment of V. 
l. 

can be computed by conditioning on the arrival time, the group size and 

the number N of groups in the system at t: 

d 

lE [~ IN. nl = i ) (a) 

where p. is the probability that group size is j. To verify this formula 
J _ 

note that the arrival times of shiploads in storage at some moment t, 

given the number of shiploads. are uniformly distributed over [t-d,t] (cf. 

[Kleinrock (1976)]). This gives the other integral and the factor 1/d. If 

the shipload arrived at x, the probability that there are still v units of 

this load at t is binomially distributed, with parameters j and (l-G(x». 

From (a) we easily derive 

and 

Hence: 

d 

lE V J A:= lE[Vi IN = n] =d (l-G(x»dx 

o 

d d 

B := lE [V~ I N 
1. 

= n] .. lEd
V 

{ I (l-G(x»dx -

o 
I (1-G(x»2 

o 

lE[I v.]-
i-1 1. 

d 

+ lEdv2 I (1-G(x»2 dx • 

o 

d 

lEN·A - rd·A = r lEV I (l-G(x»dx 

o 
and by Wald's lemma 

Letting d tend to infinity gives the result after some straightforward 

manipulations. c 
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We have considered the important case above. In that case the residence 

intervals of all units belonging to one shipload have a common left bound. 

In case of export cargo the units are delivered at arbitrary points and 

they stay till the departure time. So if we reverse the time axis we cover 

also the export case. 

S. S. 6 T6: CaZauZation of workZoad distribution 

The distribution of the workload for dockers and equipment is rather. easy 

now. 

From T4 we have the distribution of ships at the quay per shift. Call this 

random variable K(n) for shift n. Recall from section 3.3.4 that 

IP [K(n) - m]'" L ps (k,R.) • 
k+R.=m n 

The number of gangs working simultaneously on one ship is the random 

variable l/F. So the total number of gangs working simultaneously in shift 

n is: 

1 
K(n) F (a) 

To compute the number of dockers per gang we have to compute the average 

over the commodity types: 

m. d. 
J J 

r m. 
j J 

where m. is the average tonnage of commodity type J in a ship and d. is 
J J 

(b) 

the gang size of commodity j (data belonging to the scenario variables 57 

and S5). Hence multiplying (a) and (b) gives the wanted quantity. If we 

are only interested in the mean and variance of the workload distribution 

we get respectively: 

m. d. 
J J 

.E m. 
j J 

(
m. d.)2 2 
jJ m/ {(o (K(n» 

Note that we assume K(n) and 1/F to be independent. 

For equipment, like fork lift trucks, we may apply the same calculation. 

Only d. is different in that case. 
J 

The workload distribution is used in section 4. 
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4. MODELS FOR ALLOCATION OF HUMAN RESOURCES 

In section 3 we only considered one terminal. Here we will consider all 

terminals in one harbour and a pool of dockers. From section 3 we only use 

the workload distribution per terminal. Note that this distribution is one 

of the final results of all the foregoing computations. 

The aim of the models we will describe here is to determine the optimal 

quantities of own dockers and the guarantee of pool-dockers per terminal. 

Although the real decision support system works on basis of different 

shifts we assume here all shifts are the same. An important assumption in 

this section is that the workloads of the terminals are mutually in~epen­

dent random variables. This assumption is tested empirically and found to 

be acceptable. 

We will consider the rules for daily assignment of the pool-dockers in 

more detail. 

For an arbitrary shift we define 

d. 
1. 

". demand for dockers from the pool by company 1. 

g. "" guaranteed portion of company i 
1. 

+ 
X. ". (d. - g.) 

1. 1. 1. 

X = L x. 
i l. 

y. = (g. - d·.)~ 
1. 1. 1. 

