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1
Introduction

C omputer simulations are nowadays regarded as mutual, vital partners with
theory and experiments in the advance of scientific knowledge and engineering

practice. Such simulations enable the study of many complex systems and phe-
nomena that would be too expensive or even impossible to study by experiment.
An important class of computer simulations is formed by molecular simulations.
Molecular systems are ideal subjects for simulations since most processes on a
molecular level occur on such a short time as well as length scale that they are only
tractable by computer simulations, whereas these microscopic processes ultimately
determine all macroscopic properties of the system. The demand for larger, more
detailed, and more realistic simulations requires tremendous computational power
and increasingly advanced computer algorithms. This thesis is devoted both to
the development and the application of several molecular simulation methods.
The topics include the development of an electronic structure calculations code
employing wavelets and its application to quantum dots and molecular systems,
the development of a coarse grained lipid model which is applied to study the
dynamics of membranes and vesicles using coarse grained molecular dynamics,
the extension of molecular dynamics with artificial chemistry, the use of molecular
dynamics to study the influence of surface wettability on heat and particle flow
in nanochannels, and the development of a hybrid molecular dynamics - Monte
Carlo method to enable the study of microchannels.

1



Introduction

1.1 Computer simulations

Introduction Traditionally, research has been divided into two categories: experiment
and theory. This changed with the advent of the computer. Ever since the first computers
were built in the early 1940’s, these computers have been used for performing simula-
tions. Their first large scale deployment was during World War II to model the process
of nuclear detonation in the Manhattan Project and to calculate trajectories of ballistic
missiles. From that point on increasingly complex computer simulation techniques were
developed hand-in-hand with the rapid growth of computational power. The combina-
tion of the drastic increase in computer power and the development of more and more
refined simulation methods made that computer simulations became a third category of
research. As such, computer simulations are not a replacement for conventional exper-
iments or theory. Instead, the approaches may be used to complement one another in a
triad of experiment, theory, and computer simulation. Experiments yield measurements
of properties and behavior of real systems. Theory invokes models depending on the
scale –microscopic, mesoscopic or macroscopic– at which the system should be investi-
gated. Traditionally, the outcome of these models, when mathematically tractable, could
only be validated with the outcome of experiments on the real system. Computer sim-
ulations invoke a model and then aim to follow the pseudo-real behavior of that model.
In such a way, computer simulations can be used in two ways. In the first place, when
models cannot be solved analytically, simulations based on the model can be used to
test the correctness of the model as representation of real systems by comparing the
simulated behavior with the real observed behavior from experiments. In this way, sim-
ulations can also be used to assist in the interpretation of experimental results. In the
second place, closing the triad, computer simulations can, when their correctness has
been established, be used to develop and validate new models in the same way as by
conventional experiments. Computer experiments can be performed in cases that real
experiments are too expensive, intractable or even impossible and can thus be used to
provide supplementary information. Furthermore, computer simulations can be used
as a predictive tool and computer experiments can have advantages over conventional
experiments as they offer a very high degree of control over experimental conditions.

Types of computer simulation Computer simulations come in different types. The
most important distinction is between discrete and stochastic simulations on one side
and continuous simulations on the other. In case of discrete or stochastic simulations a
queue of events is maintained sorted by the time they should occur. A discrete simulator
repeatedly reads the first event from the queue and processes this event by which new
events are triggered that are merged into the queue. It is also possible that not all events
are processed, but that events are processed with a certain chance. Such simulations,
where the events occur probabilistically, are called stochastic simulations. Continuous
(analog) simulations on the other hand are based on a numerical implementation of a set
of either ordinary or partial differential equations. They enable the study of differential
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equations which cannot be solved analytically. Representing time by time steps, the
simulator recalculates all the equations periodically and uses the results to update the
state. Both of these types of computer simulations are used for molecular simulations.

1.2 Molecular simulations

Introduction The class of computer simulations involved in molecular systems is
called molecular simulation. In such simulations the collective behavior of systems of
atoms as a result of the interactions between the individual particles is calculated. Such
simulations are very interesting because to understand the macroscopic properties of
materials, it is necessary to have a firm comprehension of the microscopic interactions
between the particles the material is built of, i.e., between its constituent atoms. More-
over, most processes on the atomic level occur on such a short time as well as length
scale that they are intractable by conventional experiments. Contrary to conventional
experiments, computer simulations can give an invaluable insight in these processes.
Molecular simulations can be divided into several categories. A first division is be-
tween continuous and discrete/stochastic methods, with molecular dynamics and Monte
Carlo methods respectively as important members [Fre02, All87]. In molecular dynam-
ics simulations deterministic particle trajectories are followed by integrating equations
of motion, whereas in Monte Carlo methods new configurations are generated based
on probabilities. A second division is by the level of detail incorporated by the model.
To obtain the highest accuracy, the interactions between the atoms should be calculated
ab-initio, implying quantum mechanical calculations of the electronic structure. Such
ab-initio calculations are computationally very expensive, making them unfeasible for
anything but very small systems. Larger systems can be dealt with using effective po-
tentials to describe the atomic interactions. Even larger systems can be modeled with
coarse grained models. Below, these various molecular simulation methods will be dis-
cussed in more detail.

Molecular dynamics Molecular dynamics is a computer simulation technique where
the time evolution of a set of interacting atoms is followed by integrating their equations
of motion. Statistical mechanics provides the theoretical basis for extracting properties
from such molecular dynamics simulations. Static properties such as structure, energy,
and pressure can be obtained from pair (radial) distribution functions, whereas dynamic
and transport properties, such as diffusion and heat conductivity, can be obtained from
time correlation functions or from so called non-equilibrium molecular dynamics simu-
lations. Molecular dynamics thus provides a picture of the structure and dynamics at a
molecular level, which often cannot be provided by experiments.

History The history of molecular dynamics started in the late 1950’s in the field of
theoretical physics when Alder [Ald57, Ald59] studied the interactions of hard spheres.
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In this case, particles move at constant velocity between perfectly elastic collisions. This
allows for an exact solution of the dynamics. However, atoms are not hard spheres, but
they interact with each other. In 1960 Gibson et al. [Gib60] probably performed the
first molecular dynamics calculation with a continuous potential. A few years later, the
first simulations using a realistic potential for liquid argon by Rahman in 1964 [Rah64]
and the simulation of liquid water in 1971 by Rahman and Stillinger [Rah71] were
major advances. In the mean time Verlet [Ver67, Ver68] thoroughly investigated the
properties of Lennard-Jones systems, and with these successes, the method of molec-
ular dynamics gained popularity in material science. After simulations of diatomic
molecules [Har68] followed simulations of small rigid molecules [Bar73], and flexi-
ble hydrocarbons [Ryc75]. With the first simulations of proteins in 1977, on the bovine
pancreatic trypsin inhibitor (BPTI) [McC77], the method also gained popularity in bio-
chemistry and biophysics. These type of simulations were further stimulated in the
1980’s when a number of general purpose force fields for water, lipids, proteins and
DNA became available as well as some general purpose molecular dynamics computer
programs [Bro83, Wei84, Her84, Kal99] capable of running on large parallel comput-
ers. This also enabled the simulation of the aggregation of surfactants [Smi90] and
lipid membranes, first with simplified models and without water [Kox80, vdP83] and
later in atomistic detail including water [Egb88]. The vast increase in computational
power in recent years further enabled molecular dynamics simulations of solvated pro-
teins [Bro88, Kar90, Dua98], lipid systems with or without proteins [Tie97, Rou04] and
protein-DNA complexes [Nil98].

Effective potentials The molecular dynamics simulations mentioned so far are all
based on effective potentials describing the interaction between the atoms. These po-
tentials require a large number of parameters, such as parameters for non-bonded inter-
actions, force constants, equilibrium bond lengths, angles and dihedrals, and (partial)
charges. There are three ways to deal with these parameters.

The first way is to use relatively simple model potentials and parameters. As discussed
above, this was the approach used in the beginning. However, such relatively simple
model potentials remain interesting because the level of detail of the potentials directly
influences the computational cost per particle and thus the system sizes and time scales
reachable in a simulation. Such model potentials are used in coarse grained models,
where a number of atoms are represented by one single particle and that thus can be
used to simulate phenomena that are still out of reach of more detailed methods.

The second way is to use as accurate potentials and parameters as possible. Whereas
in the beginning only model potentials were used, the focus shifted to such more and
more detailed potentials with the increase of computer power available. All the param-
eters necessary for such detailed potentials can be estimated from either experiments or
quantum mechanical calculations.
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Ab-initio molecular dynamics The third way is to abandon effective potentials com-
pletely. Namely, notwithstanding the statistical mechanical basis of molecular dynam-
ics, the simplified form of the potentials with estimated parameters, limits the accuracy
of the method. Moreover, the classical treatment of the system also makes it impos-
sible to deal with chemical reactions. Both limitations can be overcome by explicitly
calculating the electronic structure of the atoms in the system. Namely, the interactions
between atoms depend critically on the behavior of their electrons. However, elec-
trons are no classical particles obeying Newton’s laws of motion. Instead, electrons
are quantum particles, obeying the laws of quantum mechanics. Accurate calculations
of electronic structure are thus based on first principles (ab-initio) quantum mechani-
cal treatment of the electrons. Resulting forces on the atoms can be derived from this
electronic structure. These forces can be used, replacing the effective potentials, in the
molecular dynamics scheme as pioneered by Car and Parrinello [Car87]. However, be-
cause electrons are no classical local particles, but spread out quantum particles, such
ab-initio calculations are computationally very expensive, making them unfeasible for
anything but very small systems and time scales.

Monte Carlo Another molecular simulation technique is the Monte Carlo method.
This method was introduced in 1953 by Metropolis [Met53] and obtained its name be-
cause of its dependence on chances. Different from the molecular dynamics technique
where precise particle trajectories are calculated, in a Monte Carlo simulation relatively
large changes on the system are imposed after which it is determined whether or not
the altered structure is energetically feasible at the temperature simulated. The system
thus jumps abruptly from conformation to conformation, rather than evolving smoothly
through time, allowing it to traverse barriers without feeling them. Many types of Monte
Carlo simulations exist. For an overview see for example Ref. [Fis96].

Method of choice It is impossible to say that one method is better than the other.
Every application has its own method that is best suited, depending both on its nature
and on the level of detail desired. For example, for a fixed amount of computation time
there is a trade-off between the system size and the level of detail that can be considered.
Despite all computational power of even the largest modern parallel computers, the time
and length scales reachable constrain the range of problems that can be addressed. With
ab-initio methods, usually single molecules, interactions between two molecules, or
crystals are studied. For molecular dynamics with empirical potentials the number of
atoms that can be included is limited to typically 107, corresponding to system sizes in
the order of tens of nanometers. At the same time, time steps that can be made are of the
order of femto-seconds, such that the very high number of 109 time steps is necessary to
reach the microsecond time scale. But still, it is one or the other, small systems for ‘long’
time intervals or ‘large’ systems for short time intervals, not both at the same time. The
number of particles nowadays routinely used is large compared to the first simulations
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containing only tens to hundreds of atoms, but it is still very small compared to the
approximately 1022 molecules in one milliliter of water. Although this number suffices
for many different applications, when larger simulations are needed, more powerful
computers, more efficient simulation methods, or the combination of both are required.
In this thesis several molecular simulation methods are both developed and applied on
a variety of physical, chemical, mechanical and biological problems.

1.3 Thesis outline

As mentioned before, many macroscopic properties of materials and processes are de-
termined at a microscopic level and molecular simulations provide a very useful tool
for understanding these properties and processes. For various purposes various levels of
detail are necessary. When high accuracy is needed, the interactions between the atoms
should be calculated ab-initio, i.e., electronic structure calculations have to be applied.
However, such ab-initio calculations are computationally very expensive, making them
unfeasible for anything but very small systems.
In Chapter 2 various existing electronic structure calculation methods are discussed and
a new wavelet based method is introduced in an attempt to speed up such calculations.
With this wavelet based method, electronic structure can be solved efficiently and ac-
curately by adding extra resolution locally where necessary instead of over the whole
domain. This electronic structure framework is applicable for 1D, 2D and 3D problems.
By applying it on several also analytically solvable cases it is proved that the method
yields accurate results. Moreover, the effects of different types and orders of wavelets,
different preconditioners and the advantage of pruning are shown in relation with accu-
racy and computational cost. Thereafter the framework is applied on a two dimensional
quantum dots for the calculation of the electronic structure of quantum dot arrays and
three dimensional molecular systems for the calculation of ionization potentials, elec-
tron affinities, bond properties, etc.
Such ab-initio calculations remain computationally very expensive. However, for many
cases it is not necessary to calculate the exact electronic structure, but it suffices to use
effective potentials to describe the atomic interactions. With highly detailed potentials
many physically, chemically and biologically interesting systems can be studied in detail
quantitatively. By so called coarse grained methods, in which the average behavior
of several atoms is combined in a single particle and simplified potentials are used to
describe the interaction between such particles, again larger systems can be considered
using the same computational power.
In Chapter 3 a coarse grained model is developed for lipids, which is subsequently ap-
plied to study lipid dynamics. This includes spontaneous membrane formation from
randomly dispersed lipids, spontaneous vesicle formation and vesicle fusion. These
simulations have also been analyzed to determine the driving force for the vesicle for-
mation by analyzing the potential energy landscape.
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A disadvantage of molecular dynamics simulations with effective potentials is that no
reactions are possible. However, many real systems, and especially biologically relevant
systems, are interesting because of the reactions taking place.
In Chapter 4, therefore, the above described framework is extended with a newly de-
veloped method in which molecular dynamics is coupled with stochastic chemical re-
actions. Applying this new method on biologically inspired cases, that feature forma-
tion of membranes, micelles and vesicles as well growth and bursting of such vesicles,
proves the feasibility and usefulness of adding such an artificial chemistry to molecular
dynamics.
In Chapter 5 molecular dynamic simulations have been applied to study a completely
different problem, namely the influence of the wettability of nanochannel walls on the
particle and heat flow in such nanochannels. These simulations show that the influence
of the gas-surface interface ultimately determines the behavior of the whole nanochannel
for heat transfer as well as for flow profiles and that this influence is so important that it
is dangerous to use simply boundary conditions to describe these interfaces.
However, such molecular dynamics simulations are so time consuming that only parts
of nanochannels can be considered. Thus, even using effective potentials the system
sizes that can be handled are sometimes too small for practical simulations. To simulate
larger systems, e.g. microchannels, other techniques are required, such as other particle
simulation techniques that are extensions of continuum theories. An example of such a
method is the direct simulation Monte Carlo (DSMC) method, in which movements and
collisions of particles occur, but where the collisions are generated stochastically with
scattering rates and post-collision velocity distributions determined from the kinetic the-
ory of gases. In Chapter 5 also this DSMC method has been applied to nanochannels.
Comparison of the results with molecular dynamics simulations proves that away from
the walls, i.e., in the bulk of the gas, the results are accurate, whereas the DSMC method,
which uses boundary conditions to describe the walls, is not accurate enough to describe
the gas-wall interaction accurately.
In case the finest details are not required in the whole domain, it is possible to com-
bine two methods in a hybrid method, by using the more detailed method only in the
area where needed and the less detailed method elsewhere, so enabling the simulation
of larger systems. In the last part of Chapter 5 we couple the molecular dynamics
method with the more efficient direct simulation Monte Carlo method to a hybrid ap-
proach. Molecular dynamics is used where necessary and the more efficient Monte
Carlo method where possible. So in the case of our example of a microchannel, to keep
the computational costs as low as possible by simulating particle behavior in the oscilla-
tion region near the wall with molecular dynamics in which the walls are also simulated
accurately and the Monte Carlo technique for the particles in the bulk. In this chapter we
prove that the hybrid method coupling MD and MC simulations yields accurate results
while providing a speed-up of the simulations.
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2
Wavelets in electronic structure

calculations

M ost methods for solving electronic structure calculations employ plane waves
or localized bases like atomic orbitals. However, the well-known fact that

electronic wave functions vary much more rapidly near the atomic nuclei than
in inter-atomic regions calls for a multiresolution approach, allowing one to use
low resolution and to add extra resolution only in those regions where necessary.
This is provided by an alternative basis, formed of wavelets. A new electronic
structure calculation method is developed that utilizes such wavelets as a basis.
This method is in first instance tested on some analytically solvable problems to
explain the method, to prove that it yields accurate results, to compare the effects
of the application of various kinds of wavelets and preconditioners and to show the
advantage of pruning. Subsequently, the method is applied to real cases, namely
quantum dots and molecular systems.

Parts of this chapter are described in:

A.J. Markvoort, Ramiro Pino and P.A.J. Hilbers,Interpolating Wavelets in Kohn-Sham Electronic
Structure Calculations, Lecture Notes in Computer Science,2073, 541-550 (2001).

A.J. Markvoort, P.A.J. Hilbers and Ramiro Pino,Laterally coupled jellium-like 2D quantum dots,
Journal of Physics: Condensed Matter,15, 6977-6984 (2003).
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2.1 Introduction

2.1.1 Why electronic structure calculations

To understand the macroscopic properties of a material it is necessary to have a firm
comprehension of the microscopic interactions between the particles the material is
built of, i.e., between its constituent atoms. Each of these atoms consists of a ‘heavy’
positively charged nucleus surrounded by very light negatively charged electrons. The
interactions between the atoms depend critically on the behavior of these electrons.
However, electrons are no classical particles, i.e., an electron cannot be described as a
particle with a certain mass at a certain moment in time at a certain position orbiting
a nucleus, obeying Newton’s laws of motion. Instead, electrons are quantum particles,
obeying the laws of quantum mechanics. This means that particles are not local, but
spread out. To describe such spread out electrons functions, so-called wavefunctions,
are used. The wavefunction of all electrons in a molecule or a collection of atoms is
also referred to as the electronic structure of that system.
The electronic structure thus ultimately determines a materials observable macroscopic
properties and the chemical processes in which it is involved. Questions like what the
structure of a particular molecule is, why it behaves the way it does and whether one
could modify its structure and properties in a controlled, rational fashion (molecular
design) deal with this electronic structure.
This electronic structure cannot be measured directly, nor can it be solved analytically
for any but the very simplest systems. However, the electronic structure can be com-
puted using numeric means, using so-called electronic structure calculations.
Accurate calculations of electronic structure are based on first principles (ab-initio)
quantum mechanical treatment of the electrons. However, although the nonrelativistic
equations of quantum mechanics are known since Erwin Schrödinger published them
in 1925-1926, solving these equations has proved challenging. Notwithstanding the im-
pressive computer power nowadays at our disposal, solving the basic equation of quan-
tum mechanics, i.e. the many electron Schrödinger equation, remains a formidable task,
calling for the interplay of various scientific fields, as physics, chemistry, mathematics,
and computer science.
Electronic structure calculations started as an area of interest for physicists. But the fast
development of computational power established the computer as a major new instru-
ment on which experiments of chemical relevance can be performed. The continuing
increase in computational power and the development of new methods and algorithms
will enable the modeling of biological systems.
For this development of new methods for electronic structure calculations, thorough
physical and chemical understanding of many-electron systems is required. Combin-
ing this understanding with modern mathematical concepts may lead to algorithms that
exploit the peculiarities of electronic systems to yield powerful new electronic struc-
ture methods. In this drive for better methods, algorithms in which the computing time
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increases linearly with respect to the number of atoms in the system are the ultimate
goal.

This chapter is concerned with one of such techniques to speed up electronic structure
calculations, namely with wavelets. The chapter is structured as follows. First an intro-
duction to electronic structure calculations is given, where it is shown how the Kohn-
Sham equations, that are used to calculate the electronic structure, are derived from the
Schr̈odinger equation. Existing methods to solve these equations are shown and the
reasons for using an alternative method, using wavelets, are given. In the next sections,
wavelets and the way they can be used as a numeric tool are discussed. These sections,
constituting mainly of a collection of theory from various book and articles cited in the
text, enumerate all essential ingredients for our wavelet based electronic structure code.
In the subsequent three sections this wavelets based electronic structure calculations
code is presented and applied to some one, two and three dimensional systems.

2.1.2 Electronic structure calculations

Schrödinger equation Most problems in the electronic structure of matter are cov-
ered by the time-dependent Schrödinger’s equation [Par89]. However, as we are con-
cerned with atoms and molecules without time-dependent interactions, we focus here
on the time-independent Schrödinger equation. For an isolatedN-electron atomic or
molecular system in the Born-Oppenheimer non-relativistic approximation, i.e. where
the electronic and nuclear degrees of freedom are decoupled, this is given by

ĤΦ = EΦ. (2.1)

HereE is the electronic energy,Φ = Φ(x1,x2, . . . ,xN) is the all-electron wavefunction
andĤ is the Hamiltonian operator

Ĥ = T̂ +V̂ne+V̂ee+Vnn. (2.2)

In this Hamiltonian

T̂ =
N

∑
i=1

(−1
2∇2

i ) (2.3)

is the kinetic energy operator,

V̂ne =
N

∑
i=1

v(r i) (2.4)

is the nucleus-electron attraction energy operator,

V̂ee=
N

∑
i< j

1
r i j

(2.5)

is the electron-electron repulsion operator, and

Vnn =
M

∑
α<β

ZαZβ
Rαβ

(2.6)
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is the nucleus-nucleus repulsion energy. In Equation (2.4)v(r i) is the external potential
acting on electroni

v(r i) =−
M

∑
α=1

Zα
r iα

, (2.7)

the Coulombic potential due toM nuclei of chargeZα.
In all these equations, the coordinatesxi of electroni comprise space coordinatesr i and
spin coordinatesσi . The spatial coordinates are continuous, whereas the spin coordi-
nates are discrete.
Equation (2.1) must be solved subject to appropriate boundary conditions.Φ must
be well-behaved everywhere, in particular decaying to zero at infinity for an atom or
molecule or obeying appropriate periodic boundary conditions for a regular infinite
solid. |Φ|2 is a probability distribution function in the sense that

|Φ(rN,σN)|2drN (2.8)

is the probability of finding the system with position coordinates betweenrN andrN +
drN and spin coordinates equal toσN, whererN stands for the setr1, r2, . . . , rN, drN for
dr1,dr2, . . . ,drN andσN stands forσ1,σ2, . . . ,σN.
There are many acceptable independent solutions of Eq. (2.1) for a given system: the
eigenfunctionsΦk with corresponding energy eigenvaluesEk. The ground-state wave-
function and energy are denoted byΦ0 andE0.
Expectation values of observables are given by formulas of the type

〈Â〉=
∫
dxN Φ∗ÂΦ∫
dxN Φ∗Φ

=
〈Φ|Â|Φ〉
〈Φ|Φ〉

, (2.9)

where
∫
dxN means here the integration over 3N spatial coordinates and the summation

overN spin coordinates. Particular measurements give particular values ofÂ, but many
measurements average to〈Â〉.
When a system is in a stateΦ the expectation value of the total energy is given by

E[Φ] =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

. (2.10)

Since each particular measurement of the energy gives one of the eigenvalues ofĤ, we
have

E[Φ] > E0, (2.11)
i.e., the energy computed from a guessedΦ is an upper-bound to the ground-state energy
E0. Full minimization of the functionalE[Φ] with respect to all allowedN-electron
wavefunctions will give the true ground-stateΦ0 and energyE[Φ0] = E0, i.e.,

E0 = min
Φ

E[Φ]. (2.12)

Every eigenstateΦ is an extremum of the functionalE[Φ]. In other words, one may
replace the Schrödinger equation with the variational principle

δE[Φ] = 0. (2.13)

When Eq. (2.13) is satisfied, so is Eq. (2.1), and vice versa. It is convenient to restate this
equation in a way that will guarantee that the finalΦ will automatically be normalized.
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This can be done by the method of Lagrange multipliers, giving

δ[〈Φ|Ĥ|Φ〉−E〈Φ|Φ〉] = 0. (2.14)

Most contemporary calculations on electronic structure are done with this variational
procedure, in some linear algebraic implementation.

Density functional theory The ground-state energy and the ground-state wavefunc-
tion are determined by the minimization of the energy functionalE[Φ]. For anN-
electron system the external potential, however, completely fixes the Hamiltonian.N
andv(r) determine thus all properties for the ground-state, which is of course not sur-
prising sincev(r) determines the whole nuclear frame for a molecule, which together
with the number of electrons determines all the electronic properties.
The first Hohenberg-Kohn theorem [Hoh64] states that the energy can be written as a
functional of the electron density only, instead. This electron densityρ(r) for a given
state is defined as the number of electrons per unit volume in that state. Its formula in
terms ofΦ is

ρ(r1) = N∑
σ1

∫
dx2 · · ·

∫
dxN |Φ(xN)|2. (2.15)

The principle quantity of interest changes thus from the all-electron wavefunction to this
electron density. This is very appealing since it has the computational advantage that the
electron density has only three spatial coordinates, regardless of the number of electrons
in the system, thus making the computation of much larger systems computationally
feasible.
The ground-state energy of a many-electron system can now be obtained as the mini-
mum of the energy functional of the density only

E[ρ] =
∫

dr ρ(r)v(r)+F [ρ]+Vnn, (2.16)

where
F [ρ] = T[ρ]+Vee[ρ] (2.17)

andT[ρ] andVee[ρ] are the kinetic energy functional and the electron-electron interac-
tion functional respectively. The second Hohenberg-Kohn theorem provides the energy
variational principle

E0 6 E[ρ] (2.18)
for non-negativeρ(r), whereρ(r) is also normalized to the number of electrons. The
ground-state electron density is thus the density that minimizesE[ρ] and hence satisfies
the Euler equation

µ= v(r)+
δF [ρ]
δρ(r)

(2.19)

whereµ is the Lagrange multiplier associated with the constraint∫
dr ρ(r) = N. (2.20)

However, the problem is that no explicit form forF [ρ] is known. Thomas-Fermi [Tho27,
Fer27] and related models constitute a direct approach to solve this problem, whereby
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one constructs explicit approximate forms forT[ρ] andVee[ρ]. The simplest approxima-
tion is the traditional Thomas-Fermi model whereVee[ρ] is replaced by its classical part
J[ρ], which is given by

J[ρ] = 1
2

∫
dr

∫
dr ′

ρ(r)ρ(r ′)
|r − r ′|

, (2.21)

and whereT[ρ] is taken from the theory of a non-interacting uniform electron gas, re-
sulting in

TTF[ρ] = CF

∫
dr ρ(r)5/3, (2.22)

whereCF = 3
10(3π2)2/3. The Thomas-Fermi-Dirac model extends this model by adding

the exchange-energy formula for a uniform electron gas as an approximation for the
non-classical part ofVee[ρ].
This approach thus produces a nice simplicity as the equations involve electron density
only. However, because the exact forms of the functionals are unknown and approximate
functionals have to be used instead, these methods still lack high accuracy. The method
improves with the development of better and better functionals, which e.g., also depend
on the gradient of the density, but our efforts in this direction [Pin03b, Pin03c, Pin03d,
Pin03a] will not be described here. Instead, an indirect approach to the kinetic energy
functional is used, since this kinetic energy functional is of major importance.

Kohn-Sham method In a trade of simplicity for accuracy, Kohn and Sham invented
an ingenious indirect approach to the kinetic energy functionalT[ρ], the Kohn-Sham
(KS) method [Koh65], which removes the necessity of knowing the exact form ofT[ρ].
Kohn and Sham proposed introducing orbitals into the problem in such a way that the
kinetic energy can be computed simply to good accuracy, leaving a small residual cor-
rection to be handled separately. This is done by minimizing the kinetic energy of a
non-interacting system of electrons with respect to the set of single-particle orbitalsΨi ,
which obey the orthogonality relation〈Ψi |Ψ j〉= δi j . This kinetic energy is denoted by

Ts[ρ] =−1
2 ∑

i
〈Ψi |∇2|Ψi〉. (2.23)

To produce the desired separation out ofTs[ρ] as the kinetic energy component rewrite

F [ρ] = Ts[ρ]+J[ρ]+Exc[ρ] (2.24)

where
Exc[ρ]≡ T[ρ]−Ts[ρ]+Vee[ρ]−J[ρ] (2.25)

is called the exchange-correlation energy, containing the difference betweenT[ρ] and
Ts[ρ] and the non-classical part ofVee[ρ]. The Euler equation now becomes

µ= veff(r)+
δTs[ρ]
δρ(r)

(2.26)

where the KS effective potential is defined by

veff(r) = v(r)+
∫

dr ′
ρ(r ′)
|r − r ′|

+Vxc(r) (2.27)
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with the exchange-correlation potential

Vxc(r) =
δExc[ρ]
δρ(r)

. (2.28)

Equation (2.26) with constraint (2.20) is precisely the same equation as one obtains
from conventional density functional theory when one applies it to a system of non-
interacting electrons moving in the external potentialveff(r). Therefore, for a given
veff(r), one obtains the densityρ(r) that satisfies Eq. (2.26) simply by solving the N
one-electron equations (

−1
2∇2 +veff(r)

)
Ψi(r) = εiΨi(r), (2.29)

and setting
ρ(r) = ∑

i
|Ψi(r)|2. (2.30)

Here,veff(r) depends on the densityρ(r) and should be solved self-consistently.
The total energy is not just the sum of the orbital energies, but can be obtained from the
resultant density via

E[ρ] = ∑
i

∫
dr Ψi

∗(−1
2∇2)Ψi +J[ρ]+Exc[ρ]+

∫
dr v(r)ρ(r)+Vnn, (2.31)

or equivalently from the formula

E[ρ] =
N

∑
i=1

εi−J[ρ]+Exc[ρ]−
∫

dr Vxc(r)ρ(r)+Vnn. (2.32)

Through the introduction of theN orbitalsTs[ρ], the dominant part of the true kinetic
energyT[ρ], is solved indirectly, but exactly. The price for this gain in accuracy is
that there are nowN equations to solve as opposed to only one equation for the total
density derived from direct approximation onTs[ρ] of the Thomas-Fermi type. The
other unknown partExc remains intact. The KS equations are open for improvement
with each successive better approximation toExc[ρ] and would give exactρ andE if
Exc[ρ] were known precisely.
Since the effective potentialveff(r) does not contain electron spin, the solutionsΨi(r)
are doubly degenerate, one with spin up and one with spin down. A better method, as
we will see later, is the spin polarized extension of the local-spin-density-approximation
(LSD) which turns out to be superior to local-density-approximation (LDA).
This Kohn-Sham approach is used in this work. An explicit form forExc[ρ] is still
needed to specify the Kohn-Sham equations completely, but this will be discussed later.

2.1.3 Why wavelets

Basis sets Having selected a specific electronic structure method the next choice is
related to which basis set to use in order to represent the orbitalsΨi . In general a
linear combination of basis functions is usedΨi(r) = ∑k cik fk(r ,{RI}),where the basis
functions may depend on the nuclear positions{RI}. The variety of basis sets utilized
is large. Among these bases, LCAO and plane waves are most known, but other bases
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include mixed and augmented basis sets, Wannier functions, finite-elements, multigrids
and last but not least wavelets.

