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This paper reports ongoing research into a theory of datatypes based on the calculus 
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the construction of several natural isomorphisms and natural simulations between relators. 
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1 Introduction 

Research is underway into a theory of datatypes based on the calculus of relations. A funda
mental concept within the theory is that of "relator" which takes the place of the notion of 
"functor" in a category-theory inspired development of functional programming. 

In order that our theory be of any use we need to ensure that we can indeed define some 
non-trivial relators. It is well accepted that any useful theory of types should contain as a bare 
minimum the three components: a unit type, a disjoint sum operator and a cartesian product 
operator. In this paper we axiomatise these three within the calculus of relations and catalogue 
their properties. Following established terminology (see for example Manes and Arbib [11]) we 
call the relators so obtained the polynomial relators. 

The main goal of our endeavour is to develop a calculus admitting compact and clear deriva
tion of programs. To this end emphasis is placed on the identification of morphisms associated 
with each relator and their so-called "fusion" and "naturality" properties. Fusion properties 
characterise the circumstances under which a composition of relations, one of which is a mor
phism, can be combined into just one morphism (or vice-versa when a morphism can be "defused" 
into a composition of relations one of which remains a morphism). Naturality properties offer 
an alternative way of expressing monotonicity and fusion properties of morphisms; from a pro
gramming point of view their significance emerges when one tackles the problem of constructing 
simulations of one relator by another or isomorphisms between relators. The effectiveness of the 
calculus is demonstrated by exhibiting several such constructions. 

A companion paper [3) provides more motivation for the development of the theory and takes 
it further into the domain of inductively-defined types. 

We conclude this introduction with a short account of the style we use for presenting calcu
lations. 

Proof Format 

For the presentation of equational proofs we use the style introduced by W.H.J. Feijen in [7). 
That is, we write 

R 
= {p} 

S 
= { q } 

T 

R,S and T are expressions containing one or more free variables. p and q are most often semi
formal hints why (for all instantiations of the free variables) R = Sand S = T, respectively; in 
constructive proofs (discussed shortly) p and q have a formal status. 

This format emphasises the transitivity of equality: all the expressions R, Sand T are equal, 
but in particular the first and the last. We use other transitive operators in place of equality: 
== (equivalence), {:: (follows from) => (implies), ;;;) and!; (the inclusion operators defined in 
section 3). In such cases the connectives are used conjunctively; for example R {:: S {:: T means 
(R {:: S) and (S {:: T). 

Peculiar to our own work is that we use the same proof style for constructive proofs. For 
example, we may wish to determine a condition q under which two given expressions Rand T 
are equal. There are two ways we can proceed. One is to begin with the statement 

R = T 



and then in a series of steps derive q. Thus the derivation would take the form 

R = l' 
<= { hint } 

some intermediate steps 
<= { hint} 

q 

Another way is to begin with R and try to transform it to T. On the way the conditions under 
which the transformation is possible are collected in the hints. Thus the proof takes the form 

R 
= {ql } 

S 
= {q2} 

T 

In such a proof the hints have a truly formal status and what is proven is the statement 

ql /\ q2 ~ R = T 

We forewarn the reader that this will be so by prefacing the proof with the words "by construc
tion" . 

A particular case where such constructive proofs are used is the following. Given are two 
functions f and 9 and an expression R. Required is to find x such that J.R = g.x. I.e. we wish 
to prove the statement 

3(x:: f.R = g.x) 

This we often do by a stepwise refinement process in which, for reasons stated in the hints, we 
explore assignments to x of a particular form. The proof structure then takes a form something 
like: 
By construction of x: 

f.R = g.x 
<= { reason why f.R = g.(h.y) <= f'.R = g'.y , x.- h.y } 

J'.R = g'.y 
<= { reason why f'.R = 9'.T } 

y:=T 

Formally, such a proof establishes 

V(x,y: x=h.y /\ y=T: f.R = g.x) 

which is of course equivalent to 

f.R = g.(h.T) 

The first example of such a proof can be found in section 9. 

2 The Algebraic Framework 

In this section we summarise relational algebra. For pedagogic reasons we decompose the algebra 
into three layers with interfaces between the layers plus two special axioms, one discussed here 
and one in a later section. The algebra is standard within the bounds of "scientific freedom". 



2.1 Plat Calculus 

Let A be a set, the elements of which are to be called specs. On A we impose the structure of 
a complete, completely distributive, complemented lattice 

(A, n, u, ..." TT, ll..) 

where "n" and "u" are associative and idempotent, binary infix operators with unit elements 
"IT" and "l.L", respectively, and "...," is the unary prefix operator denoting complement (or 
negation). We assume familiarity with the standard definition of a lattice given, for example, 
by Birkhoff [5]. By "complete lattice" we mean that the extremums 

U(i: i E I: Ri) 
and n( i: i E I: Ri) 

exist for all families of specs {i: i E I: R;}, where the index set I is completely arbitrary. 
"Completely distributive lattice1' means that 

and 
R n 
R U 

U(i: iEI: Si) = 
n(i: iEI: Si) = 

U(i: iEI: RnSi) 
n(i: iEI: RUSi) 

for all specs R and all families of specs {i: i E I: Si}. Finally, "complemented lattice" 
means that ..,R exists for all specs R and obeys de Morgan's laws and the double negation rule. 
(Note: the definition of a Boolean algebra requires only the existence of finite extremums and 
distributivity over such finite extremums. Our requirements are thus stronger.) The ordering 
relation induced by the lattice structure will be denoted by ";J". 

This structure is well known from the predicate calculus: for "n" and "u" read conjunction 
and disjunction, respectively, for "TT" and" 1.1." read true and false, and for ";;;J" read "o¢=". 
We call such a structure a plat, the "p" standing for power set and "lat" standing for lattice. 
Since the structure is so well known and well documented we shall assume a high degree of 
familiarity with it. 

2.2 Composition 

The second layer is the monoid structure for composition: 

(A, 0, I) 

where 0 is an associative binary infix operator with unit element I. 

The interface between these two layers is: 0 is coordinatewise universally "cup-junctive". I.e. 
for V, W ~ A, 

(UV) 0 (UW) = U (P,Q: P E V A Q E W: po Q) 

In particular, 

• l.L is a left and right zero for 0, 

• 0 is monotonic with respect to ~. 

• TToTT = TT. 



2.3 Reverse 

The third layer is the "reverse structure" , 

(A, u) 

where "u" is a unary postfix operator such that it is its own inverse. 

The interface with the first layer is that "u" is an isomorphism of plats. I.e. for all P, Q E A, 

P;;;]Q - pu :;;;) Qu 

Consequently, for all P, Q E A, 

...,(Pu) = ( .,P)u 

(P u Q)u pu U Qu 

(P n Q)u = pu n Qu 

TTu = TT 

11.u = 11. 

Remark As a rule we shall write the names of unary functions as prefixes to their arguments. A 
partial justification for making an exception of "u" is that it commutes with ".,", thus permitting 
us to write the syntactically ambiguous ".,Ru". Later we shall see that "u" also commutes (by 
definition) with so-called "relators". The latter is the main reason for this choice of notation. 
End of Remark 

The interface with the second layer is that "u" is an isomorphism between the two monoid 
structures (A, ;, I) and (A, a, J) with 

R;S = SaR 

In particular, 

Iu = I 

2.4 Operator precedence 

Some remarks on operator precedence are necessary to ena.ble the reader to pa.rse our formulae. 
First, as always, operators in the metalanguage have lower precedence than operators in the 
object language. The principle meta-operators we use are equivalence ("="), implication ("=>") 
and follows-from ("<=") - these all having equal precedence - , together with conjunction 
("1\") and disjunction ("V") - which have equal precedence higher than that ofthe other meta
operators. The precedence of the operators in the plat structure follows the same pattern. That 
is, "=", ":;;;)" and "~" all have equal precedence; so do "u" and "n"; and, the former is lower than 
the latter. Composition (" 0") has a yet higher precedence than all of the operators mentioned 
thus far, whilst disjoint sum "+", cartesian product "x" and their associated morphisms, junc 
" '<7" and split "6" (all of which are introduced later) have the highest precedence of all the 
binary operators. Finally, all unary operators in the object language, whether prefix or postfix, 
have the same precedence which is the highest of all. Parentheses will be used to disambiguate 
expressions where this is necessary. 



2.5 The RS and Rotation Rules 

To the above axioms we now add an axiom that acts as an interface between all three layers. 

The RS Rule 

...,y ;;;;) p 0 ...,X 0 Q = x pu 0 y 0 Qu 

The name "RS" is a mnemonic for "Rotation and Shunting". The "rotation rule" is obtained 
by making the substitutions Y :== Ru, P :== S, X :== ...,T and Q :== I and simplifying using the 
properties of I, reverse and complement. 

Rotation Rule 

...,Tu :J R 0 S 

(Note how the variables R, Sand T are rotated in going from the left to the right side of the 
rule.) "Shunting" is the name given by Dijkstra and Scholten [8] to an important rule in the 
predicate calculus. Specifically, by making the substitutions Y .- U, P := I, X :== V, and 
Q :== Wand simplifying we obtain the rule 

V :J U 0 Wu 

Interpreting" 0" as conjunction, "u" as the identity function, and ";;;;)" as follows-from this is 
the afore-mentioned shunting rule. 

It is our experience that the RS rule can meet with considerable resistance for one of two 
reasons. First, for calculational purposes, a rule with four free variables is (rightly) regarded 
as approaching, if not outwith, the limits of useability. Second, for those already familiar with 
the relational calculus, there is resistance to the fact that we have chosen to replace the better 
known "Schroder" rule which states that the following three statements are all equivalent. 

R 0 seT 
Ru o...,T ~ ...,s 
...,T 0 Su c ...,R 

(See, for example, [16] for historical references.) To counter these arguments we would point out 
-that the RS rule is more compact than the Schroder rule (two statements are equivalent rather 
than three) and, more importantly, has a clean syntactic form that makes it easy to remember 
and to apply. The rotation rule shares these advantages as well as involving only three free 
variables, but suffers the disadvantage that in some calculations two successive uses are required 
where only one use of the RS rule is necessary. In combination with other laws both rules are 
equivalent to the Schroder rule. (The Schroder rule can also be reduced to the equivalence of just 
two statements, making our first argument void, but then it would suffer the same disadvantage 
as the rotation rule, which is probably the reason why it is always stated in the way that it 
is.) An alternative axiomatisation is also possible using a yet simpler so-called "divergence rule" 
together with a rule relating factors to the complement operator. This alternative is discussed 
further in the appendix. 

3 Foundations 

The purpose of this section is to build up a vocabulary for our later discussion of the properties of 
morphisms. In order to avoid possible confusion with existing terminology we make a complete 



---------------------------

reappraisal of what is meant by "type", "function", "type constructor" etc. Nevertheless, it 
should be emphasised that - with the important exception of the notion of "relator" - the 
concepts defined in this section, and their properties, are amply documented in the mathematical 
literature and we make no claim to originality. 

3.1 Monotypes 

We say that spec A is a monotype iff I ;;;) A. 
In the relational model, for example, we may assume that the universe U contains two 

unequal values true and false. The monotype B of booleans is then defined to be the relation 

{(true, true), (false, false)} 

Note that for monotypes A and B 

(1) A = I n A = Au = A 0 A 

(2) AoB = BoA = AnB 

Properties such as (1) and (2) stated here without proof are proven in the appendix. 
We need to refer to the "domain" and "co-domain" (or "range") of a spec. In order to avoid 

unhelpful operational interpretations we use the terms left-domain and right-domain instead. 
These are denoted by "<" and ">", respectively, and defined by 

(3) 

(4) 

R< 

R> 

In (R 0 Ru) 

In(RuoR) 

Since all the operators involved in their definition are monotonic it follows that "<" and ">" are 
monotonic. Relational calculus (see the appendix) yields the following alternative definitions 
defining R< and R> as the smallest monotypes satisfying the equations in A, A 0 R = Rand 
R 0 A = R, respectively. 

(5) 

(6) 

'v'(A: I;;;) A : A 0 R = R 

'v'(A: I;;;) A: R 0 A = R 

_ A;;;) R<) 

A;;;) R» 

Note that once again we choose to use a postfix notation for function application. On this 
occasion, however, it is not the case that complement and "<" (or ">") commute. That is 
-,( R<) =f. (-,R)<, in general. As we shall see, however, "<" and ">" do commute with relators 
and that is the reason for our choice. 
The following properties of "<" also prove to be very useful. For all specs Rand S, 

(7) R< = (Ru» 

(8) R<oS = Ro IT n S 

(9) (R 0 S)< = (R 0 S<)< 

(10) R< ;;;) (R 0 S)< 

(11) (R U S)< = R< u S< 

(12) (R n S)< = Ro Su n I 

For convenience we also list the dual properties of ">". 

