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TAYLOR-SERIES METHOD FOR SOLVING TWO-DIMENSIONAL
DIFFERENTIAL EQUATIONS. A

P.J.M. Sonnemans, L.P.H. de Goey and J.K. Nieuwenhuizen,

FEindhoven University of Technology,

P.0.Bog 518, 5600 MB Eindhoven, The Netherlands.

SUMMARY

~ The variable order Taylor—series method is use(i to calculate
temperature fields in 2D solid complex shaped objects, exposed to a
homogeneous external heatsource. A coordinate transformation is used to
project the geometry on a rectangle on which the transformed heat
equation is solved additionaly. In this paper first 2D calculations are

presented.
1. INTRODUCTION

Within the field of mechanical engineering, especially within the
area of heat— and mass transfer processes in combustion and heating
equipment, contact phenomena and the interaction between fluids and
solids is the main issue of research. Many different aspects, such as fluid
flow, conduction, _chemical reactions, phasechanges and matenal
properties are involved here. However, most of the effort is spent on the
treatment of phenomena appearing in the fluid flow. Nevertheless, in
order to develop a complete picture of the operation of the a,ppa,ratué, it
is of crucial importance that the heat tramsport within the often
complex—shaped material of the equipment itself and interaction with
the fluid part is taken into account correctly. For example, the efﬁc1ency

of heating equipment depends on the heat transfer and the temperature
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distribution in the fins of the heat—exchanger. The need for numerical
tools to handle a wide variety of complex geometries and to solve
transport problems thereon efficiently, becomes clear. For these reasons, .
we developed a numerical program based on a variable order method,
which gives us the possibility to study the temperature distribution in
complex—shaped 2D solid bodies, exposed to external heat sources.

In this paper we present first 2D calculated results. We
mvestlgate temperature fields in 2D solid obJects shown Fig.1, exposed
to a homogeneous external heatsource. First, we study the projection of a
complex—shaped - “object’ on a recta.ngle by ‘means of a coordmate
transformation. Then, we solve the transformed heat equation on the
rectangular object. These two distinct operations may be described by
analogous differential equations, as we will show. In section 2 we explain
the method we use for the projection and for the heat problem. The
numerical method is explained in section 3. Resulting grids and
temperature fields are evaluated in section 4. In the future we plan to
evaluate the method more mtenswely and to improve the algonthm in
order to mvestlgate the 1nterac1;10n phenomena between the solid and

'

fluid parts in combustlon apparatus.
2. PROBLEM DEFINITION.

The physical problem of heat conduction in a solid surface @ with
boundary T is described by the two—dimensional Poisson equation

,\V2T+S[T]=’o © onf. a (1)

Here A denotes the thermal conductivity and S the heat source ‘tenn.‘
The boundary condltlons depend on the physma} situation. Here, as a
start we ' take Dirichlet conditions T=T, on T. To handle “'this
heat—conduction problem on an arbitrarily shaped (physical) domain,
the geometnca.l part of the problem is first removed by generatmg a
boundary confonmng grid, i.e. transfornung the physical domain (x,y) to
a rectangular calculation domain (¢,7). The correspondence between
(x,y) and (f, n) on the boundaries is specified by the user, while the
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transformation x(£,7) and y(&,7) in the interior will be determined by
the well-known [2] technique of solving an elliptic system of partial
differential equations (PDE), consisting of two Laplace equations

V2§ =0, ‘ onfl, (2a)
2y =0, onfl, (2b)

Note that both problems, i.e. grid generation and heat—conduEtion, are
described by the same type of PDE and the same kind of boundary
conditions. For computational reasons we reformulate ‘both steady
problems as transient problems on the calculation domain '

-af)-{—-ﬁ)._(-vz = /\sz + S[z], ‘ - (3)

in which the scalar z represents the appropriate scalar unknown (T or
¢,n). The subscript £ indicates a fixed position in the calculation domain.
All calculations will be done in the rectangular calculation domain. The
velocity vector x indicates the gridspeed in the physical domain. The
appropriate Dirichlet boundary conditions are now understood to be
given on the new coordinate boundaries, which coincide with straight
line segments. For each problem separately, i.e. grid generation and
heat—conduction, Eq.(3) will be examinated further. Without loss of
generality we take A=1 from now on. '

2.1 Grid generation.
For the purpose of grid generation the scalar z in Eq.(3) will be

replaced by the new coordinates £ and 7, successively. The grid remains
fixed (i.e. steady) in the calculation domain implying that the first term
in the left—hand side of Eq.(3) equals zero. The grid still has all its
moving .

abilities in physical space represented by x. We take S{ a0 0 and S[ i 0,
which can be interpreted as absence of additional requirements to
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redistribute the grid spacing. The result is denoted by the set

_v2§ , (4a)

x- V¢
x-¥1

e 1

which after evalutation of the gradient and Laplacian can be written as

x = Dx, ) (5a)
y=2. ’ (5b)

with 7 the second-order differential operator

2 = L1222 xprgy 1 gy (5 +y£)¢,,,,] =
_a¢§f—2ﬂ¢ffl+7¢7lﬂ 7 (6)

Note that these two PDE’s are non—linear and coupled, although -Eq.(,5i)
would suggest otherwise.