LCAO In quantum chemistry, Slater-type basis functionsf S
k (r) = CS

k xkxykyzkze−αS
k |r |

with an exponentially decaying radial part and Gaussian type basis functionsf G
k (r) =

CG
k xkxykyzkze−αG

k |r |
2

are widely used [Heh86]. In these functionsC andα are constants.
These basis functions are in general centered at the positions of the nuclei, i.e., a
so-called linear combination of atomic orbitals (LCAO). They have the advantage of
easy (analytic) evaluation of derivatives and other matrix elements, by differentiation
and integration in real-space. Furthermore, because of their shape relatively few ba-
sis functions are needed, but no fast transform exists. Another drawback arises when
the atoms are allowed to move, either in geometry optimization or molecular dynamics
schemes. For bases that have basis functions fixed at atoms (or bonds) so called Pulay
forces [Pul69] will result. These Pulay forces represent the derivative of the basis func-
tions with respect to the positions of the ions. This is not an unbridgeable problem, but
means that these forces have to be calculated.

Plane waves Plane waves on the other hand originate from solid-state physics, where
the ubiquitous periodicity of the underlying lattice imposes the same periodicity on the
density, suggesting the use of periodic basis functions. These plane waves are defined as
f PW
k (r) = CPWeik·r . Plane waves form a complete and orthonormal set and the labeling

of the basis functions is simply given by the vectork in reciprocal space. The plane
wave approach is reviewed in detail in [Pay92].
An important advantage is that plane waves are originless functions, i.e., they do not
depend on the positions of the nuclei, implying that the Pulay forces vanish exactly,
which tremendously facilitates force calculations. Because of this delocalization plane
waves also form a very unbiased basis set, not favoring one region over others. The only
way to improve the quality of the basis is to increase the energy cut-off, i.e., to increase
the largestk-vector that is included in the finite expansion. Another appealing feature
is that derivatives in real-space are simply multiplications in reciprocal space, and both
spaces can be efficiently connected via the Fast Fourier Transform (FFT), making that
the total energy is found to have a particularly simple form when expressed in plane
waves.
However, there are also disadvantages to the use of plane waves. The extremely high
resolution required near atomic nuclei combined with the uniform resolution afforded by
plane waves makes the direct application of this method prohibitive for all but the light
elements. The introduction of pseudopotential theory overcomes this limitation, at the
cost of an uncontrolled pseudopotential approximation. However, even in pseudopo-
tential calculations the wavefunctions require significant resolution near ionic cores,
particularly when dealing with first-row elements or transition metals. Another severe
shortcoming of plane waves is the backside of the medal of being an unbiased basis
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set: there is no way to shuffle more basis functions into regions in space where they
are more needed than in other regions. This is particularly bad for systems with strong
inhomogeneities, like a few heavy atoms in a sea of light atoms, or finite systems such
as surfaces or molecules with a large vacuum region in order to allow the long-range
Coulomb interactions to decay. This is often referred to as the multiple length scale
deficiency of plane wave calculations.
Localized Gaussian basis functions on the one hand and plane waves on the other hand
are certainly two extreme cases, but most used. There has been a tremendous effort to
combine such localized and originless basis functions resulting in a rich collection of
mixed and augmented basis sets.

Real-space methods A quite different approach is to leave conventional basis set ap-
proaches altogether and to resort to real-space methods where continuous space is re-
placed by discrete space. This entails that the derivative operator or the entire energy
expression has to be discretized in some way. The first real-space approach devised for
ab-initio molecular dynamics was based on the lowest-order finite difference approxi-
mation in conjunction with an equally spaced cubic mesh in real-space [Car87]. A vari-
ety of other more sophisticated real-space methods include multigrids [Whi89, Wes92]
and finite-element methods [Tsu95]. Among the chief advantages of the real-space
methods is that linear scaling approaches can be implemented in a natural way and that
the multiple length scale problem can be coped with by adapting the grid. Finite-element
methods also represent an efficient method for dealing with non-linear interactions by
providing highly efficient rapid transforms. However, a difficulty is that each element
in a finite-elements representation corresponds to the value over the region of one basis
function and thus cannot be taken to be small where the electronic orbitals themselves
are non-negligible. The extension to non-uniform meshes also induces Pulay forces if
the mesh moves as the nuclei move.

Wavelets Wavelet bases [Dau92a] place functions of varying resolution on a mul-
tiresolution grid while maintaining a uniform resolution throughout all of space in the
precise mathematical sense of multiresolution analysis. The mathematical regularity of
the resulting basis leads to efficient fast transforms and methods to apply (differential)
operators. In contrast to the expansion coefficients of a finite-elements expansion which
reflect directly the values of a function, the coefficients of a multiresolution analysis
separate information into different length scales. This subtle but critically important
difference means that, as long as a function varies smoothly, the fine-scale coefficients
will be negligible small even where the value of a function is quite large. This means
that, as the atoms move, one may arrange for the changes in the basis to involve the
truncation of only coefficients which are small, thereby effectively providing high res-
olution throughout all of space with an extremely limited number of coefficients. This
also means that no particular care is needed to handle the regriding as the atoms move.
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The use of wavelets in electronic structure calculations was introduced by Choet al.
[Cho93] who employed (Mexican hat) wavelets in solving the Schrödinger equation for
Hydrogen like atoms. Later, self-consistent local density approximation (LDA) calcu-
lations onH2 andO2 using Daubechies wavelets were reported [Wei96, Tym97], fol-
lowed by the introduction of interpolating wavelets by Lippertet al. [Lip98]. A review
on wavelets in electronic structure has been given by Arias [Ari99].

2.1.4 Summary

Electronic structure calculations come in various kinds. This work focuses on solving
electronic structure via the so-called Kohn-Sham equations.
Most methods for solving electronic structure calculations employ plane waves or atom-
ic orbitals (LCAO). Plane waves have the advantage of being orthonormal and complete,
permitting systematic convergence and straightforward evaluation of forces, which is
important for the extension to molecular dynamics simulations. But they are not efficient
in describing localized orbitals and wavefunctions in surfaces or clusters. On the other
hand localized bases, like LCAO, are usually over-complete, lack explicit convergence
properties and result in difficult force calculations (Pulay forces).
However, the well-known fact that electronic wave functions vary much more rapidly
near the atomic nuclei than in inter-atomic regions calls for a multiresolution approach,
allowing one to use low resolution and to add extra resolution only in those regions
where necessary. This is provided by an alternative basis, formed of wavelets, which
allow accurate description over a range of length scales.

2.2 Wavelets

What are wavelets The namewaveletwas devised around 1980, making it a rela-
tively young topic. However, techniques similar to wavelets were used already from the
1930s in different fields in mathematics, physics and engineering long before they were
given the status of a unified scientific field. As a consequence of these interdisciplinary
origins, wavelets appeal to scientists and engineers of many different backgrounds. Be-
sides, and most important, they are a mathematical tool with a great variety of possible
applications. Nowadays wavelets are used in areas like signal processing, image pro-
cessing, data compression, statistics, mathematics, physics, econometrics and computer
graphics. Since wavelets are such a popular topic many books have been written on this
subject within the past ten years. A number of them are mentioned in the references,
e.g. [Dau92a, Bur98, Nie98b].
Literally, wavelet meanslittle wave. A wave is usually defined as an oscillating function
of time or space, such as a sinusoid. Wavelets are called little waves because their
oscillations are localized, i.e., they have their energy concentrated. Typical examples of
a wave, extending from minus infinity to plus infinity, and a wavelet, localized around a
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(a) Sine wave (b) Typical wavelet

Figure 2.1: Typical example of(a) a wave and(b) a wavelet. A wave extends over the
whole line, whereas a wavelet has its oscillations localized.

point, are shown in Figure 2.1.
A wavelet is thus an arbitrary function that consists of some localized oscillations. Most
often such wavelets are not known in closed form, but are given by means of a recursive
relation, called the dilation equation. The reason for this is multiresolution theory that
is discussed later.
Wavelets themselves are not that interesting as the tool they are used for, the wavelet
transform. Like sinusoids, or equivalently complex exponentials, are used for Fourier
analysis, which is known to be a very valuable mathematical tool, analogously, wavelets
are used for the wavelet transform. Because of their locality, wavelets can be used to
provide a tool for the analysis of transient, non stationary or time-varying phenomena.
The wavelet transform breaks up a function (or signal) into component pieces, which are
processed further instead of the original function. The pieces the function is broken up
into are the wavelets, i.e. the family of translations and dilations of one single wavelet,
called the mother wavelet. These translations and dilations are denoted respectively by
b anda in the following equation

ψa,b(x) = |a|−1/2ψ(
x−b

a
). (2.33)

The opposite process, rebuilding the original function out of its component pieces is
called the inverse wavelet transform, analogous to the inverse Fourier transform.
The reasons for breaking a signal into pieces and putting it again together afterward may
depend on the application. However, globally the reasons can be divided into two parts.
In the first place, the original function may contain more information than can be seen
at first sight, but which can be made visible using the wavelet transform. In the second
place, the wavelet transform may be used to compress data. This is advantageous when
the data have to be stored or when calculations or operations have to be performed on
the data.

Wavelet transform In Fourier models functions are represented as a weighted sum
of exponentials at different frequencies. The weight at each different frequency is the
Fourier coefficient. Wavelet models analogously represent functions as a weighted sum
of scaled and translated mother wavelets. The wavelet transform has a mother wavelet
replace the exponential, scaling and translation replace the frequency shifting and a
two dimensional surface of wavelet coefficients replace the one dimensional Fourier
coefficients.
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The formula of the well-known Fourier transform is

f̂ (ω) = 1√
2π

∫ ∞

−∞
dx f(x)e−iωx. (2.34)

Such a Fourier transform gives the frequency spectrumf̂ (ω) of the functionf (x). But its
disadvantage is that there is no position-frequency localization. This can be introduced
with the Windowed Fourier transform

f̂ (ω,x) =
∫ ∞

−∞
dy f(y)g(y−x)e−iωy. (2.35)

f̂ (ω,x) all consist of the same envelope functiong(y), translated to the proper location
and ‘filled in’ with higher frequency oscillations. The next step in this line is the wavelet
transform

f̂ (a,b) = |a|−1/2
∫ ∞

−∞
dx f(x)ψ(

x−b
a

). (2.36)

The waveletsψa,b have widths adapted to their frequency. Higher frequencyψa,b are
very narrow, while low frequencyψa,b are much broader. As a result, the wavelet trans-
form is better able than the windowed Fourier transform to zoom in onto very local high
frequency phenomena.

Now we have seen what wavelets are and how we can use them in the wavelet transform,
we also want to be able to reconstruct our original functionf (x). Like the inverse
Fourier transform

f (x) = 1√
2π

∫ ∞

−∞
dω f̂ (ω)eiωx (2.37)

we also want to introduce the inverse wavelet transform

f (x) = C−1
ψ

∫ ∞

−∞
db

∫ ∞

−∞
da

1
a2 f̂ (a,b)ψa,b(x), (2.38)

where
Cψ = 2π

∫ ∞

−∞
dω |ψ̂(ω)|2|ω|−1. (2.39)

This constant should exist. As a result, this is a condition our wavelet has to satisfy. Up
to now we could choose any arbitrary function as our mother wavelet, but this condition
means that admissible functions are those that cycle (oscillate), have finite energy and
have an average value of zero.

However, the set of possible mother wavelets is still tremendously large. As a result, a
valid statement for one mother wavelet can be completely invalid for another wavelet.
As we will see in the next sections, we can use this freedom to choose wavelets which
have the properties we are interested in.

Discrete wavelet transform Also analogous to the Fourier theory, the continuous
wavelet transform is not employed as often as the discrete wavelet transform. The con-
tinuous transforms are primarily employed to derive properties and the discrete forms
are necessary for most computer implementations. The discrete Fourier transform

f̂n = 1√
2π

∫ ∞

−∞
dx f(x)e−inω0x (2.40)
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and its inverse

f (x) = 1√
2π

∞

∑
n=−∞

f̂neinω0x (2.41)

still have a continuous independent variablex. Only the frequenciesω have been dis-
cretized (nω0).

The same holds for the discrete wavelet transform where the scalesa and dilationsb
are discrete, but not the independent variablex. The discrete wavelet transform can be
written as

d j
k = a− j/2

0

∫ ∞

−∞
dx f(x)ψ(

x−kb0

a j
0

) (2.42)

and its inverse as
f (x) = C ∑

j∈Z
∑
k∈Z

d j
kψ j

k(x), (2.43)

whereC is a normalization constant and

ψ j
k(x) = a− j/2

0 ψ(
x−kb0

a j
0

). (2.44)

Multiresolution There exists a tremendous choice of mother wavelets, since a mother
wavelet can be any function that obeys condition (2.39). This freedom can be used to
impose some extra conditions. By doing this in a smart way, sets of wavelets with useful
properties can be created.

The first degrees of freedom are usually used to obtain a multiresolution approach. The
standard application of the multiresolution wavelet transform is to form a series of half-
band filters that divide a spectrum into a high frequency band and a low frequency band.
The high frequency band output is taken as the wavelet transform coefficients for a fine
scale and the low frequency band output is decimated by a factor 2. This low frequency
band is then split into a high and a low band, etc.

The primary constraint on the mother wavelet in such a multiresolution approach is
really formulated on a different function, which is called the scaling functionϕ. This
is done by introducing a ladder of subspaces(V j) j∈Z which represent the successive
resolution levels

(i) . . .⊂ V2⊂ V1⊂ V0⊂ V−1⊂ V−2⊂ . . . (2.45a)

(ii)
⋂
j∈Z

V j = {0},
⋃
j∈Z

V j = L2(R). (2.45b)

The multiresolution is introduced by

(iii ) f ∈ V j ←→ f (2 j ·) ∈ V0 for all j ∈ Z, (2.45c)

what states that all spaces are scaled versions of the central spaceV0. The next require-
ment is invariance ofV0 under integer translations

(iv) f ∈ V0−→ f (·−k) ∈ V0 for all k∈ Z. (2.45d)
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The final requirement is the existence of an orthonormal basis

(v) ∃ϕ ∈ V0 so that theϕ0
k, k∈ Z, constitute an orthonormal basis forV0, (2.45e)

whereϕ is the scaling function with translations and dilations

ϕ j
k(x) = 2− j/2ϕ(2− jx−k). (2.46)

Requirements(iii ) and(v) together imply that{ϕ j
k : k∈ Z} is an orthonormal basis for

V j for all j ∈ Z. The last requirement(v) can be relaxed considerably, in fact, we only
need to require that the{ϕ0

k : k∈ Z} constitute a Riesz basis, i.e., there exist constantsA
andB such that for any finite set of integersΛ⊂ Z and real numbersλi with i ∈ Λ holds
that

A∑
i∈Λ

λi
2 6 ‖∑

i∈Λ
λiϕ0

i ‖22 6 B∑
i∈Λ

λi
2. (2.47)

But there are several advantages to require the scaling functions and the wavelets to
be orthonormal. Namely, because of the orthogonality the projection operator on the
subspaceV j

Pj : L2(R)→ V j (2.48)
can be defined as:

(Pj f )(x) = ∑
k∈Z
〈 f ,ϕ j

k〉ϕ
j
k(x), (2.49)

where〈 f ,ϕ j
k〉 denotes the inner product

∫
dx f(x)ϕ j

k(x).
The beauty of this multiresolution approach is that whenever a ladder of spaces satisfies
the conditions(i) to (iv), then there exists aψ such that

Pj−1 f = Pj f + ∑
k∈Z
〈 f ,ψ j

k〉ψ
j
k, (2.50)

where the translations and dilations of the mother waveletψ are defined equivalently to
Eq. (2.46) as

ψ j
k(x) = 2− j/2ψ(2− jx−k). (2.51)

This can be understood in the following way. SinceV j is a subset ofV j−1, the space
W j that is included inV j−1, but not inV j , can be spanned by the orthogonal wavelets
ψ j

k. Thus,V j andW j are related byV j = V j+1⊕W j+1. Because the spacesV j are
spanned by the scaling functions, they are called the scaling spaces, whereas theW j are
called the wavelet spaces because they are spanned by the wavelets. It turns out that
there are many examples of such multiresolution analysis ladders, corresponding to still
many orthonormal wavelet bases.
There exists an explicit recipe for the construction of thisψ. Sinceϕ ∈ V0 ⊂ V−1

and theϕ−1
n (x) =

√
2ϕ(2x− n) constitute an orthonormal basis forV−1, there exist

hn =
√

2〈ϕ,ϕ−1
n 〉 such that:

ϕ(x) = ∑
n∈Z

hn ϕ(2x−n). (2.52)

This latter equation is often referred to as thedilation equation. Also the waveletψ(x)
can be written as a linear combination of scaling functions of one resolution higher

ψ(x) = ∑
n∈Z

gn ϕ(2x−n). (2.53)
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Sinceψ(x) has to be orthonormal toϕ(x), the condition∑ngnhn = 0 has to be satisfied.
As a result, it then suffices to take

gn = (−1)n h−n+1 (2.54)

for all n. Eq. (2.53) is denoted as the wavelet equation and the coefficients{hn} and
{gn} as the filter coefficients. It is important to note that once either one ofϕ(x), ψ(x),
{hn} and{gn} is known, the rest are also determined via the Eqs. (2.52) - (2.54).
Combining Eq. (2.45b) and the fact thatV j andW j are related byV j = V j+1⊕W j+1

yields
⊕

j∈Z W j = L2(R). As a result any functionf (x) ∈ L2(R) can be written as

f (x) = ∑
j∈Z

∑
k∈Z

d j
kψ j

k(x), (2.55)

where due to the orthogonality of the wavelets

d j
k =

∫ ∞

−∞
dx f(x)ψ j

k(x). (2.56)

In practice there is a limit to how small the smallest structures and how large the largest
structures are. The smallest structures might be determined for example by the finest
grid in a numerical computation or the sampling frequency of a signal. Therefore, an
expansion would take place in a spaceV0 which can represent these smallest structures.
At the same time, because of the upper bound to the structure sizes, the splitting ofV0

in wavelet spacesW j can be truncated at levelJ, resulting inV0 = W1⊕W2⊕W3⊕
. . .⊕WJ⊕VJ. The projection can thus be written in two ways

P0 f (x) = ∑
k∈Z

s0
kϕ0

k(x)

= ∑
k∈Z

sJ
kϕJ

k(x)+
J

∑
j=1

∑
k∈Z

d j
kψ j

k(x),
(2.57)

where
sj
k =

∫ ∞

−∞
dx f(x)ϕ j

k(x) (2.58)

and
d j

k =
∫ ∞

−∞
dx f(x)ψ j

k(x). (2.59)

The wavelet transform converts one representation to the other. These coefficientssj
k

andd j
k are called scaling coefficients and wavelet coefficients respectively.

Line versus interval So far, the summations over the translationsk, e.g., in Eq. (2.57),
run over all integers, i.e., from−∞ to ∞. But in applications wavelets are often used on
an interval instead of on the whole line. For the transition from wavelets on the line to
wavelets on an interval, four different interesting solutions exist, viz.:

• adding zeros,

• periodizing,

• reflecting edges, and

• constructing special edge wavelets.
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The first solution, adding zeros, is actually the same as doing nothing at all. A func-
tion f (x) supported on an interval can always be extended to the whole line by putting
f (x) = 0 outside the interval. There are two disadvantages to this naive approach.
Firstly, such extensions may introduce discontinuities at the borders of the interval,
typically resulting in large wavelet coefficients for fine scales near these edges. Sec-
ondly, extending the interval, by adding zeros, results in the use of more, i.e. too many,
wavelets.
A second solution is to extend the interval on both sides with copies of itself. This is
equivalent to using periodized wavelets on the original interval. For (quasi) periodic
functions this is a very good solution. However, in case the function on the interval is
not periodic itself this method results in the same problem of having a discontinuity as
with adding zeros.
A third solution is reflecting at the edges. In this case, the function on the interval
is extended by mirroring it at the edges [Coh92, Coh93]. This is equivalent to using
folded wavelets on the original interval. The problem of the discontinuities has been
solved now, but this method has some drawbacks too. Firstly, the discontinuity has been
replaced by a discontinuity in the first derivative. Secondly, starting with an orthonormal
wavelet basis, this folding typically does not lead to an orthonormal wavelet basis on
the interval.
All drawbacks of the previous methods can be overcome by constructing some new
special wavelets for the edge wavelets. Meyer [Coh93, Mey92] constructed such edge
wavelets first, but his method still has the drawback of having more scaling functions
than wavelets at a certain resolution level. A better method, focused on the Daubechies
wavelets, has been suggested by Cohenet al [Coh93, Dau93a, Dau93b].
We have used the periodized wavelets and the special edge wavelets because they enable
the expansion of a function on the interval in an orthonormal basis on that interval. The
use of periodized wavelets is preferred where possible, because for the special edge
wavelets also special edge transform and operator coefficients have to be used, which
may result in errors on the boundaries.

Daubechies wavelets As mentioned above, there are many examples of multireso-
lution analysis ladders, corresponding to still many orthonormal wavelet bases. The
remaining degrees of freedom can be used to add extra useful properties. One of the
most known types of wavelets is the family of Daubechies wavelets. These Daubechies
wavelets are a family of wavelets which are orthonormal, have compact support and
where the other degrees of freedom are used for smoothness of the wavelets. In this
paragraph we construct these wavelets by requiring consecutively:

• Multi-resolution,
• Orthonormality,
• Compact support, and
• Smoothness.
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As we have seen above, multi-resolution requires that the scaling functions obey the
dilation equation

ϕ(x) = ∑
n∈Z

hnϕ(2x−n). (2.60)

Thus, the scaling functionϕ(x) is determined once the so-called filter coefficients{hn}
are known. Using this scaling function and the coefficients{hn} again, the correspond-
ing wavelets are defined as

ψ(x) = ∑
n∈Z

gnϕ(2x−n), (2.61)

where the coefficients{gn} are given by the relation

gn = (−1)nh2M−1−n, (2.62)

where 2M is the compact support length,i.e., the length of the interval where both the
wavelet and the scaling function may be non-zero. Thus, both the scaling functions and
the corresponding wavelets are determined once the filter coefficients{hn} are deter-
mined.

The first requirement on these filter coefficients comes from the orthonormality con-
straint on the scaling functions and the wavelets. This constraint consists of two parts.
Firstly, the scaling function should be normalized, and secondly, the scaling functions
should be orthogonal. Normalization of the scaling function means∫ ∞

−∞
dxϕ(x) = 1. (2.63)

Integrating the dilation equation and substituting this normalization constraint yields the
normalization constraint in terms of the filter coefficients

∑
n∈Z

hn = 2. (2.64)

The other part of the requirement is that the scaling functions are orthonormal, i.e.,∫ ∞

−∞
dxϕ(x)ϕ(x−k) = δk,0. (2.65)

Again, substituting the dilatation equation and integrating this yields the condition in
terms of the filter coefficients

1
2 ∑

n∈Z
hnhn−2k = δk,0. (2.66)

The next requirement, that the wavelets have compact support, means that the wavelets
and scaling functions are non-zero only in a finite interval. The length of this inter-
val depends on the number of non-zero coefficientshn, as can be seen again from the
dilation equation. In this way we can construct orthonormal wavelets with compact sup-
port. For example, a compactly supported wavelet with genus 2M is determined by 2M
non-zero filter coefficients{hn}2M−1

n=0 and is non-zero on the interval[0,2M] only. The
corresponding wavelet and scaling function will be called the Daubechies 2M wavelet
and scaling function, i.e.,2Mψ and2Mϕ respectively.

Thus, if we want to construct such compactly supported orthonormal wavelets and scal-
ing functions, we have Eq. (2.64) and Eq. (2.66) fork = 0..M− 1. These areM + 1
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Figure 2.2: Daubechies scaling functions and their corresponding wavelets for various
filter lengths. The Daubechies 2 wavelet at the top is also known as the Haar
wavelet.

equations with 2M unknowns, leavingM−1 degrees of freedom. ForM = 1 this means
that the wavelet is completely fixed. This wavelet is also known as the Haar wavelet
and is shown at the top of Figure 2.2. For higher values ofM, Daubechies used these
degrees of freedom to make the wavelet as smooth as possible by setting the firstM−1
moments of the wavelet equal to zero∫ ∞

−∞
dx xmψ(x) = 0, m= 1..M−1. (2.67)

In terms of the filter coefficients this requirement is given by

∑
n∈Z

(−1)nnmh2M−1−n = 0, m= 1..M−1. (2.68)

Together with the first two requirements we now have 2M equations and just as many
unknowns. E.g., in case of the Daubechies 6 wavelets the following set of equations is
obtained

h0 +h1 +h2 +h3 +h4 +h5 = 2

h2
0 +h2

1 +h2
2 +h2

3 +h2
4 +h2

5 = 2

h0h2 +h1h3 +h2h4 +h3h5 = 0

h0h4 +h1h5 = 0

−h1 +h2−h3 +h4−h5 = 0

−h1 +2h2−3h3 +4h4−5h5 = 0.

(2.69)

By solving this set of quadratic equations the filter coefficients are obtained and as a
result the scaling function and the wavelet are known too. The resulting filter coeffi-
cients for the first couple of Daubechies wavelets are given in Table 2.1. Plots of some
Daubechies wavelets and scaling functions are given in Figure 2.2.

Mexican hat wavelet The next wavelet we consider is the Mexican hat wavelet. Mex-
ican hat wavelets owe their name to their shape, which is shown in Figure 2.3. It is an
example of a wavelet that is known in closed form, viz., the Mexican hat wavelet is the
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M 1 2 3

h0 1 1
4 (1+

√
3) 1

16(1+
√

10+
√

5+2
√

10)

h1 1 1
4 (3+

√
3) 1

16(5+
√

10+3
√

5+2
√

10)

h2 0 1
4 (3−

√
3) 1

16(10−2
√

10+2
√

5+2
√

10)

h3 0 1
4 (1−

√
3) 1

16(10−2
√

10−2
√

5+2
√

10)

h4 0 0 1
16(5+

√
10−3

√
5+2

√
10)

h5 0 0 1
16(1+

√
10−

√
5+2

√
10)

Table 2.1:The filter coefficients for the 3 low-
est order Daubechies wavelets.

Figure 2.3: The Mexican hat wavelet, owing
its name to its shape.

second derivative of a Gaussian. Normalized to unity in theL2-norm this yields

ψ(x) = 2√
3
π−1/4(1−x2)e−x2/2. (2.70)

Having a closed form has the advantage that many operators on the wavelets can be
calculated analytically, what is very cost effective. However, these wavelets do not
have finite support. Related to that, in terms of the dilation equation such Mexican hat
wavelets result in infinitely many non-zero filter coefficients for a Gaussian as scaling
function. Furthermore, the Mexican hat wavelets and scaling functions do not form an
orthonormal set.

The reason that these Mexican hat wavelets are considered here is that they were one of
the first wavelets to be used in electronic structure calculations [Cho93].

Interpolets The last type of wavelets that will be considered are the so-called inter-
polating wavelets or interpolets for short. The interpolating wavelets described here are
based on the symmetric iterative interpolation process as introduced by Deslaurier and
Dubuc [Des89]. This process uses two positive integral parameter:b (a base) and 2M
(an even number of moving points). A functiong that is defined on the integers is ex-
tended to all integral multiples of 1/b: if r is an integer between 0 andb and if n is an
integer,g(n+ r/b) is defined as the valuep(n+ r/b) wherep is a Lagrange polynomial
of degree smaller than 2M such thatp(k) = g(k) for everyk ∈ [n−M + 1,n+ M]. By
iterating this construction an extensiong(t) is found for any rational numbert whose
denominator is an integral power ofb. This resultingg(t) is an uniformly continuous
extension on any finite interval whatever the baseb, the number of moving points 2M
and the initial valuesg(n) and hence it has a unique continuous extension to the reals.

By interpolating the Kronecker sequence at the integers using a baseb = 2 the interpo-
lets are constructed

ϕ(x) = ∑
k

ϕ(
k
2
)ϕ(2x−k). (2.71)

Such interpolets were constructed by Donoho [Don92].

There is a close connection between the Daubechies wavelets and these interpolets, viz.
the interpolating scaling functionϕ is the autocorrelation function of the Daubechies
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Figure 2.4: Various interpolets, differing in the order
2M of the polynomial span.

2M 2 4 6 8

h0 1 1 1 1

h1
1
2

9
16

75
128

1225
2048

h2 0 0 0 0

h3 0 − 1
16 − 25

256 − 245
2048

h4 0 0 0 0

h5 0 0 3
256

49
2048

h6 0 0 0 0

h7 0 0 0 − 5
2048

Table 2.2:The filter coefficients for
the four lowest order interpolets.

scaling function

ϕ(x) =
∫

dyϕDaub(y)ϕDaub(x+y). (2.72)

Derivation The interpolets can be derived in various ways. The first method is from
their desired properties. Interpolets are functions having the following properties

1. Dilation equation: ϕ(x/2) = ∑k∈Z hkϕ(x−k)

2. Interpolating / Cardinality : ϕ(k) = δk,0, ∀k∈ Z

3. Symmetry: ϕ(−x) = ϕ(x)

4. Compact support: ϕ(x) = 0, for |x|> 2M−1

5. Polynomial span: Any polynomial of degree 2M−1 can be represented exactly.

Just like for the Daubechies wavelets, the support length of the interpolets is related
with the number of non-zero filter coefficients in the dilation equation. The freedom
in choosing these filter coefficients is used for the cardinality and symmetry and subse-
quently to make them as smooth as possible, resulting in the polynomial span.
In terms of the filter coefficients the requirements yieldh2k = δk,0 for cardinality,h−k =
hk for symmetry, and∑k kmhk = δk,0 for the polynomial span. The remaining filter
coefficientshk can thus be calculated by solving

1 1 · · · 1
1 32 · · · (2M−1)2

1 34 · · · (2M−1)4

...
1 32M−2 · · · (2M−1)2M−2




h1
h3
...
...

h2M−1

=



1
2
0
...
...
0

 (2.73)

for the appropriate number of non-zero filter coefficients, i.e., the number of moving
points 2M. For 2M = 2, 4, 6 and 8, this yields the numbers shown in Table 2.2.
The interpolets2Mϕ corresponding to these filter coefficients have been plotted in Fig-
ure 2.4. The2ϕ interpolet is also known as the hat function or linear B-spline.
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Figure 2.5: Construction of an interpolet using the dilation equation. One interpolet,
with 2M = 4, is the weighted sum of 5 interpolets that are twice as narrow.

A second way to calculate the filter coefficients is via the Lagrange polynomials which
are used in the interpolation process. For−n∈ [−M +1,M] andr equal to 0 or 1, then

ϕ(n+
r
2
) = L−n(

r
2
), (2.74)

whereL−n denote the Lagrange polynomials and the filter coefficients are given via
hk = ϕ(k/2).

A third way to obtain the same values is via the autocorrelation function. Because of
Eq. (2.71) the filter coefficients can be obtained via

hk =
M−k

∑
n=−M+1

hDaub
n hDaub

k+n , for k = 1, . . . ,2M−1 (2.75)

from the Daubechies scaling filter coefficients.

So far, the interpolating scaling function has been discussed. In resemblance to the
orthogonal wavelet transforms, the interpolet transform represents a function using di-
lations and translations of scaling functions and wavelets (Eq. (2.57)). However, the
interpolating wavelets, interpolets for short, are non-orthogonal and the scaling coeffi-
cients are obtained from linear combinations of samples rather than from integrals, i.e.,
s0
k = f (k).

