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Summary.

In constitutive equations for finite elastic-plastic deformation of polymers
the elastic part of the deformation is usually formulated by assuming an
isotropic relation between the Jaumann rate of the Cauchy-stress tensor and
the rate of strain tensor. The Jaumann-stress rate however is known to
display aphysical behaviour in the elastic region. In this paper we will
derive a "compressible-Leonov model” which reduces to the Jaumann-stress
rate in the limit of complete plastic deformation, but is also capable of
giving a correct description of the elastic region.

In polymer rheology it is now recognized that constitutive equations are most naturally formulated using
evolution equations for state variables '* (the variables that determine the Helmholiz-free energy (A) of the
system). Jongschaap® derived a formalism which describes how extemnal rate variables (the velocity gradient
L) and external forces (the Cauchy-stress tensor @) are coupled to the rate of change of the state variables
and the internal thermodynamic forces (derivatives of the free energy with respect to the state variables). An
important concept in this formalism is that of macroscopic time reversal where one determines to what
extend the rate of change of the state variables and the stress tensor g are effected by a reversal of the
macroscopic external velocity gradient L. Here it should be noted that any function f(I) may be decomposed
in an even part f* and an odd part f* according to:

flL) = £*@) + £°@L) = (L) + f(-L)) + Ya(f(L) - f(-L) (thus L = L per definition)

From the notion that the state variables are even per definition and due to the second law of thermodynamics
the dissipation function’ is also even, the formalism describes how a constitutive equation can be decom-

posed as follows:
o] m Al (L
AR R
s/ A B M a8

Where it is assumed that the state variable determining the free energy is a second order tensor S with an
associated thermodynamic force M (p is the density). The fourth-order tensor 3, A and B are even with

respect to L.
One important result is that the reversible (elastic) part of the stress tensor, g*, is coupled to the reversible
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(odd) part of the rate of change of the state variable, S:

“ =gl =AM = M:A

We will now use this formalism to derive a constitutive relation that gives a correct description of the elastic
as well as the plastic behaviour of polymers assuming that the volume response remains pure elastic. We will
use polycarbonate as a model system to compare some of the existing models.

In the case of isotropic elastic bebaviour one can assume that the state variable determining the free energy
is the left-Cauchy-Green-deformation tensor B, B = FeE? (F is the deformation gradient).

Because of isotropy we then have:

A = A, 1Ty, TIl) I = t(B), Il = V(ly? - u(BoB), 1l = det(B)

The thermodynamic force therefore equals:

- plad + @B - B + 0,0 BE)

“Plar, 3B o, 0B " 30, o8

I} oll
M=p[g%]_[BAiIg+3Aag aa_ ol

Here, o, are the derivatives of the free energy with respect to the invariants of B.
From kinematics we know that the upper convected or Truesdell derivative of B equals 0 and this leads us to
the evolution equation for B:

B=LB+BL™ -

>

L 3 A, =8B, +B.3, 2

Since we have no dissipation 1 and B are Q and the constitutive equation for elastic behaviour follows
directly from (1) and (2):

= M:A = 20(a,det®] + (@, + @ B)B - 0,5

t<ia

=0

This is the well-known expression for Green-clastic behaviour.

Because we want to develop an expression for elastic-plastic behaviour where the volume response is pure
elastic, we now consider the case of pure elastic behaviour where the volume deformation is independent of
the change of shape. Because of the independent volume deformation we assume that the free energy is
determined by two state variables: the relative volume deformation J (J = det(F)) (for convenience we will
use JI instead of J) and the left-Cauchy-Green deformation tensor at constant volume B, B’ = J*B. In the
case of isotropic behaviour we then have®:

A=AQ L., 1) (Il = det(8) = 1)

There are now two conjugated thermodynamic forces, one related to the volume deformation (N) and one
related to the shape deformation (M):

| _1 (o4 24 —
=pl—I| = 22N and M =p|l—| = I+ I -B7
N D{M] ?"[aj]- M p[ag-] plail + o3I - B7)
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From kinematics we have:

A =Jr@I =JI:L and B = LB +B'L <AL (A* =4 - 2BD)

The constitutive equation therefore becomes:

94

s < o( 2008 20y « 2038 - 00 + o

3)
B =L%B* +B"L*
U1 = Jir(Dy1

As might be expected the hydrostatic stress is determined solely by the volume deformation, whereas the
deviatoric stress is governed by B".
The evolution equation for B may also be writien as:

]

o (-] ..
B* =D*B* - B*D* where B’ is the Jaumann rate of B*: B* =B - WB - B"WT

In case of plastic deformation we now assume that the accumulation of elastic strain (at constant volume) is
reduced because of the existence of a (deviatoric) plastic strain rate D,*. The evolution equation for B*
therefore changes to (note that the plastic spin equals 0):

(4
B, -@‘-D)B: - B:0* -D) @

For polymers in general and polycarbonate special it is known* that the plastic-strain rate D, is well
described by an Eyring-flow process:

g’ =2n (Ilg,)Qp ; where Ny = Ar,

For polycarbonate we have A = 8.6 10° s and 1, = 0.856 MPa’".

A constitutive equation for elastic-plastic behaviour with an elastic-volume response is now obtained by
combining the equation for elastic behaviour (3) with the new evolution equation for B” (4).We will assume
that o,” = O (physical linear elastic behaviour) and identifying 2pa,” with the shear modulus G and

po(d A/3J) with K(J - 1) (where K is the bulkmodulus) we have (at small volume deformations, J = 1):

c=K(J-1l+ GB,™*

B =@ DB +R @Dy
1 = (D)

o = 2n(1yD,

We can now compare our model with the widely used Jaumann-stress-rate equation®:

ndl,) o

G + g? = 2q U)D  together with tr(8) = 3Ktr(D)
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and the upper-convected equivalent of this:

nu) v y y .
G— T + I* = 2n(i)D ;6 =T° together with (0 = 3K1r(D)

As an example we will calculate the normal-stress response of the three models for a plane-stress-shear
deformation (plane-stress condition in the z-direction). The Young's modulus of polycarbonate E = 2400 MPa
and the Poisson constant v = 0.33.
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Calculations show that the three models give virtually the same shear-stress response. The normal stresses
bowever differ, as can be seen from the figure.

It is known® that the upper-convected model gives a good description of the elastic behaviour, but apparently
fails to describe the (experimentally observed) normal stress during plastic deformation. The Jaumann model
on the other hand gives a reasonable description of the normal stress, but is not capable of capturing the
correct elastic behaviour®: Our "compressible Leonov model” provides a natural link between these two

extremes.
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