(13) R> = (Ru)< 

(14) SoR> = IT oR n S 



(15) 

(16) 

(17) 

(18) 

(R 0 S» 

S> 

(RU S» 

(Rn S» 

= 
;;;) 

= 
= 

(R> 0 S» 

(R 0 S» 

R> U S> 

Ru 0 S n I 

Of these six pairs of properties, five are evident when specs are interpreted as relations. One 
pair, properties (8) and (14), is less so. Nevertheless, it is worth drawing attention to them be
cause they figure frequently in some of our calculations. The alternative expressions I n R 0 1T 
and I n 1T 0 R for R< and R>, respectively, are obtained from them by instantiating S to I 
and simplifying. In addition, the following distributivity properties are exploited surprisingly 
frequently. 

(19) (R n So1T) 0 T = RoT n So1T 

(20) R 0 (S n "IT 0 T) = R 0 S n 1T 0 T 

Their proofs involve two applications of (8) or (14), as the case may be, together with associa
tivity of composition. 

We sometimes write 

R E S"'T 

as a synonym for 

(21) SoR = R = RoT 

It is immediate from (5) and (6) that 

(22) R< 0 R = R = R 0 R> 

Indeed this law is used so frequently that, after a while, we hardly bother to mention it. Using 
the notation we have just introduced (22) can be rephrased in the form 

R E R<'" R> 

Note that (21) defines S"'T to be a subset of A. Typically Sand T will be monotypes, but we 
prefer not to complicate the definition by making such a restriction. 

It follows immediately from (2) with B instantiated to A that, for all monotypes A, 

and, more specifically, 

(24) A < = A = A> 

Properties (7), (13) a.nd (24) together with the properties of reverse (in particular, that it is 
its own inverse) have the important notational consequence that any sequence of applications of 
the left-/right- domain operators and/or the reverse operator can be reduced to the application 
of at most one of these operators. Such simplifications will be made automatically in our proofs 
except in one or two places where we judge that, in combination with the application of some 
other rule, the proof step has become too large for human consumption. 



3.2 Imps and Co-imps 

In this subsection we define "imps" and "co-imps" as special classes of specs. In the relational 
model an "imp" is a function. 

Definition 25 

(a) A spec f is said to be an imp if and only if I d f 0 fu. 

(b) A spec f is said to be a co-imp if and only if fu is an imp. 

(c) A spec is said to be a bijection if and only if it is both an imp and a co-imp. 

o 

We shall say that f is a bijection between A and B if it is a bijection and f< = A and 
f> = B. Note that if this is the case then both A and Bare monotypes and A = f 0 fu and 
B = fu 0 f. The notation "A ~ B" (read as A is isomorphic to B) signifies the existence of a 
bijection between A and B. 

Theorem 26 Composition preserves imps, co-imps and bijections. 

Proof Straightforward. 
o 

The intended interpretation is that an "imp" is an "imp"lementation. On the other hand, it 
is not the intention that all implementations are "imps". Apart from their interpretation imps 
have an important distributive property not enjoyed by arbitrary specs, namely: 

Theorem 27 If f is an imp then, for alillon-empty sets of specs V, 

n(P: P E V: P) 0 f = n (P: P E V: po f) 

In particular, for all specs Rand S, 

(Rn S) 0 f = (R 0 f) n (S 0 f) 

o 

Dually we have: 

Theorem 28 If f is a co-imp then, for all non-empty sets of specs V, 

f 0 n (P: P E V: P) = n (P: P E V: foP) 

In particular, for all specs Rand S, 
• f 0 (R n S) = (f 0 R) n (f 0 S) 

o 

Monotypes are examples of bijections. In the relational model a monotype is the identity 
function on that type. More generally, the requirement of being a function is the requirement 
of being single-valued on some subset of U, the so-called "domain" of the function. The domain 
and range are made explicit in the following. 

Definition 29 For monotypes A and B we define the set A-B by f E A-B whenever 



(a) 
(b) 

A ;:d f" fu 
f> = B 

and 

The nomenclature "f E A+--B" is verbalised by saying that "f is an imp to A from B". 
o 

In terms of the relational model, property (29a) expresses the statement that f is zero- or 
single-valued, i.e. for each x there is at most one y such that y (I) x, and has range A. Property 
(2gb) expresses the statement that f is total on domain B, i.e. for each x E B there is at least 
one y such that y (I) x. Their combination justifies writing "f.x", for each x E B, denoting the 
unique object y in A such that y (I) x. 

By including the above definition and not simultaneously including a dual notion for co-imps 
we have introduced an asymmetry into our theory that until now has been totally absent. This 
expresses a slight bias with an eye to the extension of the theory with cartesian product and 
disjoint sum. We hasten to add, nonetheless, that there is no such asymmetry in the theory at 
this instant and every property we state for imps alone has a dual property for co-imps. 

It is easy to show that, 

ArvB 2 A+-- B 

and, for imp f, 

f E f< +-- f> 

as one would expect from the intended interpretations of these operators. 

Note also that 

f E A+--B => foG E A+--(BnG) 

In the case that B ;;;;) G, the imp foG is the restriction of f to domain G. A major advantage 
of viewing mono types as specs is that type considerations can be readily incorporated into the 
calculations in this way. (For some examples see [10].) 

We should stress that the two set-forming operations "rv" and "+--" do not form an essential 
part of our theory but are included in order that the reader may relate their existing knowledge 
of type structures to the present theory. In the sequel we shall often state properties of the 
domain-forming operations "<" and ">" and immediat.ely tra.nscribe them into properties of 
"rv" and/or ";--". We prefer the statements about the domains for two reasons: they offer a 
better separation of concerns and are thus calculationally more useful, and they can be stated 
with fewer dummies (and indeed in some cases with no dummies, although we don't go that 
far). 

To avoid repeating assumptions and to assist the reader's understanding we continue to 
use the conventions that capital letters A, B, G, ... at the beginning of the alphabet denote 
monotypes, small letters f, g, h, ... denote imps or co-imps, and capital letters R, S, T, . .. at the 
end of the alphabet denote arbitrary specs. 

Finally, let us remark that the unconventional di~ection of the arrow in the statement "f E 
A+--B" is entirely dictated by the choice to denote function application with the function name 
to the left of its argument. (We owe the suggestion to deviate from convention to Meertens [13J.) 



3.3 Relators 

In categorical approaches to type theory a parallel is drawn between the notion of type construc
tor and the categorical notion of "functor", thereby emphasising that a type constructor is not 
just a function from types to types but also comes equipped with a function that maps arrows 
to arrows. For an informative account of this parallel see, for example, [11]. In this subsection 
we propose a modest extension to the notion of functor to which we give the name "relator". 

Definition 30 A relator is a function, F, from specs to specs such that 

(a) I ~ F.I 

(b) R~S ::} F.R ~ F.S 
(c) F.(Ro S) F.R 0 F.S 

(d) F.(Ru) = (F.R)u 

0 

In view of (30d) we take the liberty of writing simply "F.Ru" without parentheses, thus avoiding 
explicit use of the property. 

The above ostensibly defines a unary relator but we also wish to allow it to serve as the 
definition of a relator mapping an m-ary vector of specs into an n-ary vector of specs, for some 
natural numbers m and n. (This is necessary in order to allow the theory to encompass what 
are variously called "mutually recursive type definitions" and "many-sorted algebras". More 
generally, there is no reason why "m" and "n" may not be some fixed but nevertheless arbitrary 
index sets. However, such a generalisation would complicate the current discussion more than 
we deem justified.) The mechanism by which we can do this is to assume that all the constants 
appearing in the definition ("=", "~", "I", "0" and "u") are silently "lifted" to operate on 
vectors. For example, if F maps m-ary vectors into n-ary vectors, property (30c) would be 
written out in the form 

for all j, 1 $ j $ n, whereby the use of subscripts denotes projection of a vector onto one of its 
components. It is, however, just such clumsy expressions that we want to avoid. 

There are two cases that we make particular use of. The first case has to do with taking 
fixed points of relators where an obvious requirement is that the arity of the domain vector 
of the relator is identical to that of its range vector. We call such a relator an endorelator in 
conformance with the teminology "endofunctor" used in category theory. The second case is 
when F maps a pair of (vectors of) specs into a (vector of) spec(s). We refer to such relators 
as binary relators and choose to denote them by infix operators. Thus, if ® denotes a binary 
relator, its defining properties would be spelt out as follows. 

(a) I ~ I ® I 
(b) R ~ S /I. U ~ V ::} R ® U ~ S ® V 

(c) (RoS)®(UoV) = (R0U) 0 (S®V) 

(d) (Ru)® (Su) = (R® S)u 

The notational advantage of writing "u" as a postfix to its argument is, of course, lost in this 
case. 

A property such as (c) we call an "abide" law; we also often refer to this law by saying 
that binary relators "abide" with composition. The name was coined by llichard Bird (in a 



different context). His motivation for the name was that it is short for "above/beside" renecting 
the following two-dimensional formulation of the law in which the relator and composition are 
either above or beside each other. 

R 0 S R s 
® = ® 0 ® 

U 0 V U V 

(Our first encounter with a two-dimensional depiction of an abide law was in [9]. In the category 
theory literature the term "interchange" rule (or law) is used.) 

As already announced relators commute with the domain operators. 

Theorem 31 If F is a relator then 

(a) F.(R» = (~.R» 

(b) F.(R<) = (F.R)< 
o 

For the proof of this theorem see [2]. 

In view of theorem 31 we write "F.R<" and "F.R>" without parentheses, again in order to 
avoid explicit mention of the properties. 

The following theorem allows a comparison to be made with our definition of "relator" and 
the definition of "functor" (in the category of sets). 

Theorem 32 If F is a relator then 

(a) A is a monotype ::} F.A is a monotype 

(b) ! is an imp ::} F.f is an imp 
(c) ! is a co-imp =} F.! is a co-imp 
(d) ! E A~B =} F.f E F.A~F.B 
(e) R E ArvB =} F.R E F.ArvF.B 

Proof 
Straightforward instantiation of the definitions of "monotype", "imp", "co-imp", "~" and 
"rv" combined with the definition of a relator and, in the case of part (b), theorem 31. 
o 

3.4 Cap- and Cup-Junctivity 

In addition to the four defining properties of a relator one might ask the question whether it 
distributes over the cup and/or the cap operator. Such a property we call a "finite junctivity" 
property. More generally, one might ask whether the relator distributes over some class of 
quantifications with respect to the cup and/or cap operator. In order to make the latter notion 
precise we introduce the following definition. 

Definition 33 Suppose I is a set. We use i and j to denote elements of I. An I-bag is a (total) 
spec-valued function with domain I. If'R is an I-bag then 'R.i denotes the spec obtained by 
applying n to i E I. Also Ux'R is used to denote U( i ; i E I : 'R.i). 

An I-bag, 'R, is linear if for all i,j E I one has either 'R.i ;;;! 'R.j or 'R.j ;;;! n.i. 
We call a function G from specs to specs I-cup-junctive if for all I-bags, n, 

(34) G.(Ux'R) = Ux(G. 'R) 



(Note: " • " denotes composition of functions.) 
I -cap-junctivity is defined similarly. 
The function G is said to be I -cup-continuous if (34) holds for all linear bags R. The notion 

of I -cap-continuity is similarly defined. 
(For clarity it is as well to remark that the definition of I-cap-junctivity for a binary operator 
o is that for each pair of I-bags Rand S, 

n(i : i E I: R.i) 0 n(i : i E I: S.i) = n(i: i E I: R.i 0 S.i) 

Written without dummies this is the statement 

nIR0 nIS = nI(0 • (R,S)) 

A similar statement holds for I-cup-junctivity.) 
o 

Using the word "junctive" to stand for both "cap-junctive" and "cup-junctive", and "COIl

tinuous" to stand for "cap-continuous" and "cup-continuous" we may identify the following 
properties: 

• universally junctive, i.e. junctive over all I. 

• positively junctive, i.e. junctive over all non-empty I. 

• denumerably junctive, i.e. junctive over all non-empty I with denumerably many elements. 

• finitely junctive, i.e. junctive over all non-empty finite I. 

• continuous, i.e. junctive over all non-empty, linear I. 

• monotonic, Le. junctive over all non-empty, finite, linear, I. 

The relationship between these various types of junctivity properties is discussed in some depth 
by Dijkstra and Scholten (8] (in the context of a plat calculus) from where our definitions are 
borrowed. 