A striking difference with the Daubechies wavelets is that the filter coefficient for the
waveletsψ(x) are all zero except forg0. Because of this the wavelets are equal to
the scaling functions. And thus the interpolet transform results in a true combination
of dilations and translations of one single mother function. Figure 2.5 shows how the
interpolet at one level is the weighted sum of interpolets at one level lower.

In Section 2.4 the advantages and disadvantages of the different wavelets, such as ac-
curacy and computational cost, are compared in actual electronic structure calculations.
But first we focus in the following section on algorithms needed to use wavelets as a
basis set for calculations.
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2.3 Wavelet algorithms

The first two algorithms needed to use wavelets as a basis set for calculations are con-
cerned with the transition between real space and scaling space, i.e., respectively the
projection of a function onto the scaling space and the reconstruction in real space.
This is followed by the algorithm forming the basis of the use of wavelets: the fast
wavelet transform. This algorithm, and its inverse, transform respectively from the scal-
ing space to the wavelet space and back and are linear in time with respect to the number
of wavelets to be used. The actual calculations will be performed in this wavelet space.
For this purpose algorithms are discussed for performing local operations, like addition
or multiplication of two functions, and non-local operations, like differentiation, on the
wavelet coefficients. Also it is shown how integration is performed by summing over
(part of) the wavelet coefficients. And last but not least it is shown how the wavelet
basis can be pruned without invalidating any of the previous algorithms.

2.3.1 Projection and reconstruction

Projection The first step is the projection from real space to scaling spaceV0. This
corresponds to calculating the expansion coefficientss0

k in Eq. (2.57), i.e,

P0 f (x) =
N

∑
k=1

s0
kφ0

k(x). (2.76)

This step differs for orthogonal wavelets and for interpolating wavelets. For interpolat-
ing wavelets the scaling coefficients are obtained from samples whereas for orthonormal
wavelets from inner products. Because of the cardinality property of the interpolating
wavelets, the scaling coefficients0

k is equal to the functional value at the position where
the interpoletφ0

k is centered, i.e.,s0
k = f (k). For orthogonal wavelets on the other hand,

the scaling coefficients are obtained using inner products

s0
k =

∫
dxφ0

k(x) f (x). (2.77)

However, if f (x) is not known as a continuous function but only at some discrete grid
points, several methods exist to approximate the scaling coefficients. Four such meth-
ods are discussed, which will be called the direct method, the sum method, the moments
method, and the inverse method respectively. At the end, the accuracy and the compu-
tational cost of the four methods are compared.

Direct method The simplest method is what we will call the direct method. Using this
method, the values of the scaling coefficients equal the functional values of the function
f at the corresponding grid point.

s0
k = f (k). (2.78)

This is the same method as used for interpolating wavelets. However, for wavelets that
do not have the cardinality property this method is usually a rather rough approximation.
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Sum method The scaling coefficientss0
k are given by the integral in Eq. (2.77). A

well-known method of approximating an integral is to replace it by a sum. The scaling
coefficients are thus approximated by the following summation

s0
k =

∞

∑
l=−∞

φ0
k(l) f (l). (2.79)

In case of wavelets with compact support the infinite sum will reduce to a finite sum
with 2M− 1 terms, where 2M is the support length of the wavelet, still resulting in
a computationally efficient algorithm which is linear in the number of grid pointsN
and in the support length of the waveletsM, O(MN). Moreover, it will give a better
approximation than the previous (direct) method.

Moments method The third method uses the moments of the scaling function

mk =
∫ ∞

−∞
dx xkφ0

k(x). (2.80)

A quadrature matrixC is constructed using these moments in such a way that the scaling
coefficients for polynomialsp(x) up to orderM−1 can be calculated exactly [Jam93].
Thus, ∫ ∞

−∞
dx p(x)φ0

k(x) =
M−1

∑
l=0

cl p(l +k), (2.81)

where the coefficients{cl}
M−1
l=0 can be found by solving the following system of linear

equations for the coefficientscl∫ ∞

−∞
dx xmφ(x) =

M−1

∑
l=0

lmcl , (2.82)

for m= 0. . .M−1. Using these coefficients{cl}
M−1
l=0 , the scaling coefficients are hence

approximated by

s0
k =

M−1

∑
l=0

cl f (l +k). (2.83)

The number of terms in this sum is again proportional to the support length of the scaling
functions (and wavelets) used. The transform scales also linear with the number of grid
points, thus the order is againO(NM) like for the sum method.

Inverse method The fourth method is the most accurate for most wavelets, with the
drawback of also being the computationally most expensive one. Its derivation uses
Fourier-space methods [Dau92b]. Given the values of the functionf on the grid one
can write the Fourier series

∞

∑
n=−∞

f (n)e−inq =
∞

∑
n=−∞

∞

∑
l=−∞

s0
l φ(n− l)e−inq

=

(
∞

∑
l=−∞

s0
l e−ilq

)(
∞

∑
m=−∞

φ(m)e−imq

)
.

(2.84)
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The{s0
l } are thus the Fourier coefficients

s0
l = 1

2π

∫ 2π

0
dq

(
∞

∑
n=−∞

f (n)e−inq

)(
∞

∑
m=−∞

φ(m)e−imq

)−1

. (2.85)

In this method the scaling coefficients are thus approximated by

s0
k =

∞

∑
n=−∞

ak−n f (n), (2.86)

where

aν = 1
2π

∫ 2π

0
dq

eiνq

∑∞
m=−∞ φ(m)e−imq. (2.87)

The difficulty now boils down to evaluating the coefficientsaν. These coefficients will
typically decay as a function ofν, though rather slow. The computation of the scaling
coefficients thus becomes more expensive, but by using a certain threshold it remains
linear in the number of grid points.

Reconstruction The reconstruction of the function from the scaling coefficients is
straightforward. The functioñf is given by a linear combination of the scaling functions,
i.e., f̃ (x) = ∑s0

kφ0
k(x). As a result, the function values on the gridf̃ (n) are given by

f̃ (n) =
∞

∑
k=−∞

s0
kφ(n−k), (2.88)

where we only need to know the functional value of the scaling functions on the grid
points, i.e., on the integer values. For orthonormal wavelets the number of terms 2M−1
in the summation is thus once again related to the support length of the wavelets.
Because of the cardinality of the interpolets the summation has unit length for these
wavelets, i.e., the functional value is equal to the scaling coefficient of the scaling func-
tion centered at that point.

Comparison Which method to choose for depends on the type of wavelets and the
desired accuracy. Because of the cardinality of the interpolets the reconstruction simpli-
fies to an identity operation. Therefore, the inverse operation, i.e. the projection, should
also be an identity operation, making the direct method the most appropriate for this
kind of wavelets.
For the orthonormal Daubechies wavelets a comparison between the four different meth-
ods is made by means of a small numerical example for periodized wavelets. In this
example we will expand two functions in terms of the Daubechies 6 scaling functions
φ0

k(x). The first function considered is one period of a sine, i.e.,f (x) = sin(x) on the
interval 06 x< 2π. The second function is a Gaussian,g(x) = exp(−x2), on the interval
−
√

5/2 6 x <
√

5/2. Contrary tof , the functiong is not periodic. However, since the
function is almost zero near both borders it can be extended quasi-periodic.
We will consider these functions on an equally spaced grid with 32 grid points on their
respective intervals. The scalej = 0 is chosen such that at each grid point one scaling
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εf εg n

Direct method 1.13e-1 6.34e-2 1

Moments method 5.96e-4 8.04e-4 3

Sum method 1.60e-4 4.80e-4 4

Inverse method 7.73e-10 4.07e-10 15

Table 2.3:The errors as defined in Eq. (2.89), which show the difference in accuracy of
the four different methods for two different functions compared to the computational
cost of each of the methods.

function is centered. Using all four methods the scaling coefficients corresponding to
these scaling functions are calculated, resulting in 32 scaling coefficients each. How
accurate the various approximation methods work can be seen by reconstructing the
function f̃ from these scaling coefficients according to Eq. (2.88) and subtracting the
result from the original functionf .

A way to compare the accuracy is by defining the error as the average distance in the
L2-norm between the reconstructed function and the original function, i.e.,

εf =
√

1
N ∑

k

| f̃ (k)− f (k)|2. (2.89)

The resulting errors are tabulated in Table 2.3. The cost of the reconstruction step is
a summation of four terms per grid point, independent of the projection method. The
costs of the various projection methods differ. These costs are given in the last column
of the same table as the number of terms (n) in the summation.

2.3.2 Fast wavelet transform

Orthonormal wavelets Using the projection as described in the previous section, the
scaling coefficients at the finest level, i.e. level 0, were calculated. This scaling space
can be decomposed into two parts,V1 andW1 such thatV0 = V1⊕W1. As a result, the
projection can also be written as the sum of a projection onV1 and a projection onW1

P1 f (x) = ∑
k

s1
kφ1

k(x) and Q1 f (x) = ∑
k

d1
kψ1

k(x). (2.90)

Using the dilation equation, the coefficientss1
k andd1

k can be calculated from the coeffi-
cientss0

k by

sj
k =
√

2
2M−1

∑
l=0

hl s
j−1
2k+l and d j

k =
√

2
2M−1

∑
l=0

gl s
j−1
2k+l . (2.91)

In this way, out of theN valuess0
k on the finest scale,N2 scaling coefficientss1

k and N
2

wavelet coefficientsd1
k can be calculated. In case of a periodized wavelet with four filter
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coefficients this can be depicted by the following matrix multiplication:

sj
0

sj
1

sj
2
...

sj
N
2−1

d j
0

d j
1
...

d j
N
2−1



=



g0 g1 g2 g3 0 0 0 0 · · · 0 0 0
0 0 g0 g1 g2 g3 0 0 · · · 0 0 0

...
...

...
0 0 0 0 · · · 0 0 0 g0 g1 g2 g3
g2 g3 0 0 · · · 0 0 0 0 0 g0 g1
h0 h1 h2 h3 0 0 0 0 · · · 0 0 0
0 0 h0 h1 h2 h3 0 0 · · · 0 0 0

...
...

...
0 0 0 0 · · · 0 0 0 h0 h1 h2 h3
h2 h3 0 0 · · · 0 0 0 0 0 h0 h1





sj−1
0

sj−1
1

sj−1
2
...
...
...
...

sj−1
N−2

sj−1
N−1


(2.92)

Now we introduce the following notation for the wavelet coefficientssj
k andd j

k. TheN
coefficientss0

k are stored in a vectord0(i : 06 i < N). After one step of the wavelet trans-
form theN

2 scaling coefficientss1
k are stored together with theN2 wavelet coefficientsd1

k
in the vectord1, where the scaling coefficients constitute the first halfd1(i : 0 6 i < N

2 )
and the wavelet coefficients the second halfd1(i : N

2 6 i < N). Using this notation the
above matrix multiplication can be written asd1 = T(1)d0.
A second step can be performed by decomposingV1 into V2 andW2 in the same way,
whereN

4 scaling coefficientss2
k and N

4 wavelet coefficientsd2
k are calculated from theN2

scaling coefficientss1
k.

By introducing the vectord j in which the coefficientssj
k, d j

k, . . ., d2
k , andd1

k are stored
in this order, the coefficientss2

k andd2
k can be calculated using the matrix multiplication

d2 = T(2)d1. Only the scaling coefficients, which form the first half of the vectord1,
have to be transformed whereas the wavelet coefficients in the second half should remain
untouched. The matrixT(2) is thus related to matrixT(1) by

T( j+1)
n =

[
T( j)

n
2

0n
2

0n
2

I n
2

]
. (2.93)

Correspondingly,V2 can be decomposed further by repeatedly using

d j = T( j)d j−1. (2.94)

When the number of grid pointsN equals 2J this can be repeatedJ times until only one
coefficientsJ

0 is left, resulting in

V0 = VJ⊕WJ⊕WJ−1⊕ . . .⊕W1. (2.95)

The total wavelet transform is the combination of allJ steps, and in its matrix notation
T it is the product of the matrices for the separate steps

T = T(J) · · ·T(2)T(1), (2.96)

resulting in the complete transformation

dJ = Td0. (2.97)

In algorithmic form the total wavelet transform can be written as

34



Wavelet algorithms

for j = 0 toJ−1 do
n = N/2 j

d(i : 0 6 i < n) = T(1)
n d(i : 0 6 i < n)

end for

Note that the transform can continue till only one scaling coefficient is left at the highest
level. However, the transform can be stopped at any intermediate level as well.
The cost of one step of the wavelet transform is 2Mn multiply-adds, wheren is the
length of the vector. In the first step the length of the vector is equal toN and in all
consecutive steps this length halves. The total cost of the wavelet transform is thus,
2M ∑J−1

j=0 2− jN what is bounded by 4MN. The transform is thus linear in the number of
grid points, accounting for the namefast wavelet transform. (For comparison, the fast
Fourier transform is orderN logN).
The inverse wavelet transformcan reconstruct all scaling coefficients at the finest level
s0
k from the wavelet coefficients. For the orthonormal wavelets, this inverse wavelet

transform is equal to the transpose of the wavelet transform. In formula form this yields
for the coefficients

sj−1
2n =

M

∑
k=1

h2ks
j
n−k +

M

∑
k=1

g2kd
j
n−k (2.98)

and

sj−1
2n−1 =

M

∑
k=1

h2k−1sj
n−k +

M

∑
k=1

g2k−1d j
n−k. (2.99)

Interpolating wavelets For interpolets the situation is very much alike. However, the
absence of orthonormality implies that Eq. (2.95) does not hold any more. Still, the
function can be written as

f (x) =
J

∑
k

sJ
kφJ

k(x)+
J

∑
j=1

∑
k

d j
kψ j

k(x). (2.100)

Because of the cardinality each coefficient is directly related to one grid point. Fig-
ure 2.6a shows how the grid points are assigned to a certain level. In this case the
function f is known at 24 equally spaced grid points. At each grid point a scaling func-
tion φ0

k is centered, resulting in 24 scaling coefficientss0
k. In every stepj of the wavelet

transform the even numbered points go toW j and the odd numbered points toV j .

The interpolet coefficients at levelj, i.e. sj
k andd j

k, can be derived from the interpolet

coefficients one level lowersj−1
k , where the coefficients are given by

sj
k = sj−1

2k+1

d j
k = sj−1

2k −
M−1

∑
l=−M

h2l+1sj−1
2k+2l+1.

(2.101)

In vector notation, this interpolet transform can again be written in terms of matrix
multiplications. But for interpolets it is easier to split one step of the transform in
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(a) (b)

Figure 2.6: (a) Decomposition of the grid in different levels.(b) One step of the interpolet
transform is split in two parts, a computation part and a permutation part.

two parts, a calculational partQ and a permutation partP. One step of the interpolet
transform is thus

T(1) = QP. (2.102)
This is demonstrated in Figure 2.6b. The calculational part is

QN =

[
I N

2
0N

2

−H N
2

I N
2

]
(2.103)

whereIn is the identity matrix of sizen×n andH is a band diagonal matrix containing
the coefficientshl for odd l

H =



h1 h3 0 · · · 0 h3 h1

h1 h1 h3 0 · · · 0 h3

h3 h1 h1 h3 0 · · · 0
...

...
0 · · · 0 h3 h1 h1 h3

h3 0 · · · 0 h3 h1 h1


. (2.104)

The permutation matrixP orders the coefficients in such a way that the scaling coeffi-
cients form the first half of the vector and the wavelet coefficients the second half.

The total interpolet transformT is again the product of these matrices

T = T(J) · · ·T(2)T(1). (2.105)

Given the interpolet transform, three other transforms are determined, viz. the inverse
interpolet transform, the transpose interpolet transform and the inverse transpose in-
terpolet transform. The latter two transforms were not discussed for the Daubechies
wavelets because due to the orthonormality of these wavelets the transpose transform is
equal to the inverse transform and as a result the inverse transpose transform is equal to
the original transform.

One step of the inverse interpolet transform is of the form

(T(1))−1 = P−1Q−1. (2.106)

Q−1 is of the same form asQ but now with H instead of−H. The whole inverse
interpolet transform consists of doing this for all levels, starting from the highest level
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towards the lowest
T−1 = T(1)−1

T(2)−1
· · ·T(J)−1

. (2.107)
For interpolating wavelets the transpose transform is no longer equal to the inverse trans-
form. The transpose interpolet transform is also interesting as we will see later. Whereas
the interpolet uses neighboring values to update is own value, the transpose interpolet
transform spreads its value to neighboring coefficients. This can be seen as follows

QT
N =

[
I N

2
−HT

N
2

0N
2

I N
2

]
, (2.108)

since now coefficients from the lower half of the vector contribute to coefficients in the
upper half. The whole transpose interpolet transform consists of doing this for all levels,
starting from the highest level towards the lowest.
The set of transforms is completed by the inverse transpose interpolet transform

(T(1))−1T
= Q−1T

P, (2.109)

since the transpose ofP is equal to its inverse. The whole inverse transpose interpolet
transform consists of doing this for all levels, starting from the lowest level towards the
highest.
Contrary to orthonormal wavelets, the filter for obtaining the scaling coefficients at a
higher level has unit length. Because of this the values of the scaling coefficients do not
change on going from one level to the next. This also implies that the wavelet coeffi-
cients in all levels can be calculated directly from the values of the scaling coefficients
in V0 with only 4M−2 multiply-adds, thus simplifying parallelization.

2.3.3 Integration

The integral of a function over the whole space is an often used operation. The integra-
tion

∫
dx f(x) becomes in terms of wavelets

∑
k

sJ
k

∫
dxφJ

k(x)+
J

∑
j=1

∑
k

d j
k

∫
dxψ j

k(x). (2.110)

The orthonormal Daubechies wavelets have the properties∫
dxφ(x) = 1 and

∫
dxψ(x) = 0, (2.111)

reducing the integral off to
2J ∑

k

sJ
k. (2.112)

On the other hand, interpolating wavelets have the properties∫
dxφJ(x) = 2J and

∫
dxψ j(x) = 2 j−1, (2.113)

reducing the integral off to

2J ∑
k

sJ
k +

J

∑
j=1

2 j−1∑
k

d j
k. (2.114)
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2.3.4 Operators

Local operators Local operators only depend on the values of the functions at the
point itself. Among the simplest such operators are addition and subtraction of two
functions. These operators amount to simply adding or subtracting the wavelet coeffi-
cients, e.g.,

f (x)+g(x) = ∑
k

(
f sJ

k + gsJ
k

)
φJ

k(x)+∑
j
∑
k

(
f d j

k + gd j
k

)
ψ j

k(x)

= ∑
k

f+gsJ
kφJ

k(x)+∑
j
∑
k

f+gd j
kψ j

k(x).
(2.115)

For most other local operations the functional values need to be known. These can be
obtained easily for interpolets. Because of the cardinality of the interpolets the func-
tional values are equal to the value of the scaling coefficient of the interpolet centered at
those points. Thus, an inverse interpolet transform has to be performed. Subsequently
the operation can be performed on the functional values, followed by the interpolet
transform to obtain the result back to wavelet space.
For other wavelets these operations can also be performed in real space. However, an
extra reconstruction and projection step have to be included. This is not a problem itself,
but, as we will see later, this will make it impossible to prune the wavelet basis. To be
able to work with a pruned wavelet basis for such wavelets, many more operators have
to be dealt with in the same way as with the non-local operators.

Non-local operators Examples of non-local operators that we need are the over-
lap, the derivative and the second derivative. All these operators are handled in the
same manner. Beylkin [Bey92] showed how these operators can be represented in the
Daubechies wavelet basis, but this same method can also be used for the interpolets.
The method will be demonstrated using then-th derivative operator. For calculating the
n-th derivative, we have to calculate the coefficients

L0
k = 〈φ(x−k)| dn

dxn |φ(x)〉=
∫

dxφ(x−k)
dn

dxnφ(x). (2.116)

By substituting the dilation equation one obtains the recursive relation

L0
k =

∫
dxφ(x−k)

dn

dxnφ(x)

= ∑
l

∑
l ′

hl hl ′

∫
dxφ(2x−2k− l)

dn

dxnφ(2x− l ′)

= 2n−1∑
l

∑
l ′

hl hl ′

∫
dyφ(y−2k− l)

dn

dynφ(y− l ′)

= 2n−1∑
l

∑
l ′

hl hl ′L
0
2k+l−l ′,

(2.117)

and from the moments one obtains

∑
k

knL0
k = (−1)nn!. (2.118)
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I2 I4 I6 D6 I2 I4 I6

L0
0 -2 − 20

9 − 600888786024221
253622166763700 − 295

56 L+
1 0 − 1

8 − 24567315301808903
140242913333655552

L0
1 1 9

8
18912324450745487
15582545925961728

356
105 L+

3 0 1
8

45701663340631
229155087146496

L0
2 0 0 840330704

22825995008733 − 92
105 L+

5 0 0 − 413396361927385
17530364166706944

L0
3 0 − 1

72 − 426200894323013
11686909444471296

4
35 L+

7 0 0 − 216039286320463
280485826667311104

L0
4 0 0 4214962498727

547823880209592
3

560 L+
9 0 0 24553237019

261891528167424

L0
5 0 0 − 1106268006449

3682849614854400 0 L+
11 0 0 − 104802013

243477280093152

L0
6 0 0 − 840330704

22825995008733 0 L+
13 0 0 − 9573

81159093364384

L0
7 0 0 71096253079

31165091851923456 0

L0
8 0 0 − 25528

2536221667637 0

L0
9 0 0 − 28719

10388363950641152 0

Table 2.4:The second derivative coefficients for the three lowest order interpolets (I) and
the Daubechies (D) 6 wavelets.

Because of the compact support of the wavelets, most of these coefficients are equal to
zero. The number of elements that can be non-zero depends on the wavelet chosen. For
interpolets the non-zero elements areL0

−4M+3 . . .L0
4M−3 and for Daubechies wavelets

L0
−2M+2 . . .L0

2M−2. Because of symmetry it also holds thatL0
−k = (−1)nL0

k. Solving
Eqs. (2.117) and (2.118) for the second derivative,n = 2, results for the three lowest
order interpolets in the values shown at the left hand side in Table 2.4. For the two
lowest order Daubechies wavelets no second derivative exists. For the Daubechies 6
wavelets the result is shown in the same table.

If we use only wavelets at one level, these coefficientsL0
k suffice. Namely, the matrix

that represents the operator inV0 is a band diagonal matrixL0 with matrix elements
l i j = L0

i− j . The action of the operator is calculated asp0 = L0d0 However, when we
have wavelets at two levels, coefficients for between the levels are needed as well, i.e.,

αk = 〈ψ(x−k)| dn

dxn |ψ(x)〉, (2.119)

βk = 〈ψ(x−k)| dn

dxn |φ(x)〉, and (2.120)

γk = 〈φ(x−k)| dn

dxn |ψ(x)〉. (2.121)

Using the dilation equation these inter-level coefficients can be calculated from the intra-
level coefficientsL0

k as

αk = ∑
l

∑
l ′

gl gl ′L
0
2k+l−l ′, (2.122)

βk = ∑
l

∑
l ′

gl hl ′L
0
2k+l−l ′, and (2.123)

γk = ∑
l

∑
l ′

hl gl ′L
0
2k+l−l ′. (2.124)
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Using these coefficients, the matrix for then-th derivative becomes

L1
N =

[
21−nL0

N
2

CN
2

BN
2

A N
2

]
, (2.125)

where the elements of the matricesA, B andC areai, j = αi− j , bi, j = βi− j andci, j = γi− j

respectively.

For interpolets whereψ(x) = φ(2x) this simplifies to the inter-level coefficients

L+
k = 〈φ(x−k)| dn

dxn |φ(2x)〉, (2.126)

which can be calculated from the intra-level coefficientsL0
k as

L+
k = ∑

l

hl L
0
k−l (2.127)

and the matrix

L1
N =

[
21−nL0

N
2

L+
N
2

L+
N
2

Leven
N
2

]
, (2.128)

whereleven
i, j = L0

2(i− j). The resulting coefficientsL+
k for the second derivative are given

in Table 2.4 as well for the lowest order interpolets, whereL+
−k = L+

k .

In case there are more levels, matrix coefficients for interactions between all different
levels are needed. These can all be derived from the coefficientsL0

n in the same way
using the dilation and the wavelet equation. However, another way to construct the
matrix is by using

〈d0|L0|d0〉= 〈T−1dJ|L0|T−1dJ〉

= 〈dJ|T−1T
L0T−1|dJ〉

= 〈dJ|LJ|dJ〉,

(2.129)

yielding

LJ = T−1T
L0T−1. (2.130)

However, the more levels are used, the wider the wavelets become and as a result the
more overlap with other wavelets and thus the larger the number of non-zero coeffi-
cients, resulting in a matrix for the operation that lost its sparsity, resulting in a quadratic
scaling behavior.

An alternative way to calculatepJ = LJdJ can be constructed by splitting the wavelet
transform in two parts

T = RT(1), (2.131)
where

RN = T(J)
N · · ·T

(2)
N =

[
T N

2
0N

2

0N
2

I N
2

]
, (2.132)
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Substituting this one obtains

LJ
N = R−1

N
T
T(1)

N

−1T
L0

NT(1)
N

−1
R−1

N

=

[
T−1

N
2

T
0N

2

0N
2

I N
2

][
21−nL0

N
2

CN
2

BN
2

A N
2

][
T−1

N
2

0N
2

0N
2

I N
2

]
(2.133)

= 21−n

[
LJ−1

N
2

0N
2

0N
2

0N
2

]
+

[
0N

2
0N

2

0N
2

A N
2

]
+

[
0N

2
T−1

N
2

T
CN

2

0N
2

0N
2

]
+

[
0N

2
0N

2

BN
2
T−1

N
2

0N
2

]
.

This equation can be used to create an alternative approach, which uses only interac-
tions with neighboring levels combined with the wavelet transform, resulting in a linear
scaling scheme. The whole matrix is split into four parts. The latter two are neighbor-
ing level interactions, viz., the fourth one is the towards lower interaction and the third
one the towards higher interaction. The second one is the intra-level interaction for the
finest wavelets, whereas the first part is the original problem but now for the first half
of the wavelet coefficients. This can be used to construct the following algorithm for
pJ = LJdJ:

pJ(i : 0 6 i < N/2J) = L0dJ(i : 0 6 i < N/2J)
for j = J to 1do

pJ(i : N/2 j 6 i < N/2 j−1) = Ad j(i : N/2 j 6 i < N/2 j−1)
pJ(i : N/2 j 6 i < N/2 j−1)+ = Bd j(i : 0 6 i < N/2 j)
t j(i : 0 6 i < N/2 j) = Cd j(i : N/2 j 6 i < N/2 j−1)
d j−1 = T( j)−1

d j

end for
for j = 2 toJ do

t j+ = T( j)−1T
t j−1

end for
pJ+ = tJ

The special case for interpolets is obtained by substituting Eq. (2.128) instead of Eq.
(2.125), i.e., substituting everywhereB andC by L+ and substitutingA by Leven.

This new operator can be used directly to calculate the kinetic energy (e.g. Eq. (2.23))
Ek = 〈d0|L0|d0〉

= 〈dJ|LJ|dJ〉.
(2.134)

But to use it to calculate the second derivative, an extra transform is needed. To calculate
the result in wavelet spaceW1⊕W2⊕W3⊕ . . .⊕WJ⊕VJ one has to calculate

TL 0|d0〉= TL 0|T−1dJ〉
= TL 0T−1|dJ〉
= TTTLJ|dJ〉.

(2.135)

Thus, only for orthonormal wavelets, whereTT = T−1, LJ|dJ〉 yields directly the result
of the operator in wavelet space. For other wavelets, like the interpolets, the result first
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2M 2 4 6 2 4 6

S0
0

2
3

56264
70245

67751983439382433
80022904342005702 S+

1
1
2

239171
421470

1085441555078573078431
1843727716039811374080

S0
1

1
6

19253
140490

10401555307753158173
87796557906657684480 S+

3 0 − 7487
107040 − 10511478421687078501

102429317557767298560

S0
2 0 − 2827

70245 − 10636019205366151
200057260855014255 S+

5 0 16673
6743520

2656045574287972939
184372771603981137408

S0
3 0 6283

2247840
3885507748820613551

307287952673301895680 S+
7 0 1

210735 − 106114710840853271
216909143063507220480

S0
4 0 − 16

210735 − 1423693615386019
1028865912968644740 S+

9 0 0 − 2186739499472653
136572423410356398080

S0
5 0 − 1

6743520
19214162612610613

184372771603981137408 S+
11 0 0 − 19610542057

800229043420057020

S0
6 0 0 − 179398920064

85738826080720395 S+
13 0 0 448593

266743014473352340

S0
7 0 0 − 2232277564897

24101015895945246720

S0
8 0 0 − 9569984

66685753618338085

S0
9 0 0 − 1345779

136572423410356398080

2M 2 4 6 2 4 6

D0
0 0 0 0 D+

1 − 1
2 − 41719

66528 − 601842755183958511
919737224275161600

D0
1 − 1

2 − 3659
5280 − 21573383441499121

27870824978035200 D+
3 0 1307

24640
2140389637385939
29198007119846400

D0
2 0 731

6930
9557878635178
54435205035225 D+

5 0 − 4241
665280 − 5754566124347879

367894889710064640

D0
3 0 − 481

73920 − 701118554033057
23889278552601600 D+

7 0 − 1
41580

589497248444887
334449899736422400

D0
4 0 4

10395
3212112203957

1026492437807100 D+
9 0 0 128675668980953

3678948897100646400

D0
5 0 1

665280 − 666591477947
1967352351390720 D+

11 0 0 12644177
62211662897400

D0
6 0 0 2835533248

163305615105675 D+
13 0 0 1349

48386848920200

D0
7 0 0 478319328577

1226316299033548800

D0
8 0 0 43168

18145068345075

D0
9 0 0 4047

12387033323571200

Table 2.5:The overlap (S) and first derivative (D) coefficients for the three lowest order
interpolets.

has to be multiplied byTTT .
Exactly in the same way the coefficients of the overlap matrixS and the first derivative
D can be calculated, wheren equals zero and unity respectively. These coefficients are
shown in Table 2.5 for the lowest order interpolets. For the overlap coefficients holds
Sx
−k = Sx

k and for the first derivative coefficientsDx
−k =−Dx

k.

2.3.5 Pruning

So far the number of wavelets used in an expansion is equal to the number of scaling
functions used at the finest scale and thus equal to the number of grid points where the
function f was known. However, we want the basis to be as small as possible to store
the function efficiently and to be able to perform efficient calculations.
The idea of the wavelet transform is that the highest scaleVJ gives a rough approxi-
mation whereas the wavelet levelsW j add more and more levels of detail. In regions
where this detail is not needed the corresponding wavelet coefficientsd j

k will be (close
to) zero. As a result these coefficients can be omitted, i.e., the wavelet expansion can be
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truncated by eliminating elements of the basis. One is said to be working in a truncated
basis when one works within the subspace formed by the remaining basis elements.
Another word for this truncation of the expansion is pruning.

A criterion is needed to determine which elements could be eliminated. The most
straightforward criterion is to determine a cut-off value. All elements smaller than this
cut-off value should then be left out. This results in a compact representation of the func-
tion that can be used for example to compress images. This is used in the JPEG2000
wavelet compression (ISO 15444), which can compress images up to 200 times with no
appreciable degradation in quality. By adding again the zeros and an inverse transform
the original image is retained

However, when calculations have to be performed on the compressed data, the situation
becomes more complex. The scale and translation of each wavelet left in the pruned
basis are known, thus all the elements of the matrix representing an operator in this
basis can be calculated. As shown in the previous subsection this results in a scheme
that is no longer linear in the number of wavelets used.