Y == L y. 
i 1. 

a. - assignment 
1. 

of dockers to company i 

(Note that + if x o and + = 0 otherwise.) x = x > x -
The assignment to company i is a. and it is defined by: 

1. 

if x "" y then a. "" d. 
1. 1. 

if x > y and d. > g. then a. ,. g. + s. 
1. 1. 1. 1. 1. 
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if x > y and d. ~ g. then a. = d. 
1 1 1 ]. 

if x < y and d. ~ g. then a. • g. - t. 
1 1 1 J. 1 

if x < y and d. > g. then a. = d. 
]. 1 1 1 

where s. and t. are determined by: 
]. 1 

s. = min { x . , g .• c } with c determined by 1: s. -= Y 
1. 1. 1 i 1 

and 

t. -= m].n {y.,g.oel with c determined by 1: t. om x . 
1. 1. 1. i 1. 

A nice feature of this assignment rule is that if, for instance, x > y then 

exaggeration of the demand of a company does not influence the assignment. 

The assignment is based as much as possible by the guaranteed portion. 

Companies for which a. < d., have to go 
1 ]. 

to hire dockers. Companies for which a. 
1. 

From time to time the stevedores revise 

to the free labour market to try 

> d. have (a. - d.) people idle. 
1. ]. 1. 

the distribution of guaranteed 

portions because their capacity needs are varying. These variations are 

caused by mutual competition, and the supply of season dependent products. 

There are several systems to do this (cf. [van Hee (1984)] or [Leegwater 

(1983)]). In the moment this is done in the same way as the day-to-day 

assignment of dockers. If there is a shortage of dockers (x > y) then the 

pool-board may decide to enlarge the pool by recruitment or it may try to 

fire dockers. 

Note that the demand of company i is a random variable D. determined by 
l. 

subtracting the number of own dockers b. from the workload W. derived in 
. 1. 1 

T6: D. == (W. - bi)+. Hence all variables d., a., x, ' y., x and yare 
1. 1. 1. 1. 1. ]. 

random variables and therefore we will write from now on capitals for 

them. 

The exploitation cost for one arbitrary shift of company i (we omit i) can 

be expressed by: 

(a) 
+ + + bk + pg + q lE(D-A) - {p lE(g-A) + yp lE(A-V) } 

where 
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k • internal cost of a docker per shift, 

p • pool price of a docker per shift (p ~ k), 

q = price of a docker per shift outside the pool (q ~ p), 

y = fraction of governmental subsidy. 

Because the assignments A are very complicated randcm variables that can 

only be expressed by an algorithm, we cannot manipulate these exact 

exploitation cost to derive optimal values for band g. 

Therefore consider an approximation for the exploitation cost: 

(b) 

where 

bk + pg + {pB + q (1-8)} lE(D-g) + 

+ - {pya + p(l-a.)} lE(g-V) 

a is the chance a superfluous docker of the guarantee is not 

assigned to another company and therefore stays on the account 

of the guaranteeing company, 

S is-the chance a docker wanted above the guaranteed portion can 

be obtained from the pool. 

The approximation (b) has the advantage that it is easy to compute the 

optimal values b. and g. for all companies under several constraints. the 
1. 1. 

constraints, which represent several policies from the pool board and the 

companies. are 

1. b i and gi both free, 

2. Ab. + ~g. fixed (A and p constants), 
1. 1. 

3. b ./g. fixed. 
1. 1. 

The partial derivatives of the exploitation cost (b) can be expressed in 

terms of the constants and excess probabilities of the form 

1P [W. S c 1 b. + c 2 g.] 
1. 1. 1. 

(c l and c2 constants). 

If we approximate the distribution of W. by the normal distribution, which 
1. 

is allowed on basis of empirical tests, it is easy to compute b i and Pi 

per company, just by solving for each company a pair of nonlinear equa­

tions with only two variables. We omit the details of these equations here 
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because it requires some tedious, straightforward calculations. In these 

calculations we assumed a and e as constants and known. These assumptions 

are not true. 