As examples of the use of this terminology, we would say that the functions (Ro) and (oR) 
are (by postulate) universally cup-junctive for all specs R. Moreover (see theorems 27 and 28), 
(10) is positively cap-junctive for all co-imps f, and (01) is positively cap-junctive for all imps 

f. 
We trust that it is evident why we are interested in properties such as continuity. 

4 Natural Polymorphism 

Any discussion of a theory of datatypes would be incomplete without a discussion of polymor
phism. This is particularly true here because our theory is principally a theory of two sets of 
polymorphic functions - the relators and their associated morphisms. Relators are polymor
phic in the sense that they may be applied to arbitrary specs irrespective of the domains of the 
argument spec. Such a statement is, however, somewhat banal since it says nothing about the 
mathematical nature of the claimed polymorphism. In this section we shall argue that relators 
are "naturally polymorphic". The latter notion is an adaptation and extension of the notion of 
"natural transformation" in category theory; the definition that we use is based on the work of 
de Bruin (6] which work was anticipated by Reynolds [14]. 



4.1 Higher-Order Spec Algebras 

Expressing the natural polymorphism of relators (and other functions or relations) requires the 
notion of higher-order spec algebra which we now define. 

Let SPEC = (A, ;;;J, I, 0, u) be a spec-algebra. Then the algebra of binary relations on 
specs SPEC is defined to be (A, ;;;J, I, 0, u) where 

A = P(Ax A) 
::J = ~ 

and, using the notation x (R) y instead of (x, y) E R, 

x(7)y == x=y 
x (R 0 S) z 3(y:: x (R) y /\ y (S) z) 
x(Ru}y == y(R)x 

for all R, S E A and aU x, y and z E A. With these definitions, SPEC is also a spec algebra. We 
call SPEC a higher-order spec algebm. 

The imps of SPEC are (partial) functions to A from A. Specifically, the function f from A 
to A is identifed with the relation f on A X A where 

x (J) y == x = f.y 

for all x, yEA. Examples of imps in SPEC are the relators of SPEC. Note that relators are 
total imps. I.e. for each relator F we have 

FuoF;;;J I 

The monotypes of SPEC can be identified with the subsets of A. That is, a binary relation 
A in A is a monotype if and only if there is an element A of peA) such that 

(35) V(x,y:: x(A)y == x = Y /\ x E A) 

The operators "",," and "+--" were defined in section 3.2 as set-formjng ope~~tors. Using (35) to 
'~1~~~.""~~ --no.y-es of SDE'C ... :.t. ~ .. 1-~~h _f A ••• _ ~- •• ;A_~.;~ .. 'C_"" _~A ". x" ... :.1- ~1~_~_.~ 
lUf::I1loHY JUUJ to IJ .1 WJloJ..{ LJUU"C'lILJ VI 01""'\, W~ .LHO.! H.LC<J.LtI.uJ "- Go.uu ,-- WJLl! t;lCllLC.L1{'o:) 

of A, specifically with binary relations on elements of A that are subsets of the identity relation 
7. To reinforce this identification we corrupt the normal usage of the belongs-to symbol "E" by 
the folloWing definition. For spec R and relation b we define 

R E"S == R(S)R 

Of course, SPEC can itself serve as the basis for the construction of a second algebra of binary 
relations SPEC, and in this way one can construct an infinite hierarchy of spec algebras. The 
relators and morphism constructors of one alge?ra are then total imps in the next higher order 
algebra; similarly, the expressions "A "" E" and "A +-- E" of one algebra may be identified 
with monotypes in the next higher order algebra. Maintaining the distinction between the levels 
has been one reason why we have continually distinguished between "specs" and "relations", 

~ and between "imps" and "functions". ~ 
In this section we define three more relations which we call the naturality operators. The 

operators will be used at various levels in the hierarchy of SPEC algebras but we do not bother 
to decorate the different uses with a bar to indicate the level of use. Similarly, we use the 
undecorated symbols "+--" , """", "0", "u" etc. at all levels in the hierarchy. The definitions 



of the barred operators given earlier will be important to reducing statements at one level to 
statements at the next lower level. Their use is, of course, only permitted within higher-order 
algebras. 

As an example of this overloading of notation and in order to provide a reference point for 
our later discussion let us note the following properties: 

Theorem 36 Let F be a relator. Then, for all monotypes A and B, 

(a) F 0 (A'" B) E (F.A", F.B) ;.- (A'" B) 

(b) F 0 (A;.- B) E (F.A;.- F.B);.- (A;.- B) 

o 

To understand these statements one must understand at what level each of the operators is 
being used. Theorem 36( a) is exemplary. Reintroducing the bar notation it states that 

F 1) (A'" B) E (F.A", F.B) ;.- (A N B) 

Thus all operators are higher-order but for the ""," operators. Note that F 0" (A'" B) is the 
restriction of relator F to elements of A N B. A more conventional (but calculationally less 
convenient) notation might be FA",B (or FA,B) indicating that relators are families of functions 
indexed by pairs of monotypes. Statement (b) is interpreted similarly; all operators are higher
order but for the first, second and fourth occurrences of ";.-". 

Armed with this insight we may verify part (a) as follows. 

where 

F 0 (A "-' B) E (F.A '" F.B) <- (A N B) 
{ definition of;.- } 

Pl II P2 II P3 

Pl 

P2 

P3 

F 0 (A N B) is an imp 

(F 0 (A,,-,B»> = A",B 

(F.A", F.B) ;) (F 0 (A'" B»< 

Property (Pl) is immediate from the fact that relators are (higher-order) imps, as are monotypes, 
and composition of imps gives an imp. Here F is a relator and A", B is -strictly, is identified 
with- a higher-order monotype. Also, P2 follows from the following calculation: 

(F' 0 (A'" B))u 0 (F 0 (A"" B» 
= { properties of reverse } 

(A"" B)u 0 Fu 0 F 0 (A'" B) 
;;;J { relators are by definition total, i.e. Fu 0 F ;;;J I } 

(A '" B)u 0 (A'" B) 
= { A", B is a monotype, (1) } 

A",B 

Finally, 



P3 
{ definition of left domain, properties of reverse } 

F.A rv F.B ;;;:J I n F 0 (A rv B) 0 Fu 
{ definition of higher-order operators } 

'V(R:: R (F.A rv F.B) R ~ R (F 0 (A'" B) 0 Fu) R) 
{ definition of higher-order operators, predicate calculus } 

'V(R: 3(S:: (R = F.S) /\ S (A'" B) S): R (F.A '" F.B) R) 
{ predicate calculus, definition of A "" B } 

'V(S: A 0 S = S = SoB: F.A 0 F.S = F.S = F.S 0 F.B) 
{ relators distribute through composition } 

true 

Although on the face of it quite long, the above proof simply involves unfolding the definitions 
of the higher-order operators and, in the last step, exploiting the distributivity of relators over 
composition. The property is, in part, just another way of stating theorem 32( c) but with one 
fewer bound variable. Property 36(b) may be verified in a similar way; it restates theorem 32(b). 

4.2 The Naturality Operators 

Saving one bound variable is hardly justification for such a spate of definitions. The motivation 
for presenting theorem 36 was to be able to compare it to theorem 39 below. First, yet three 
more definitions. 

Definition 37 (The Naturality Operators) Let Rand S be specs. Then we define the 
relations R .i:v S, R ~ Sand R # S by 

(a) U (R.i:v S) V - RoV ;;;:J U 0 S 
(b) U (R~ S) V - R 0 V ~ U 0 S 
and 

(c) U (R # S) V - R 0 V = U 0 S 
0 

The above definition of the .i:v operator was introduced in [1]; it is related by part (a) of the 
following theorem to definitions introduced variously by deB ruin [6], Reynolds [14] and Wadler 
[17]. 

Theorem 38 

(a) If Rand S are relations and f and 9 are total functions then 

f(R.i:vS)g == 'V(u,v:: f.u(R)g.v ~ u(S)v) 
(b) If Rand S are relations and fu and gu are total functions then 

f (R ~ S) 9 == 'V(u, v:: u (R) v =? fu.u (S) gu.v) 
(c) If Rand S are relations and f and 9 are total, surjective bijections then 

f(R#S}g == 'V(u,v:: f.u(R}g.v == u(S)v) 
o 

See [1] for the (straightforward) proof of part (a) of this theorem. 
Several other more evident properties of these operators will be assumed in the sequel, an 

example being that .i:v is anti-monotonic in its second argument. 



4.3 Naturality of Relators, Reverse and Composition 

The reader is invited to compare the following theorem with theorem 36. 

Theorem 39 (Naturality of Relators) If F is a relator then for all specs Rand S 

(a) F E (F.R ~ F.S) ~ (R ~ S) 
(b) F E (F.R No F.S) ~ (R No S) 
(c) F E (F.R#F.S)~(R#S) 

Proof The proof of part (a) proceeds as follows. 

F E (F.R ~ F.S) ~ (R ~ S) 
{ definition of E } 

F{(F.R ~ F.S) ~ (R ~ S)}F 
{ theorem 38, relators are total functions } 

\feU, V:: F.U (F.R ~ F.S) F.V <= U (R <v S) V) 
{ definition 37( a) } 

\f( U, V:: F.R 0 FY ;J F.U 0 F.B ¢:: R 0 V ;J U 0 S) 
{ relators distribute through composition and are monotonic } 

true 

The proofs of parts (b) and (c) are identical but for the replacement of the inclusion symbol by, 
respectively, the containment symbol and the equality symbol in the penultimate step. 

o 
Nowhere in this document do we hazard a definition of "natural polymorphism". Theorem 
39 does, however, express precisely what we intend by the informal statement that relators 
are "naturally polymorphic". Similar theorems are proved later about the basic constituents of 
cartesian products and disjoint sums. In each case the theorem involves a universal quantification 
over specs, and it is in this sense that the spec in question is "polymorphic". The adjective 
"naturally" is added to suggest the link with "natural transformation" in category theory and 
to avoid confusion of our notion of polymorphism with existing notions. 

There is, of course, much more to be said about the naturality operators. Statements such 
as theorem 39 express something about the "type" of specs, but along with a notion of type one 
would normally expect a notion of type inference. A first step to formulating such a type infer
ence algorithm is the observation that composition is also naturally polymorphic. Specifically 
we have. 

Theorem 40 (Naturality of Composition) 
For all..v E {.tv, No, ~} and all specs PI, P2, Qb Q2, R, S, T, 

In particular, 

poQER..vT ¢: PER..vS 1\ QES..vT 

Proof Suppose..v E {~, No, #}. Let 9 denote;J, ~ or = depending on the value of ..v. 
Then we have: 



PI (R..v8)P2 1\ Q1(S..vT)Q2 
{ definition of ..v } 

R 0 P2 :::1 PI 0 S 1\ SO Q2 :::1 Q1 0 T 
{ composition is monotonic with respect to :::1 } 

R 0 P2 0 Q2 :::1 P1 0 SO Q2 1\ PI 0 S 0 Q2 ::l PI 0 Q1 0 T 
{ transitivity of:::1 } 

R 0 P2 0 Q2 :9 PI 0 Q1 0 T 
{ definition of..v } 

PI 0 QI (R ..v T) P2 0 Q2 

The corollary is obtained by instantiating PI and P2 to P and Q1 and Q2 to Q. 
o 

Remark We shall often use N as a (universally quantified) variable ranging over {~, -->, ~} 
and :9 as a variable ranging over {;d, =, r;;;}. Sometimes we use them both simultaneously, as 
above, in which case they correspond (i.e. if ..v is ~ then :9 is ;d, if N is ~ then :::1 is =, and if 
N is --> then :::1 is r;;;.) At other times they are used singly. In addition we sometimes use ~ in 
the role of a variable (always in combination with :9) in which case it designates the reverse of 
the relation designated by :::1. End of Remark 

To this we add the "naturally polymorphic type" of reverse. Unfortunately, our notation 
does not permit this to be done in a single statement. Instead, three are needed. Note the 
interchange of left- and right-pointing arrows in the first two. 

Theorem 41 (Naturality of Reverse) 

(a) u E (Ru ~ Su) ~ (8 --> R)u 
(b) u E (Ru-->Su)~(S~R)u 
(c) u E (Ru~Su)~(S~R)u 

Proof We prove (a) as an example. 

o 

u E (Ru~8u)~(8-->R)u 

{ theorem 38( c), reverse is an isomorpllisrn } 
V(U, V:: Uu (Ru ~ Su) Vu == U «S --> R)u) V) 

{ definition 37( a), reverse and definition 37(b) } 
V(U, V:: Ru 0 Vu ;d Uu 0 Su == 80 U I; V 0 R) 

{ reverse} 
true 

5 The Unit Type 

The unit type corresponds to a set with only one element; not a particularly interesting type, 
but nevertheless useful as a building block for constructing more complex data structures. The 
theory presented so far doesn't provide a v~cabulary f~r talking about elements, only for talking 
about specs: this is not unintentional since a goal of our work has always been to minimise the 
incidence of point-wise arguments. In keeping with this goal, we adopt a rather abstract view 
of data types, and take a roundabout route to characterise the unit type. 