The alternative described in the same subsection uses a transform combined with only
neighboring level interactions. However, if during this transform all elements that were
eliminated have to be filled in again the advantage of pruning is gone. However, for
interpolating wavelets this is not necessary if we lay some restrictions on the pruning.

Not all elements smaller than the cut-off can just be left out. Namely, it might be needed
by some coefficients at lower levels to be able to do the inverse transform or some
other operation. Because we need to know the neighboring coefficients to perform the
transforms and to calculate the action of operators, it is convenient to regard regions
of coefficients that we want to keep and other parts that can be neglected, instead of
looking at individual coefficients, although the regions could in principle have unity
width. These regions are also necessary to serve as a surrounding box if coefficients at
a finer level are needed.

Thus, we get various levels, and in every level (small) arrays, containing part of the
original array. This will be demonstrated first for 1D but can be extended to higher
dimensions, what will be discussed later on. In Ref. [Lip98] this is called the good basis
condition for synthesis and reconstruction.

The idea of pruning is shown in Figure 2.7. Part a shows first the coefficients needed if
only one level is used. In case of this exampleN coefficients are needed. Subsequently,
the coefficients needed after the wavelet transform, if two levels are used, is shown.N/2
scaling coefficients are needed, the open circles, to give a rough approximation of the
function. The detail is added usingN/2 wavelet coefficients, the filled circles. Part b of
the figure shows that when the detail is not needed everywhere, wavelet coefficients can
be left out, in this case leaving wavelet coefficients in two small regions.

If only one level is used, we thus need one large array to store the coefficientss0
k. After

the wavelet transform and omitting the unnecessary wavelet coefficients we have various
levels, each containing one or more smaller arrays with coefficients at that level in some
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(a) (b)

(c) (d)

Figure 2.7: (a) In one step of the wavelet transform N scaling coefficients are converted
to N/2 coefficients of wider scaling functions (open circles) and N/2 wavelet co-
efficients (filled circles).(b) The wavelet coefficients can also be added only there
where necessary.(c) The coefficients are then stored in separate arrays.(d) Adding
an extra level of detail somewhere boils down to adding just one extra array.

part of the space. This is shown in Figure 2.7c.
When more detail is needed in some region extra levels can be added. In the first repre-
sentation, using only one level, this means that we have to take twice as narrow scaling
functions, which would double the number of coefficients necessary. In the second rep-
resentation this means adding an extra level and in this level only a small number of finer
wavelets at the position where necessary. Thus only a small array is added as shown in
Figure 2.7d.
Adding higher resolution in a limited region using an extra level thus adds only a few
basis functions compared to doubling the number of basis functions when using only
one level of finer wavelets. In higher dimensions the gain is even larger because inn-
dimensional space the number of basis functions increases as 2n. An example of good
bases for interpolets in 2D and 3D (with M=2) are shown in Figure 2.8.

2.3.6 Higher dimensions

So far everything has been discussed for the one dimensional case. We are interested in
such one dimensional calculations, but our main interest is in higher dimensional calcu-
lations, like 2D quantum dots and 3D molecular systems. For such calculations higher
dimensional wavelets are needed. Such higher dimensional wavelets can be obtained
in several ways. One way is to derive higher dimensional wavelets in a way analogous
to the one dimensional wavelets we have seen above. Another way is to construct the
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(a) (b)

Figure 2.8: A good grid decomposition in(a) 2D and(b) 3D. In a good grid decompo-
sition finer levels of detail are only possible if the coarser levels also exist around
that position.

higher dimensional wavelets from the one dimensional wavelets by means of tensor
products. In 3D, the wavelet can then be written as

ψ(x,y,z) = ψ(x)ψ(y)ψ(z). (2.136)

The construction of such higher dimensional wavelets can be done in two ways; as a
tensor product of 1D multiresolution analyses or as a tensor product of 1D wavelets. The
main difference between these two methods is that in the formerx, y andz are dilated
simultaneously, whereas in the latterx, y andzare dilated separately. We have chosen to
use the latter method, because it has the advantage that the higher dimensional wavelet
transform can be performed by consecutive 1D transforms in the different directions.
All algorithms discussed so far can then be used as well for these higher dimensional
wavelets.

2.4 Example calculations

Before tackling three dimensional molecular systems and two dimensional structures
called quantum dots, the wavelets will be applied first to some one dimensional case
studies. These one dimensional structures are, although of physical interest, mainly
artificial. However, because of their simplicity the one dimensional cases are illustrative
in showing how our wavelets based electronic structure code works. The harmonic
oscillator, the Poisson equation and the potential well are used as examples to explain
the solution method, to show that the method yields accurate results, to compare the
effects of different kinds of wavelets, to compare various preconditioners and to show
the advantage of pruning.

The units that are employed throughout this chapter are atomic units. The unit of length
is the Bohr radiusa0(= 0.5292Å = 5.292· 10−11m), the unit of charge is the charge
of one electrone(= 1.602·10−19C), the unit of mass is the mass of one electronme(=
9.109·10−31kg) and the unit of energy is the Hartree(= 27.211eV = 4.260·10−18J).
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2.4.1 Quantum harmonic oscillator

A well-known example of a one dimensional system is the quantum harmonic oscillator,
which is one of the foundation problems of quantum mechanics. Because this problem
is analytically solvable, it provides a good first test for the applicability of wavelets in
electronic structure calculations.

Analytical solution The Schr̈odinger equation for the one dimensional harmonic os-
cillator is

ĤΨ(x) =
(
−1

2
d2

dx2 +V(x)
)

Ψ(x) = EΨ(x), (2.137)

whereĤ is the Hamiltonian,Ψ the wavefunction,E the energy of that wavefunction and
V the potential. For the harmonic oscillator this potential is given by

V(x) = 1
2ω2x2, (2.138)

whereω is the strength of the confinement. This eigenvalue problem can be solved
analytically, resulting in the formula of the normalized wavefunctions

Ψn(x) =
(ω

π
)1/4 1√

2nn!
Hn(
√

ωx)e−ωx2/2, (2.139)

whereHn(
√

ωx) is a Hermite polynomial. The corresponding energy eigenvalues, with
degeneracyn, are

En = (n+ 1
2)ω. (2.140)

The ground-state wavefunction is thusΨ0(x) = (ω/π)1/4e−ωx2/2 with energyE0 = ω/2.

Numerical solution The problem is solved numerically by minimizing the total en-
ergy

E(Ψ) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (2.141)

which is obtained by multiplying Eq. (2.137) byΨ∗(x) and integrating overx.
The minimization can be performed by means of the steepest descent method. In this
method, an arbitrary initial guess of the wavefunctionΨ(0) is started from. To mini-
mize the energy the direction in which the energy decreases the steepest is searched for.
This direction is given by the local downhill gradient of the energy with respect to this
wavefunction. The wavefunction is updated in this direction resulting in a better guess
of the wavefunction. The new gradient is calculated, etc. This process is repeated till it
converged to a minimum, at which the gradient is zero.
The gradient of the energy with respect to the wavefunction can be calculated straight-
forwardly as [Sti89]

δE(Ψ)
δΨ∗

= ĤΨ. (2.142)

The wavefunction is updated in the direction of this gradient

Ψ(n+1) = Ψ(n) +λ(n)g(n), (2.143)

where the gradient is denoted byg(n) andλ is the step size in the update direction. This
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step size can be chosen freely. A simple method is to take a fixed (small) step size.
However, probably this does not minimize the energy in the search direction and as a re-
sult the next search direction might be almost the same. Instead,λ could also be chosen
such that the energy is minimized in the search direction, i.e., by means of a line mini-
mization. This optimal value forλ(n) can be derived by substituting Equation (2.143) in
Equation (2.141)

E(n+1) =
〈Ψ(n) +λ(n)g(n)|Ĥ|Ψ(n) +λ(n)g(n)〉
〈Ψ(n) +λ(n)g(n)|Ψ(n) +λ(n)g(n)〉

. (2.144)

Rewriting this equation gives

E(n+1) =
d+eλ+ f λ2

a+bλ+cλ2 , (2.145)

where

a = 〈Ψ(n)|Ψ(n)〉 d = 〈Ψ(n)|Ĥ|Ψ(n)〉
b = 〈Ψ(n)|g(n)〉+ 〈g(n)|Ψ(n)〉 e= 〈Ψ(n)|Ĥ|g(n)〉+ 〈g(n)|Ĥ|Ψ(n)〉 (2.146)

c = 〈g(n)|g(n)〉 f = 〈g(n)|Ĥ|g(n)〉.
Given these coefficients the value forλ minimizing the energy in Eq. (2.145) can be
solved analytically. The optimal step size is given by

λ(n) = dc− f a+
√

d2c2−2dc f a+ f 2a2−ecdb+e2ca+ f b2d− f bea
f b−ec . (2.147)

To calculate the coefficients of Equation (2.146), eight integrals have to be evaluated.
However, this number can be reduced to two since for properly normalized orbitalsa
equals unity,d is the energy for the old wavefunctionΨ(n), b can also be derived from
this old energy and the two contributions toeare equal, resulting in

a = 1 d = E(n)

b = 2E(n) e= 2c (2.148)

c = 〈g(n)|g(n)〉 f = 〈g(n)|H̄|g(n)〉.
The equation for the optimalλ simplifies as a result to

λ(n) =
cE− f +

√
−3c2E2−6cE f + f 2 +4c3 +4 f E3

2( f E−c2)
. (2.149)

To perform the calculations, a basis set is needed. The basis used is formed of wavelets.
To start with, the wavefunctionΨ(x) is expanded in terms of one level of wavelets only

Ψ(x) = ∑
l

sl ϕ
0
l (x). (2.150)

For the implementation these wavelet coefficients are stored in a vectors. Operator
actions are then matrix multiplications with this vector. The above scheme is thus trans-

lated as follows: an initial guesss(0), gradientsg(n) = Hs(n), coefficientsc = g(n)T
g(n)

and f = g(n)T
Hg(n), and updated wavefunctionss(n+1) = s(n) + λ(n)g(n), whereH is a

band diagonal matrix representing the Hamiltonian in this wavelet space.
The precision of the wavefunction can be expressed by the difference in energy of the
calculated and the analytical solution. This errorε has been plotted in Figure 2.9 as a
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Figure 2.9: The error ε in calculating the ground-state energy of the one dimensional
harmonic oscillator as a function of the number of iterations n for interpolet M= 2
and N=128, both using the steepest descent and the conjugate gradient method.

function of the number of iterations.
Minimizing in the direction of the gradient seems a natural way to work. However, it
has been proved that it is much more efficient to regard also the search directions of
previous steps. This is what is done in the conjugate gradient method [Pol71]. Here the
search direction ish(n) instead ofg(n) where this new search direction is related to the
gradient via

h(n) =

{
g(n) n = 0

g(n) + γ(n−1)h(n−1) n > 0
, (2.151)

where

γ(n−1) =
〈g(n)|g(n)〉
〈g(n−1)|g(n−1)〉

. (2.152)

For a comparison of the convergence of conjugate gradients with the steepest descent
method, the error as a function of the number of iterations for conjugate gradients is
given in Figure 2.9 as well. As can be seen the convergence of the conjugate gradient
method is superior to that of the steepest descent method.

Comparison of various wavelets Using the scheme described the ground-state en-
ergy of the harmonic oscillator has been calculated using various types of wavelets,
viz., using the Daubechies 6 and 8 wavelets and using various interpolating wavelets.
The properties of the wavelets and the number of wavelets determine the accuracy that
is reached in the calculation. This accuracy can be quantified byε as the difference
between the numerical and the theoretical result for the ground-state energy. This error
has been plotted in Figure 2.10 for the various wavelets as a function of the number
of wavelets used. In these calculations the choiceω = 1 has been used, resulting in a
theoretical energy of 0.5.
From this figure it is clear that the error decreases with the number of wavelets used
for all types of wavelets. Since this figure is on a double logarithmic scale, the lines in
the figure correspond to functionsf (x) = cx−n. Their respective powersn are given in
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Figure 2.10:The error in calculating the
ground-state energy of the one dimensional
harmonic oscillator as a function of the
number of wavelets used for various types
of wavelets.

wavelet n z.m.
Daubechies 6 4 2

Daubechies 8 6 3

interpolet 2 2 1

interpolet 4 6 3

interpolet 6 10 5

interpolet 8 14 7

Table 2.6:Comparison of the slopes (n) of the
lines in Figure 2.10 with the number of
zero moments (z.m.) of the corresponding
wavelets.

Table 2.6. In the same table the number of zero moments of the corresponding wavelets
are shown.

Thus except from decreasing with the number of wavelets used, the error also decreases
with the order of the wavelets. As a result less wavelets of higher order are necessary
to obtain the same error. However, higher order wavelets have more non-zero filter
coefficients and thus more expensive calculations per wavelet. Thus resulting in a trade-
off between the number of wavelets and the order of the wavelets. For the calculations
of the molecular systems and quantum dots which are described later the interpolets 6
have been used.

2.4.2 Poisson equation

An important part of electronic structure calculations is to solve integrals like

VH(r) =
∫

dr ′
ρ(r ′)
|r − r ′|

. (2.153)

However, such integrations are very costly and the singularity may raise problems. An-
other way to calculate this same potentialVH(r) is by solving the Poisson equation

∇2VH(r) =−4πρ(r). (2.154)

In the wavelet basis this is equivalent to solving the linear equations

Ax = b, (2.155)

whereA is the Laplacian matrix in wavelet space andx andb are the wavelet expansions
of the potential and the density respectively.
Solving,x = A−1b is not the way to go. Namely,A is singular so the inverse does not
exist. Moreover, the inverse of a sparse matrix is not necessarily sparse itself. Thus,
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even if the inverse would exist, it would probably, unlike matrixA itself, not be a sparse
matrix, resulting in inefficient calculation.
A better way is to use an iterative procedure like the conjugate gradient method to min-
imize the function

f (x) = 1
2xTAx−xTb, (2.156)

since in this minimum∇ f (x) = Ax−b = 0 holds.

One dimensional BecauseA is a singular matrix, the solution forx is not completely
fixed. This can be seen in the following way:

VH = Vhomo+Vinhomo, (2.157)

where the homogeneous partVhomo is of the formax+ b in one dimensional space. In
case of periodic boundary conditions the value ofa is fixed to 0. But the constantb is
free, causing the solution forVH to be fixed up to a constant.
This can be solved using a penalty function. By adding the penalty function a new
variational principle is introduced

f (x) = 1
2xTAx−xTb+ 1

2K(x0− x̃0)
2. (2.158)

This extra penalty12K(x0− x̃0)
2 translates to adding an extra constantK to the matrix

elementA0,0 and the valueKx̃0 to b0 and will force the right offset, making the matrix
non-singular.

Preconditioning The convergence rate of the conjugate gradient method used to solve
the Poisson equation depends on the spectral properties of the coefficient matrix for the
LaplacianA. A measure for these spectral properties is the condition number of the
matrix. Using this condition number a relation for the upper-bound of the error as a
function of the iteration numberk can be derived [Gol96]

‖xk− x̂‖A 6 2‖x0− x̂‖A
(√

κ−1√
κ+1

)k

, (2.159)

whereκ is the spectral condition number, the norm is defined as‖y‖A =
√

yTAy, andx̂
the absolute minimizer. Thus, the closer the condition number is to one, the faster the
convergence
Using a preconditionerM the linear system for the Poisson equation can be transformed
into one that has the same solution, but that has more favorable spectral properties, i.e.,
a lower condition number:

M−1Ax = M−1b. (2.160)
Since applying a preconditioner introduces some extra costs, both initially and per iter-
ation, there is a trade-off between the cost of constructing and applying the precondi-
tioner, and the gain in convergence speed. The initial cost is in generating the precondi-
tioner matrix, whereas in every iteration a matrix multiplication has to be performed.
Since the matrixA for the Laplacian is sparse, viz. band-diagonal, the preconditioner
preferably preserves this sparsity pattern in order for the extra costs not to become dom-
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inant. In the rest of this section various preconditioners [Bar94] will be discussed and
tested for the one dimensional case. The results obtained will be used to construct a
good preconditioner for the higher dimensional cases.

Jacobi preconditioner The simplest preconditioner consists of just the diagonal of
the original matrixA:

mi, j =

{
ai,i if i = j,

0 else.
(2.161)

This Jacobi preconditioner has the advantage that it requires no extra storage, that it is
very easy to implement and that the extra computational costs are very low. Despite
its simplicity it reduces the condition number notably, although not as much as more
sophisticated preconditioners to follow.

SSOR preconditioner Like the Jacobi preconditioner, the symmetric successive over-
relaxation preconditioner (SSOR) can be derived directly from the coefficient matrixA.
If the original, symmetric, matrix is decomposed as

A = D+LA +LT
A (2.162)

in its diagonal, lower, and upper triangular part, the SSOR matrix is defined as

M = (D+LA)D−1(D+LA)T . (2.163)

This is often parameterized to

M = 1
2−ω( 1

ωD+LA)( 1
ωD)−1( 1

ωD+LA)T (2.164)

what for the optimalω will reduce the condition number even further. The advantage
of these preconditioners is thatLA is strictly lower triangular, band limited, because of
which the product of the inverse withA can easily be calculated using forward substitu-
tion in linear time. In the same way, the product ofA with LT

A can be calculated using
back substitution.

Incomplete factorization preconditioners A way to solve a set of linear equations
Ax = b directly is by LU-decomposition of the coefficient matrixA. The action ofA−1

on b can again be computed using forward and back substitution of respectively the
lower triangular (L ) and the upper triangular(U) part. The problem, however, is that
thoughA is sparse,L andU are not sparse, thus resulting in an orderN2 algorithm.
A broad class of preconditioners is based on incomplete factorizations of the coefficient
matrix. A factorization is called incomplete if during the factorization process certain
fill elements, zero positions that would be nonzero in an exact factorization, have been
ignored. The efficacy of such a preconditioner depends on how well it approximatesA.
Incomplete factorizations come in two types. In the first place, one can ignore all fill
outside selected positions inL , thus retaining a certain sparsity pattern. The second
option is to discard all fill whose magnitude is below a preset drop tolerance.
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Here only the former method is considered, because for the Laplacian matrix the latter
results in too dense a matrix. The fixed sparsity pattern is chosen to be equal to the
sparsity pattern of the original coefficient matrixA, i.e., no fill-in. This factorization
type is called the Incomplete Factorization of degree zero.
Two types will be considered:

• The sparse approximate inverse preconditioner

• The incomplete Cholesky factorization with no fill-in.

Sparse Approximate Inverse preconditioner The inverse ofA can be factorized as
follows

A−1 = ZD−1ZT , (2.165)
whereZ, with columnszi , is upper triangular using the following scheme [Ben96]:

z(0)
i = ei , (0 6 i < N)

for i = 0 to N−1 do
for j = i to N−1 do

d(i)
j, j = aT

i z(i)
j

end for
for j = i +1 to N−1 do

z(i+1)
j = z(i)

j −
d(i)

j, j

d(i)
j, j

z(i)
i

end for
end for
zi = z(i)

i and di,i = d(i)
i,i , (0 6 i < N)

However, using an incomplete factorization in the same scheme a preconditioner can be
created that is an approximation for the inverse

M−1 = Z D
−1

Z
T ≈ A−1, (2.166)

whereZ has the same sparsity pattern as the upper triangular part ofA.

Incomplete Cholesky preconditioner Again the matrix is split in its lower, upper and
diagonal part

A = LA +diag(A)+LT
A. (2.167)

The preconditioner is now

M = (LA +D)D−1(LT
A +D) (2.168)

whereD contains no longer the diagonal of the original matrix, but is a diagonal matrix
such that diag(M) = diag(A). The diagonal elementsdi,i of the diagonal matrixD that
make this true are given by:

di,i =

{
a0,0 if i = 0

ai,i−ai,i−1d−1
i−1,i−1ai−1,i if 0 < i < N.

(2.169)
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Figure 2.11:The condition number of the MIC
preconditioned Laplacian matrix as a func-
tion of λ.

Figure 2.12:The condition numberκ of the
preconditioned Laplacian matrix as a func-
tion of the matrix size N using the various
preconditioners.

However, this method breaks down for the Laplacian matrix in the sense that it yields
negative pivots in case more than 16 interpolets are used. Therefore, the procedure is
slightly modified introducing a parameterλ ∈ [0,1] resulting in a modified incomplete
Cholesky factorization MIC(0):

di,i =

{
a0,0 if i = 0

ai,i−λai,i−1d−1
i−1,i−1ai−1,i if 0 < i < N.

(2.170)

The condition number as a function ofλ has been plotted in Figure 2.11 for matrix size
N = 128. In the limitλ = 0 this preconditioner is exactly the SSOR preconditioner.
The largerλ the smaller the condition number until the procedure breaks down because
of the appearance of negative pivots, like forλ = 1, where we have again the standard
Incomplete Cholesky factorization. Somewhere in between there is an optimal value
λopt. This optimal value can be derived from Eq. (2.170) as follows. Let the series
di,i converge top, then by substitutingai,i = r0 andai−1,i = ai,i−1 = r1 and rewriting
Eq. (2.170) becomes

p2− pr0 +λr2
1 = 0. (2.171)

The minimum of the parabola is inp = r0/2. Solving Eq. (2.171) in this minimum
yields forλ

λopt =
r2
0

4r2
1

. (2.172)

Substituting the values forr0 = −20/9 andr1 = 9/8 for the interpolet number 4 this
yields

λopt =
6400
6561

≈ 0.9754610577656. (2.173)

This method has the advantage that again only the original matrix elements are neces-
sary for off-diagonal elements. Only the diagonal elements have to be calculated.

In order to compare all these different preconditioners, the condition numbers for the
preconditioned Laplacian matrix using these preconditioners as a function of the size
of the matrix has been plotted in Figure 2.12. As can be seen, the modified Incomplete

53



Wavelets in electronic structure calculations

Figure 2.13:The errorε as a function of the it-
eration number using various precondition-
ers.

Figure 2.14:The condition numberκ of the
unpreconditioned and the MIC precondi-
tioned Laplacian matrix as a function of the
size N for both two and three dimensions.

Cholesky factorization yields the lowest condition number by far.
Using these preconditioners the solution of the Poisson equation for a Gaussian den-
sity distribution has been calculated using 128 wavelets to show how these calculations
converge to the analytical result. This is shown in Figure 2.13 where the error, i.e.
the difference between the calculated potentialVH and the analytically expected result,
has been plotted as a function of the iteration number. The figure shows that the MIC
preconditioner, which also has the lowest condition number, results in the fastest con-
vergence. This preconditioner is therefore used in further calculations.

Higher dimensions Also in higher dimensions the Laplacian matrix is singular. This
singularity can be handled in the same way as in 1D, i.e., by adding a penalty function
to force the boundary to a fixed value:

f (x) = 1
2xTAx−xTb+ 1

2K

(
N−1

∑
i=0

(xi− x̃i)
2 +

N−1

∑
j=0

(x jN− x̃ jN)2

)
. (2.174)

For these boundary values the analytically solvable results are taken for the potential of
a point charge with the same total charge and center. When necessary, corrections to the
asymptotes of higher multipoles can be added.
Equation (2.170) can be generalized for higher dimensions. In the two dimensional case
it becomes

di+ jN,i+ jN = ai+ jN,i+ jN−λδi
ai+ jN,i+ jN−1ai+ jN−1,i+ jN

di+ jN−1,i+ jN−1
− (2.175)

λδ j
ai+ jN,i+ jN−Nai+ jN−N,i+ jN

di+ jN−N,i+ jN−N
,

where

δi =

{
0 if i = 0,

1 otherwise.
(2.176)

The optimal value forλ can be derived in the same way as in the one dimensional case,
and is for then-dimensional case given byλnD

opt = nλ1D
opt.
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The condition numbers for both the 2D and 3D Laplacian are given in Figure 2.14, both
for the MIC preconditioned and the unpreconditioned case. The condition numbers for
the preconditioned cases are again much lower than for the unpreconditioned cases, thus
again improving the convergence. In 3D, using 1283 interpolets the error in the Hartree
energy for a Gaussian density distribution converges from a random initial guess to 10−6

in about 40 iterations.

2.4.3 Potential well

Another physically interesting problem in one dimensional space is the potential well.
This problem is again described by the Schrödinger Equation (2.137), where the poten-
tial is given by

V(x) =

{
−V0 if −a < x < a,

0 else.
(2.177)

This problem has been studied extensively in literature and can be solved analytically
as well, see e.g. Ref. [Gas74]. It is discussed here because it is especially suitable to
demonstrate the power of pruning. The potential is very smooth except for two disconti-
nuities. As a result low resolution suffices in most of the space whereas high resolution
is needed only in the vicinity of the steps in the potential, making this problem an ex-
cellent example to demonstrate pruning.

Analytical solution Because the potential well is negative, energy states with a nega-
tive energy do exist. The energies of these states are given by

E =−1
2k2. (2.178)

The solutions outside the well that are bounded at infinity are

Ψ(x) = C1ekx x <−a, (2.179)

Ψ(x) = C2ekx x > a, (2.180)

and the solutions inside the well

Ψ(x) = Acosqx+Bsinqx −a 6 x 6 a, (2.181)

where
q2 = 2(V0−|E|) . (2.182)

Combining these by matching solutions and derivatives at the edges yields that for the
even and odd solutions, respectively,k is of the form

k = qtanqa and k =−qcotqa, (2.183)

which can be rewritten usingλ = 2V0a2 andγ = qaas
λ− γ2

γ
= tanγ and

λ− γ2

γ
=−cotγ. (2.184)

Solving these equations yields all energies of the even and odd solutions respectively,
i.e., if γ is knownk is known via Eq. (2.183) and thus the energy via Eq. (2.178).
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Figure 2.15:The one dimensional potential
well, with a = 5, b = 0, and V0 = 200
and the ground-state wavefunction as cal-
culated in the pruned wavelet basis, with
wavelets centered at the position of all
crosses. In the insets has been zoomed in
on the vicinity of the steps in the potential.

Figure 2.16:The error in the calculated en-
ergy for the ground state and the first ex-
cited state both using the pruned and the
unpruned basis.

Numerical solution As an example a one dimensional potential well of depthV0 =
200 and widtha = 5 is considered in a periodic box of length 40. The discontinuities in
such a potential cause the need of very high resolution to perform accurate calculations.
However, in most of the space the potential and the resulting wavefunctions are very
smooth and require only low resolution. Using wavelets it is now possible to do exactly
this, namely to use low resolution in general and higher resolution only there where
necessary, by means of pruning. To demonstrate this a wavelet basis is created that
starts with 32 wide wavelets which cover the whole range of the computation. This
will provide a good basis for the region away from the well. An extra 16 narrower
wavelets are added in the area around the well (−106 x< 10) and another 5 levels with
8 narrower and narrower wavelets each around the left step in the potential.

In Figure 2.15 the potential (right y-axis) and the resulting ground-state wavefunction
as calculated (left y-axis) have been shown using this wavelet basis. In the two insets in
the same figure has been zoomed in on the regions around the two steps in the poten-
tial. Because of symmetry in the problem both sides should be the same. But because
of the lack of resolution at the right step, where contrary to the left step no extra lev-
els of narrower wavelets were added, the potential could not be represented accurately
enough. This causes the potential to become smoother and the resulting wavefunction
to be inaccurate. The difference shows that the extra resolution used at the left side is
needed.

By adding the same 5 levels with 8 wavelets each around the right step as were used
around the left step a wavelet basis is created consisting of 128 wavelets. This basis
corresponds to a basis of 2048 wavelets if the basis had not been pruned or only the finest
level wavelets had been used. For our example both bases obtain the same precision
result of the energy.
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In order to obtain a higher precision, an extra level of resolution should be added. For
the pruned basis this means adding another 16 wavelets, whereas for the unpruned basis
this means doubling the number of wavelets. To show how the error depends on the
number of wavelets the ground state and the first excited state have been calculated.
The ground state is even and the first excited state odd. The theoretical energies of these
states are−199.9516243676 and−199.8064979341 respectively. For both states the
error, i.e. the difference between the calculated and the theoretical energy, has been
plotted in Figure 2.16 as a function of the number of wavelets used, both for the pruned
(topx-axis) and the unpruned (bottomx-axis) basis. Because the errors are equal for the
pruned and the unpruned basis with corresponding finest resolution can be concluded
that indeed low resolution satisfies in most of the space and that the higher resolution is
only needed around the steps in the potential.
In the one dimensional case, the number of wavelets in an unpruned basis doubles when
an extra level of resolution is added, whereas in a pruned basis only some wavelets have
to be added where the extra resolution is needed. In n-dimensional space the number of
wavelets multiplies even by 2n for every extra level of resolution, causing the reduction
in number of wavelets in the pruned basis in higher dimensional cases to be even much
larger.

2.5 Application to 3D molecular systems

So far has been shown by means of some well-known problems that wavelets can be
used for electronic structure calculations. Now our approach of the electronic structure
calculation for molecular (3D) systems will be described. The electronic structure is
calculated by solving the Kohn-Sham equations self-consistently.

2.5.1 Kohn-Sham equations

As described before, density functional theory states that the many electron problem
can be replaced by an equivalent set of self-consistent one-electron equations, the Kohn-
Sham equations. In the local-spin-density-approximation (LSD), these equations read

ĤΨσ
i (r) = εσ

i Ψσ
i (r), (2.185)

where the Hamiltonian̂H is given by

Ĥ =−1
2∇2 +V̂pp(r)+V̂H(r)+V̂σ

xc(r). (2.186)

The eigenfunctionsΨσ
i are the one-electron wavefunctions that correspond to the mini-

mum of the Kohn-Sham energy functional. In these wavefunctions,i is the orbital index
andσ denotes the spin, which can be either up↑ or down↓ in case of the local spin
density approximation (LSD) and has only one value 0 in case of the local density ap-
proximation (LDA). The Hamiltonian̂H consists of four different parts: a part related to
the kinetic energy of the electrons, the pseudopotentialV̂pp, the Hartree potential̂VH and

57



Wavelets in electronic structure calculations

the exchange-correlation potentialV̂xc. The details of these potentials are described be-
low. The potentials depend on the wavefunction via the electron spin densityρσ, which
is defined as

ρσ(r) = ∑
i

f σ
i |Ψσ

i (r)|2. (2.187)

Here f σ
i is the occupation number, i.e., the number of electrons in orbitali. In case of

LSD every orbital can contain at most one electron. In case of LDA where there is no
longer a distinction between spin up and spin down, orbitals can contain at most two
electrons.