2.2 Heat conductlon
; Smce the medium of heat—transport is a solid, the grid will

remain fixed (x=0) in physical space:

2
Evaluating the Laplacian in the new coordinates, the above equation is
written as ' )
T= 7)’1‘ + (V2§)T + (V217)T + S ’ - (8)
¢ n” ClP

representing the heat—conduction problem expressed in the new

:
.
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coordinates. For calculations S[T]=0'1' Note that Eq.(8) leads to

’i‘ =7T + S[T], (9)

when the grid reaches the final (i.e. steady) solution of Eq.(4). The
(non)linear behavior of Eq.(9) is completely depending on the source
term. We will use the resemblance of Egs.(5) and (9) for solving both
problems numerically with the Taylor—series method. From Eqs. (5) and
(9) we may conclude that both problems, i.e. grid generation and
heat—conduction, are described by the steady part of the non—linear

equation (z=T,¢,7):
é =Dz + S[Z]’ ) - (10)

with 1=5[,=0

3. APPLICATION OF THE TAYLOR-SERIES METHOD.

In this section we will present a method to find the steady
solution of Eq.(10), by means of the Taylor—series method (TSM).
Solving this (set of) equation(s) must be done by some means of
successive linearization. Time has been added from a physical
background as relaxation tool in order to control the numerical marching
process from an initial guess to the final steady solution by taking small
time steps. This approach is known as a pseudo—transient technique [3].
Using explicit time discretization ' ' 4

2o At{Dz + S[z]}’ ©(11)

is the recurrence, with superscript n indicating the time step. The steady
part will be discretized with the TSM.

Applying the TSM, the domain is divided into elements ‘which
we chose, without loss of generality, to be equidistant and of size
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2A¢ x 2An = 2 x 2. The solution of the PDE is locally (elementwise)
expanded in a two—dimensional Taylor—series around the middle of each

element
2= 3 3z . detdyd, (12)

where d¢ and d are local coordinates. These series and their derivatives
are substituted in the PDE and in the corresponding boundary
conditions. Collecting same powers of d§ and d7, and equatmg them to
zero (because the equations must hold for every d{ and dn Wlthm the
element) give the mnecessary relations for the variables z e
As demonstration, suppose that Eq.(lO) represents the heat—conduction
problem in general coordinates (£,7), according to Eq.(9). Substitution

and recollection of the Taylor—series expansion in the PDE yields

n+1 (1+2!
i,j 7 i’ +At{ ] i+2 J
§1+1!’!J } “ 2)!
[26 1+1 ;j+1 +[r ]zl J+2 _]}

,J =0,1, (13)

The .explicit ’tlme’ discretization is used, because Egs. (13) are always

linear in the variables zn+ , although they are monlinear in the

unknowns z", in general. The same procedure of substitution and
recollectlon is used for the boundary conditions which must be given as
Taylor—series expansxons around the middle of each elementboundary
E.g. for a Dirichlet condition z(~A¢,dn)=W(dn)=2 W dn] on

the west boundary (d¢ = —A¢) we find

. n+ ( Af) J j=0,1,..,m. (14)
1=0
where W. is the appropriate Taylor—coefficient of the Dirichlet
condition. Note that these equations are always linear in the unknowns.
The ‘continuity conditions between each pair of elements form a similar
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type of equation. Dealing with the Poisson equation, second—order in ¢,
demands continuity in this direction of z and its first derivatives i.e. z ¢
For similar reasons continuity in n—direction has to be satisfied in z and
2 . The result of Eqs.(13) and (14) is an inifinite set of linear equations.
To make the set finite, the number of equations will be bounded, lets say
to i=0,1,..k1 and j=0,1,.k2. In fact this truncation is the
approximating step of the method. Some bookkeeping will show that for
each element we have 4 dependent equations, which can clearly be
anderstood from the fact that the continuity conditions on boundaries in
¢—direction have to meet the corresponding continuity conditions on
boundaries in 7—direction in the 4 elementcorners. Removing 2 equations
for each continuity condition in either the ¢—direction or the n—direction
will result in a proper set of (k143)(k2+3) linear equations per element.
Storing the unknownsin a vector, the complete set is denoted by

A = b2, ‘e (15)

in which the superscript n refers to the actual ’time’step which are of

magnitude At. The vektor z" is the solutionvector containing the
unknowns of time step 1. Solving this linear set repetitively for sufficient
small At will result in an approximation of order (k1,k2). A change in
one or both of these parameters is easily made and will change the order
of accurg;_cj accordingly. Because the set is linear, LU—factorisation of A
is performed only once. Although a considerable reduction of computing
time is possible by using more economic solvers (e.g. splitting
techniques), LU factorisation is used for the time being. The TSM is an
easily variable order method. As a matter of fact a certain kmd of
soptimal choice’ between the number of elements and the oj_rde»r':(f)f
accuracy becomes available similar as was shovén for One—dimeiléithl

problems in Sonnemans, et.al. [4].
4. RESULTS AND CONCLUSIONS.