5.1 The Cone Rule 

We begin by postulating an axiom dubbed "the cone rule". This axiom could equally well have 
been included in section 2. It has been included here because it is only within the axiomatisation 
of the unit type that we make any use of the rule. Elsewhere (e.g. [16]) the cone rule is called 
"Tarski's rule." 

The Cone Rule 

As a partial motivation for the cone rule we ask the reader to compare it with the following 
consequence of the RS rule. 

Lemma 42 For all specs R, the following statements are all equivalent: 

(a) lJ.. = R 
(b) lJ.. = RoTr 
( c) lJ.. = TroR 
(d) lJ.. = Tr oRoTT 
(e) lJ.. = R< 
(f) lJ.. = R> 

Proof Suppose R is an arbitrary spec. Then, it is obvious that (a) implies both (b) and 
(c) (since 11. is a zero of composition). By the same token, each of (b) and (c) imply (d). To 
show that all of (a) to (d) are equivalent it suffices, therefore, to show that (d) implies (a). We 
actually show their equivalence, as follows: 

lJ.. = TroRoTr 
{ plat calculus } 

lJ.. ~ TroRoTr 
{ RS rule} 

-.R ~ Trw 0 -.l..L 0 TTu 
{ elementary properties of SPEC algebra} 

-.R ;:) Tr 
{ plat calculus } 

R = lJ.. 

Finally, (e) is equivalent to (b) and (f) to ( c) because the righthand sides of each pair of equations 
are equal (by (8) and (14». 
o 

One consequence of the cone rule is that Tr and 11. are different. More significantly, by 
combining the cone rule and lemma 42, one sees that the spec Tr 0 R 0 Tr is always either Tr 
or 1.l whatever the value of spec R. We say that the function mapping R to Tr 0 R 0 Tr is 
boolean-valued; the cone rule itself is an abstract and concise way of expressing the proposition 
that, considered as a set of pairs, spec R either contains no elements or contains at least one 
element. 

Another consequence of the cone rule, that we mention for later use, is the following: 

Lemma 43 l.l=Rvl.l=S 



Proof 

o 

J.J.. = RoTIoS 
{ excluded middle } 

J.J..=RoTIoS /\ (R=J.J..VR;fJ.J..) 
{ predicate calculus, J.J.. is a zero of composition} 

R=J.J.. V (J.J..=RoTIoS /\ R;fJ.J..) 
{lemma 42 } 

R = 11 V (J.J.. = TIoRoTIoS /\ R;f 11) 
{ cone rule and calculus } 

J.J..=R V J.J..=TIoS 
{lemma 42 } 

J.J..=R V J.J..=S 

5.2 The Axioms 

In order to capture the notion of a unit type we need to express a sort of dual to the cone rule, 
namely that there is a non-empty spec which, when viewed as a set of pairs, consists of at most 
one pair the two components of which are identical. Specifically, we posit the existence of a 
spec, denoted I, such that 

(44) J.J..;f I 

and 

(45) I ~ loTI 0 1 

There are several ways to convince oneself that axioms (44) and (45) are indeed what we seek. 
One is to interpret the axioms in the relational model; another is to explore the consequences of 
the axioms within the theory itself. We would not discourage the reader from doing the former, 
but prefer ourself to emphasise the latter. We verify, first, that the unit type is an "atomic" 
monotype ("atomic" to be defined shortly) and, second, that it is a "terminal object" in the 
sense of category theory. Finally, we summarise certain basic properties of the unit type. 

5.3 An Atomic Monotype 

We begin by verifying that the unit type is a monotype. 

Theorem 46 1 is a monotype. 

Proof 

o 

I ~ I 
{ definition of left domain } 

I ~ 1< 0 I 
{loTI. ~ lolu~ {definition }I<r 

I ~ loTIol 
{ (45) } 

true 



We now define an atom to be a spec R such that, for every spec X, 

R;!X => ll=X V R=X 

Clearly, l.l is an atom. In general, the relational interpretation of an atom is a set of pairs 
containing at most one element. 

Theorem 47 1 is an atom 

Proof Let X be a spec such that 1 ;! X. Then, by the definition of an atom, we must prove 
that l.l = X VI::: X. 

o 

l.l==X V I=X 
{I ] X} 

.Ll.. == X V 1 n .,X == .Ll.. 
{lemma 43 } 

.Ll.. ::: X 0 IT 0 (I n .,X) 
{I;! {(45)} lolT o 1;! X o lT o{ln.,X),{l)} 

.Ll.. = X 0 IT 0 (I n .,X) 0 X 0 IT 0 (I n .,X) 
{ .Ll.. is a zero of composition} 

.Ll.. = {In..,X)oX 
{ I ] 1 ;! X, (2) } 

.Ll.. = 1 n .,X n X 
{ contradiction} 

true 

Properties (44), (46) and (47) express, respectively, that 1 is non-empty, and is a monotype 
corresponding to a set containing at most one element. 

5.4 Terminality 

The abstractness in the definition of the unit type consists, in part, of the fact that the unit 
type characterises anyone-element set (or, if you prefer, is modelled by anyone-element set); 
the identity of the element is irrelevant. In category theory a unit type is characterised by the 
following so-called "terminality" property: for each set A, there is one, and only one, function 
- commonly denoted by !A - in 1 +-- A. Letting ! denote 1 0 IT, this characterisation of 
the unit type is mimicked in our theory by the following two consequences of axioms (44) and 
(45). For all monotypes A, 

(48) 

(49) 

!oAEl+--A 

REI '" A 1\ R>::: A 

Thus the categorical function !A is rendered by the imp! 0 A. 
Equivalent, more succinct, and more fundamental, renderings of (48) and (49) are 

(50) is an imp, and 

(51) 1 = 1 0 IT 0 1 

from which follows 

(52) I;! R< == R = 0 R> 

Here are their proofs. 

Proof of (50) 



I 

= 

-

-

o 

I 

I 

is an imp 
{ definition, reverse} 
~ loTI 0 TIu 0 lu 
{ 1 is a monotype, (1), properties of TI } 
~ IoTIoi 
{ 45 } 

true 

Proof of (51) 

1 o TI 0 I 

~ {TI~I} 
I o I 

= { 1 is a monotype, (1) } 
I 

~ { (45), monotonicity of composition} 
1 oloTI o l 

= { 1 is a monotype, (1) } 
1 o TI 0 1 

o 

Proof of (52) 

I ~ R< 
- { (5) } 

R = loR 

- { (51) } 
R = IoTIoioR II R= loR 

- { (1), 1 is a monotype } 
R = loTIoR 

- { (14) with R := Sand S .- TI} 
R = loTIoR> 

0 

It is also clear from these properties that 1 is unique up to isomorphism: if l' is also a unit type 
then loTI 0 l' is a bijection between 1 and 1'. 

5.5 A Summary of Basic Properties 

The "foundations" that were laid in sections 3 and 4 were not without purpose. In this amI 
later sections we shall continually ask a number of standard questions about the specs and/or 
operators that have been newly introduced, the questions falling under headings such as "left 
and right domains", "imps and co-imps", and "natural polymorphism". Two such questions 
have already been answered for the unit type: it isa monotype and the spec! is animp, To 
these we might also add that the function from specs to specs that always returns 1 is a relator 
(because 1 is a monotype). This seemingly trivial remark will prove to be quite important. 
There are two "standard questions" yet to be answered: what are the left and right domains of 
! and in what sense is it naturally polymorphic? Here is the answer to the first of these. 

, , 
I 
• C 



Theorem 53 

(a) !< = 1 
(b) !> = I 
o 

Verification of both of these is straightforward and is left to the reader. (For part (a) make 
use of (51). For part (b) make use of the cone rule.) 
The final question in this list is answered by the following theorem. 

Theorem 54 

!EI#TT 
In particular, for all specs R, 

! E I ~R 

Proof 

!EI#TT 
{ definition!, definition E } 

loTT (1#Tr) loTT 
{ definition # } 

loloTT loTToTT 
{ I is a monotype, Tf = Tf 0 Tf } 

true 

The corollary follows because equality is a special case of inclusion and ~ is anti-monotonic in 
its second argument. 
o 

The second naturality property of! above is much the weaker of the two but may have a more 
familiar appearance. It is derived from the type statement 

by omitting the restriction of the domain to monotype A (in effect considering the polymorphic 
imp rather than an instance of it), replacing A by an arbitrary spec R and replacing "-" by 
"~". It is this that is often meant by saying that! is "naturally polymorphic". 

The unit type constitutes a building block for the construction of data types; we turn now 
to the mortar: cartesian product and disjoint sum. 

6 Axioms for Cartesian Product and Disjoint Sum 

In all systems that we know of, cartesian product and disjoint sum are duals of each other. 
(Disjoint sum is indeed often given the name "co-product".) In choosing an axiomatisation of 
the two concepts in a relational framework we have therefore striven for two sets of rules that 
are "dual" to each other in some clearly recognisable way. It is for this reason that we present 
the two sets of axioms together in this section. In subsequent sections we consider separately 
the consequences of the axioms for ca.rtesian product and for disjoint sl1m before returning in 
the final section to consider natural isomorphisms between combinations of the two. 



In choosing our axioms, we have, of course, been strongly influenced by our experience 
with set-theoretic presentations of the relational calculus, that being the model our axioms are 
intended to capture. Since our notation is somewhat unconventional we shall frequently refer to 
this model for motivation. 

We begin by postulating the existence of four specs, for cartesian product the two projections 
«: (pronounced "project left") and ~ (pronounced "project right") and for disjoint sum the 
two injections <--+ (pronounced "inject left") and i-o' (pronounced "inject right"). (Note the 
unconventional direction of the arrow heads. As an aid to memory, and motivation for this choice, 
we sl,1ggest that the reader bear in mind the diagram "X '-> X +y i-o' Y".) Further, experience 
leads us to introduce four binary operators on specs, for cartesian product ll. (pronounced "split") 
and x (pronounced "times"), and for disjoint sum v (pronounced "june") and + (pronounced 
"plus"), defined in terms of the projection and injection specs as follows: 

(55) Pll.Q = (<<:u 0 P) n (~u 0 Q) 

(56) PvQ = (P 0 <--+u) U (Q o i-o'u) 

(57) PxQ = (P 0 «:) ll. (Q 0 ~) 

(58) P+Q = (<--+ 0 P) v (+-> 0 Q) 

The relational model that we envisage assumes that the universe is a term algebra formed 
by closing some base set under three operators: the binary operator mapping the pair of terms 
x, y to the term (x, y), and two unary operators <--+ and +-' mapping the term x to the terms 
<--+.x and i-o'.X, respectively. The interpretation of «: and ~ is that they project a pair onto its 
left and right components. That is, 

x (<<:) (x,y) 

y{~)(x,y) 

The four defined operators should be familiar from their interpretations which are 

(x,Y)(Pll.Q)z 
X (P vQ) y == 

== x(P)z 1\ y(Q)z 
3(z:: y = <--+.z 1\ x (P) z) 

V 3(z:: y = +->.z 1\ x (Q) z) 
(u,v)(PxQ)(x,y) == u(P)x 1\ v(Q)y 
x(P+Q)y _ 3(u,v:: x = <--+.u /\ Y = <--+.v 1\ u(P)v) 

V 3(u,v:: x = +->.u 1\ Y = t->.v 1\ u(Q)v) 

Note that these are the definitions of the operators in higher-order SPEC algebras. 
Our first axiom is that the injections are both imps. 

(59) I;:;;) (<--+ 0 <--+u) U (+-> 0 i-o'u) 

The "dual" of this axiom that we propose is: 

(60) J;:;;) (<<:u 0 «:) n (~u 0 ~) 

which says that projecting a pair onto its firs~ and se<,:ond components and then recombining 
the components leaves the pair unchanged. 

(Berghammer and Zierer [4] and de Roever [15] introduce an almost identical axiom to (60) 
but in their case the axiom is an equality rather than an inclusion. The difference is that their 
theories are monomorphic and not polymorphic. Relations are assumed to be (externally) typed 

!, 
I. 

I'; 
j. 

f 
:I! , 



I 
I 

and there is a family of product operators indexed by pairs of types. In our theory types (or 
rather domains) are internal and there is just one (polymorphic) prod uet operator.) 

We remark that axioms (59) and (60) take the following form when rephrased in terms of 
the product and sum operations. 