2.5.2 Pseudopotentials

Why pseudopotentials In the original Kohn-Sham equations, the interaction of the
positively charged nuclei with the electrons is described using the full Coulombic po-
tentialV̂ne. However, it is well-known that most physical and chemical properties are
dependent on the valence electrons to a much greater degree than on the tightly bound
core electrons. In practice, this means that the innermost electrons can be left out of
explicit calculations. Instead these chemically inert core electrons are eliminated in the
frozen-core approximation, being considered together with the nuclei as rigid ion cores.
In turn, all electrostatic and quantum-mechanical interactions of the valence electrons
with the ion cores are accounted for by an effective potential, the so-called pseudopo-
tentialV̂pp.
The advantage is twofold. In the first place the number of effective electrons, and thus
the number of orbitals, is smaller. Secondly, the orbitals are smoother, where the singu-
larity in the normal electron-nucleus interaction is removed and where the nodal struc-
ture near the nuclei that keeps core and valence states orthogonal in an all-electron
framework are avoided.
Pseudopotentials of course also have their disadvantage in that they introduce an ap-
proximation. Apart from efficiency a principle objective is the transferability of the
pseudopotential. This transferability is the ability of one and the same pseudopotential
to accurately describe the valence electrons in different atomic, molecular, and solid-
state environments. Regarding transferability the quality of pseudopotentials depends
on correct scattering properties, the actual choice of the core radius cut-offrc, an ade-
quate account of the non-linear exchange-correlation interaction between core and va-
lence electrons, the validity of the frozen core approximation, and the implicit treatment
of higher angular momentum components.
Concluding, pseudopotentials are thus required to correctly represent the long range
interactions of the core and to produce pseudo-wavefunctions that approach the full
wavefunction outside a core radiusrc. Inside this radius, the pseudopotential and the
wavefunction should be as smooth as possible, minimizing the number of necessary
basis functions in the expansion.
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Kinds of pseudopotentials Many pseudopotentials have been reported. Usually they
consist of both a local and a non-local part

V̂pp(r) = Vlocal(r)+∑
l

|l〉V̂l (r, r ′)〈l |. (2.188)

The first pseudopotentials were empirical. We have implemented the Shaw [Sha68]
pseudopotential and the Topp-Hopfield [Top73] pseudopotential, which are examples
of simple, completely local pseudopotentials. These pseudopotentials are of the form

VS,TH
pp (r) =

{
−Z/r r > rc

f (r) r 6 rc
, (2.189)

where f (r) equals a constantC for the Shaw pseudopotential whereas it is of the form
V0cos(kr) +C for the Topp-Hopfield pseudopotential. The Shaw pseudopotential is
available for some atoms and the Topp-Hopfield pseudopotential for sodium only.

Phillips and Kleinman [Phi59] showed that the effective potential which has the pseudo-
wavefunctions as its eigenstates could be derived from the all-electron potential and the
core state wavefunctions and energies, thus introducing a non-empirical approach to
finding pseudopotentials. These methods became useful when the norm-conservation
constraint was introduced. This constraint ensures that outside the core the pseudo
wavefunctions behave like their all-electron counterparts. Because of this, properly
constructed pseudopotentials obeying the norm-conserving property present a rather ac-
curate approximation and allow for an adequate description of the valence electrons over
the entire chemically relevant range of systems: atoms, molecules, and solids.

We have implemented the Bachelet-Hamann-Schlüter [Bac82] pseudopotential, which
is especially suited for plane waves what makes the non-local part hard to implement
for wavelets, and the Hartwigsen-Goedecker-Hutter [Har98] pseudopotential, which is
well suited also for grid methods. These Hartwigsen-Goedecker-Hutter pseudopoten-
tials have the following form for the local part

V̂HGH
loc (r) =−Z

r
erf(

r√
2r loc

)+exp(−1
2
(

r
r loc

)2)

×[c1 +c2(
r

r loc
)2 +c3(

r
r loc

)4 +c4(
r

r loc
)6]

(2.190)

and for the non-local part

V̂HGH
l (r , r ′) =

3

∑
i=1

3

∑
j=1

pl
i (r)h

l
i, j p

l
j(r
′) (2.191)

where

pl
i (r) =

√
2r l+2(i−1) exp(− r2

2r2
l
)

r l+(4i−1)/2
l

√
l + 4i−1

2

. (2.192)

The local part of the pseudopotentials only depends on the positions of the nuclei. Thus
for a fixed nuclear configuration this only has to be calculated once, whereas the non-
local part depends on the wavefunction and thus has to be recalculated for every new
approximation of the wavefunctions.
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2.5.3 Exchange-correlation energy

The exchange correlation potentialV̂xc describes the non classical interaction between
the electrons and is given by the functional derivative of an exchange correlation energy
functional

Vσ
xc(r) =

δExc(ρ↑,ρ↓)
δρσ

. (2.193)

The approximation of this unknown functionalExc(ρ) is of crucial importance to any
application of density functional theory. The exchange correlation functionals consid-
ered here belong to the class of generalized gradient approximations

EGGA
xc =

∫
dr ρ(r)εGGA

xc (ρ(r),∇ρ(r)), (2.194)

where the unknown functional is approximated by a functional that only depends on the
density and the gradient of this density at a given point in space. In the simplest case
εGGA

xc (ρ) is the exchange correlation energy density of an interacting but homogeneous
electron gas with the density given by the local densityρ(r) at space-pointr in the
inhomogeneous system. This simple but powerful approximation is called the local
density approximation (LDA) for spin-unpolarized systems, and it is called local-spin-
density approximation (LSD) for spin-polarized systems. It is of the form

ELSD
xc =−

∫
dr cx

(
ρ↑(r)4/3 +ρ↓(r)4/3

)
. (2.195)

The corresponding exchange potentials are

Vσ
xc(r) =−4

3cxρσ(r)1/3. (2.196)

wherecx = 3
4

(6
π
)1/3

. In case of LDA this reduces toVLDA
xc (r) = −4

3cxρ0(r)1/3 where

the constantcx is equal to3
4

(3
π
)1/3

.
More precise approximations for the exchange correlation potential do not only use the
density, but also the gradient of the density∇ρσ. In these approximations the combined
exchange-correlation functional is typically split in two additive terms,εx andεc for
exchange and correlation respectively.
We have implemented one such generalized gradient approximation (GGA) by Becke
[Bec88] and one by Perdew, Burke and Ernzerhof [Per96]. The formula for the Becke
exchange energy functional is

EBecke
x = ELSD

xc −β
∫

dr ρ4/3 21/3η2

1+6β21/3ηsinh−1(21/3η)
, (2.197)

whereβ is a parameter andη the dimensionless quantity for the gradient of the density

η =
|∇ρ|
ρ4/3

. (2.198)

Out of this functional the potential can be derived as the derivative to the density. This
gives a complicated expression, depending onη andτ, a dimensionless quantity for the
Laplacian of the density,

τ = η2− ∇2ρ
ρ5/3

. (2.199)
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The formula for the Perdew, Burke and Ernzerhof exchange energy functional is

EPBE
x =

∫
dr ρ εunif

x (ρ)

(
1+κ− κ

1+ µη2

κ

)
, (2.200)

and for the correlation energy functional

EPBE
c =

∫
dr ρ

(
εunif

c (ρ)+h(ρ,η)
)

. (2.201)

Also for the correlation energy many functionals exist. However, this part of the Hamil-
tonian will have an even smaller contribution to the final result than the exchange one,
so we choose for a local version: the correlation energy functional of Perdew and
Wang [Per92]. This functional is written in terms of the so-called density parameter

rs =
(

3
4πρ

)1/3

. (2.202)

The functional is

EPW
c =−2

∫
dr ρA(1+α1rs) ln

(
1+ 1

2A(β1r1/2
s +β2rs+β3r3/2

s +β4rP+1
s )

)
, (2.203)

whereA,α1,β1,β2,β3 andβ4 are parameters.
A promising next step are functionals that include higher-order powers of the gradient
in the sense of a generalized gradient expansion beyond the first term, e.g. including the
Laplacian. However, since the price performance ratio in other methods is still not clear
such functionals have not been considered here.

2.5.4 Hartree potential

The Hartree potential̂VH describes the interaction between electrons and is given by

V̂H(r) =
∫

dr ′
ρ↑(r ′)+ρ↓(r ′)
|r − r ′|

. (2.204)

An important part of the electronic structure calculations is to solve this type of integrals.
However, such integrations are very costly, and problematic because of the singularity.
Instead of calculating the Hartree potential in this way directly, it can also be calculated
by solving the Poisson equation

∇2VH(r) =−4π
(
ρ↑(r)+ρ↓(r)

)
. (2.205)

The way this Poisson equation can be solved has been discussed in Section 2.4.2.

2.5.5 Iterative scheme

As can be seen from Eqs. (2.188), (2.193) and, (2.204) the HamiltonianĤ depends on
the density and via Eq. (2.187) thus on the wavefunctions. This system of non-linear
coupled differential equations can be solved self-consistently. We start with an initial

guess for the orbital wavefunctions{Ψσ,(0)
i }. The corresponding electron density is then

calculated using Eq. (2.187). Given this densityρσ the Hartree potential, the exchange
correlation potential and the non-local part of the pseudopotential are calculated. Once
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Figure 2.17:The iterative scheme used for solving the Kohn-Sham equation.

the potentials have been calculated, a steepest descent or conjugate gradient method
is employed to obtain a better approximation for the wavefunction. This is done in the
same way as discussed in Section 2.4.1, i.e., by minimizing the orbital energyEσ

i , which
is related to the individual orbitalΨσ

i by

Eσ
i (Ψσ

i ) =
〈Ψσ

i |Ĥ|Ψσ
i 〉

〈Ψσ
i |Ψσ

i 〉
, (2.206)

where the orbital wavefunctionsΨσ
i satisfy the appropriate orthonormalization condi-

tions.
This is done in updating the wavefunction in a certain directionhσ

i

Ψσ,(n+1)
i = Ψσ,(n)

i +λσ,(n)
i hσ,(n)

i . (2.207)

where for the steepest descent methodhσ
i equals the gradient

gσ,(n)
i =

δEσ
i (Ψσ

i )
δΨσ∗

i
= ĤΨσ

i . (2.208)

whereas for the conjugate gradient methodhσ
i is given by

h(n)
i =

{
g(n)

i n = 0

g(n)
i + γ(n−1)h(n−1)

i n > 0
(2.209)

where

γ(n−1) =
〈g(n)

i |g
(n)
i 〉

〈g(n−1)
i |g(n−1)

i 〉
. (2.210)

The optimal step sizeλ of the update is again given by Eq. (2.149).
The conjugate gradient method works as long as the Hamiltonian is constant. The non-
local part of the pseudopotential, the Hartree potential and the exchange and corre-
lation potential, however, depend on the wavefunction and thus change together with
this wavefunction in every step of the iteration. For a number of iterations however
the potentials can be kept constant. This number of iterations before the potentials are
recalculated may be chosen fixed or it may depend on a convergence criterion. This
procedure is repeated till self-consistency is reached.
Figure 2.17 gives a schematic overview of the approach used. We start with an initial
guess for the orbital wavefunctions{Ψ0

i }. The corresponding electron density is then
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calculated using Eq. (2.187). Given this densityρ the Hartree potential, the exchange
correlation potential and the non-local part of the pseudopotential are calculated.

2.5.6 Results for atoms and molecules

The main output of the program are energies and single electron orbitals. However, in
computational chemistry these energies are of main interest, because from these energies
many other properties can be derived, such as

• ionization potentials,
• electron affinities,
• excitation energies,
• binding energies,
• bond frequencies,
• force constants, and
• bond lengths.

Because of the use of pseudopotentials there can be an offset in the energies calculated.
However, most interesting properties depend on differences of energies, where these
offsets cancel each other.

Atoms For instance, for single atoms, using differences of energies, ionization po-
tentials, electron affinities, and excitation energies can be calculated. The calculated
ionization potentials and electron affinities for the first 11 elements of the periodic table
are given in Table 2.7. Most of the ionization potentials can be calculated as the differ-
ence of two energies. Some fields for the second ionization potential are empty because

Atom First ionization Second ionization Electron
potential potential affinity

(eV) (eV) (eV)
calc. exp. calc. exp. calc. exp.

H 13.0 13.6 0.87 0.75
He 24.3 24.6 52.8 54.4 a

Li 5.4 5.4 b 0.51 0.62
Be 8.9 9.3 18.0 18.2 a

B 9.0 8.3 24.4 25.2 0.08 0.28
C 12.3 11.3 25.3 24.4 1.14 1.26
N 15.6 14.5 30.7 29.6 a

O 14.2 13.6 36.4 35.1 0.89 1.46
F 17.1 17.4 34.2 35.0 2.85 3.40

Ne 21.6 21.6 40.6 41.0 a

Na 5.2 5.1 b 0.63 0.55

Table 2.7:First and second ionization potentials and electron affinity for various atoms.
Experimental data from [Lid93].

aNegative ion is not stable.
bElectron can not be removed since it is part of the core that is described by the pseudopotential.
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they can not be calculated since the electrons that should be removed are part of the core
that is described by the pseudopotentials. Besides, if the last valence electron is removed
in the ionization one of the energies that is used to calculate the ionization potential is
zero by definition. So here the offset in the energy may influence the result. About the
electron affinities should be noted that not all atoms can accept an electron, e.g. for
He, Be, N, and Ne this leads to unstable configurations, i.e., a negative electron affinity.
All calculations have been performed on a cubic grid of 643 points using Hartwigsen-
Goedecker-Hutter pseudopotentials, LSD exchange and correlation energy. Comparison
with experimental data shows that our code yields accurate results.

Molecules The electronic structure of some small molecules has been calculated. The
electron density of both di-sodium Na2 and methane CH4 has been plotted in Figure 2.18
using an iso-density surface.
The energies of a number of diatomic molecules have been calculated for several inter-
nuclei distances. From these data several bond properties can be derived. The bond
length can be found as the inter-nuclei distance (R) for which the energy of the molecule
EAB is minimal. The binding energyB can be determined by the difference of the en-
ergy of the molecule minus the energies of the two separate atomsB = EAB−EA−EB.
Finally, the bond strength, which can be described both with the bond frequencyω or
with the force constantf , is related to the second derivative of the energy versus the
inter-nuclei distance at the minimum.
These properties have been calculated for di-sodium using all four different pseudopo-
tentials and LSD exchange and correlation energy. The results are given in Table 2.8a.
The simple Shaw and Topp-Hopfield (T-H) pseudopotentials give slightly too weak
binding, resulting in a too low binding energy, a larger than expected bond length, and
too small a force constant. The Bachelet-Haman-Schlüter (BHS) and the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotentials on the other hand give slightly too strong
a binding, resulting in slightly too high binding energy, a smaller than expected bond

(a) Na2 (b) CH4

Figure 2.18: Isodensity plots of the electron density for(a) di-sodium(Na2) and (b)
methane (CH4).
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Shaw T-H BHS HGH Exp.
B (eV) 0.60 0.69 0.84 0.83 0.76(∗)

R (a.u.) 6.01 5.90 5.54 5.56 5.82(∗)

f (N/cm) 0.13 0.15 0.19 0.18 0.17(∗)

ω (cm−1) 136 151 166 165 158(∗)

(a) Di-sodium(Na2).

LDA LSD GGA Exp.
B (eV) 6.30 4.90 5.11 4.52(∗)

R (a.u.) 1.48 1.44 1.40 1.40(∗)

f (N/cm) 4.48 5.41 5.77 5.75(∗)

ω (cm−1) 3882 4269 4410 4401(∗)

(b) The hydrogen molecule(H2).

LDA LSD GGA Exp.
B (eV) 16.80 10.76 12.35 11.16(∗)

R (a.u.) 2.14 2.12 2.10 2.13(∗)

f (N/cm) 15.57 17.98 19.46 19.02(∗)

ω (cm−1) 1963 2109 2194 2169(∗)

(c) Carbon monoxide (CO).

LSD GGA Exp.
B (eV) 20.3 17.9 18.2(†)

R (a.u.) 2.06 2.04 2.05(∗)

f (N/cm) 5.31 5.45 5.44(∗)

ω (cm−1) 3113 3153 3151(∗)

(d) Methane(CH4).

Table 2.8:Comparison of bond properties as calculated using various pseudopotentials
and various functionals with experimental results from(∗)[Lid93] and (†)[Per96]
for various molecules.

length, and a too large force constant.
For the hydrogen molecule H2 and for carbon monoxide CO the resulting properties
are given in Tables 2.8b and 2.8c, where the results are shown for various exchange
and correlation functionals in combination with HGH pseudopotentials. Here should be
noted the substantial difference between LDA and LSD, showing that spin can not be
neglected. In the third column (GGA) the Becke exchange energy functional is used
instead of pure LSD. For molecules consisting of more than two atoms, like methane
CH4, B is the atomization energy, i.e., the difference between the energy of the whole
molecule and the sum of the energies of all separate atoms. Results for methane are
shown in Table 2.8d. The frequencyω calculated for methane is the one for the hydrogen
stretching mode.
The results in the tables show again good agreement with results reported in literature
obtained using Kohn-Sham calculations with different basis sets and experiments, see
e.g. Ref. [Per96]. This shows that the program is useful for the calculation of diverse
properties of atoms and molecular systems.

2.6 Application to 2D quantum dots

Quantum dots Quantum dots have recently attracted much interest both experimen-
tally and theoretically [Joh95]. Quantum dots are man made nanoscale structures in
which electrons are confined in all three spatial directions. As they show typical atomic
properties like discrete energy levels and shell structures, they are often referred to as
artificial atoms. However, in contrast to natural atoms, in quantum dots the number of
electrons is tunable.
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Starting from quantum dots as a structure more complex systems are conceivable and
likely to have perspective in future applications. An example is the analogy of a two-
atom molecule consisting of two coupled quantum dots, where the coupling can be both
vertically and laterally.
Many studies have been performed to describe quantum dots using a parabolic confin-
ing potential, see for example [Hir99, Lee98, Pfa93, Par00]. However, such infinite
potentials are unphysical. Furthermore, they give practical problems when describing
laterally coupled quantum dots. Various other potentials have been suggested that do
not have this problem. A first example is a parabolic potential only from the nearest
center [Wen00]. Such a potential enables lateral coupling but still has the disadvantage
that it goes to infinity. In order to get rid of the infinity others have suggested potentials
that are close to the harmonic potential at their bottom but that have a smooth lateral
boundary with a finite asymptotic value. Examples of such potentials are a Gaussian
potential [Ada00], and a smooth boundary potential [dF00].
Here we propose a new potential that is also harmonic at its center and has a constant
asymptote, but that is physically motivated as derived from the description of a quantum
dot as a 2D jellium. The potential we propose is namely the parabolic potential of a
homogeneous density distribution within a 2D jellium, with the Coulombic potential
outside that jellium. This potential is described first. A description follows of how the
Kohn-Sham equations are used to calculate the electronic structure of such quantum
dots using our wavelet based electronic structure code. This is used subsequently to
study our new potential for various radii of the jellium. These results are compared with
its limit for infinitely small and infinitely largeR, i.e., 2D atoms and a pure parabolic
potential respectively. Finally, a study is described of a quantum dot molecule consisting
of two laterally coupled quantum dots.

Potential The potential that we propose to study laterally coupled quantum dots is
derived from the description of a quantum dot as a 2D jellium. This stems from the
way quantum dots can be created experimentally. Because of the application of a gate
potential, an area of electron-depletion will appear near the gate which can be modeled
most simply by assuming a constant positive background (i.e., jellium). We propose the
parabolic potential of a homogeneous density distribution within the 2D jellium, with
the Coulombic potential outside that jellium, i.e.,

Ve(r) =

{
−Q

R−
Q

4πR2(R2− r2) r 6 R

−Q
r r > R,

(2.211)

whereR is the radius of the circular jellium andQ is its total charge. The offset−Q
R−

Q
4π

in the harmonic part is required to make the potential continuous and asymptotically
going to zero at large distances. This potential has been plotted in Figure 2.19. The left
part of the figure shows how the potential is constructed from its two parts. The right
hand side shows the potential for three different radii of the jellium.
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Figure 2.19:Left: The potential consists of two parts: within a radius R quadratic and
outside this region Coulombic. Right: The potential for three different radii of the
jellium, with constant charge Q.

Approach The electronic structure for the two dimensional quantum dots is calculated
by solving the Kohn-Sham equations numerically within the effective mass approxima-
tion (

−1
2∇2 +Ve(r)+VH(r)+Vxc(r)

)
Ψi(r) = εiΨi(r). (2.212)

In case of GaAs the unit for length is 101.89Å and the unit for energy 10.96meV. For
solving this two dimensional problem we have developed a wavelet based electronic
structure calculations program, analogous to our three dimensional electronic struc-
ture code for molecules. In short, the program calculates the electronic structure self-
consistently. Starting from an initial guess of the wave functions, the parts of the Hamil-
tonian are calculated. Using this ‘fixed’ Hamiltonian, the wavefunction is improved on
using a minimization scheme. Then the Hamiltonian is recalculated, the wavefunction
updated, etc. This is repeated till a self-consistent solution has been reached. The choice
for wavelets as basis set allows for an accurate description over a range of length scales.
This is because wavelets constitute a multiresolution approach, allowing one to use low
resolution and to add extra resolution only in those regions where necessary, which is a
nice property because of the well-known fact that electronic wave functions vary much
more rapidly near the ‘atomic’ centers than in inter-atomic regions.

The parts constituting the Hamiltonian are however different in two dimensional space
from the ones in three dimensional space. The external potential describes the con-
finement of the quantum dot. We use the one proposed in Eq. (2.211) and the simple
harmonic one as for comparison. A two dimensional version of the exchange and cor-
relation energy functionals is given by Tanatar and Ceperley [Tan89]. They suggest the
use of the local density approximation (LDA) for the exchange potential. In 2D this
potential is of the form

Vx(r) =−
√

8ρe

π
. (2.213)

The correlation potential is the functional derivative of this correlation energy func-
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Figure 2.20:Scaled inverse of the capacitance for different confining potentials as a func-
tion of the number of electrons.

tional, yielding

Vc(r) =
a0
(
6a1t2 +7t3

)
4(a3 +a2t +a1t2 + t3)

−
a0t2

(
a2t +2a1t2 +3t3

)
(a1 + t)

4(a3 +a2t +a1t2 + t3)2 (2.214)

wheret = (πρe)1/4. The Hartree potentialVH is calculated using a two dimensional
version of Chelikowsky’s direct integration method [Che94] that we have developed.
Using this method, the Hartree potentialVH is evaluated on a grid by assuming the
integrand does not change appreciably within a square of areah2 around each grid point
i, j. VH is given by

VH(xi ,y j) = ∑
i′, j ′

ρe(xi′,y j ′)g(xi−xi′,y j −y j ′), (2.215)

where fori, j 6= i′, j ′

g(xi−xi′,y j −y j ′) =
h2√

(xi−xi′)2 +(y j −y j ′)2
. (2.216)

For i, j = i′, j ′, i.e., near the square root singularity, an explicit integration over the
square yields

g(0,0) = 2hln

(√
2+1√
2−1

)
. (2.217)

Single quantum dot The confining potential we proposed in Eq. (2.211) has two in-
teresting limits. First, forR→ ∞ we obtain the harmonic potential

Ve(r) =− Q
4π

+
1
2

ω2r2, (2.218)

whereω is related to the background charge densityρ = Q/πR2 via

ω =
√

ρ
2
. (2.219)
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Figure 2.21:The first 12 orbitals for a
parabolic confining potential.

1 2 3 4
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9 10 11 12

Figure 2.22:The first 12 orbitals for our po-
tential with R= 0.8 and Q= 24.

In this limit we return to the parabolic confining potential that has been studied exten-
sively. Second, forR→ 0 the potential reduces to

Ve(r) =−Q
r

, (2.220)

which is the potential for two dimensional atoms [Pyy91, Neg96].

These two limits have a different shell structure. For the parabolic potential the shell
will be filled with 2,6,12,20, . . . electrons, whereas for the two dimensional atoms these
numbers are 2,8,14,24, . . .. This shell structure can be visualized using the capacitance

C(n) =
1

µ(n+1)−µ(n)
, (2.221)

wheren is the number of electrons in the quantum dot andµ is the chemical potential
µ(n) = E(n)−E(n− 1). Filling of a shell will result in a peak in the inverse of this
capacitance. This calculated inverse capacitance has been plotted in Figure 2.20 the
parabolic potential (R→ ∞) and for three different values ofR, each a factor 5 apart,
namely 20, 4 and 0.8. For the choiceQ = 24, these radii correspond, according to
Eq. (2.219), with strengthω of the parabolic potential near the center of 1.07meV,
5.36meV, and 26.78meVrespectively, which are numbers consistent with experimental
values. For the pure parabolic potential the value 1.07meV was used. As can be seen
in the figure, forR = 20 the shell filling goes, as expected, similar to the case of the
pure parabolic potential. ForR= 4 the difference between the higher orbitals is already
larger and forR= 0.8 the distinction can be seen by a shift of the peak in the inverse
capacitance fromn = 20 to n = 16. For even smaller dot radii the is shell filling is
expected to shift further to the one for two dimensional atoms.

The orbitals corresponding to the parabolic potential and to the potential withR= 0.8
are plotted in Figures 2.21 and 2.22 respectively, where the scaling in the two figures
differs a factor 2. As expected, the innermost orbitals are very similar. The higher
orbitals, however, are much wider for the potential withR= 0.8, since these electrons
are much less confined.
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Figure 2.23: Inverse of the capacitance for
different inter-center distances as a
function of the number of electrons.

1 2 3 4

5 6 7 8

9 10 11 12

Figure 2.24:The first 12 orbitals for two
laterally coupled quantum dots at a
distance d=10.0 apart.

Laterally coupled quantum dots Because of the asymptotic behavior of the poten-
tial, where the potential goes to zero for large distances, arrays of quantum dots can be
modeled straightforwardly. For example, here we calculate the electronic structure of
two laterally coupled quantum dots which form a quantum dot molecule.

We will consider two quantum dots with chargeQ= 24 and radiusR= 4, corresponding
to a parabolic potential of 5.36meV. These quantum dots are studied as a function of
the distanced between their centers, where the two quantum dots contain 12 electrons
each.

For d = 0 the two quantum dots are centered at the same position and will therefore
form just one quantum dot with the same radius but twice as high a charge density and
thus twice as strong a confinement. For such a quantum dot, the first twelve orbitals
will have the form as with the pure parabolic potential, thus orbitals filled at 2, 6, 12
and 20 electrons. This can be seen again using the inverse of the capacitance, which is
shown in Figure 2.23. In this same figure can be seen that if the inter-center distance
d increases, quantum dot molecular orbitals come into existence with different shell
structure. Ford = 10.0 the first three peaks in the inverse of the capacitance are at 4,
12 and 24 respectively. The orbitals for this case are shown in Figure 2.24. In between,
for d = 4.0, both peaks at 20 and 24 can just be discerned. If the distance between
the quantum dots increases further and further, the two quantum dots will be separated,
resulting in two single quantum dots, which were described in the previous section.

In Figure 2.25 the energy of this system of two quantum dots, with totally 24 electrons,
has been plotted as a function of the distanced between the two centers of the dots. The
two limits of the energy as a function of the inter-center distance of the quantum dots,
i.e., for d = 0 andd→ ∞, can be understood using the 2D pure harmonic oscillator,
i.e., without electron-electron interaction. Namely, in both limits only the lower orbitals
are filled. These orbitals are very similar to the solution of an harmonic oscillator up
to an offset−Q

R−
Q
4π , see Eq. (2.211). Such an offset does not change the shape of the

eigenfunctions, it just causes an offset with this same value in the energy eigenvalues,
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Figure 2.25:The energy of the two quantum dot system versus the inter center distance.

which are well-known for the 2D pure harmonic oscillator to bemω with degeneracy
m, for m = 1,2,3, . . ., where each orbital can occupy 2 electrons. Thus, in terms of
ω the lowest energy eigenvalues of one quantum dot aremω− 1

2(4πR+ R2)ω2 with
degeneracym.
One single quantum dot thus has two contributions to the total energy, in the first place a
contribution of the harmonic oscillator 2· (1·1+2·2+3·3)ω = 28ω, and in the second
place the offset, which is for ourQ andR equal to 12· (−8(π+1)ω2). BecauseQ = 24
andR= 4, ω =

√
3/(4π). And thus the total energy is equal to 28

√
3/(4π)−72(π +

1)/π, which is approximately equal to−81. Thus two of such quantum dots infinitely
far apart yieldsE ≈−162, when the electron-electron interaction is neglected.
The other limit is where the two quantum dots are centered at the same place. This
yields one quantum dot with the same radius but a twice as high charge, and twice as
many, i.e. 24, electrons. Thus, again two contributions to the total energy, namely
2 · (1 ·1+ 2 ·2+ 3 ·3+ 4 ·4+ 2 ·5)ω = 80ω, and an offset 24· (−8(π + 1)ω2), where
ω =

√
3/(2π). And thus the total energy is equal to 80

√
3/(2π)−288(π+1)/π, which

is approximately equal to−324.

Conclusion With the addition of specific 2D correlation and exchange potentials and a
newly developed two-dimensional version of Chelikowsky’s direct integration method,
our wavelet based electronic structure calculation code is also able to deal with two di-
mensional problems. This has been demonstrated for 2D quantum dots as the expected
electronic structure was calculated for quantum dots for a parabolic confining poten-
tial. However, as such an infinite potential is unphysical also a new potential has been
proposed, which consists of the combination of the parabolic potential of a homoge-
neous density distribution within a 2D jellium with the Coulombic potential outside that
jellium. Using this description of quantum dots, not only the shell filling of a single
quantum dot was studied, but also that of a quantum dot molecule consisting of two
laterally coupled quantum dots. Varying the inter center distance within such a quan-
tum dot molecule yielded energies in agreement with analytical results in the limits of
zero and infinitely large inter center separation. Thus, in the same way larger arrays of
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quantum dots could be simulated as well.

2.7 Conclusion

We have proved that our electronic structure calculation framework, based on various
wavelet types, preconditioners, and pruning by introducing extra levels of fine wavelets
only in regions where necessary, works and is accurate. This electronic structure frame-
work is applicable for 1D, 2D and 3D problems.
First this has been applied on analytically solvable case studies: the harmonic oscil-
lator, the Poisson equation, and a potential well. With these case studies the solution
approach, including the minimization approach, the effects of different types and or-
ders of wavelets, different preconditioners and the advantage of pruning was shown in
relation with accuracy and computational cost. By comparison of the numerical and an-
alytical solutions it is shown that the method yields accurate results and that the fastest
convergence to the analytical results is obtained using the interpolet 6 in combination
with the MIC preconditioner, which are thus used for the 2D and 3D problems. It has
also been shown that problems where high resolution is needed locally, e.g. in case of
discontinuities, can be solved efficiently and accurately by means of pruning, because
extra resolution can be added locally where necessary instead of over the whole domain.
After that the code was successfully used to obtain interesting results in 2D quantum
dots and small 3D molecular systems. The effect of different choices for pseudopoten-
tials and exchange-correlation potentials were studied on properties such as ionization
potentials, electron affinities, excitation energies, binding energies, bond frequencies,
force constants, and bond lengths of atoms and small molecules. These results compare
well with experimental data and electronic structure calculations with other basis sets,
proving the applicability of the code for this class of problems.
Also, we have studied the electronic states of quantum dots using a new potential de-
rived from the description of a quantum dot as a 2D jellium. Specific to solve such
2D problems is a two-dimensional version of Chelikowsky’s direct integration method
which has been developed to evaluate the Hartree potential. For single quantum dots
the orbitals have been calculated and the filling of the shells has been compared with
the case of a parabolic model potential. By laterally coupling quantum dots, what can
be done using our potential straightforwardly, quantum dot molecules have been mod-
eled. The shell fillings for two laterally coupled quantum dots have been calculated as a
function of the inter center distance. The corresponding energies agree with analytical
results in the limits of zero and infinitely large inter center separation. This thus enables
to study larger arrays of quantum dots as well.
With this framework we are able to include high resolution for local detail in a very cost
effective way. However, for the larger system sizes required in chemical and biological
systems too many basis functions are needed, resulting in too high computational cost.
We estimate that parallelizing the code will not bring enough improvement to simulate
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the larger systems we are interested in. That is the reason that instead of parallelizing
the code we extended the framework with molecular dynamics with empirical potentials,
notwithstanding the applicability of our framework for small systems where locally very
high resolution is needed.
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3
Coarse grained molecular dynamics

I n coarse grained molecular dynamics simulations the average behavior of
several atoms is combined into one single particle. Because this reduces the

number of particles and increases the time step size that can be made compared
to fully atomistic molecular dynamics, as the fastest motion of light atoms like
hydrogens is removed, the use of coarse grained molecular dynamics simulations
allows to study system sizes and time intervals that are still out of reach for fully
atomistic simulations. Here, a coarse grained model is presented for phospholipids
in water. Using this model, the dynamics of membrane and vesicle formation are
studied as well as the process of vesicle fusion.