We combine these optimization calculations with a simulation process in 

which for each shift, for each company a value of W. is drawn. Then the 
1. 

exact exploitation costs (a) are computed. For the simulation process it 

is required that the values b. and g. are known. Therefore we use the 
1. 1. 

optimization and simulation processes in an iterative way. 

F 

W. distributions 
1. 

estimates: a
1

, 6
1 

for the probabilities a and a 

optimize for all i 
b., g. 

1. 1. 

simulate by b i , g. 
and deliver 1. 

exploitation cost 
and a 1, 61 

t is the allowable error 

T 

It seems to be impossible to proof convergence for this iteration, however 

1n practice we always found values within the error bound rather quickly. 
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As mentioned before~ the simulation model is not suitable for optimization 

of b. and g. because there are about 30 of them. In principle the same 
~ l. 

method can be used for pools for equipment like fork lift trucks. 

The pool price (p) must balance the exploitation cost of the pool and the 

ulcomC from selling gangs per shift and the governmental subsidy. 

The simulation model is also used to determine the equilibrium price by 

iterating p in the same way as a and B. In fact we are looking for a fixed 

point here. 

The model described in this section is used by the individual port termi­

nals and also by the pool board. 

In fact the pool organization gets all the information from the terminals 

and keeps it secret for the other ones. So the pool organization is the 

only one who can compute the factors a and S. They can deliver these 

values to the individual terminals who can use it for their own optimiza­

tion purposes. Note that the pool board tries to satisfy the wishes of the 

terminals~ so they will do their best to assign the guaranteed portions 

according to the needs of the terminals. 

However, the shifting of these guaranteed portions is a difficult problem 

itself (cf. [van Hee (1984)], [Leegwater (1983)]). In practice the pool 

organization may use the model of section 4 separately from the model of 

section 3. One approach is that the pool only gets D.-distributions that 
~ 

are computed by the terminals themselves. Another approach is based on 

historical data of D .• The latter approach is not meant for assignment 
1. 

decisions but for evaluation of decisions from the past. 

5. COMMENTS ON THE DECISION SUPPORT SYSTEM 

In the foregoing sections we paid attention to the mathematical models 

underlying the system. The system has a lot of scenario variables, 

some of them with complicated data structures. The planner or decision 

maker has sufficient facilities to manipulate all these variables in a 

very user friendly way. In principle it is possible to get historical data 

from the registrative information system of the company in a direct way. 

(In only one case this has been realized.) 
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Each scenario variable can be considered as a decision variable in 

principle. However, in the part described in section 3 the user is playing 

with the number of service units per shift (the function A or the control 

variable S, cf. section 3.3.4). The planner will judge this decision on 

basis of the following characteristics: 

quay occupation (mean and variance), 

expected number of lost calls, 

average sojourn time compared to the minimal service time, 

cost of the operation by fixed or free b i and gi' 

needed capacity on human resources and equipment to realize the number 

of service units. 

Of course this is a multicriteria decision problem, so the decision maker 

will consider several alternatives. 

The second type of decision is about the division of human resources over 

own dockers and pool dockers (model of section 4). Here several constraints 

may be considered. 

PORTPLAN is a decision support system that is used by different categories 

of decision makers. It is also used by consultants who prepare decisions. 

A lot of decision support systems in practice are in fact tools for con­

sultants more than tools for decision makers. However, PORTPLAN is used by 

decision makers at port terminals. 

As noted in the introduction a decision support system fulfils three kinds 

of functions. In PORTPLAN the generation of decisions is not very com­

plicated because the optimizations are quite simple. Only in the models 

for allocation of manpower a complicated optimization model occurs; how­

ever this model was approximated by a number of .simple ones. 

The number of decision variables for the decision maker is also rather 

small. However the computation of the effect of a decision is complicated 

and involves a lot of models. Hence the complexity of this decision sup­

port system is concentrated in the first function-type of decision support 

systems. 
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