(61) I;;;! 1+1 
(62) I;;;! 1 X 1 

This is reassuring since it is one step on the way to guaranteeing that + and x are binary 
relators. 

Cartesian product and conjunction are closely related. Specifically, we have (in the set
theoretic interpretation of x) 

x(pnQ)y == (x,x)(PxQ)(y,y) 

Abstracting from this property in order to find an axiom that has a pleasing syntactic shape we 
are led to the following axiom: 

(63) (PAQ)uo(RAS) = (puoR)n(QuoS) 

The dual axiom for disjoint sum is: 

(64) (P v Q) 0 (R v S)u = (P 0 Ru) U (Q 0 Su) 

(The reader may wish to interpret these properties in the relational model to assure themself of 
their validity.) 

As a final axiom we postulate that left projection is possible if and only if right projection 
is possible: 

(6.5) ~> = ~> 
Property (65) is equivalent to 

(66) 

Its dual is therefore the trivially true 

"--' o..LL = f-' 0 ..LL 

There are thus no further axioms for disjoint sum. 
The five properties (59), (60), (63), (64) and (65) are the sum total of our axiomatisation of 

cartesian product and disjoint sum. 
In the following two sections we consider individually the consequences of the axioms for 

cartesian product and disjoint sum. The cap operator in the defiuition of split together with 
the fact that composition is not universally cap-junctive make the calculations with ca.rtesian 
product somewhat harder than those with disjoint sum. For this reason we begin with cartesian 
product and allow ourselves the luxury of much greater brevity in the discussion of disjoint sum. 
It should be noted that the organisation of the calculations in the next two sections is intended 
to facilitate, above all, ease of reference. A consequence thereof is that the reader may spot 
ways of shortening our calculations by interchanging the order of presentation. 



7 Properties of Cartesian Product 

There is a major complicating factor in developing a relational rather than a functional theory 
of datatypes. It is not, however, a complication that we want to avoid or brush under the 
carpet since it is an inevitable consequence of the desire to face the issue of nondeterminism. 
The complication can be pinpointed to cartesian product. Consider, as a first example, the 
"doubling function", i.e. a function that constructs a pair from a singleton by simply copying 
its argument. This is the imp I I:>. I. Now consider the equation: 

and let us interpret R as a nondeterministic function. The equation is then clearly invalid since 
on the left side some nondeterministically calculated value is copied whereas on the right side 
a pair is constructed by applying R twice; since that calculation is nondeterministic the two 
elements of the pair may differ. If, however, R is a true function (an imp according to our 
definition) the equation is valid, as can easily be proved. Clearly the difference lies in the fact 
that imps distribute backwards over the cap operator whereas that is not the case in general. 

The ramifications of the lack of such a distributivity property are manyfold. They can best 
be observed by comparing the theorems in this section with those in the next. In particular 
the fusion properties in the subsection 7.1, the computation rules in subsection 7.2 and the 
terminality property in subsection 7.5 are significantly less tractable than their counterparts for 
disjoint sum. 

Many of the theorems in this section go in pairs: one for left and one for right projection. 
In all cases we prove just one of the two. 

7.1 Fusion Properties 

Our first concern is whether or not the product operator (x) is a relator. According to the 
definition of a relator there are four conditions that we must verify. The first condition is 
axiomatically true (see (62)). The second condition, the requirement that cartesian product be 
monotonic in both its arguments, is clear from its definition (it is a composition of monotonic 
functions). Also clear from the definition of cartesian product is that the reverse operator 
distributes over it. I.e. 

(67) (P x Q)u = pu X Qu 

It remains to show that composition distributes over cartesian product: 

Theorem 68 (Product-Split and Product-Product Fusion) 

(a) 
(b) 

Proof 

= 

(PxQ) 0 (RI:>.S) = (poR) I:>. (QoS) 
(P x Q) 0 (R x S) = (P 0 R) x (Q 0 S) 

We only prove the (a)-part, the other part follows immediately from (a) and (57). 

(PxQ)o(RI:>.S) 
{ (67), reverse} 

(PuxQu)u0 (RI:>.S) 
{ (57) } 

«puo~) I:>. (Quo~»u 0 (RI:>.S) 
{ (63) } 
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I (puo~)u 0 R n (Quo~)u 0 S 
= { reverse} 

~u 0 P 0 R n ~u 0 Q 0 S 
= { (55) } 

(poR) e- (QoS) 
o 

Properties (68a) and (68b) are the first examples of many properties to which we give the 
name "fusion" property. In general, whenever we introduce a relator we seek its associated 
"morphism" operator (in the case of cartesian product this is split, and in the case of disjoint 
sum this is junc) and we investigate conditions under which two specs can be "fused" into 
the one morphism. (Typically, as in (68a) and (68b) one of the specs to be fused is itself a 
morphism.) Elsewhere [3] we discuss relators defined via fixed-points and observe a connection 
between morphism fusion and loop fusion. Note, however, that we do not always use the rules 
to "fuse" specs; just as often we use them to "defuse" a spec into component parts. The reader 
should not allow the one-way character of the name to prejudice their use of such rules. 

Rem!lrk Our efforts to identify categories of properties to which we give compact names can never 
be wholly satisfactory because the categories are not distinct. Property 68(b), for instance, is 
both a fusion property - because a product is a particular form of morphism - and an abide 
law - composition and product abide with each other. End of Remark 

Corollary 69 
o 

x is a binary relator. 

A fusion equality in which the split occurs to the left of the composition cannot be established 
in general. An inclusion does hold, however, and is not entirely useless. Two cases where an 
equality can be established (although not the only ones) are when one operand of the split has 
the form So IT for some S and when the right operand of the composition is an imp. 

Theorem 70 (Split-Imp Fusion) 

(a) (Re-S) 0 T [;;; (RoT) e- (SoT) 
(b) (Re-(SoIT» 0 T = (RoT) e- (SoIT) 
and, for all imps f, 
(b) (Re-S) 0 f = (Rof) e- (So!) 

P·roof Straightforward unfolding of the definition of split augmented by, in the case of part 
(a), monotonicity, in the case of part (b), (19), and in the case of part (c), the cap-distributivity. 
property of imps. 
o 

7.2 Computation Rules 

The name "projection" immediately suggests its operational interpretation. Here that interpre
tation is represented by two rules that we call "computation rules". Before we can derive these 
rules we need to note several lemmas: 

Lemma 71 

(a) IT 0 ~ ~ ~ 

(b) 1T 0 ~ ~ ~ 



Proof Immediate from (66), TT 0 ~ ;;;) ~ and TT 0 ~ ;;;) ~. 

D 

We shall have further use of lemma 71 Later, but an immediate corollary is that one can 
express various combinations of one projection in terms of the split and product operators: 

Lemma 72 

(a) ~u = I ~ TT 
(b) ~u = TT ~I 
(c) ~uo~ I X TT 
(d) ~uo~ = TT X I 

Proof We only prove (a). 

I ~ TT 
= { (.55) } 

~u 0 I n ~u 0 'IT 

{ lemma 71, reverse} 
~u 

To prove (c) use the same two properties plus properties of reverse. 
D 

The following theorem is the announced "computation rule" permitting the "execution" (or 
simplification) of a projection. Note that the rule is valid for all specs P and Q but the righthand 
side of each rule is slightly more complex than a naive examination might suggest. 

Theorem 73 (Computation Rules for Split) 

(a) ~ 0 (P~Q) 

(b) ~o(P~Q) 

Proof 

~ 0 (P ~ Q) 

= P 0 Q> 
Q 0 P> 

= { (72), reverse} 
(I~'IT)u 0 (P~Q) 

= { (63) } 
pn'IToQ 

= { (14) } 
P 0 Q> 

D 

We mention one, easily derived, corollary of lemma 72 and theorem 73. 

Theorem 74 

'IT 

o 

Theorem 74 is important if only because it is an important stepping stone to proving that 
prod uct is "strict". 



Theorem 75 (Product is Strict) 

RxS=lL R=lLVS=lL 

Proof 

RXS=lL 
- { definition of product, X n Y = lL - XoYu c ..,1 } 

~u 0 R 0 ~ 0 ~u 0 Su 0 ~ ~ ..,1 

- { theorem 74 } 
~u 0 R 0 "IT" 0 Su 0 ~ !;;; ..,1 

- { RS rule, properties of reverse} 
Ru 0 ~ 0 1 0 ~u 0 S !;;; lL 

- { plat calculus, theorem 74 } 
Ruo"IT" 0 S = lL 

- { lemma 43, property of reverse} 
R=lL V S = lL 

0 

The strictness of product offers the first hint as to why one chooses to denote it by the symbol for 
multiplication; the analogy that is made is with multiplication by zero. Its proof is, in addition, 
particularly delightful and should not be rushed past. The goal in the calculation is to exploit 
lemma 43. Since the lemma is symmetric in Rand S it would be very disappointing if that 
symmetry were lost in the first few steps of the calculation. It is this that motivates beginning 
as we did by using the property 

X n Y = lL == X 0 yu ~ ..,[ 

to replace the cap operator by composition. Admittedly the latter is a property that has not been 
mentioned before and one that emerges somewhat out of the blue. However, it is easily proved 
using the rotation rule and is a property that would certainly be documented in a systematic 
development of the calculus of relations. 

Since product is defined in terms of split, the above computation rules can be instantiated 
with that definition giving computation rules for product. Doing so, however, one obtains ugly 
domain expressions that we do not care to use. The next lemma reformulates those expressions 
and happens to come in handy in a later calculation. 

Lemma 76 

(a) 
(b) 

(po ~» = 
(Q 0 ~» = 

~u 0 P> 0 ~ n ~u 0 ~ 

~u 0 ~ n ~u 0 Q> 0 ~ 

= P> X I 
= I X Q> 

Proof We prove (a) only. Within (a), the equality between the second and third expressions is 
a straightforward unfolding of the definition of product so we limit our attention to the equality 
between the first and second expressions. 

= 

= 

(Po ~» 
{ (15) } 

(P> 0 ~» 
{ definition of right domain, P> is a monotype } 

I n ~u 0 P> 0 ~ 

i l 
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= { P> is a monotype, monotonicity } 
I n ~u 0 P> 0 ~ n ~u 0 ~ 

= { I n ~u 0 ~ = {(65)} I n ~u 0> } 
I n ~u 0 P> 0 ~ n ~u 0 ~ 

= { (63), monotonicity } 
~u 0 P> 0 ~ n ~u 0 ~ 

o 

Theorem 77 (Computation Rules for Product) 

(a) ~ 0 (PxQ) = P 0 ~ 0 (IxQ» 
(b) ~ 0 (P X Q) = Q 0 ~ 0 (P> X I) 

Proof 

~ 0 (P x Q) 
= { definition of x, computation rule 73( a) } 

P 0 ~ 0 (Q 0 ~» 

= { (76) } 
P 0 ~ 0 (I X Q» 

o 

7.3 Imp and Co-imp Preservation 

Up till now our language has implied that the projections are imps but, as yet, we have not 
stated the fact so explicitly and nor has it been proven. Not surprisingly the proof is rather 
trivial. 

Lemma 78 

~ 0 ~u = I and ~ 0 ~u = I 

Proof As always we content ourselves with the proof of just one of the statements. 

~ o ~u 

= { (72) } 
~ o (I.:. TI) 

= { computation rule, (73) } 
I 0 TI> 

= { TI> = I } 
I 

0 

Corollary 79 ~ and ~ are both imps. 

Proof Immediate from the definition of an imp. 
o 

Theorem 80 

; [ 



(a) 
(b) 

P AQ is a co-imp 
P A Q is an imp 

<= P is a co-imp 
<= P is an imp /\ 

v Q is a co-imp. 
Q is an imp. 

Proof Note the disjunction in part (a). This quite strong theorem is nevertheless straightfor
ward to prove by application of axiom (63). Part (b) is a little less straightforward: 

o 

R A S is an imp 
{ definition } 

I ;;;! (R A S) 0 (R A S)u 
{ (55), reverse } 

I ;;;! (4;.U 0 R n ~u 0 S) 0 (Ru 04;. n Su 0 ~) 

{ monotonicity } 
I ;;;! 4;.u 0 R 0 Ru 0 4;. n ~u 0 S 0 Su 0 ~ 

{ (60) } 
I ;;;! R 0 Ru /\ I ;;;J S 0 Su 

{ definition } 
R is an imp /\ S is an imp 

Since product is a binary relator we have: 

Theorem 81 
o 

X preserves both imps and co-imps. 

(The fact that a split is a co-imp if just one of its arguments is a co-imp does not help one to 
prove anything stronger about product.) 

7.4 Left and Right Domains 

Much of the work necessary to determine the effect of the left and right domain operators on 
splits and left and right projections has already been completed. Lemma 78, for instance, tells 
us immediately that the projections are surjective. I.e. 