Part of this chapter is described in:

A.J. Markvoort, K. Pieterse, M.N. Steijaert, P. Spijker and P.A.J. Hilbers,The bilayer-vesicle transition
is entropy driven, J. Phys. Chem. B,109, 22649-22654 (2005).
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3.1 Introduction

In the previous chapter we described a method to speedup quantum mechanical calcu-
lations. However, such ab-initio methods can only be applied to systems with a few
atoms, especially if we are interested in dynamics. This dynamics can be studied us-
ing molecular dynamics simulations, where the time evolution of a set of interacting
atoms is followed by integrating their equations of motion. The force the atoms exert
on each other can be calculated from the electronic structure, but instead of calculat-
ing the forces on the particles from first principles, empirical potentials can be used
as well. In this field of empirical potentials there is another distinction between fully
atomistic models and coarse grained models. In fully atomistic simulations, the focus
for biological systems is mainly on fine tuning the parameters and employing larger and
larger computers to simulate larger systems. However, system sizes and time intervals
needed to study most biologically interesting phenomena are still out of reach. In this
chapter, we therefore propose the use of coarse grained molecular dynamics simulations
for biological systems. In such a coarse grained method, not all atoms are modeled in
atomistic detail, but some atoms are considered together in one particle. This obviously
results in a reduction of the number of particles, but it also has the advantage that larger
time steps can be made, as the fastest motion of light atoms like hydrogen is removed,
such that larger systems can be followed during larger time intervals. To demonstrate
the applicability we focus on membranes. More specifically, we study the aggregation
of lipids into bilayers and the spontaneous formation of vesicles.

Membranes Membranes [Alb89, Lip95, Nag00] are important in all organisms as the
plasma membrane of cells forms the protective barrier between the cytosol and the cell
exterior. This allows for the maintenance of the essential differences between the cy-
tosol and the exterior. In eucaryotic cells, membranes also separate different regions
within the cell such that these regions can perform specific tasks. Besides this function
as a partitioner, membranes are important in a number of processes including transport,
cell-cell signaling and reproduction. The contemporary view on the structure of mem-
branes is based on the Fluid Mosaic Model, as suggested by Singer and Nicolson in
1972 [Sin72]. In this model a membrane consists of a fluid bilayer of a mixture of lipids
in which proteins float and which is about 5nm thick. The membrane is called fluid
as the lipids and proteins can move in the plane of the membrane by means of lateral
and rotational diffusion. Lipids can also ‘flip-flop’ from one monolayer to the other,
although much more rarely, allowing the two halves of the membrane to have different
compositions.
Membrane bound proteins can have many functions among which are transportation,
catalysis, and signaling. Depending on their function these proteins can be either fully
embedded in the bilayer, partly embedded or only associated with the bilayer surface.
The lipid bilayer however provides the basic structure of the membrane and serves as
a relatively impermeable barrier to most water-soluble molecules. Because the body of
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the membrane is formed by the lipid bilayer we concentrate on these lipids.

Membrane lipids All lipid molecules in cell membranes are amphiphilic, i.e., they
have a hydrophilic (water-loving, polar) head group and a hydrophobic (water-fearing,
non-polar) tail. The most abundant membrane lipids are phospholipids, having a polar
head group and two hydrophobic hydrocarbon tails. The head groups can differ and the
tails can differ in length and degree of saturation. These differences can be of impor-
tance as they influence the ability of phospholipid molecules to pack, and as such the
fluidity of the membrane, but the general structure of all lipids is the same.

Aggregation of amphiphiles Lipids form membranes because, due to their amphi-
philic nature, lipids have a tendency to aggregate in a watery environment. The repul-
sive interactions between the apolar parts of the molecules with the polar parts of the
molecules as well as with the polar water molecules, force the system in a configura-
tion where the apolar tails are isolated from the polar environment as much as possible.
Depending on the type of amphiphile (e.g., geometry, distribution of polar and apolar
regions, and electrical charges) and system constants (e.g., amphiphile concentration
and temperature), aggregates of different size and geometry are formed [Isr91]. At low
concentrations most amphiphiles are present as isolated monomers. The concentration
of monomers rises with the total amphiphile concentration, until the critical micelle
concentration (CMC) [Isr91] is reached. Above this CMC the number of monomers is
constant whereas the number of aggregates increases. These aggregates can for exam-
ple be spherical, rod-like or disc-like micelles, or for very high concentrations ordered
continuous structures. Cylindrical amphiphiles like lipids can also form bilayers and
vesicles. Although the steady state aggregation behavior of common lipids is known,
the complete dynamics of the formation of aggregates is not yet completely understood.
Several mechanisms have been suggested [Shi02b, Len02], but because of the combi-
nation of small length scale and short time scale of the dynamics, it is hard to find an
experimental setup to study this. However, coarse grained molecular dynamics provides
a good way to simulate this dynamics of amphiphiles.

3.2 Coarse grained lipid model

Biological membranes can consist of a variety of lipids. All these lipids are amphiphilic
in nature, having a hydrophilic head group and one or two hydrophobic tails. The most
important type of membrane lipids are the phospholipids, among which the group of
glycerophospholipids is the most common. To describe the interactions between phos-
pholipids in water, we use a coarse grained (CG) model in combination with a simplified
force field. The CG model differs from the more common atomistic models in the fact
that the molecules consist of so-called coarse grained particles, which combine the av-
erage behavior of several atoms in one single particle. The advantage of coarse graining
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(a) (b) (c)

Figure 3.1: Comparison of the DPPC with our coarse grained model.(a) chemical struc-
ture of DPPC.(b) and (c) van der Waals representations of atomistic DPPC and
the coarse grained lipid molecule respectively.

is that the resulting system consists of fewer particles and that larger time steps can be
made. This enables the study of larger systems over larger time intervals, i.e., system
sizes and time intervals that are out of reach of fully atomistic simulations. Our coarse
grained lipids are based on lipids of the glycerophospholipids class, dipalmitoylphos-
phatidylcholine (DPPC) being a typical example. In the simulation sections, we com-
pare our model with DPPC because of the wide availability of experimental data for
this type of lipid and because this lipid captures all essentials from the neutral lipids.
The chemical structure and the van der Waals representation of this lipid are depicted in
Figures 3.1a and 3.1b respectively.
In our CG model we use the coarse grained molecule as shown in part c of the same
figure to model the lipid. In this model two types of coarse grained particles are used
to describe the chemically relevant groups in the phospholipid. The apolar tails of the
phospholipids are represented by T particles, whereas the polar head groups are rep-
resented by H particles. The molecule consists of two chains of four T particles rep-
resenting the two saturated fatty acid tails of DPPC and four H particles representing
the choline, phosphate and glycerol backbone of the DPPC head group. This coarse
grained molecule is referred to in the remainder of the text as the lipid. To simulate
phospholipid–water mixtures, a third particle type W is present in our CG model which
describes the solvent (water).

3.2.1 CG model potentials

The force between two particles is governed by the gradient of the potentials between
these particles. In our force field three potentials are defined, namely a bonded, a non-
bonded, and a bending potential. The first one is used for particles that share a bond,
while the second is used for the interactions between all other pairs of particles. In first
instance only these two potentials are used. Later on, the bending potential is used to
study the effect of the rigidity of the lipid on the bilayer and vesicle formation. All three
potentials are shown in Figure 3.2.

Bonded potential Bonded interactions are described by vibrational movements, as in
a mass–spring system. These movements are harmonic and, therefore, are described by
the harmonic potential

VBond(r i j ) = ki j
(
r i j − r0,i j

)2
, (3.1)
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whereki j is the binding constant between bonded particlei and j, r0,i j is the equilibrium
bond length, andr i j = |~x j −~xi | is the scalar distance between particlei and particlej,
where~xi is the position vector of atomi and~x j similarly for particle j.

Bending potential The tails of lipid molecules are rather flexible, however, theanti
conformation is energetically favorable for hydrocarbon chains. To mimic this behavior,
some rigidity can be incorporated into our lipid tails by means of a bending potential
between T particles. These interactions depend on the angleθi jk between two bonds
that share a common particle:

VBend(θi jk) = ki jk
(
cos(θi jk)−cos(θ0,i jk)

)2
, (3.2)

where both particlesi and j, and j and k share a bond. In this potential,ki jk is the
bending force constant andθ0,i jk the equilibrium angle.
Dihedral potentials, which are often used in fully atomistic simulations, are omitted
from our model because the bending potential alone suffices to introduce the desired
rigidity in our lipid tails.

Non-bonded potential The non-bonded interactions are derived from the Lennard-
Jones (LJ) potential

VLJ(r i j ) = 4εi j

((
σi j

r i j

)12

−
(

σi j

r i j

)6
)

, (3.3)

whereεi j is the characteristic energy in the pair potential,σi j is the collision diameter of
the pair, and the scalar distance between the particles,r i j , is defined similarly as for the
harmonic potential. Formally, in the Lennard-Jones potential the interactions between
all non-bonded particle pairs have to be calculated, but since this potential vanishes at
largerr i j , only the interactions with particles within a certain cut-off radius need to be
calculated. Therefore, in our force field a so-called truncated shifted Lennard-Jones
(tsLJ) potential is defined, which is derived from the standard Lennard-Jones potential
as

VtsLJ(r i j ) =
{

VLJ(r i j )−VLJ(rc,i j ) if r i j 6 rc,i j

0 if r i j > rc,i j
(3.4)

by cutting it at the cut-off radiusrc,i j and shifting it upward to avoid discontinuities in
the potential.
Two different cut-off radii are used in our model. The first isrc,i j = 2.5σi j . The result-
ing potential resembles the full Lennard-Jones potential closely since the Lennard-Jones
potential reduces fast to zero at largerr i j , but it has the advantage that with the truncated
potential only the interactions with particles within the cut-off radius have to be taken
into account instead of all pair interactions. Because of this, the computational cost re-
duces from quadratic to linear in the number of particles. This potential will be denoted
further as the RA potential.
In phospholipid–water mixtures the water molecules and phospholipid head groups are
polar (hydrophilic), while the phospholipid tails are apolar (hydrophobic). Polar and
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(a) (b) (c)

Figure 3.2: The three potentials in our coarse grained model.(a) The truncated shifted
Lennard-Jones potential for two different cut-off radii.(b) The bonded potential
(for ki j = 325ε∗σ∗−2). (c) The bending potential (forθ0 = 180◦ and ki jk = 16ε∗).

apolar particles will normally phase separate (for example water and oil) and our tsLJ
potential has to be modified for the polar–apolar interactions to describe this behavior
correctly. The latter is achieved by setting the cut-off radius for polar–apolar interaction
to 21/6σi j , thereby effectively removing the attractive part of the tsLJ potential (Fig-
ure 3.2a). The resulting potential is purely repulsive and will thus be denoted as the PR
potential.
Our CG model only uses neutral particles and, therefore, a potential dealing with elec-
trostatics is omitted from the force field. Although this confines our CG model to the de-
scription of neutral phospholipids, the gain in computational speed is considerable due
to the long range nature of electrostatic interactions. The shorter ranged electrostatic
effect of charge distributions within our CG particles (e.g. dipoles) is incorporated in
our non-bonded truncated shifted Lennard-Jones potentials.

3.2.2 CG model parameters

The parameters used in our CG model are expressed in reduced units. These reduced
units, with values typically around one, improve the numerical stability of the simula-
tions and facilitate error estimation. Our system consists of the following reduced units:
the unit for lengthσ∗; the unit for mass m∗; and the unit for energyε∗. All other reduced
units (like the units for temperature T∗, pressure P∗, and timeτ) can be derived out of
these choices [Fre02, All87].

Lennard-Jones parameters As a basis for our parameters the T particle was taken,
which represents four methylene groups (e.g. –(CH2)4–). The choice for four methylene
groups in one coarse grained particle has been made in a trade-off between speed-up
and accuracy. A smaller unit could have been taken, but then the gain of coarse graining
would have been smaller. On the other hand, a larger unit could have been taken, but
then the representation with a spherical coarse grained particle becomes less good. With
our choice, the speed-up compared with fully atomistic simulations is over 100, enabling
the simulation of processes at a completely different time scale, while lipids can still be
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represented naturally.
By definition all parameters describing the T particles are set to one, hencemT = 1m∗,
σTT = 1σ∗ andεTT = 1ε∗. In order to investigate the phospholipids under realistic con-
ditions and allow comparison of our simulations with experimental data, conversion of
the reduced units to common units is a prerequisite. Vice versa, conversion of com-
mon units to our reduced units enables the determination of our CG parameters from
experimental and atomistic simulation data.
The unified atomic mass of 1m∗ can be deduced from the mass of a T particle. Since
one T particle resembles four methylene groupsmT = 1m∗ ≈ 56.1amu. The energy
associated withε∗ can be derived from the reduced temperature T∗ via 1ε∗ = 1 T∗

kB
,

wherekB is the Boltzmann constant. This reduced temperature was determined by com-
paring the melting temperature (Tm) found in a simulation containing 1372 T particles
(Tm,T = 0.57T∗) with the melting temperature of butane (Tm,butane= 135K). Consider-
ing the close chemical resemblance of –(CH2)4– with butane, one can state thatTm,T ≈
Tm,butaneand, therefore, 1T∗ ≈ 236K, subsequently leading to 1ε∗ ≈ 0.47kcalmol−1.
To get an estimation of the reduced length, a simulation containing 1000 T3 (i.e., a
coarse grained T-T-T molecule) and another with 600 T4 oligomers was performed at
1.24T∗. The particle densities (d) obtained from these two simulations (dT3 = 0.70σ∗−3

anddT4 = 0.75σ∗−3) were compared with the density of dodecane (C12H26, ρ293K =
0.749gcm−3) and hexadecane (C16H34, ρ293K = 0.773gcm−3), respectively, resulting
in 1σ∗ ≈ 0.45nm.
A W particle represents four water molecules and, hence, its mass is set atmW =
72.1amu≈ 1.284m∗. Since the melting temperature of our CG particles scales linearly
with their characteristic energyεi j andTm,water = 273K, one can deduce thatεWW ≈
2.0ε∗. Using these parameters, a simulation of W particles at 1.3T∗ yielded a particle
density ofdW = 0.813σ∗−3. Taking into account thatρwater,307K = 0.993gcm−3, this
results inσWW ≈ 1.024σ∗.
To keep the model as general as possible, the polar head group of the lipids is rep-
resented by four identical H particles. The mass and collision diameter of such a H
particle are given the same values as those of the T particles, while the characteristic
energy is set atεHH = 2.0ε∗, equal to that of the W particles.

Cross-type Lennard-Jones parameters Besides the interactions between non-bond-
ed particles of the same type, also cross-type interactions are present. To prevent pref-
erential associations from inducing artifacts in our simulations, the characteristic en-
ergies of all polar–polar cross-type interactions have been taken equal and, therefore,
εHW = 2.0ε∗. For the interaction between polar and apolar particles the PR poten-
tial is used. The characteristic energy of these cross-type interactions is set to one
(εHT = εWT = 1.0ε∗).
The collision diameter for all cross-type interactions can simply be calculated using

σi j =
σii +σ j j

2
. (3.5)
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Harmonic bond parameters To determine the parameters involved in the harmonic
bond potential, atomistic molecular dynamics simulations of alkanes were performed
using MMTK with the Amber force field [Hin00]. An estimate for the equilibrium bond
length was obtained by simulating eicosane (C20H42) and representing the eicosane
molecules as T5 oligomers, i.e., dividing the eicosane molecules in five equal parts
and using their centers of mass as the coarse grained particle position vectors. By aver-
aging the scalar distance between adjacent centers of mass over several configurations,
an equilibrium bond length ofr0,TT = 0.4728nm≈ 1.051σ∗ was found for the coarse
grained particles.
The binding constant can be calculated from the harmonic frequencyωi j usingki j =
µi j ω 2

i j , with reduced massµi j = mimj
mi+mj

. To obtain the harmonic frequency of the coarse
grained particles, octane (C8H18) was simulated and represented as a T2 oligomer.
Fourier analysis of the evolution of the scalar distance between the centers of mass in
time, yielded a harmonic frequency of 7.5ps−1. The latter results in a binding constant
of kTT ≈ 325ε∗σ∗−2.
Since the size and mass of the H particles are equal to those of the T particles, their
corresponding parameters as well as the cross-type parameters are assigned equal values
(r0,HH = r0,HT = r0,TT andkHH = kHT = kTT).

Bending parameters The parameters involved in the bending potential are obtained
from the same atomistic molecular dynamics simulations of eicosane molecules. Using
the same five centers of mass per eicosane molecule as used to calculate the binding
force constant, the distribution of angles between adjacent centers of mass can be de-
termined. This resulted in a wide distribution of angles with an average angle of 148◦.
Since the lowest energy conformation of our lipid tails should be a straight chain, an
equilibrium angle ofθ0 = 180◦ is used for our coarse grained tails. Implementing this
choice in T5 oligomers, a similar angle distribution as for the fully atomistic eicosane
molecules is obtained usingki jk = 16ε∗ for the bending constant.
The atomistic eicosane simulation also showed that for the dihedral angles between four
adjacent centers of mass indeed hardly any preferential angle is present, thus legitimiz-
ing our choice to omit dihedrals from our coarse grained model.

3.3 Simulations of bilayer and vesicle formation

The molecular dynamics code that we use for our simulations is our in-house developed
codePumMawhich is partly based on the code presented in Ref. [Ess93].PumMais
a relatively small and very efficient parallel molecular dynamics code that we could
extend rather easily to our needs and that scales well on our Beowulf cluster. The use
of other existing publicly available codes has been considered as well, but this has been
refrained from because it was either too elaborate to implement our force field or the
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performance was too low [vdH04]. A toolkit (PumMaTK) has been developed to easily
create new start configurations and to visualize and analyze simulation results.

3.3.1 Spontaneous formation of a bilayer

The first test of our coarse grained model is whether our lipid molecules aggregate,
ultimately forming bilayers. In first instance, lipids without the bending potential are
used. To investigate the aggregation, 256 lipid molecules have been placed randomly in
a cubic simulation box with length 23.3σ∗. The remaining free space was subsequently
filled with 6471 water particles. This configuration is shown in Figure 3.3a. The same
configuration is shown in part b of the same figure, but now the water particles have been
drawn transparently to show the lipids more clearly. Using this initial configuration, a
constant temperature and constant pressure (NPT) simulation is performed existing of
500000 iterations of size 0.005τ. During this simulation the temperature and pressure
where kept atT = 1.3T∗ andP= 0.00283P∗, respectively (atmospheric conditions). As
can be seen from the final configuration, which is shown in Figure 3.3c, the lipids aggre-
gate and organize into a bilayer. For such a bilayer, the repulsive interactions between
the apolar T particles and the polar H and W, are minimized as much as possible.

It is important to note that the periodic boundary conditions can influence the struc-
ture that is formed. Bilayers generally form perpendicular to one of the axes of the
orthorhombic simulation box such that the bilayer is periodic. If the area of the bilayer
is larger than the available area in the simulation box, the bilayer becomes curved. On
the other hand, if the bilayer area is smaller than the available area, a bilayer with a
hole or a stretched and thinner bilayer can be formed. To prevent this, pressure scaling
is applied independently in all three spatial directions such that no unnatural stress is
introduced in the bilayer.

(a) (b) (c)

Figure 3.3: Spontaneous formation of a bilayer. System consists of 256 lipid and 6471
water molecules.(a) Initial random configuration.(b) The same initial configu-
ration with the water particles drawn transparently.(c) Final configuration after
500000iterations.
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3.3.2 Spontaneous formation of vesicles

As has been stated above, the periodic boundary conditions influence the structures that
are formed. In the previous simulation this effect was minimized as much as possible
by allowing independent pressure coupling. A better way to circumvent the influence of
the boundary conditions is by simulating a larger box, such that no periodic structures
are formed.
In the same way as for the previous simulation, a larger initial configuration has been
made by randomly placing the lipid molecules and filling the remaining space with
water particles. This larger simulation box contains 512 lipid molecules and 66026
water particles and is shown in Figure 3.4a. During a 2.5 million iterations simulation,
the lipids firstly aggregate into micelles. Subsequently some of the micelles merge into a
larger aggregate that is disc-like, like a circular bilayer. Finally this aggregate transforms
into a vesicle. This final configuration containing the vesicle and some micelles is shown
in part b of the same figure.

(a) (b)

Figure 3.4: Starting from a larger simulation box randomly filled with lipids(a), a mixture
of micelles and a vesicle is formed(b).

3.3.3 Vesicle formation from bilayers

To study the process of vesicle formation more closely, the bilayer that was formed
in Section 3.3.1 was placed in a larger box full of water particles as shown in Fig-
ure 3.5a. This new system is now taken as the starting configuration for a new simu-
lation. Because the bilayer is now no longer periodic, water borders the hydrophobic
tails. In the initial phase of the MD simulation the bilayer tries to minimize this contact.
This is done by shielding the tails with some head groups and by minimizing the edge
by making the bilayer circular as shown in part b of the figure. Subsequently, the bilayer
starts to curl as can be seen in part c of the figure. In this way, the edge is minimized
further at the expense of the bilayer planarity. This curling continuous, minimizing the
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(a) (b) (c) (d)

Figure 3.5: The bilayer to vesicle transition. The edge of the initially square bilayer(a)
is minimized first by making the bilayer circular(b) and subsequently by curling
(c) the bilayer until it closes, resulting in a vesicle(d).

edge further and further, until the structure closes. At this stage which is shown in Fig-
ure 3.5d, the edge has been removed completely and a vesicle has been formed. In this
case the bilayer has enclosed 121 of the water particles which now form the vesicle
interior.

3.3.4 Formation of a large vesicle

In our simulations so far only small vesicles have been formed. As soon as the bilayer
has reached a critical size, it starts to transform into a vesicle. The idea is that larger
vesicles could be made by either fusing small vesicles or by starting from a large bilayer.
Such a large bilayer can be constructed by placing multiple images of a small bilayer
next to each other. By using 6×6 images of a small bilayer of width 23.3σ∗, a large
square bilayer is formed with a width of 139.8σ∗. From this large square bilayer, a
circular bilayer has been cut which has a diameter of 120.0σ∗ in order to have a bilayer
large enough to form a vesicle with a radius of approximately 30.0σ∗. This bilayer
consists of 4852 lipid molecules and has been placed in a box containing an additional
522256 water particles.
A MD simulation of in total 2000000 iterations with a time step size of 0.01τ has been

(a) (b) (c)

Figure 3.6: Similarly to a small bilayer, a large bilayer curls to a vesicle. The particles
are colored depending on the side of the bilayer they were initially situated.
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performed in approximately 440 hours on 48 AMD Athlon 1800+ CPU’s. In Figure 3.6
some snapshots of the simulation are shown. During the first 400000 iterations the
membrane undulates a little. Then the membrane starts curling. This curling contin-
ues gradually until a sphere has come to existence with a small gap. Around iteration
1700000 the gap closes, forming the vesicle. During the last 300000 iterations this
vesicle remains stable.
The process of vesicle formation for this large bilayer seems to be equal to that of the
small bilayer, but the larger bilayer allows for a better possibility to study this pro-
cess [Spi03].

3.3.5 Lipid rigidity dependence on bilayers

In all simulations in the previous sections no bending restrictions were put on the lipids.
Thus even with such a simple model the formation of a bilayer and vesicles can be
described. However, because of the lack of bending restrictions, the lipid molecules are
very flexible and the resulting bilayer is too thin compared to real bilayers and the area
per lipid is too large. To study the dependence of the bilayer thickness and the area per
lipid on the lipid stiffness, bilayers have been formed in simulations for lipid molecules
with various bending force constants. The average area per head group as a function
of the bending force constant has been shown in Figure 3.7. Furthermore, the bilayer
thickness has been shown in Figure 3.8 as a function of the bending force constant as
well. This thickness has been defined as the width of the slice, centered around the
bilayer center of mass, containing 95% of the bilayer mass. In Figure 3.9 the resulting
bilayers are shown and compared with a fully atomistic DPPC bilayer.
These results can be compared with experimental and fully atomistic simulation results.
According to different experimental studies the average area per lipid for a DPPC bi-
layer is 0.62±0.02nm2 [Tie97]. The thickness has also been measured experimentally
with scattering experiments, but a comparison is hard to make because it is not pre-
cisely defined where the bilayer starts and ends. However, our 95% definition can be

Figure 3.7: The average area per head group
[nm2] as a function of the bending force
constant ki jk .

Figure 3.8: The thickness [nm] of the slice
containing95% of the total bilayer mass
as a function of the bending force constant
ki jk .
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(a) Fully atomistic (b)ki jk = 0.0ε∗ (c) ki jk = 4.0ε∗

(d) ki jk = 16.0ε∗ (e)ki jk = 64.0ε∗ (f) ki jk = 1024.0ε∗

Figure 3.9: Comparison of the coarse grained bilayers for different bending force con-
stants with the fully atomistic bilayer. Each coarse grained simulation consists of
128 lipid and 1165 water molecules, whereas the fully atomistic simulations con-
tains the corresponding 128 DPPC and 4659 water molecules.

compared with the same definition in fully atomistic simulations, which yield a thick-
ness of 4.23nm.
From the comparison of the area per lipid, the comparison of the bilayer thickness as
well as from the visualizations, it is clear that a bending constant of approximately 16
yields the results most comparable to fully atomistic simulations and experiments. This
value also matches with the bending force constant that we estimated from the eicosane
simulations.
Thus, with the addition of bending to our lipid model, a still very simple but good model
is obtained. In this respect it is important to note that all parameters were not fitted for
the bilayer. Even though all our parameters were not especially fitted for the lipids in
bilayers, but for pure water and pure alkanes instead, our simple coarse grained model
yields good results for lipid bilayers.

3.3.6 Lipid rigidity dependence on vesicle formation

In all our simulations so far small bilayers already form vesicles. Even vesicles with a
diameter of 10nm are formed. Such small lipid vesicles are not known to exist in nature.
The flexibility of our coarse grained lipid molecules may contribute to this. To test in
which sense the rigidity of the lipids influences the vesicle sizes, simulations with the
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(a) (b)

Figure 3.10:For rigid lipids (ki jk = 64.0ε∗) even a bilayer that is twice as large as the
one that forms a bilayer for fully flexible lipids does not bend at all.(a) Side view.
(b) Top view.

bending potential on have been performed as well.

As we have seen before, a bilayer of only 256 unrestricted lipids already formed a
vesicle. But for 2 times as many lipids withki jk = 64.0ε∗ the bilayer remains very flat,
not showing the least tendency to curl to a vesicle as can be seen in Figure 3.10 where
the bilayer is shown after as many as ten million iterations. The more rigid the lipids,
the larger the bilayers need be before they start to bend to form into vesicles. Thus, our
simplified model with no bending potential enabled us to study the vesicle formation
already on smaller system sizes.

A way to study the dependence of the minimum size with the rigidity is to start from
a random initial configuration. This has e.g. been done forki jk = 16.0ε∗. A cubic
simulation box with length 40.5σ∗ has been filled randomly with 512 lipid molecules
and 38332 water particles (Figure 3.11a). During a simulation of 7500000 iterations,
the lipids first rapidly aggregate into micelles and small bilayers, also called bicelles.
These micelles and bicelles are shown after 400000 iterations in Figure 3.11b. Subse-
quently, the micelles and bicelles slowly merge into a larger aggregate, being a disc-like

(a) (b) (c) (d)

Figure 3.11:Spontaneous vesicle formation.(a) Initially 512 lipids are dispersed
throughout38332water particles. (b) After 400000iterations these lipids have
formed micelles and small bilayers.(c) After6500000iterations the micelles have
merged into a large bilayer.(d) After 7500000iterations this bilayer has trans-
formed into a vesicle.
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N

256 512 1024

0 v v v

4 v v v

k 16 b v v

64 b b v

256 b b b

Table 3.1:The stiffer the lipids
the larger the minimal
bilayer size to form vesi-
cles. N is the number
of lipids in the bilayer,
k the bending parame-
ter and b and v indicate
whether the end config-
uration of the simula-
tions is a bilayer or a
vesicle respecively.

Nlipids RB [nm] RS [nm] hS [nm] Nin Nout NW

256 5.2 no vesicle

320 5.9 no vesicle

384 6.6 no vesicle

448 7.1 6.0 3.9 98 350 245

512 7.6 6.3 3.9 130 382 383

640 8.5 6.8 4.0 171 469 654

768 9.4 7.2 4.0 224 544 1003

1008 10.8 7.9 4.1 310 698 1943

1536 13.1 9.2 4.2 518 1018 4641

2048 15.2 10.3 4.2 747 1301 7936

3072 18.7 12.0 4.3 1185 1887 17128

4096 21.6 13.5 4.3 1642 2454 28361

Table 3.2:Overview of the vesicles formed in the
simulations. For all these simulations, the
radii of the initial bilayers (RB) and the re-
sulting outer vesicle radii (RS) as well as the
vesicle bilayer thichness (hS) and the num-
ber of lipids in the inner (Nin) and outer
(Nout) membrane layer and the number of en-
capsulated water particles (NW) are given.

bilayer. Figure 3.11c shows this circular bilayer that is formed after 6500000 iterations.
Finally this bilayer transforms into a vesicle, encapsulating 385 water particles. This
final configuration, after 7500000 iterations, is shown in part d of Figure 3.11. Note
that, contrary to Section 3.3.2 where no bending potential was used, now all 512 lipids
have to aggregate together into a bilayer before the vesicle formation starts. Because
this fusion of micelles and bilayers is the slowest part of the process, the simulation
time needed to obtain a vesicle is also much longer.

The process described above follows the pathway as suggested by Lenget al. [Len03]
from experimental studies. Formation of micelles and small bilayers is fast. The fusion
of these small aggregates into larger bilayers is slower but once a sufficiently large
bilayer is formed, the transition to a vesicle is again fast.