The heat conduction problem for the three systems, ‘givenv in
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Fig.(1), is solved with the method presented in the previous sections.

@t} i a4 ) (31 (1

B e (Y] ’m) .
1 - I b 4

Fig.1. Three geometrical systems on which the heat equation is solved.

The grids are solved according to Eq.(5) and shown for the third
example in Fig(2a). :

I
unwg P

Fig.2a. "The gemerated grid Fig.2b.  The temperature field
(k=2,N=4) of the third system. (k=2,N=4) on the third system.

X

For different numbers of k and for the same number of elements the grid
changes slightly. The boundary conditions, described by cubic splines,
are well satisfied, although projection of Fig.(2a) onto a rectangle
displays a problem in the cormer (E,n):(l,l), where the Jacobian of the
transformation vanishes. The Taylor—series, ‘however, will never be
expanded in this point. Nevertheless, the series x(é,m) and y(&,m) should
be expanded in a point at a sufficiently large distance from this corner t0
avoid bad convergence of the series. We may conclude that the proposed
method works well for generating grids. v
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The temperature field is calculated on the generated grids as is
shown for the third example in Fig.(2b) with a finer mesh for more
detail. The characteristic ’temperature bulge’ can clearly be seen, besides
teh satisfaction of the Dirichlet boundary conditions.

Results of the temperature at the centres, as indicated in F1g (1),
of the three objects, are given in Tables LII and II1, for calculations with
different N and k values.

N=1 N=2 N=3 N=

o1 | 0.6250 | 0.6667 | 0.7073 | 0.7187

k=2 | 0.7202 | 0.7411 0.7374 | 0.7370

k=3 | 0.7292 | 0.7363 0.7365 -

k=4 | 0.7366 | 0.7365 | 0.7367 -

Analytical solution : 0.7367135

Tabel 1. Temperature * 10%.

The calculations for k= 3,4 and N=4 are omitted due to memory capacity
limits. The accuracy of the numerical coordinate transformation is only
of importance when the heat—equation is solved either by Eq. (8) or
Eq.(9). Comparisons of the temperature in the physical domain are
made, since it is not meaningful to study the accuracy in the
computational domain. In Table I the analytical result [3] is included for
comparison. The results of Table I denote that the accuracy increases for
mcreasmg k and N as one might expect and agrees with analogous results
in 1D situations as was shown in [4]. Higher accuracy demands can be
satisfied by increasing k ‘and/or N. Both parameters also have their
influence on the required computing time which itself depends on the
solving procedure. For complete LU—factorisation both parameters have
equal influence. From an seconomic’ point of view higher accuracy
démands can be satisfied with a preference for higher—order
approximations as can be seen from Table I, which is a simalar tendency
as shown in [4] for 1D problems. This preference, the basic idea of using
the Taylor—series method optimally, will in general depend on the
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problem being solved, i.e. the order of the PDE and the behavior of the
solution quantified by the radius of convergence. To quantify this
dependency for 2D problems a more profound research in this direction is

necessary. ;
The results from tables II and III are not as clear as one might expect.

N=1 N=2 N=3 N=4
k=1 | 0.4891 | 0.5600 | 0.5411 | 0.5389
k=2 | 0.5194 | 0.5440 | 0.5389 | 0.5381
k=3 | 0.5374 | 0.5641 | 0.5460 -
k=4 | 0.5363 | 0.5613 | 0.5430 -
Tabel II. Temperature * 102 ’
N=1 N2 N-3 | N4
k=1 | 0.8045 | 0.8162 | 0.8916 | 0.9175
k=2 | 0.9359 | 1.0347 | 0.9772 | 0.9642
k=3 | 0.8947 0.9230 “| 0.9506 -
k=4 | 0.9405 | 0.9780 | 0.7241 -

Tabel III Tempemturé * 102,

The reason can be seen if the extension of the Taylor——senes of the
solutmn are studied. It appears that the truncated part of these series is
not neghglble The elements are taken too large relative to the radius of
convergence of the series. The a,pproxlmatmns remains of compa.rable
magnitude, therefore no important 1mprovement of accuracy can be
observed. More (smaller) elements may be used to make the tmncatlon
error sufficiently small as we are doing now.

In future we plan to make use of the special stmcture of the set of
equations to develop a more sophxstlca,ted algorithm in order to solve the
system more economically, for example by applying direction spht}tu;_g
techniques. S



51

Usage of larger number of elements will become possible, which makes

practical problems more accessible.
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