Theorem 82 
o 

4;.< = I and ~< = I 

Moreover, lemma 76, with P and Q both instantiated to I, predicts their right domains: 

Theorem 83 
o 

4;.> = I X I and ~> = I x I 

Since product is a (binary) relator we can immediately instantiate theorem 31 obtaining: 

Theorem 84 

(a) (P X Q)< = 
(b) (P x Q» = 
o 

P< xQ< 
P> X Q> 

We conclude this section with expressions for the right and left domains of a split. That for 
the left domain is not particularly helpful but is more compact than the expanded form of the 
definition! (As one might expect it is usually more difficult to predict the left domain than the 
right domain of a split.) 
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Theorem 85 (Split Right and Left Domain) 

(a) 
(b) 

(P l>. Q» = 
(Pl>.Q)< = 

P> n Q> 
~u 0 po Qu 0 > n I 

Proof Simple application of the definition of split and right domain together with axiom (63) 
for part (a) and the definition of split together with property (12) for part (b). 
o 

7.5 Unique Extension Properties 

In the category Set of sets and total functions cartesian product is defined via limits of functors 
in the following way. Let 2 be the discrete category with objects {O,l}. For object A in Set the 
constant A functor is denoted by A. : Set +-- 2 . The cartesian product of X and Y is 
defined to be the limit of the functor F : Set +-- 2 with F . 0 = X and F· 1 = Y. I.e. the 
product is a set C and a natural transformation 7r: F ....:- C such that for every set D and 
every natural transformation 0": F ~ D there is a unique arrow 4> : C +-- D ill Set 
such that 7r 0 4> = 0". Usually C is denoted by X IT Y or X xY, while the natural transformation 
is denoted by the pair 7r X , 7ry of projections. The terminality of 7r is most often phrased as 
follows. For every D and all total functions f: X ~ D and 9 : Y <--- D there is a 
unique total function h: X n Y <--- D such that 7r X 0 h = f and 7ry 0 h = g. 
In our system this terminality is valid not only for imps (our equivalent of functions) but also 
for a more general class of specs (although not for all specs). We refer to the relevant theorem 
as the "unique extension property" for cartesian product, and it is the purpose of this section 
to present the property and then to explore some of its consequences. First, a useful lemma. 

Lemma 86 

Pt:.Q = (poQ» l>. (Qop» 

Proof 

(P 0 Q» l>. (Q 0 P» 
= { domains (6), monotypes (2) } 

(P 0 (P> n Q>)) l>. (Q 0 (P> n Q») 
= { P> n Q> is an imp, cap-distributivity } 

(Pt:.Q) 0 (p>nQ» 
= { (85(a»), (6) } 

Pl>.Q 
o 

In its most general form the unique extension property is as follows: 

Theorem 87 (Unique Extension Property) 
Suppose Sl E {~, =_, ;;;!}.Assume also that 

X <I ~u 0 ~ 0 X n ~u 0 ~ 0 X 
: I 

Then 't 

X <I P l>. Q _ ~ 0 X Sl p 0 Q> A ~., X <I Q 0 P> 

:1
1

', , . 
i' 
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Proof The =>-part of the equivalence follows from the computation rule, theorem 73 and 
monotonicity. For the other part we assume the righthand side of the equivalence and prove the 
validity of the lefthand side: 

PAQ 
= { lemma 86) } 

(POQ»A(QOP» 
= { definition of split } 

~u 0 (P 0 Q» n ~u 0 (Q 0 p» 
I> { rhs is assumed true, monotonicity } 

~u 0 ~ 0 X n ~u 0 ~ 0 X 
~ { assumption} 

X 
o 

More often than not we apply the theorem with the variable ":::!" instantiated to "=". 
However, since our purpose is to develop a theory that admits program refinement as a possible 
step we are continually on the lookout for more general properties of the same nature as theorem 
87, the cost in terms of burden of proof being typically almost negligible. 

The assumption in theorem 87 is somewhat unwieldy; however, it is important to note 
that it is not equivalent to X being an imp but it is only implied by that circumstance (for 
all instantiations of :::!). The assumption is indeed quite weak and we shall encounter several 
instances where it is valid. One such case is where X is itself a split term, resulting in the 
following cancellation property. 

Theorem 88 (Split Cancellation) 

For all :::! E {!;, =, ;;;J} 

P 0 Q> :::! R 0 S> 1\ Q 0 P> :::! S 0 R> 

Proof We aim to use the unique extension property with X instantiated to R A S. We must 
therefore verify the premise. Now, 

~u 0 ~ 0 (R t:. 5) n ~u 0 ~ 0 (R A S) 
= { computation rule for split} 

~u 0 R 0 S> n ~u 0 S 0 R> 
= { definition of split } 

(ROS»A(SoR» 
= {lemma 86 } 

RAS 

Thus the premise is verified (whatever the value of:::! since equality implies inclusion). The rest 
is straightforward: use the unique extension property and then the computation rule for split 
to eliminate the projections. 
o 

We return now to the original concern, which was the case that X, P and Q are all imps. The 
backwards distribution of imps over intersection shows that the assumption in the statement of 
the unique extension property is met for imps with left domain in I X I. For the terminality 
we also have to get rid of the right domains. This explains the assumptions in the termina1ity 
theorem. 
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Theorem 89 (Terminality) 
Let f be an imp with I x I ;;;) f< and let P> = Q> . Then 

f = PAQ == ~of = p" ";:t>of = Q 

Equivalently, for all imps f and all specs P, Q, 

(I X 1) 0 f = p' A Q' == ~ 0 f = p' /\ ~ 0 f = Q' 

where P' denotes po Q> and Q' denotes Q 0 P>. 

Proof See the discussion above. 
o 

7.6 Naturality Properties 

Part (a) of lemma 68 is a very important property, just as important as part (b). It can be 
expressed somewhat differently, namely as a naturality property of split. 

Theorem 90 (Naturality of Split) 

Proof 

o 

A E (R x S ~ T) ~ (R ~ T) x (S ~ T) 

A E (R X S ~ T) ~ (R ~ T) x (S ~ T) 
{ (38), A is a function } 

V(U, V:: A.U (R X S ~ T) A.V 
<= U «R ~ T) x (S ~ T)} V 

{ definition of X in a higher·order algebra } 
V(UI, U2, VI, V2 :: 

UI A U2 (R x S ~ T) VI A V2 
<= UI (R ~ T) VI " U2 (S ~ T) V2 

{ definition of ~ } 
V(UI, U2, VI, V2 :: 

(R X S) 0 (VI A V2) ;;;) (Ul Co U2) 0 T 
<= R 0 VI ;;;) UI 0 T " So V2 ;;;) U2 0 T 

{ theorem 68( a); split-spec fusion theorem 70( a) } 
V(UI, U2, VI, V2 :: 

true 

(RoVI) A (SoV2) ;;;) (UIoT) A (U20T) 
<= R 0 VI ;;;) UI 0 T " So V2 ;;;) U2 0 T 

{ monotonicity of A } 

Note the occurrence of "<=" in the fourth step; it is not the case that any of the "~" operators 
can be replaced by either ""'>"or ".N>". 

Since product is a (binary) relator we can simply instantiate theorem 39 to obtain: 

Ii 
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Theorem 91 (Naturality of Product) 

For all specs R, S, T, U and all '" E {.tv, ....>, ~} 

x E (R X T '" S x U) .tv (R '" S) x (T '" U) 
o 

The two projections are also naturally polymorphic in the following sense. 

Theorem 92 (Naturality of Left and Right Projection) 

For all specs R, 

(a) <: E R ~ R x TT and ::;}> E R ~ 1T x R 

In particular, for all specs Rand S, 

(b) <: E R.tvRxS and ::;}> E R.tvSxR 

(Note that "~,, in the statement of the theorem can be replaced by ".tv" or "....>" since equality 
implies inclusion.) 

Proof 

<: E R~RxIT 
{ definition of ~ } 

R 0 <: = <: 0 (R x IT) 
{ computation rule (77) } 

Ro<: = Ro<:o(IxTT» 
{ 1T> = I, theorem 83 } 

true 

The corollary follows because .tv is antimonotonic in its right argument (as is easily verified). 
o 

Now that we have cartesian product we can make the statement of the polymorphic type of 
composition more compact. 

Theorem 93 (Naturality of Composition) 
For all '" E {.tv, ....>, ~}, and all specs P, Q and R, 

o E (P N R) .tv (P N Q) x (Q N R) 

o 

7.7 Junctivity Properties 

Although we give more general junctivity properties below, we start with the finite junctivities. 
Distribution of cap over split and product is given by 

Theorem 94 (Split-Cap and Product-Cap Abide Laws) 

(a) (PAQ)n(RAS) = (pnR)A(QnS) 
(b) (pxQ)n(RxS) = (pnR)x(QnS) 

:,' 



Proof We only prove (a). The proof of (b) is almost the same, but for a.u t:!xtra appeal to the 
backward distribution of composition over imps. 

(p6Q)n(R65') 
= { (55) ; plat calculus } 

~u 0 P n ~u 0 R n ~u 0 Q n ~u 0 5' 
= { ~u and ~u are co-imps } 

~uo(PnR) n~uo(Qn5') 

= { (55) } 
(P n R) I!> (Q n 5') 

D 

Distribution of cup over split and product has another form. The easy proof is left to the 
re~m. . 

Theorem 95 

(a) (PUQ)I!>(RU5') = P6R U P65' U QI!>RU QI!>5' 
(b) (P U Q) x (R U 5') = P x R U P X 5' U Q x R U Q x 5' 
In particular, 
(c) Q 6 (R U 5') = Q 6 R U Q I!> S 
(d) (PUQ)6R = PI!>R U QI!>R 
( e) Q X (R U 5') = Q x R U Q x 5' 
(f) (P U Q) x R = P X R U Q X R 
D 

As mentioned we can do a lot better than (94) and (95): the split and product operators are 
positively cap-junctive. They are not universally cap-junctive, for in general 

TT 6 TT :f:. TT and TT x"IT :f:. TT 

(As a matter of fact the second of the above is independent of our axioms.) 

Theorem 96 Let V be a non-empty bag of pairs (VoX, Vp) of specs, L = n (V : V E V: v,\ ) 
and R = n (V : V E V : Vp ) . Then 

(a) 
(b) 

L6R = 
L xR = 

n (V : V E V : VA I!> Vp ) 
n (V : V E V : V\ x Vp ) 

Proof 

n (V : V E V: ~u 0 VoX n ~u 0 Vp ) 

= { quantifier calculus } 
n (V : V E V: ~u 0 VA) n n (V : V E V: ~u 0 Vp ) 

= { ~ and ~ are imps and V is non-empty} 
~u 0 L n ~u 0 R 

= { (55) } 
L6R 

The proof of part (b) is similar, thus left to the reader. 
D 

In particular, spilt and product are cap-continuous. Although they are not cup-junctive, they 
are cup-continuous: 

,.1 
I, ~ 

li,1 
" 

" 

V 
" II: 
r 4 
I' 
tl 
i:, 

I 
I' 
P·!I 

I,. 

': ',, 
, I 



Theorem 97 Let V be a linear bag of pairs (V.x, Vp) of specs, L = U (V: V E V: V.x) and 
R, = U (V : V E V : Vp ) . Then 

(a) 
(b) 

LI:J.R = 
Lx R = 

u (V : V E V : V>. I:J. Vp ) 
U (V : V E V : V>. X Vp ) 

Proof 

o 

<u 0 L n ~u 0 R 
= { universal cup-junctivity of composition} 

U (V : V E V : <U 0 V.x) n u (V : V E V: ~U 0 Vp ) 
= { quantifier calculus } 

U (V,.W: V, WE V: <u 0 V.x n ~u 0 Wp ) 
= { V is linear, diagonalization } 

U (V : V E V : <u 0 V>. n ~u 0 Vp ) 
{ (55) } 

U (V : V E V : V.x I:J. Vp ) 

8 Properties of Disjoint Sum 

We have discussed the properties of cartesian product before those of disjoint sum because the 
latter are substantially simpler to derive. This is because the cap operator in the definition of 
split is replaced by the cup operator in the definition of june, and composition is universally 
cup-junctive but not universally cap-junctive. Calculations with split and/or the projections can 
thus often be transliterated into calculations with junc and/or the injections - but less often 
the other way round. We shall take advantage of this fact by simply stating several properties 
of disjoint sum without accompanying proof. Only where the claimed property is stronger than 
its counterpart do we provide a proof. The order of presentation also remains the same so 
that the reader may compare the properties one-by-one. (Note that we said that proofs about 
cartesian product can often be transliterated. We do not know of an algorithm to perform the 
transliteration and we shall indeed encounter one example where we were unable to derive a 
proof by such means. The reader should therefore be on their guard as we are on ours.) 