The sizes of the vesicles that are formed in this way are a measure for the minimal num-
ber of lipids with the applied rigidity that are necessary for vesicle formation. However,
such simulations, starting from randomly dispersed lipids, have two drawbacks. In the
first place they are computationally very expensive as the rate at which bilayers grow is
very low, because the time between two subsequent fusions with micelles can be quite
large. Furthermore, two small bilayers could fuse to a larger bilayer which then forms
a vesicle, but since the increase in number of lipids in such a fusion is so large, not the
real minimal size is found.

Another way is to start with bilayers of different sizes and to check which remain disc-
like bilayers and which form vesicles. In Table 3.1 the results are shown for three
different bilayer sizes and five different bending constants.

In order to study the process of the disc to vesicle transition more closely, we have per-
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formed additional simulations starting from bilayers of various sizes with the bending
constant at 16.0ε∗. From a periodic flat bilayer circular bilayers have been cut con-
sisting of 256, 320, 384, 448, 512, 640, 768, 1008, 1536, 2048, 3072 and 4096 lipids
respectively. All bilayers which contained less than 448 lipids remained disc-like flat
bilayers after five million MD iterations, whereas the larger bilayers all formed vesicles.
For all these simulations, the radii of the initial bilayers (RB), the resulting outer vesi-
cle radii (RS) and the vesicle bilayer thickness (hS) as well as the number of lipids in
the inner (Nin) and outer (Nout) membrane layer and the number of encapsulated water
particles (NW) are given in Table 3.2.
A first observation that can be made from this table is the decreasing bilayer thickness
for smaller vesicles. A second observation is that the vesicles formed from bilayers yield
almost the same vesicles as from randomly distributed lipids, namely, for the vesicle
consisting of 512 lipids now 383 water particles are encapsulated compared to 385 for
the randomly formed vesicle described above.

3.3.7 Simulations with single tail lipids

All simulations shown so far were performed with our lipid model based of DPPC. With
the same coarse grained particles also a single tail lipid could be made. Examples of
simulations with several such single tail lipids are shown in Figure 3.12.
Figure 3.12a shows that linear single tail lipids, with a head group that has the same
area as the tail, also form bilayers and vesicles. However, not all molecules form bilay-
ers. For example, Figure 3.12b shows that single tail molecules with a head group that
is wider than the tail form spherical and cylindrical micelles. Not only the head group
itself can be large, but it can also be enlarged by a water shell surrounding it. By decreas-
ing the head group head group interactionεH−H to 1.0ε∗ and increasing the head group

(a) (b) (c)

Figure 3.12: (a) Bilayers and vesicles can also be formed by single tail lipids with a
small head group.(b) However, single tail lipids with a large head group do not
form bilayers and vesicles but only micelles.(c) Also single tail lipids with a small
head group that is enlarged by a water shell around their head group only form
micelles.
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water interactionεH−W to 2.5ε∗, the lipids that otherwise form vesicles, now form mi-
celles as shown in Figure 3.12c. This latter simulation conforms best with experimental
studies of single tail lipids which usually have a charged head group inducing a water
shell around it.
In accordance with the theory of Ref. [Isr91], the shape of the particles, i.e., being
cylindrical or cone shaped and having a hydrophobic tail and a hydrophilic head group,
seems the relevant factor for the type of aggregates formed.

3.4 Discussion

3.4.1 Theory and experimental validation

From comparison with experimental results and fully atomistic simulations we have
already seen that our lipid model shows the expected behavior for bilayers. The area
per lipid and the width of spontaneously formed bilayers are in line with experimental
results and fully atomistic simulations.
The bilayer-vesicle transition has been studied previously experimentally, theoretically
and using simulations. Lenget al. [Len03] showed in a recent experimental study of
phospholipid vesicle formation that the vesicle size distribution is determined kineti-
cally by the minimum size at which open membrane fragments, growing as they fuse
together, can rapidly make the transition to the vesicle state. Experimental studies on
vesicle formation have also been performed using other surfactants such as the synthetic
surfactant sodium 6-phenyltridecanesulphonate [Far96] and anionic/cationic surfactant
mixtures [Shi02b]. In these studies bilayers and vesicles are observed, but the transition
is hard to observe as it is fast [Len02].
The free energy landscape on which the bilayer-vesicle transition occurs has also been
studied theoretically. Fromherz [Fro83] introduced the ‘spherical cap’ model in which
two contributions, an edge energy and an elastic energy, yield an energy barrier for the
transition dependent on the size of the bilayer. By curling the bilayer, the length of the
edge and thus the edge energy decreases, while the curvature of the bilayer and thus the
elastic energy increases.

3.4.2 Comparison with other simulation techniques

Except from with experiments and theoretical studies, our results can also be compared
with other simulation methods as the process of vesicle formation has been studied by
others by means of other computer simulation techniques and models as well. These
computer simulation techniques include Brownian dynamics, dissipative particle dy-
namics, and Monte Carlo.
Others have also performed molecular dynamics simulations on lipids and bilayers.
Fully atomistic simulations on small bilayers are common practice [Tie97], but the sim-

91



Coarse grained molecular dynamics

ulation of large bilayers or vesicle formation is difficult due to the time scale and the
number of particles involved. For instance, only one study has shown the formation
of a small vesicle on an atomistic level [dV04]. To investigate biologically relevant
processes using contemporary computational power also other groups have developed
coarse grained models. Goetzet al. [Goe98, Goe99] studied the self-assembly of small
bilayers from simple one and two tailed amphiphiles. The lipid model which Shelley
et al. [She01] used to simulate small bilayers is more detailed, consisting of many par-
ticle types. Marrinket al. [Mar04, Mar03c] showed not only bilayer but also vesicle
formation using their own model. This model does include electrostatic potentials, but
they are cut-off at small distance thus neglecting their long range nature. Here, we not
only study spontaneous bilayer and vesicle formation, but also the formation of vesicles
with different sizes and the changes in energy during the vesicle formation. In the lipid
model used, we refrained from as much detail as possible to obtain a simple model that
still yields realistic behavior.

Molecular dynamics is more suited to study the vesicle formation process than other
simulation techniques. For instance, in the Brownian dynamics studies the solvent is
not taken into account and the amphiphiles are modeled as rigid rods. Using this tech-
nique, Noguchiet al. were able to show the self-assembly of amphiphiles into vesi-
cles [Nog01]. The lack of a solvent is of course advantageous because it saves a lot of
computational cost. However, the absence of the solvent is a drawback of the method as
well, because the interaction of the solvent with the amphiphiles appears to be crucial
for the aggregation behavior. The computational gain of omitting the solvent is also why
Drouffeet al. [Dro91] could simulate vesicle formation already in 1991 in a completely
different computer simulation. In this simulation no single lipids are present. Instead,
a single particle represents part of a bilayer, containing two hydrophilic regions for the
head groups of the amphiphiles on both side of the bilayer and a hydrophobic region for
the hydrophobic bilayer core, such that a vesicle could be formed in a simulation con-
taining only 252 particles. A bit more detailed solvent free computer model has been
published more recently [Far03].

More realistic simulations, i.e., containing a solution, are performed using dissipative
particle dynamics (DPD) [Hoo92, Gro97]. In this approach, the property that the Brow-
nian motion of uncharged colloids does not depend on the atomistic details of the sol-
vent, but only on the density, temperature, and viscosity of that solvent, is used. The
forces due to individual solvent molecules are lumbed together to yield effective fric-
tion and a fluctuating force between moving fluid elements. Using this technique, self-
assembly of membranes has been shown [Ven99, Shi02a] as well as spontaneous vesicle
formation [Yam02] in a way very similar to our simulation results. However, this ap-
proach does not yield the correct atomistic description of the molecular motion, which
could be crucial for the vesicle formation process, and which is provided by molecular
dynamics. Another advantage of MD is that the potential energy of the system can be
followed during the process.
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Figure 3.13:The change in the poten-
tial energy during the disc-vesicle
transition. The course of the total
potential energy as well as its con-
tributions from the LJ, bond and
bending potential are given.

Figure 3.14:The six different contribu-
tions to the change in Lennard-
Jones energy during the disc-
vesicle transition.

3.4.3 Vesicle formation analysis

Potential energy Our molecular dynamics simulations allow for the analysis of the
potential energy landscape of the disc-vesicle transition. Figure 3.13 shows the change
in the total potential energy of the system during the disc-vesicle transition for a bilayer
consisting of 1008 (two tailed) lipids with bending force constantki jk = 16.0ε∗ (from
Section 3.3.6). The iteration range in which the transition actually takes place is shaded
gray. In the period before the actual transition the bilayer undulates and in the period
thereafter the vesicle stabilizes.
Apart from the total potential energy, Figure 3.13 also shows the contributions to the
total potential energy of the Lennard-Jones potential, the bond potential, and the bending
potential. The bond potential hardly changes during the transition, whereas the bending
potential increases. But the main increase is in the Lennard-Jones potential energy. This
Lennard-Jones energy can be split further into six different contributions for the six
different types of pair interactions between our three particle types. These contributions
are shown in Figure 3.14. Noticeable are the decrease of the potential energy due to the
W-W interaction and an increase for the T-T, H-H, and W-H interactions, pointing to a
less favorable packing of the lipids in the curved bilayer. This is also visible from the
density profiles in Figure 3.15. For the flat bilayer (left) the density distribution is rather
homogeneous with a small dip at the bilayer center. For the vesicle bilayer the density
distribution is far from homogeneous. The head group density for the inner layer is
larger than for the outer layer. For the tails it is exactly the other way around, something
that can be explained from geometrical arguments.
The important point is that the total potential energy U of the system increases during the
bilayer-vesicle transition. Since the simulations have been performed in the NPT ensem-
ble, thus at constant pressure P and temperature T, the corresponding thermodynamic
potential is the Gibbs free energy G. The latter can be written as G= U+K−TS+PV,
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Figure 3.15:Density profiles of both the flat bilayer (left) and of the curved bilayer in
a vesicle (right). The densityρ is defined as the number of particles of a specific
type per unit of volume and∆x denotes the shortest distance from the particle to
the middle of the bilayer.

where K is the kinetic energy, S the entropy, and V the volume of the simulation box.
Because the temperature T is constant, the kinetic energy K is also constant. The vol-
ume of the simulation box V increases slightly, resulting in an increase of PV with
0.5ε∗. Combined, U, K and PV result in an increase of the free energy G. The system
will, however, always evolve towards a state with the lowest free energy, implying a
decrease of G. Since T is constant, this means that the entropy has to increase during
the transition. Hence, these simulations show that the transition is entropy-driven.
An explanation for the entropy increase could be that the number of water particles in
the bulk increases during the transition. An indication for this is the decrease in W-W LJ
energy in Figure 3.14. An increase in water particles in the bulk coheres with a decrease
of the contact area between the bilayer and the solvent during vesiculation.

Bilayer surface A measure for the contact area of a bilayer with a solvent is given
by its solvent accessible surface. We have calculated this surface area for the bilayer
containing 1008 lipids during its vesicle formation using MSMS [San96] with a probe
size of 1.5σ∗. Figure 3.16 shows the course of the surface area relative to the surface

Figure 3.16:The solvent accessible surface of the bilayer and the number of water parti-
cles within a distance of2.5σ∗ of the bilayer, both given relative to their equilibrium
value before vesiculation.
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area before vesiculation. The range in which the actual transition takes place is again
shaded grey. Within this range, the surface area indeed decreases. This is confirmed by
determining the number of water particles in the vicinity (within 2.5σ∗) of the bilayer.
The course of this number of particles relative to the number before vesiculation closely
matches the relative surface area (Figure 3.16). The resulting increase of the number
of water particles in the bulk yields an increased entropy. Hence, instead of the often
assumed energy minimization of the edge of the bilayer as the driving force, it is the
water that drives the transition.
In order to proof this in more detail, entropy calculations could be performed and similar
simulations could be performed with a more detailed water model.

3.4.4 Comparison with Fromherz’ model

Fromherz’ model The geometrical transition of the vesicle formation process as ob-
served in our simulations indeed seems to follow Fromherz’ [Fro83] spherical cap
model, which is shown in Figure 3.17a and 3.17b. In this model the bilayer is described
as a 2D structure with constant areaA0 that has a radius of curvatureR, shell heightH,
edge radiusρ and edge lengthL = 2πρ. The ratioΩ = H/HS = RS/R is used as the
shape parameter, whereHS andRS are the shell height and the radius of curvature for
the closed sphere, respectively.
This model is used to derive a vesiculation index, which predicts the minimal vesicle
size from the bilayers edge tension and elasticity. Starting point for this derivation is the
Gibbs free energy relation

dgF =−ΠdA0 + γdL+κd(1/R)+µLdNL +µAdNA, (3.6)

with surface pressureΠ, edge tensionγ, elastic bending stressκ, the number of lipids
NL and solute moleculesNA, and chemical potentialsµA andµL.
Under the assumptions that the areaA0 and the number of lipidsNL and solute molecules
NA are constant, two terms to the free energy remain, which are the edge tension and the
elastic energy of curving, respectively. In the disc-vesicle transition, the length of the
edge and thus the edge tension decreases whereas the curvature of the bilayer and thus

(a) (b) (c)

Figure 3.17: (a) Schematic figure of vesicle formation according to Fromherz’ spherical
cap model.(b) 2D representation of this model including definitions.(c) Extension
of the model to a 3D bilayer of thickness h.
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the elastic energy increases. Whether or not the transition takes place depends on the
ratio between the changes in these two terms, which is represented by the vesiculation
index.
By using that the elastic component ofgF is given by

gel = 1
2(kc + 1

2k̄c)(2/R)2A0, (3.7)

and that the edge component ofgF is given by

ged = γML, (3.8)

the vesiculation index is given byVF = RSγM/2(kc + 1
2k̄c), whereγM is a constant edge

tension andkc andk̄c are the splay and saddle splay modulus of bending.
Our simulations provide a good tool to test these assumptions of constant surface area,
constant edge tension, and the formula for the elastic free energy. However, it is more
convenient to use a different parameter for the closure: the angleθ as defined in Fig-
ure 3.17b. The radiusR as a function of this angle isR(θ) =

√
A0/(2π(1−cosθ)) and

the edge length is then given byL = 2πR(θ)sinθ.

Bilayer surface The first assumption in Fromherz’ model was that the areaA0 is
constant, whereas in Section 3.4.3 has been shown that the solvent accessible surface
area decreases during vesiculation. However, the solvent accessible surface area in
Fromherz’ model is notA0 but A = 2A0 + hL, whereh is the bilayer thickness which
is assumed to be constant. This surface areaA as a function of the closure angleθ,
relative to the surface area for the flat bilayer (θ = 0), is shown in Figure 3.18a for three
different radii (RB) of the initial circular bilayer, each with bilayer thicknessh = 10σ∗.
According to this model, a bilayer with radiusRB = 24σ∗ thus reduces its surface with
approximately 30% during the vesiculation. This is much more than the approximately
12% calculated from our MD simulation with almost the same bilayer size as shown
in Figure 3.16. Thus, especially for small bilayers, Fromherz’ model overestimates the
entropic gain of the area reduction.

Explicit thickness The bilayer thickness can also be incorporated in the model explic-
itly. To obtain an analytical expression for the surface area of the bilayer, we extended
Fromherz’ model with the thickness of the bilayer. The new definitions are shown in
Figure 3.17c. This figure shows a 2D intersection of the axial symmetric 3D situation.
The assumption of constant areaA0 is now replaced by the assumption of constant bi-
layer volumeV0, whereV0 = A0h. Furthermore, just like in Fromherz’ model, we keep
the bilayer thicknessh constant. For a curved bilayer,Rstill denotes the radius of curva-
ture andθ the angle for which the total volume of the curved bilayer equals the constant
volume. Assuming the volumeV and the bilayer thicknessh to be constant during the
disc-vesicle transition, the radiusRas a function ofθ is now given by

R(θ) =

√
V0

1−cosθ −
πh3

6

2πh
. (3.9)

96



Discussion

(a) (b)

Figure 3.18: (a) Surface area as function of closure according to 2D bilayer model.(b)
The same surface area according to our 3D bilayer model. Thus, the smaller the
original bilayer the more the 2D bilayer model overestimates the relative surface
reduction of bilayer closing. Furthermore, for smallθ the surface reduction is
minimal.

The surface of the curved bilayer is then

A(θ) =
2V0

h
+

2π
3

h2(1−cosθ)+2πR(θ)hsinθ. (3.10)

Compared to the 2D model, the first term is identical asA0 = V0/h. The second term,
which is a result of the bilayer thickness, is new, and in the last term only the definition
of R(θ) changed. Figure 3.18b shows this surface area as a function ofθ again for the
same three bilayers with different radii (RB) and thicknessh = 10σ∗. From comparison
between Figures 3.18a and 3.18b it is clear that, especially for the smaller bilayers,
the difference in surface area calculated is quite large. For bilayers that are very large
compared to their thickness, the two models converge towards each other. However,
because of the omission of explicitly considering the bilayer thickness in Fromherz’
model, the reduction in surface area during vesiculation is overestimated for bilayer
sizes that spontaneously form vesicles.
Furthermore, Figure 3.18b shows that, explicitly taking into account the bilayer thick-
ness, the surface area hardly reduces in the initial phase of curving. For very small
bilayers the area would, in first instance, even increase slightly. The further the closure,
the faster the area reduces, thus the faster the bilayer closes further. This explains why
no intermediates are found in experimental studies ([Len02]).
In this new model the surface reduction during vesiculation is approximately 20%. This
is still more than the decrease in area measured from our simulations, for which two
reasons exist. In the first place, the reduction in surface area will be smaller as the
molecules pack less well in a curved bilayer and the surface will be rougher than for
the analytical smooth surface. And in the second place, the bilayer thickness appears
not to be constant during the simulations. As the bilayer thickness decreases during the
vesicle formation, the vesicle radii, and thus the surfaces, will be slightly larger.

Edge energy versus elastic energyThe free energy can be divided into two parts:
the internal energy and the entropy. Molecular dynamics simulations are a perfect tool
to study the internal energy. In Section 3.4.3 we have seen the potential energy as a
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Figure 3.19:Potential energy contribution of
the edge is almost linear in the length of the
edge.

Figure 3.20:Potential energy contribution due
to bilayer curvature for closed vesicles is
not independent of the vesicle size.

function of the closure of the vesicle. This potential energy is the combined effect of
the two terms, edge energy and elastic energy, in Fromherz’ model. However, from
the differences between the potential energies of different configurations the internal
energy contribution to both Fromherz terms can be obtained. These configurations are
a periodic bilayer, a free disc-like flat bilayer, and a closed vesicle. The edge tension
is obtained from the difference in energy between a periodic bilayer and a free bilayer,
consisting of the same number of lipids, as they are both flat and the former does not
have an edge and the latter does. Similarly, the elastic energy is obtained from the
difference between a periodic bilayer and a vesicle as these are both continuous bilayers,
where one is flat and the other curved.
The results for the free bilayer and the vesicle are obtained from the same simulations,
thus both the number of lipid molecules and the number of water particles in all these
configurations are the same. However, the periodic bilayer simulations are performed in
a smaller box containing fewer water particles. Because the number of water molecules
differs, the potential energy is calculated as the potential energy of the system minus the
potential energy of a system with purely water consisting of the same number of water
molecules.
Both the edge energyUedgeand the elastic energyUelasticare calculated for the various
bilayer sizes. The edge energy is shown in Figure 3.19 as a function of the edge length
L. As this edge energy is, according to Equation 3.8, expected to be linear inL, also the
line V = 15.9L is drawn in this figure. From the figure can be seen that the edge energy
is indeed almost linear in the edge length. But for small bilayers the energy is slightly
higher. This is caused by the high curvature of the edge for these small bilayers, such
that the edge can be shielded less efficiently.
The elastic energy of the closed vesicles as a function of the vesicle radiusR is shown in
Figure 3.20. Theoretically, from Equation 3.7, this is expected to be independent on the
vesicle size, since the vesicle area scales asR2 and the contribution per unit of area, via
the curvature, asR−2. However, from the figure it is clear that, at least for the vesicle
sizes considered, the elastic energy increases with the vesicle size, thus implicating
thatκ is not curvature independent. In order to find a formula for the dependency, the
formation of still larger vesicles should be simulated as well and all simulations should
be repeated to obtain better statistics as they have so far only been performed once.
Thus, for the smaller vesicles, i.e., vesicles of the size that are formed spontaneously
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when micelles merge to large enough bilayers, Fromherz’ model overestimates the elas-
tic energy of a vesicle and underestimates the edge energy resulting in an overestimation
of the energy barrier.

3.5 Vesicle fusion

DPPC vesicles that are found in nature are larger than the ones that form spontaneously
in our and other atomistic [dV04] simulations. A reason for this could be that small
vesicles rapidly fuse to larger vesicles, which subsequently remain stable and are mea-
sured in experiments. The fusion process of two vesicles can be studied with our model
as well by placing two spontaneously formed vesicles next to each other.

Small vesicles In Figure 3.21 vesicle fusion is shown for two small vesicles, consist-
ing of 256 lipids each, for the case with no bending potential. This figure shows five
stages of the fusion process. First the vesicles have to come close together (a). Once
they meet, the outer membrane layers merge (b). The newly formed combined outer
layer has a high curvature near the point of fusion. When the contact area between the
two vesicles increases, this curvature is decreased (c and d), and finally an ellipsoid
vesicle is formed (e).
In Figure 3.21 the fusion process has been followed from the outside. However, an
advantage of molecular dynamics simulations is that it also allows for looking inside the
vesicles. Figure 3.22, e.g., shows a slice through the hearts of the two fusing vesicles. In

(a) (b) (c)

(d) (e)

Figure 3.21:Two small vesicles fuse rapidly. When two vesicles come close together(a),
the outer membrane layers merge(b). The high curvature of the new outer layer
near the point of fusion decreases when the contact area between the two vesicles
increases(c). The inner layers then also merge(d) and finally an ellipsoid vesicle
is formed(e)where also the interiors have merged.
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(a) (b) (c)

(d) (e)

Figure 3.22:Slices through the vesicle hearts for the same stages of the vesicle fusion
process as in Figure 3.21.

this figure the water is colored white, the lipids that are in the outer layer of the original
vesicles light gray and the lipids originally in the inner membranes dark gray. From this
figure can be seen that the outer membrane layers fuse first, a stage called hemifusion,
followed by fusion of the inner layers and the vesicle interiors. From this figure it is
clear that the vesicles indeed fused completely. Because of the coloring method used, it
is also clear that the outer layer of the fused vesicle is formed from the outer layers of
the original vesicles and that the inner layer of the fused vesicle is formed from the inner
layers of the original vesicles. No exchange of lipids between inner and outer layer has
occurred.

Larger vesicles To study the fusion process in more detail, the process has been re-
peated for two larger vesicles. Now both vesicles consist of 1024 lipids. The fusion
process, which is shown in Figure 3.23, is analogous to that of the small vesicles: the
vesicles come together, the outer membranes fuse, followed by the inner membranes and
finally followed by the interiors. An advantage of these larger vesicles is that the transi-
tion configurations can be seen more clearly. E.g., Figure 3.23e shows that when the two
outer layers have fused and straighten, the two inner layers of the original vesicles are
still intact and together form a bilayer at the place of fusion. When the straightening of
the outer layer continues, the membrane becomes thinner and thinner and the curvature
at the corners higher and higher. This results in breakage of this bilayer at one of the
sides. At that time, the inner layers and the two vesicle interiors fuse, resulting in full
fusion.

Discussion In the literature, various theories for vesicle fusion are present. The basis
of vesicle fusion seems simple enough; two vesicles touch and merge to form a single
vesicle. This process is thought to follow various discrete stages, i.e., from two adjacent
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(a) (b) (c)

(d) (e) (f)

Figure 3.23:Two larger vesicles still fuse, but already less easily because there are fewer
hydrophobic patches at the interface.

vesicles via hemifusion to full fusion. These stages are macroscopic phenomena, rela-
tively easy to discern and these have for example been shown for lipid bilayer vesicle
fusion captured by high-speed microfluorescence spectroscopy [Lei03]. However, the
structures of these stages and their transitions on a microscopic scale are hard to verify
experimentally and are thus cause of debate.

The first question is about initial contact. It is often assumed that proteins are nec-
essary to bring two vesicles in close proximity. Two classes of protein models can
be discerned [Jah02]. In the first place, proximity models, such as the fence model,
the scaffold model, and local perturbation model, propose that very close apposition
of membranes is enough to start fusion. In the second place, pore models argue that
continuous proteinaceous pores between the membranes are the basis of fusion.

The second question is about the lipid reorganization of the outer monolayers at the ini-
tial phase of hemifusion. Whether or not proteins are necessary to bring the vesicles into
close contact, this actual lipid contact is widely accepted to follow the stalk mechanism
originally conceived of by Markin and Kozlov [Koz83, Mar84]. Alternative models
that receive much less support include the inverted micellar intermediate [Ver79] and
the extended lipid hemifusion [Kin96]. However, there are several variants of the stalk
model; the original stalk [Koz83, Mar84], the stress-free stalk [Mar02], the modified
stalk [Kuz01], and the transmembrane contact stalk [Koz02b].

The third question is about the transition from hemifusion to complete fusion. The
stalk-pore hypothesis postulates that the stalk widens radially into a bilayer, called a
hemifusion diaphragm, which is subsequently opened by a fusion pore [Koz02a]. Other
hypotheses are the direct stalk-pore hypothesis [Kuz01], the anisotropic stalk-pore hy-
pothesis [Koz02a], and the condensed stalk hypothesis [Luk04].

More detailed analysis of our simulations could elucidate which of the proposed mech-
anisms is most plausible [Sme05].
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3.6 Conclusion

A coarse grained model for lipids has been developed. Two types of coarse grained
particles were used to describe the chemically relevant groups in the lipids: one for the
fatty acid tails and the other for the head group. In this lipid model, we refrained from as
much detail as possible to obtain a simple model that still yields realistic behavior. The
results from molecular dynamics simulations with this coarse grained model show the
correct aggregation behavior. Single tailed lipids with a water shell around their head
group only form micelles, whereas micelles of two tailed phospholipids spontaneously
aggregate further into bilayers. Moreover, properties of the resulting bilayers, such as
bilayer thickness, area per head group, density, and water permeability compare well
with experimental as well as other theoretical studies.
By the simulation of larger systems, not only spontaneous bilayer formation was ob-
tained, but spontaneous vesicle formation as well. These simulations confirmed the
pathway of vesicle formation as suggested in literature from experimental studies. The
lipids first rapidly aggregate into micelles and small bilayers, also called bicelles. Sub-
sequently, the micelles and bicelles, limited by the diffusion of these aggregates, slowly
merge into a larger aggregate, being a disc-like bilayer, which finally bends to form a
vesicle. The advantage of such simulations is that the process can be studied in detail.
As bilayers are an intermediate in this vesicle formation process, additional simulations
were performed on bilayers of various sizes, which were constructed from a sponta-
neously formed periodic bilayer, to study the disc to vesicle transition in more detail.
As the use of molecular dynamics allows for the study of the potential energy landscape,
analysis of these simulations showed that for membranes of phospholipid molecules the
potential energy of the membrane as well as the potential energy of the whole system
(membrane plus water) increases during the bilayer-vesicle transition. The reason that
the transition does take place is that for sufficiently large bilayers, the solvent acces-
sible surface of the bilayer decreases during the transition. This results in fewer water
molecules near the membrane and more in the bulk, yielding a higher entropy of the wa-
ter. The bilayer-vesicle transition is thus an entropy driven mechanism. Further analysis
of these simulations also showed deviations from the assumptions on which Fromherz’
model, which predicts the minimal vesicle size from the bilayer bending modulus and
the edge tension, is based.
The same lipid model can be used further to analyze more complex processes such as
vesicle fusion. Another step could be the development of a coarse grained model for
proteins.
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4
Artificial Chemistry Molecular Dynamics

B y adding stochastic reactions to molecular dynamics an Artificial Chemistry
Molecular Dynamics (ACMD) approach is developed. In this approach, the

realistic three-dimensional dynamics from molecular dynamics is coupled with
the ability to deal with a varying molecular mixture. The method could be
used in all small closed compartments where both diffusion and reaction occur
as active processes. The applicability of this new framework is demonstrated
on some biologically inspired case studies. In particular, both unilamellar and
multilamellar vesicle formation, and vesicle growth, bursting and healing.

Part of this chapter is described in:

A.J. Markvoort, D. Bosnacki and P.A.J. Hilbers,Artificial chemistry in coarse grained molecular dy-
namics and its application to vesicle dynamics,to be published.

103



Artificial Chemistry Molecular Dynamics

4.1 Introduction

In the previous chapter coarse grained molecular dynamics has been used to study the
dynamics of membrane and vesicle formation. In such simulations the set of molecules
present is fixed, i.e., both the number of particles and their types are fixed. However,
in nature, molecular mixtures change because of chemical reactions. In this chapter
phenomena similar to the one studied in the previous chapter are studied, but now in the
presence of chemical reactions.

One way to introduce chemical reactions in molecular dynamics (MD) is to combine
the bonded potential and the Lennard-Jones potential into one single potential. In such
a potential the parabolic part for the bonded state and the Lennard-Jones potential for
larger particle separations are separated by an energy barrier. However, not all reactions
depend on just two particles. Instead, many reactions can also be catalyzed by addi-
tional particles. To incorporate this into the model, three-particle potentials should be
introduced. This then requires the calculation of all triplet interactions in the system,
tremendously increasing the computational cost of the simulation.

A second way is to use the two original potentials and to switch between these poten-
tials at the moment of a reaction. This moment of the reaction can then be determined
stochastically taking into account the surroundings. This latter option results in hardly
any additional computational cost. Furthermore, it has the advantage that this method
enables, apart from bond forming and bond breaking reactions, also transitions of par-
ticle types. This is especially useful for our coarse grained models where every particle
represents several atoms and thus also changes within a single coarse grained particle are
possible. We call this method, obtained by adding stochastic reactions to our molecular
dynamics algorithm, Artificial Chemistry Molecular Dynamics (ACMD).

4.2 Combining Molecular Dynamics and Artificial Chem-
istry

Artificial chemistry An artificial chemistry (AC) is a man-made chemical system.
More precisely, an AC can be defined by a set of objects and a set of reaction rules
which specify how the objects interact. An overview of artificial chemistries is given by
Dittrich et al. [Dit01].

In our family of artificial chemistries, the objects are the coarse grained particles. The
reaction rules are chemical reactions represented by stochastic transitions of particle
types and/or formation or cancellation of bonds between particles. Possible reaction
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schemes are

X +X
kb−→ X–X, (4.1a)

X–X
kd−→ X +X, (4.1b)

X
kt−→ X, (4.1c)

where every X can be replaced by an arbitrary particle type or molecule. These three
reaction schemes represent bonding (b), decomposition (d), and type conversion (t),
respectively. In these reaction schemes,kx is the ‘rate’ of a reaction of type x, where
this rate is defined as the probability of an enabled reaction to take place in a unit of
time as explained below.

A reaction is said to be enabled when this reaction is possible. The decomposition
and type conversion reactions are always enabled, but for a bond forming reaction an
important prerequisite is that the particles that react should be at a proper distance from
one another, i.e., for two particles to bind their distance should be small (around the
bond length), and no other particles should be in between.