8.1 Fusion Properties 

As was the case for cartesian product it is straightforward to see that + satisfies three of the 
conditions necessary for it to be a relator: the first is satisfied axiomatically, and monotonicity 
and commutation with reverse are satisfied by construction. Distributivity with respect to 
composition is also a special case of a "fusion" law, namely that a sum can be fused with ajunc. 

Theorem 98 (June-Sum and Sum-Sum Fusion) 

(a) 
(b) 
o 

(PvQ)o(R+S) = 
(P+Q) 0 (R+S) 

(poR) v (QoS) 
(PoR) + (QoS) 

Proof Transliteration of the proof of theorem 68. 
o 



Corollary 99 
o 

+ is a relator. 

One more fusion property can be added to this list on account of the universal cup-junctivity 
of composition, namely: 

Theorem 100 (Spec-June Fusion) 

po (QvR) = (PoQ)v(PoR) 

o 

Comparison should be made with theorem 70 where a restriction to imps had to be made in 
order to obtain an equality. 

8.2 Computation Rules 

The computation rules for jUllC do not involve any extra complications (unlike those for split). 
Their derivation, however, follows the same pattern. Lemma 71 has a trivial counterpart; the 
following is the counterpart of lemma 72. 

Lemma 101 

(a) ,--+u = Ivll. 
(b) f->U = ll.vI 
(c) '--+ 0 ,--+u = I + ll. 
(d) f->Of->U = ll.+I 
o 

For want of inventiveness we give the name "co-strictness" to the dual of the strictness of 
product. 

Theorem 102 (Co-strictness of Sum) 

R=ll.t\S=l.L 

o 

The proof is elementary. 

Derivation of the computation rules is now straightforward and is left to the reader. 

Theorem 103 (Computation Rules for June and Sum) 

(a) (P vQ) o '--+ = P 
(b) (P vQ) o f-> = Q 
In particular 
(c) (P+Q) o '--+ = '--+ 0 P 
(d) (P+Q) 0 f-> = f-> 0 Q 
0 

As for split, we mention one particularly interesting_ corollary obtained by combining the 
computation rules with lemma 101. 

Theorem 104 

'--+UOf-> = ll. = <-'uo'--+ 

o 

• 



8.3 Imp and Co-imp Preservation 

Our first axiom was that left and right injection are both imps. In fact they are also co-imps as 
is evidenced by the following: 

Lemma 105 

,-+u 0 '-+ = I = +-,u 0 +-' 

Proof Immediate from the computation rule (103) combined with (101). 
D 

Corollary 106 
D 

'-+ and +-' are bijections. 

Since split preserves both imps and co-imps one would expect that junc does so too. But 
this is not the case! The proof that split preserves co-imps cannot be transliterated into a proof 
that junc preserves co-imps (thus emphasising that one has to be very careful with "dualisation" 
of arguments) and we can only assert that it preserves imps. Nevertheless, + preserves both. 

Theorem 107 (Imp and Co-imp Preservation) 

(a) v preserves imps. 
(b) If f and 9 are both co-imps and f< n g< = 11. then 

f v 9 is a co-imp. 
(c) + preserves both imps and co-imps. 

Proof We leave (a) and (b) as exercises for the reader_ (By implication (b) states also that 
v does not preserve co-imps in general.) We demonstrate that + preserves co-imps on account 
of the peculiar contrast in the properties of the two operators. 

D 

R + S is a co-imp 
{ definition of co-imp } 

I ;;;) (R+S)u 0 (R+S) 
{ + is a relator } 

I ;;;) (Ru 0 R)+(Su 0 S) 
{ definition of + } 

I ;;;) '-+ 0 Ru 0 R 0 ,-+u U +-' 0 Su 0 S 0 +-'U 

{ (59) } 
I ;;;) Ru 0 R U Su 0 S 

{ plat calculus } 
R is a co-imp 1\ S is a co-imp 

8.4 Left and Right Domains 

Lemma 105 not only predicts that the injections are co-imps but also that they are total. 
Formulae for the left domain of the injections are also easy to calculate: 

Theorem 108 

1,1 

, , 
I I 



(a) '--;>:; J alld +-»:; J 
(b) '--;< = 1+11 and +->< = 11+1 
o 

The next theorem could be said to be the dual to the theorem that the right domains of the 
projections are equal. 

Theorem 109 

'--;< n <--'< = II 

Proof We show that 

'-l- 0 1T n <--' 0 1T = II 

The lemma then follows by simple plat calculus . 

.,( <--' 0 1T) ;J '--+ 0 1T 

o 

{ RS rule} 
II ;J '-l- U 0 <--' 0 1T 

{ theorem 104 } 
true 

For many purposes a weaker form of theorem 109 suffices. 

Corollary 110 

Proof 

'-l- n <--' = II 

'-l- n <--' = II 
{ lemma 42 } 

('-l- n <--')< = II 
'¢: { monotonicity } 

'-l-< n +->< = II 
o 

In contrast to those for cartesian product the rules for the left and right domains of june 
and sum are very simple. Both domain operators distribute over sum, and over june, but 
transforming the operator in one case into cup and in the other into sum. 

Theorem 111 

(a) (P+Q» = P> + Q> 
(b) (P+Q)< = P< + Q< 
(c) (P 'V Q)< = P< U Q< 
(d) (P 'V Q» P> + Q> 
0 



Proof The proofs of (a), (b) and (c) can all be obtained by transliterating the proofs of the 
corresponding properties of cartesian product. By (14), (d) follows if we can establish that 

Tfo(P>+Q» == Tfo(PvQ) 

This we now do. 

Tf 0 (P>+Q» 
== { definition of sum, theorem 100 } 

(Tf 0 <-> 0 P» v (TT 0 +--> 0 Q» 
== {(14)} 

(Tf 0 <-» 0 P» v (TT 0 +--» 0 Q» 
== { (108) } 

(Tf 0 P» v (Tf 0 Q» 
= { (14), theorem 100 } 

Tfo(PvQ) 
o 

\ 8.5 Unique Extension Property 

The counterpart of the terminality property of cartesian product is an initiality property. Here 
it is yet stronger: so much so indeed that it warrants a different order of presentation. The key 
insight is that two components in a junc 01' sum remain truely disjoint. To be precise: 

Theorem 112 ( Cancellation Properties) 

For all ::::) E {!;;, =, ~}, 

(a) 

(b) 

Proof 

(a) 

=> 

-

=> 

(b) 

-

=> 

=> 

0 

PvQ::::) RvS - P::::) R 1\ Q::::) S 

P+Q ::::) R+S - P::::) R II Q::::) S 

PvQ::::) RvS 
{ monotonicity } 

PvQo<->::::) RvSo<-> II PvQo+-,<lRvSo+--> 
{ computation rules} 

P::::)R II Q::::)S 
{ monotonicity } 

PvQ::::) RvS 

P+Q::::) R+S 
{ definition of sum, (a) } 

,-+oP::::)<->oR II +-->oQ::::)+-->oS 
{ compose on the left with ,-+u and +-->u, lemma 105 } 

P::::)R II Q::::)S 
{ monotonicity } 

P+Q ::::) R+S 

f Ii 
\ I I 

i', 
:.\ 

~I Ii I 

\\1 
II I 

f:, : 
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Corollary 113 (Junc Initiality) 

For all :9 E {(;, =, ;;;;!}, 

po (1+1):9 Q'VR == po,-+ :9 Q /\ po....., :9 R 

Proof By the definition of sum, (58) and spec-junc fusion, (100), 

po (1+1) = (po,-+)v-(po+-,) 

Initiality thus follows immediately. 
o 

8.6 Naturality Properties 

The naturality properties of the two injections are stronger than those of the projections. 

Theorem 114 (Naturality of Left and Right Injection) 
For all specs Rand S, 

(a) '-+ E R+S # R 
(b) +-' E R+S # S 

Proof Immediate from the computation rules and the definition of # . 
o 

The naturality property of junc is also stronger. 

Theorem 115 (Naturality of Junc and Sum) 
For all specs R, S, T and U and all N E {~,-->,#},. 

(a) v- E (R N S+T) .;,.., (R N S) X (R NT) 
(b) + E (R+S N T+U) .;,.., (R N T) X (S N U) 

Proof In the following proof we use :9 to stand for ;;;;!, (; or = depending on the value 
of N _ (Cf the definitions of the three naturality operators.) 

v- E (R N S+T) .;,.., (R N S) X (R N T) 
= { theorem 38 } 

V(U, V, W,X:: 
U v- V (R N S+T) W 'V X <= U (R N S) W 1\ V (R NT) X 

) 

We now continue with the quantified expression. 

U v- V (R N S+T) W 'V X <= U (R N S) W /\ V (R N T) X 
{ definition of N } 

R 0 (Wv-X):9 (Uv-V) 0 (S+T) 
<= RoW:9 UoS /\ RoX <1 VoT 

{ theorems 100 and 98 } 
(RoW)v-(RoX):9 (UoS)v-(VoT) 

<= RoW:9 UoS /\ RoX ~ VoT 
{ monotonicity } 

I' , 
I 

i, 
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true 

The verification of (b) proceeds in the same way. 
o 

8.7 Junctivity Properties 

The finite junctivity properties of disjoint sum are stronger than those for cartesian product: 

Theorem 116 (Junc/Sum-Cup/Cap Abide Laws) 

(a) (PvQ)U(RvS) = (PUR)v(QUS) 
(b) (P+Q) U (R+S) = (P U R)+(Q U S) 
(c) (pvQ)n(RvS) = (PnR)v(QnS) 
(d) (P+Q) n (R+S) = (P n R)+(Q n S) 

Proof Since (d) is a slight variation on (c), while (a) and (b) are trivial, we only prove (c): 

o 

(PvQ) n (RvS) 
= { (58) } 

(P 0 ,-+u U Q 0 +-'u) n (ll 0 '-+u U S 0 +-'u) 
= { distribution} 

(P o,-+u n R o'-+u) U (Q o+-,u n S o+-'u) U 

(Qo+-'unRo'-+u) U (po'-+unSo+-,u) 
= {(109), '-+u and +-,u are imps} 

(pnR) o,-+u U (QnS) o+-,u 
= { (58) } 

(P n R) v (Q n S) 

Again, more can be shown: The junction and the sum are positively cap-junctive and universally 
cup-junctive. Hence they are cap- and cup-continuous. 

Theorem 117 Let V be a bag of pairs (VA, Vp) of specs, L = U (V: V E V : VA) and R = 
U (V : V E V : Vp ) . Then 

( a) 
(b) 
o 

LvR = 
L+R = 

U (V : V E V : VA v Vp ) 
U (V: V E V : VA+Vp ) 

Theorem 118 Let V be a non-empty bag of pairs (VA' Vp) of specs, L = n(V : V E V : VA ) 
and R = n (V : V E V : Vp ) . Then 

(a) 
(b) 

LvR = 
L+R = 

n (V : V E V : VA v Vp ) 
n(V:VEV:VA+Vp) 

Proof 

LvR 
~ { v is monotonic } 

n (V : V E V : VA 0 '-+u U Vp 0 +-'u ) 
r;; { quantifier calculus} 

I: 
" 

t 
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o 

n (V : V E V : V,\ 0 '->u ) U n (V : V E V : Vp 0 +-,u ) 

U ( 1T 0 '->u n 1T 0 +-,u ) 

{ (109) } 
n (V : V E V : V,\ 0 '->u ) U n (V : V E V : Vp 0 +-'u ) 

{,->u is an imp and V is non-empty} 
n (V : V E V : V,\ ) 0 '->u U n (V : V E V : Vp ) 0 +-,u 

= { (58) } 
LvR 

9 Natural Simulations and Natural Isomorphisms 

To summarise, we now have one non-trivial monotype and two binary relators. Unary relators 
can be derived from these by fixing one of the arguments to a monotypej ternary relators, 
quaternary relators etc. can be obtained by composing them in appropriate waySj and new 
monotypes can be obtained by applying existing relators to existing monotypes. For example, 

. 1+1 and 1 X (1+1) are monotypes, and the functions 1+ and (1 X 1)+ are unary relators. 
Relators and monotypes built in this way are called polynomial. This, however, is just the 
foundation. It is only now that our theory can really begin. 

In this section we make a modest start to showing the ease with which certain calculations 
can be made within the theory. At the same time we formulate a number (at this point in time 
2!) of concepts of particular relevance to data reification. 

Definition 119 (Natural Simulation) Relator F is said to (naturally) simulate relator G 
if and only if there exists a spec, such that 

(a) 
(b) 
(c) 

for all specs R, 
, is an imp ,> = G.! 

, E F.R#G.R 

The spec 7 itself is called a natural simulation. 
o 

Note that the combination of conditions (a) and (b) implies that ,< !:;;; F.!. 

Definition 120 (Natural Isomorphism) Relators F and G are said to be naturally iso-
morphic if and only if there exists a spec , such that 

(a) for all specs R, , E F.R # G.R 
(b) ,is a bijection 
(c) ,< = F.I and ,> = G.! 

The spec, itself is called a natural isomorphism. 
o 

Remark We have to admit that, at this stage in our research, we are not sure· whether it is 
desirable to weaken condition (a) by replacing # by~. We stick to the above definition at 
this point in time because we do not know any examples of natural simulations according to 
this weaker definition that are not also natural simulations according to the stronger definition. 

, I 
I· 

I 
I 

! : 
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I r 
I 

Ii 
!..~ 



A simulation satisfying the weaker definition is referred to below as an up-simulation. End of 
Remark 

Examples of natural isomorphisms are provided by the two injections '--> and ;->. The former 
is a natural isomorphism between the relator (+il) and the identity relator. I.e. 

<---> E R+il -N. R, for all specs R 
<---> is a bijection, and 
<--->< = I +.ll and <---» = I 

Similarly, the latter is an isomorphism between the the relator (.li+) and the identity relator. 
The injections are also examples of natural simulations: <---> is, for example, a natural simulation 
of the identity relator by the relator + 1. (In general any monotype may be used in place of 1.) 

As might be expected, both natural simulations and natural isomorphisms enjoy many simple 
but powerful algebraic properties. In later versions of this paper it is our intention to document 
some of them. For the time being, however, we leave the reader the pleasure of their discovery. 
Let us proceed to more significant examples. We begin with the most complicated, basic example 
of a natural isomorphism. 

Consider the ternary relators defined by 

R,5,T 1-+ Rx(5+T) 

R, 5, T 1-+ (R X 5)+(R X T) 

Our objective is to show that the two relators are naturally isomorphic. 

To complete this task we must exhibit a spec, "I, satisfying three quite strong conditions. We 
can make progress in this task by temporarily setting aside two of the conditions, constructing 
"I to satisfy the remaining condition, and then (hopefully) verifying that it satisfies the two 
other conditions. The condition singled out should be the one that leaves the least freedom to 
manoeuvre, in this case clearly condition (a). What we shall now demonstrate is how systemat
ically this can be done using the rules we have given for the naturally polymorphic type of the 
operators we have introduced. 

Here then is the construction of the desired natural isomorphism. Assume R, 5, and Tare 
arbitrary specs. Then 

by construction of /: 
"I E R X (5+T) ~ (R x S)+(R x T) 

.:= { naturality of v, "I := "II v /2 } 
/1 E R x (5 t T) -N. R x 5 

A "12 E R x (5tT) -N. R x T 
.:= { naturality of product, I E R -N. R, 

"II := I X 11, /2:= I X /2 } 
"II E 5+ T -N. 5 A "12 E 5+ T ~ T 

.:= { naturality of the injections} 
"II = <---> A "12 = ;-> 

Thus the constructed spec is "I where 

It remains to show that I is a bijection and has the correct left and right domains. The 
verifications are straightforward, but we give them nonetheless as proof of the pudding. 

I' 

"I 
I 



Fir:;t, we assert that, is a bijection. That it is an imp follows because it is built out of imps 
using imp-preserving operators. Since junc is not necessarily co-imp preserving we need to take 
further steps to show that it is a co-imp. 

, is a co-imp 
{ theorem 107(b) } 

(I X <-+ and 1 x +--' are co-imps) 
1\ (I X <-+)< n (I x <-»< = J..L 

{ theorem 80 } 
(I X <-+)< n (I X <-»< = J..L 

{ theorem 84 } 
(I X <-+<) n (I X +--'<) = J..L 

{ lemma 94(b) } 
1 X (<-+< n +--'<) = l.L 

{ theorem 109, product is strict } 
true 

We now calculate the left domain of ,. 

= 

= 

{ definition oft, theorem 11l(c) } 
(I X <-+)< U (I X <-»< 

{ theorems 84 and 108 } 
Ix (I+J..L) U Ix (J..L+I) 

{ lemma 95( e) } 
1 X «/+l.L)U(J..L+/)) 

{ definition of + } 
Ix(I+I) 

Finally, we calculate the right domain of,. 

,> 
= { definition of"theorem 11l(d) } 

(I X '-1-» + (I X ~» 
= { theorems 84 and 108 } 

(I X I)+(I X I) 

This completes the verification. 

The point of discussing this example in so much detail is to emphasise the importance of 
type considerations in constructing specs having prescribed properties. (This is a somewhat 
different emphasis than that which one encounters most frequently. Wadler [17], for example, 
discusses the use of natural polymorphism to infer properties of already constructed functions.) 
There is, however, yet more that can be said about the bijection, that we have constructed 
that so far as we know is not predicted by any naturality theorem and yet seems "obvious" from 
type considerations. The properties that we allude to record its behaviour with respect to the 
two morphisms split and junco Before stating and proving the properties we need to interpose 
a truly remarkable and elegant law permitting an exchange of split for junc and vice-versa. 

Theorem 121 (Split-June Abide Law) 

(R'VS) I:>. (T 'V U) = (R I:>. T) 'V(SI:>. U) 

i 
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Proof We aim to use the initiality property (theorem 113) of junco First note that 

(R v S) A (T v U) 0 1+1 
= { 1+1 is a monotype and thus an imp, (70) } 

(RvS 0 1+I)A(TvU 0 1+1) 
= { split fusion (68) } 

(R v S) A (T '<7 U) 

Hence: 

(R v S) A (T '<7 U) = (R A T) v (S A U) 
{ theorem 113 combined with the above} 

(R v S) A (T '<7 U) 0 '-+ = RAT 
/I (R v S) A (T v U) 0 +-' = S A U 

Continuing now with just one of the conjuncts in the last expression we calculate: 

(R v S) A (T v U) 0 '-+ 

= { '-+ is an imp, split-imp fusion} 
(RvS 0 '-+) A (T'<7U 0 '-+) 

= { june-computation} 
RAT 

The other conjunct being dealt with in a similar way our proof is now complete. 
D 

The properties of the natural isomorphism 7 that we anticipated above can now be given. 

Theorem 122 

(a) 7 0 (RAS)+(RAT) = (Ro1v1)A(S+T) 
(b) Rx(SvT) 0 "1 = (RxS) '<7 (RxT) 

Proof 

(a) 7 0 (RAS)+(RAT) 
= { definition of I, junc fusion theorem 98( a) } 

(1 x '-+ 0 R A S) V (1 x+-,o RAT) 

= { split fusion theorem 68( a) } 
(RA('-+OS» v (R.c.(+-,oT» 

= { abides law (121) } 
(RvR) .c. «,-+oS) v (+-,oT» 

= { june fusion (g8a), definition of sum (58) } 
(R 0 1 v 1) .c. (S + T) 

(b) R x (S vT) 0 7 
= { definition of I, spec-junc fusion (100) } 

(Rx(SvT) 0 1x'-+) v (Rx(SvT) 0 1x+-'» 

= { x is a relator, junc computation rules (103) } 
(RxS) '<7 (RxT) 

D 



Natural isomorphisms seem to receive scani attention in the category theory literature, often 
being relegated to a brief exercise. This is somewhat unfortunate because it deemphasises their 
importance and it means that no guidance is given on how to construct them. We also relegate 
the construction of several basic natural isomorphisms to the present set of exercises, not because 
they are unimportant but because by doing them the reader may be enabled to make a judgement 
on the effectiveness of the calculus developed thus far. 

It is useful to begin by listing the elementary natural isomorphisms. For this purpose we use 
a home-grown, but hopefully self-evident, lambda notation. 

(123) )"(R :: 11) Ci )..(R :: R X 11) 

(124) )"(R :: R+11) Ci )"(R :: R) 

(125) )"(R,S :: R+S) Ci )"(R,S :: S+R) 

(126) )"(R,S,T:: R+(S+T)) Ci )"(R,S,T:: (R+S)+T) 

(127) )"(R,S :: R x S) Ci )"(R,S :: S x R) 

(128) )"(R,S,T:: R x (S x T» e! )"(R,S,T:: (R x S) x T) 

(129) >..(R :: R) e! )"(R :: R xl) 

(130) >"(R,S,T:: R x (S+T)) e! )"(R,S,T:: (R X S)+(R x T» 

Of these (123) is trivial (the isomorphism is 11 itself) and (124) and (130) we have already 
discussed. Hints on how to prove (125)-(129) are given below. Of course the reader may. wish 
to ignore the hints altogether. 

Hints: Isomorphisms (125) and (126) can be constructed using the same strategy as that used 
to construct (130). In the case of (125) the very short calculations that are necessary can be 
made yet shorter by noting that the constructed isomorphism is its own reverse. 

Isomorphisms (127) and (128) require a somewhat different strategy. The reason is that 
the natural isomorphism properties of split and product only help in the construction of up
simulations (elements of R <-- S for given Rand S) and not natural transformations. Moreover, 
whereas the calculation of the right domain of a split is straightforward, the calculation of its 
left domain is not (compare 85( a) with 85(b». To add to this, split preserves imps but does not 
preserve co-imps. One may avoid all these difficulties by constructing two up-simulations, one 
of the left-side relator by the right-side relator and one of the right-side relator by the left-side 
relator. (In the case of (127) these "two" up-simulations obviously coincide.) For this purpose 
the naturality properties are used. One then proves that the first is the reverse of the second. 
It then suffices to prove that both are imps and to calculate the right domains of each. 

The proof of (129) is a case apart. Note that ~ is an up-simulation of the identity relator 
by x 1. Try restricting ~ so that its right domain is I x 1 and then verify that your conjectured 
isomorphism meets all the requirements. End of hints 

Having completed this task you should be able to verify the following properties of the 
constructed isomorphisms. (The names 01 ..• 08 have been given to the isomorphisms in order 
of their appearance in the list above.) 

(131) 11 = °1 o RA11 

(132) Rv11 o 02 = R 

(133) RvS o 03 = SvR 

(134) Rv(SvT) 004 = (R v S) vT 

(135) RAS = Os 0 SA R 

"1' I' 
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(l3G) 

(137) 

RA(SAT) 

R 
= 
= 

06 0 (R AS) A T 

07 0 R A! 

Rest assured: all have very trivial proofs. Note the pattern: the relators t and x have been sys
tematically replaced by their corresponding morphism and 1 has been replaced by its morphism 
!. The o's are eaten up on the right side by a june and on the left side by a split. 

Consider now the quaternary relators F and G, respectively, defined by 

R,S,T,U 1-+ (R+S) x (T+U) 

R,S,T,U 1-+ (RxT) t (SxU) 

We conclude this section by showing that F simulates G. 

We begin by constructing, satisfying requirement (a) of a natural simulation (see definition 
119). 

, E (RtS) x (TtU) oN> (RxT) t (Sx U) 
..;:: {'Y := {31 '1 {32 , naturality of june} 

/31 E (R+S) x (T+U) oN> RxT 
/\ /32 E (R+S) x (T+U) oN> SxU 

..;:: {{31 := Q1 x 02 , {32 .- 03 X 04 , naturality of product } 
Q1 E RtS <-> R /\ Q2 E T+U oN> T 

/\ 03 E R+S oN> S /\ 04 E T+U oN> U 
..;:: { naturality of the injections } 

°1 = Q2 = ....... /\ 03 = °4 = +-> 

We have thus shown that 

(~x ....... ) 'V(+-> x+-» E (R+S) x (TtU) oN> (R x T)+(S xU) 

We continue to call the constructed spec ,. 
Clearly, , is an imp; it is, however, not a co-imp and cannot therefore be an isomorphism. 

Calculation of its right domain using (111), (84) and (108) is straightforward. We obtain 

,> = (I x J) t (I x 1) 

as required. The verification that F simulates G is thus complete. 
In just the same way that we explored the behaviour of natural isomorphisms with respect 

to split and june, it is useful to explore further the properties of the simulation,. First, in a 
matter of a few steps using june-sum and product-split fusion followed by the june-split abide 
law and the definition of sum, one obtains 

Second, using the definition of product, the june-split abide law and the definition of sum one 
obtains: 



which is a better form of I for the finai calculation which is to verify that 

(R v 5) x (T v U) 0 I = (R x T) v (5 x U) 

(This calculation also takes only a few steps and involves using the fusion laws and the definition 
of product.) 

This concludes our discussion of natural simulations and of the elementary properties of the 
polynomial relators. 
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