As stated above, the reactions are represented by stochastic transitions, i.e., reactions
take place with a certain probability. The probability of a particlei to be involved in a
certain reaction of typex is given by the probabilitypi

x. In order to model the role of
catalysis as well, this probability has been split in two parts:

pi
x = ax +bx ∑

j∈cat.
f (r i j ), (4.2)

where

f (r) =
{

1− r
d if r 6 d

0 if r > d.
(4.3)

In the first place, this probability consists of a constant contributionax, representing
the probability of the particle to be involved in an autonomous reaction. The second
contribution, i.e., the second term in the right hand side term, increases the probability
in case of the presence of catalysts in the particles vicinity. Every catalyst particle
j within a radiusd of particle i increases the reaction probability of particlei by an
amount depending on their mutual distance. A prerequisite forpi

x to be a probability is
of course that the upper limit equals 1. However, usuallypi

x will be much smaller than
one, because the chance that a reaction takes place within the short time interval of one
iteration is small. Also, because the interaction radius of a catalyst is usually short, the
number of contributions within the summation is limited. Thus ifax andbx are both
small,pi

x is small as well. Otherwise, Eq. (4.2) should be maximized to one.

The ratekx for a reaction of typex is defined as the average of the reaction probabilities
of all particles participating in that reaction. The ratekx of particlei to convert its type
(as in Eq. (4.1c)) according to reactionx thus equalspi

x. The rate for a bonding or
decomposition reaction is thus defined as the mean of the probabilitiespi

x andp j
x of the

two particlesi and j between which the bond is formed or removed.
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Combining The idea of combining molecular dynamics and artificial chemistry is to
overcome the fixed molecular composition in traditional MD, while maintaining the
realistic dynamics (diffusion). Molecular dynamics and artificial chemistry can be com-
bined by identifying the objects in the AC with the particles in the MD. The coupling
can then be obtained by alternating MD and AC steps, resulting in a molecular dynamics
simulation of a varying molecular composition.

By coupling MD and AC a deterministic method is combined with a stochastic method.
In this combined method three time scales can be discerned. The first time scale is the
time step size of the MD algorithm which is typically in the order of femtoseconds.
The second time scale is the duration of a single reaction. And the last time scale is
the average time between two successive reactions. The duration of a single reaction is
assumed to be infinitely small as a bond is only something abstract and a reaction in our
method is just replacing one potential by the other.

The frequency at which chemical reactions occur depends on the height of the energy
barrier that has to be overcome. The reaction probabilities in our AC have to be chosen
in order to obtain this rate. In the choice of the reaction probabilities, a distinction
should be made between reactions with a high energy barrier and reactions with a low
energy barrier.

Reactions with a low energy barrier occur easily. Reaction partners need time to diffuse
toward each other, but when they meet they react sooner or later. Because these reactions
are diffusion limited and this diffusion is modeled well by MD, our method will be
especially appropriate for such systems.

On the other hand, reactions with a high energy barrier occur only seldom. Possibly,
these reaction occur so rarely that in the time intervals and system sizes reachable by
molecular dynamics simulations hardly any reactions can be observed. For such a sys-
tem, the time between two consecutive reactions is much larger than the time needed to
obtain a new equilibrium situation by diffusion. To enable the study of these systems
as well, the reaction probabilities can be increased above their natural value, increasing
the number of reactions in our simulation. We hereby require that still enough time re-
mains between successive reactions to allow the system to obtain a new equilibrium by
diffusion.

In the implementation, both the inspection of which reactions are enabled and the calcu-
lation of the corresponding reaction rates can be interwoven with the force calculation
in an MD iteration. Namely, the forces on a particle as well as the reaction pairs it can
belong to (enabled reactions) as well as its reaction probabilities all depend on the dis-
tances to the neighboring particles. This leaves for the AC step a loop over all enabled
reactions, where for each of these possible reactions has to be calculated stochastically
whether the reaction takes place or not. If so, the molecules are changed according to
the reaction. Interweaving the reaction rate calculation with the MD force calculation
results only in a minimal extra computational cost. Since the actual reaction step scales
linearly and is negligible compared to an MD iteration, the performance of the MD
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program is not notably changed by adding the artificial chemistry.
The total energy can be preserved under reactions by calculating the potential energy of
the reacting particles before and after the reaction and subtracting the difference from
the kinetic energy of these particles. This difference in potential energy can be both in
the potential energy between the two particles themselves (difference between bonded
and non-bonded potential) and with other particles if the type of one or both of the
particles changes (different non-bonded potentials).
Here we coupled artificial chemistry with coarse grained molecular dynamics, but it
could be coupled with fully atomistic molecular dynamics as well in the same manner.

4.3 Biologically inspired case studies

We have implemented the artificial chemistry as described above in our in-house devel-
oped molecular dynamics codePumMa. In order to demonstrate the applicability of the
method, four case studies are shown, dealing with vesicle formation, vesicle bursting,
and vesicle growth.
Lipid vesicles (liposomes) are closed structures in which (at least) one lipid bilayer sep-
arates an aqueous inner compartment from the bulk external aqueous medium. Because
of their analogy to biological cells and the self-assembly and self-organization, such
lipid vesicles are considered as possible cell precursors [Lui99].
However, the exact structure of the earliest membrane molecules is unknown and our
purpose here is not to simulate the membrane of an existing cell in detail, but to ex-
amine the possible minimal requirements for the first cell membrane. In our bottom-up
approach, and because we have seen in Chapter 3 that bilayers and vesicles can be
formed from single tail linear molecules, we therefore abstract from the real chemical
structure and represent a lipid molecule by a coarse grained H–T–T molecule, with its
hydrophilic head built of one H particle and its hydrophobic tail consisting of two T
particles.
Apart from these lipid molecules the simulations contain water, catalysts and resource
molecules. Depending on the case study, these latter are able to react into catalyst or
lipid molecules or both. Water is represented by a W molecule consisting of only one
particle. The resource particles come in two types, R and R–R, consisting of one and
two particles respectively. The catalysts, finally, are represented by C–C molecules
consisting of two catalytic particles. Thus, five kinds of molecules are used in total:
the solvent W (water), resource molecules R and R–R, catalysts C–C and amphiphilic
molecules H–T–T. These molecules, which are shown in Figure 4.1, contain five types of
particles: C, H, R, T, and W. Three of these particle types, C, H, and W are hydrophilic;
T is hydrophobic; and R is amphiphilic.
The C particles have been chosen hydrophilic to be soluble in the solvent W, but not
to pass the hydrophobic core of a membrane too easily. By choosing the R particles
amphiphilic, they are able to move through the entire universe: through water as well as

107



Artificial Chemistry Molecular Dynamics

(C–C) (H–T–T) (R) (R–R) (W)

Figure 4.1: Van der Waals representation (top) and licorice representation (bottom) of
the molecules in our case studies.

through the hydrophobic core of membranes.
To model these hydrophobic, hydrophilic and amphiphilic behaviors, the RA potential
(as defined in Chapter 3) has been used for all non-bonded interactions, except for the
interaction of a particle of type T with particles of type C, H or W. For these interactions
between hydrophobic (T) and hydrophilic particles (C, H and W) the PR potential is
used, which is purely repulsive.
All simulations are performed again in reduced unitsε∗, σ∗, andm∗. The simulation
parameters regarding the MD part are the same in all simulations. Every particle has
a mass of 1m∗ and Lennard–Jones parametersε = 1 ε∗ andσ = 1 σ∗. Furthermore,
all bonds have an equilibrium length of 1σ∗ and a force constantc = 100ε∗/σ∗2. The
simulations have been performed at a temperature 0.6 T∗ and pressure 0.0242P∗ using
time steps of 0.005 τ. This temperature and pressure have been chosen to resemble
atmospheric conditions where the water is fluid and the lipids form membranes. The
artificial chemistries, i.e., the reaction sets with their respective probabilities, differ per
case.

4.3.1 Vesicle Formation

The artificial chemistry that we use in our first case study features all of the five above
mentioned kinds of molecules: W, R, R–R, C–C, and H–T–T.
During the simulation, membrane particles H–T–T can be formed in two successive
steps. First, two resource particles R react to an intermediate, R–R. This intermediate
can subsequently react with another resource particle R to form a membrane molecule
H–T–T. Thus, we have the following reaction set:

R+R
kRR−→ R–R (4.4a)

R–R+R
kHTT−→ H–T–T. (4.4b)

Both reaction probability constantsaRR andaHTT have been set to 10−7 and bothbRR

andbHTT have been set to 1, such that reactions almost only take place in the vicinity
of the few catalyst molecules C–C. In principle reactions can take place after every MD
iteration step. However, with these reaction rates most of the time no reactions are
performed. On average only once in about 250 time steps a reaction takes place, giving
the simulation some time to equilibrate after a reaction.
The initial configuration has been obtained as follows. A simulation box has been
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(a) (b)

(c) (d)

Figure 4.2: Spontaneous vesicle formation.(a) The initial configuration consists of 20
randomly placed catalyst molecules C–C completed by 80% W (not drawn) and
20% R molecules on an fcc grid.(b) After 150000iterations the produced mem-
brane molecules have formed micelles, shielding their hydrophobic tail particles T
with their hydrophobic head particles H.(c) After650000iterations some micelles
fused, forming bilayers.(d) After1750000iterations the bilayers fused further and
curled forming two vesicles.

created in which 20 catalyst molecules C–C have been placed randomly. This cubic
simulation box, with length 37.6σ∗, is further filled with approximately 80 percent of
solvent particles W and 20 percent of resource particles R, by placing these single parti-
cle molecules on a so-called face centered cubic (fcc) lattice. This initial configuration,
consisting of 20 C–C molecules, 33968 W particles, and 8491 R particles, is shown in
Figure 4.2a. In this and in all subsequent case studies all particles were initially as-
signed random velocities drawn from a Gaussian distribution, such to obtain the correct
velocity distribution and temperature.

The number of resource, intermediate and membrane molecules is shown as a function
of time in Figure 4.3. The numbers of solvent and catalyst molecules have not been
plotted since those are constant. After 150000 iterations 2907 resource particles have
reacted into 213 R–R and 827 H–T–T molecules. Since C, H, and W particles are all hy-
drophilic these remain mixed with the amphiphilic R particles, whereas the hydrophobic
T particles tend to aggregate, resulting in the formation of small micelles (Figure 4.2b).
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Figure 4.3: The number of molecules per type versus the iteration number.

Part c of the same figure shows that some of these micelles group together resulting in
bilayers. Because the edge of such a bilayer is energetically unfavorable (see Chapter 3),
the bilayers finally curl into vesicles (part d). At the end, the simulation box contains 2
such vesicles and some smaller aggregates.
In the following case studies one such a vesicle containing several catalytic particles in
its interior is used as a starting point.

4.3.2 Vesicle bursting and healing

In the artificial chemistry of this second case study we do not use R–R molecules. In-
stead of the membrane molecule forming reactions, the reaction set consists only of an
auto-catalytic reaction:

R+R
kCC−→ C–C. (4.5)

This reaction is auto-catalytic because the reaction is catalyzed by its own reaction prod-
uct C–C. By definition, auto-catalysis is a self-reproducing process, increasing the con-
centration of the products until the resources are exhausted.
In order to make the reaction fully autocatalytic,aCC has been set to zero. Further-
more, because there are many more catalyst molecules than in the former case study,
the reaction rate has been decreased,bCC = 10−5, in order to prevent the reactions from
occurring too soon after each other.
The initial configuration is shown in Figure 4.4a. This initial vesicle consists of 1152
membrane molecules with 486 water and 433 catalyst molecules inside and no catalysts
outside the vesicle.
Because all catalysts are inside the vesicle, new molecules are only formed inside the
vesicle as well. These molecules remain inside the vesicle as they can hardly pass
the membrane due to the hydrophilic nature of their C particles. At the same time,
resource particles can keep entering the vesicle due to their amphiphilic nature, causing
the vesicle to inflate (Figure 4.4b) until the membrane is stretched out so much that it
breaks. At that point, the surplus of particles inside the vesicle flows out (Figure 4.4c)
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(a) (b)

(c) (d)

Figure 4.4: Intersections of the simulation box at different stages of the bursting vesicle.
A vesicle(a) filled with auto-catalytic particles grows and then bursts(b) resulting
in outflow of excess interior particles(c) after which the vesicle closes again(d).

and finally the vesicle closes itself again (Figure 4.4d). In principle this process could
repeat itself, but because of the bursting, the auto-catalytic reactions now also take place
outside the vesicle and thereby clear away the resource particles.

4.3.3 Vesicle growth without bursting

In some sense the third case is a combination of the previous two cases. Again all five
kinds of molecules are used, while the reaction set consists of reactions that produce
both membrane particles (Equations (4.4a) and (4.4b)) and catalysts (Equation (4.5)).
The rate constants used are:aRR = aHTT = aCC = 0 andbRR = bHTT = bCC = 10−5,
such that the reactions can take place in the vicinity of catalyst molecules exclusively.
Because the initial configuration consists again of a vesicle built of 1152 membrane
molecules filled with 486 water and 433 catalyst molecules in an environment randomly
filled with 20% resource (6770 R) and 80% water (30376 W) molecules, the reactions
occur once again only inside the vesicle. The catalyst molecules formed remain again
inside the vesicle. On the other hand, the membrane molecules, because of their hy-
drophobic tails, fuse with the bilayer directly or form micelles first which fuse with the
bilayer subsequently. These molecules will fuse in first instance with the bilayers inner
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(a) (b)

Figure 4.5: Intersections of(a) the initial vesicle and(b) the grown vesicle after3000000
iterations.

leaflet. And depending on the mobility of the bilayer, these new membrane molecules
will stay in that inner layer or also flip to the outer layer. In the latter case, as is the
situation for our small H–T–T molecules, the bilayer as a whole grows. As a result, both
the membrane size and the interior volume increase, resulting in a vesicle growth as
shown in Figure 4.5. After 3000000 iterations, the membrane consists of 1726 H–T–T
molecules, enclosing 3084 C, W and R particles.

4.3.4 Multilamellar vesicle creation

In the fourth case study we use the same artificial chemistry as in Case 4.3.1, i.e., the
same set of molecule types, reactions and reaction rates are used. The initial configu-
ration is the same as in Case 4.3.2, except for the number of catalytic molecules (now
only 20) inside the vesicle.
Starting from this initial configuration, extra membrane molecules are created once
again in the interior of the vesicle. These membrane molecules fuse again with the
bilayer directly or indirectly via intermediate micelles, because of which the membrane
grows. However, the number of particles in the interior remains almost constant be-
cause hardly any water particles diffuse through the membrane. As a result, the vesicle
starts to distort. First an oblate ellipsoid-like shape (Figure 4.6a, iteration 500000) is
formed with a higher surface to volume ratio than the initial spherical vesicle. Because
of the surplus of membrane particles, the vesicle does not only reshape, but some of the
membrane particles dissolve in the water as well. This results in the monomers visible
in the figure. The high curvature at the edge of the oblate ellipsoid is energetically unfa-
vorable, like the edge of a bilayer, resulting in the oblate ellipsoid to curl (Figure 4.6c,
iteration 1000000), minimizing this edge, and finally forming a multilamellar vesicle
(Figure 4.6d, iteration 1400000), i.e., a vesicle with another vesicle in its interior.
That a true multilamellar vesicle has been formed with two separate membranes can be
shown by clustering the tail particles (T) of the membrane molecules. This is done as
follows. Two particles are said to be directly connected if they are closer than a given
threshold distance apart. Two particles are said to be belonging to the same cluster,
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(a) (b) (c)

Figure 4.6: Different stages of the formation of a multilamellar vesicle. For every stage an
intersection (top) is shown as well as all membrane molecules (bottom). The initial
vesicle first transforms into an oblate ellipsoid(a), subsequently starts curling(b),
and finally closes to form a multilamellar vesicle(c).

if they are either directly connected or indirectly connected through a path of directly
connected particles. For the final configuration of this simulation, this results in two
clusters; one formed by the 587 H–T–T molecules of the inner membrane and one con-
taining the 1874 H–T–T molecules of the outer membrane.
The interior of the original vesicle, and consequently all catalyst particles C–C, ends up
in the thin layer between the inner and the outer vesicle. Conversely, the interior of the
inner vesicle stems from the exterior of the original vesicle.

4.4 Discussion

The results of the case studies show the feasibility and usefulness of extending the
molecular dynamics framework with chemical reactions. Of course, no vesicle fission
is shown yet and the actual mechanisms of cell division and metabolism are incompara-
bly more complex than the analogous phenomena in our model. Nevertheless, as it has
also been argued about Ono’s model [Ono01a], the results obtained with these models
could provide a better insight into the origin and the mechanisms of self-maintenance
and self-reproduction of the first cells. The fact that we work in three dimensions can
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only strengthen this kind of arguments.
In the sequel we discuss some general observations and facts that hold for all experi-
ments.

Steady supply of resource particles The production rate of new molecules decreases
in time, as can be deduced from Figure 4.3. This can be explained by the decrease of the
number of resource particles with every reaction. A lower concentration of resource par-
ticles results in a decreasing probability of two of those particles to meet in the vicinity
of a catalyst molecule.
This decrease in concentration can be prevented by introducing equilibrium reactions
(i.e., reactions of transition type given by Equation (4.1c)) between W and R. For in-
stance, when every W particle has a probability of 10−7 to transform into a resource
particle R and vice versa every R particle has a probability of 10−6 to transform back
into a W particle a constant concentration of 10% R particles (versus 90% W particles)
will be obtained during the simulation.
Ono’s model from Ref. [Ono01a] ensures a steady supply of resource particles via re-
cycling. For this purpose this model contains also decomposition reactions of Equa-
tion (4.1b). Both the auto-catalytic and membrane molecules decompose into particles
of a special (waste) type. The waste particles are recycled into resource particles. This
has not yet been used in our model, because we wanted to keep, in first instance, the
complexity of the chemistry minimal, but it may be a requirement to obtain fission.

Other types of membrane molecules. Instead of the H–T–T membrane molecules
also even simpler or more complex membrane molecules could be used.
We experimented with a simpler model in which the membrane particles are of the form
H–T, i.e., they contain only one T particle. As a consequence this model does not feature
the molecule R–R which is just an intermediate step toward the production of H–T–T
molecules and reactions (4.4a) and (4.4b) are replaced with a single reaction

R+R −→ H–T (4.6)

With this simpler model we successfully repeated all case studies observing the same
phenomena as with the model from the text.
On the other hand, more complex membrane molecules could prevent the flip-flop of
membrane molecules between the inner and outer leaflet. However, the use of such
more complex membrane molecules has the disadvantage that a much more complex
chemistry arises if one wants to build everything from single resource particles.

Comparison with 2D work by Ono In the model of Ono [Ono01a] only membrane
particles of the form H–T are used and, consequently, no intermediate R–R particles.
Furthermore, Ono’s model is dissipative particle dynamics like. The force on a particle
can be split in three parts. Apart from the conservative forces acting between particles,
that are also present in MD, Ono’s model also uses a dissipative force and a random force
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for every particle. The conservative forces, which can be both repulsive and attractive in
MD, are purely repulsive in Ono’s model. The size of this force depends on the extent
of hydrophobicity. The repulsion between hydrophilic and hydrophobic particles is the
strongest, followed by the repulsion between particles of the same type, and finally the
weakest force is between the neutral (the resource R and the waste Y) and the other
particles. So, attraction is actually implemented as a weaker repulsion. Further, in
Ono’s model the mass of all particles is one unit, except the water (W) particle which
has a mass of 0.5 units.
Furthermore, there are some essential differences between membranes in 2D and 3D.
As shown in Chapter 3, bilayers in 3D curl forming vesicles by minimizing their total
surface. Conversely, in 2D the surface is only minimized by the actual closing itself,
not yet by curling. As a result, in 2D there is no driving force to curl. Instead, vesi-
cle formation is just coincidence. Using similar arguments, one can conclude that the
formation of multilamellar vesicles in 2D would be even less likely. Indeed, this is not
reported in Ono’s experiments.

4.5 Conclusion

We have presented a novel framework for molecular simulations in three dimensions
which combines coarse grained molecular dynamics with chemical reactions. In this
method, a reaction is a switch from one potential describing the interaction between
two particles to another potential or a change of the parameters of the potential. The
occurrence of reactions is determined stochastically taking into account the surrounding
of every particle. For example, two particles that are within a certain distance of each
other form a bond with a certain chance and this chance can be increased by the pres-
ence of catalysts in the neighborhood. As the surroundings of each particle are already
inspected in molecular dynamics to obtain the forces on the particles, the additional
computational cost is minimal. Furthermore, apart from bond forming and breaking
reactions, this method also enables transitions of particle types.
The feasibility and usefulness of the approach have been demonstrated on simulations
of biological phenomena related to the origin of life. In particular, we have presented a
three-dimensional model that features formation of membranes, micelles, and vesicles,
as well as growth, and bursting of the latter.
One natural avenue for future work is to cover a complete ‘life cycle’ of a vesicle in
one continuous simulation. This will include formation, self-maintenance (growth) and
self-reproduction (fission). Also, in order to make our models more realistic, recycling
of the particles through degradation reactions could be introduced. Another direction is
to experiment with less abstract, i.e., more realistic molecules and chemical reactions.
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5
Hybrid Molecular Dynamics - Direct

Simulation Monte Carlo

F or many practical cases, such as gas-wall interactions, molecular dynamics
simulations are a perfect tool. Here we use such molecular dynamics simula-

tions to study the wettability influence on heat and particle flow in nanochannels.
However, to study larger microchannels molecular dynamics is computationally
too expensive. Consequently, one has to resort to other faster simulation methods
which are, however, usually less accurate. Other particle based methods, like
the direct simulation Monte Carlo method, are much faster than molecular
dynamics, but lack especially the precision to describe the interactions at the
walls accurately. To combine the advantages of both methods, i.e., the accuracy of
molecular dynamics and the speed of the direct simulation Monte Carlo method,
a hybrid method has been devised in which molecular dynamics is used where
necessary for accuracy and the direct simulation Monte Carlo method where
possible.

Parts of this chapter are described in:

A.J. Markvoort, P.A.J. Hilbers and S.V. Nedea,Molecular dynamics study of the influence of wall-gas
interactions on heat flow in nanochannels,Phys. Rev. E,71, 066702 (2005).

S.V. Nedea, A.J.H. Frijns, A.A. van Steenhoven, A.J. Markvoort and P.A.J. Hilbers,Hybrid method
coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in mi-
crochannels and nanochannels,Phys. Rev. E,72, 016705 (2005).
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5.1 Introduction

A host of novel techniques, such as thin film manufacturing, nanotube manufacturing
and characterization, the development of novel materials, and microchannel cooling,
demand the prediction of heat transfer characteristics at the nanometer scale [Maj00].
In this respect, the transport properties of gases at the gas-solid interface play a very
important role, and are studied with various different experimental and theoretical tech-
niques [Som95]. A good example is formed by micro- and nanochannels. These chan-
nels can be used to cool mechanical and electrical components in a compact and efficient
way. Cooling these devices is essential since most components produce heat when op-
erating. Using a gas or fluid flow through these channels, the devices can be cooled
locally where the power is produced. This becomes more and more important as these
components become smaller and smaller and produce relatively more power [Sch02].
Theoretical techniques used to study micro- and nanochannels include continuum ap-
proaches and particle simulation methods. Large systems can be described well using
a continuum approach. However, when the system size decreases or when one focuses
on the interface behavior, the continuum approach starts to fail. Much effort has been
put into extending macroscopic analyses to microscopic conditions in time and space.
For example, the validity of the continuum approach has been identified with the va-
lidity of the Navier-Stokes equations [Bir94]. This requires that the Knudsen number
(Kn = λ/L, whereλ is the mean free path of the molecules andL the physical length of
the system) is small compared to unity, with the limit Kn= 0.1. When the characteristic
size of the device decreases or when the gas is more rarefied, such that Kn> 0.1, the
continuum flow model is no longer valid and must be replaced by another model. A pos-
sibility is to change the governing equations of the flow model from the Navier-Stokes
equations to the Boltzmann equation, which involves the molecular velocities instead
of the macroscopic quantities. This integro-differential equation can be solved using
a finite element or finite difference method or alternatively using a particle simulation
method as the direct simulation Monte Carlo (DSMC) method.
But there are clear limitations to these methods. These are often simplified models,
like the DSMC method where particles are represented as hard spheres and boundary
conditions are used to represent the gas-solid interface [Fre97, Fre99]. These boundary
conditions are a crucial ingredient in continuum fluid mechanical calculations. How-
ever, they cannot be derived from the continuum differential equations themselves, and
it is often not easy to determine them experimentally, whereas the transport properties
of gases at the gas-solid interface can play a very important role in the overall behavior.
An alternative is to use molecular dynamics (MD), allowing for the simulation of both
the wall and the gas explicitly. MD has long been used in statistical mechanics and
chemistry, but the molecular dynamics technique can also be adapted to study systems
with thermodynamic fluxes and thus can also be used to study microscopic heat trans-
fer phenomena [Pou03]. Using such non-equilibrium molecular dynamics techniques
the steady state response to flows of momentum or energy can be studied. The first at-
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tempts were made around 1975 by Hoover [Hoo75, Hoo83]. The technique has grown
in popularity, especially as with the increasing computer power allowing the simulation
of larger and larger systems on one side and the miniaturization of many electronic and
mechanical devices on the other side, practical applications come within reach. Various
molecular dynamics studies have been reported for specific gas-solid and fluid-solid
interfaces, like for example the argon-nickel [Chi93] or the water-platinum [Kim02]
interface.
Here we perform a more general systematic molecular dynamics study in order to in-
vestigate the influence of the gas-gas and gas-surface interaction parameters on the heat
transport over a gas-surface interface, both in the case of a stationary gas and in the
case of a gas flow. For this purpose, we studied the behavior of a gas confined between
two parallel plates, for gas densities ranging from rarefied gases to very dense gases
and for various interaction strengths using an adapted version of our parallel molecular
dynamics codePumMa.
Such MD simulations are able to simulate the effects near the solid wall and near the
boundaries of areas of phase transitions accurately. However, because all the pair in-
teractions between all particles have to be calculated, the MD method is too time-
consuming for the number of particles needed to simulate a dense gas flow in a mi-
crochannel. Therefore, subsequently a hybrid method has been developed coupling
molecular dynamics and the direct simulation Monte Carlo method to combine the ad-
vantages of the MD and MC simulations, performing MD near the boundaries for the
accuracy of the interactions with the wall, and MC in the bulk because of the low com-
putational costs.

5.2 MD study of wettability effect on heat and particle
flow in nanochannels

5.2.1 Model

Molecular dynamics As has been explained before, molecular dynamics is a com-
puter simulation technique where the time evolution of a set of interacting particles is
followed by numerically solving the equations of motion (Newton’s law) of classical
multi-body systems. Given the positions, masses and velocities of all particles in the
system and the forces on the particles, the motion of all (individual) particles can be
followed in time by calculating the (deterministic) particle trajectories.
The forces between particles are governed by the gradient of the potentials between
these particles. A commonly used potential is the Lennard-Jones (LJ) potential (see
Equation (3.3)). This potential describes the van der Waals interactions and it consists
of two parts; a repulsive and an attractive part.
This Lennard-Jones potential is especially appropriate for noble gases, but following
[Hal75, Gua96] it can also be used (as a pseudopotential) for metals. Of course, more
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realistic potentials for metals are available which take into account many-atom inter-
actions, but because LJ interactions capture the essence of all systems and we are not
directly interested in one particular metal this potential suffices for our needs.
Again two different cut-off radii are used. A cut-off radiusrc,i j = 2.5σi j is taken into
account again to closely resemble the original Lennard-Jones potential. This potential
is denoted once more in the rest of the text as ‘repulsive and attractive’ (RA) or sim-
ply Lennard-Jones. The second cut-off radius used is againrc,i j = 21/6σi j , which only
leaves the repulsive part of the potential, closely resembling hard spheres that are used in
other simulation techniques. This potential is denoted further once more as purely repul-
sive (PR) or hard spheres. As we have seen before, these potentials can also be thought
of in respect to hydrophilic and hydrophobic interactions. Hydrophilic-hydrophilic in-
teractions are described by the RA potential, where the parameterεi j provides the degree
of attraction between the particles. The smallerεi j is, the smaller the attraction. And the
PR potential, which lacks the attractive part altogether, describes purely hydrophilic-
hydrophobic interactions.

Model parameters Because we are not directly interested in one specific system but
in the dependency on the gas-wall interaction, the parameters used in our model are
expressed again in reduced units. Our system consists of the following reduced units:
the unit for lengthσ∗, the unit for mass m∗, and the unit for energyε∗. All other reduced
units can be derived out of these choices [Fre02, All87]. The units for length and mass
are chosen such that our particles have size 1σ∗ and mass 1m∗. The unit of energy
is chosen such that the parameterεi j in the potentials, which varies in the different
simulations and between wall and gas particles, is around unity.

System All MD simulations that we present to study the gas-solid interface in thermal
equilibrium, in the presence of a heat flux, as well as in the presence of a Poiseuille
flow are performed on the same system. The system that we have used for all these
studies is shown in Figure 5.1. It consists of two walls that are placed in a box of size
80.00σ∗×46.89σ∗×46.89σ∗, separated from each other in thex direction. These walls
consist of 18000 particles each, where these particles form a face centered cubic (fcc)
lattice. We name one wall W and the other C. Because of the use of periodic boundary
conditions this represents two infinitely large parallel plates. The space in between the
two plates is filled with gas particles (G). Simulations are performed for different gas
densitiesn0. This density is defined as the number of gas particles divided by the volume
available to the gas, i.e., the volume of the simulation box minus the volume of the two
walls. The total number of particles in the box ranges from 37300 for the lowest gas
density (n0 = 0.01σ∗−3) to 91998 for the highest density gas (n0 = 0.4σ∗−3) simulated.
The temperature of the two plates can be controlled independently by coupling them to
a heat bath, whereas the gas can only heat up or cool down by collisions with these
walls. The walls are in no way restricted, i.e., except for the Lennard-Jones potential
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Figure 5.1: Snapshot of the system simulated: Two fcc walls (W and C) of which the
temperature can be controlled separately and gas in between. The gas density
(n0) in this case equals0.01σ∗−3. Both the walls and the gas are simulated using
molecular dynamics.

there are no other forces on any of the particles in the system.

The walls were formed in a prior simulation. In this simulation 18000 particles were
placed randomly in a simulation box. This system was initially given a high temperature.
By cooling this system down the system crystallized. This crystal was placed in a wider
box forming one wall. None of the atoms was fixed or restricted in any way such that
the walls can in principle move through the simulation box. However, as can be seen
for example from the clear peaks in the inset of Figure 5.2 where the density profile of
a wall is given, the walls keep their position. The mass of a wall is so large compared
to the mass of one gas particle that a single collision hardly affects the wall. Multiple
collisions are needed, but simultaneously also collisions from the other side of the wall
take place. When the system is in equilibrium, the forces on the wall from both sides
cancel each other. The walls thus do not need to be restricted in any way. The walls
are kept together by the Lennard Jones interaction between the particles that formed the
crystal in the beginning.

The system consists of two types of particles: gas particles (G) and solid (or wall)
particles (S). The mass and the size of both particle types are taken equal, namely, the
mass of each particle ism = 1m∗ and the sizeσ = 1σ∗. That the gas particles are
in the gas phase and the wall particles solid is purely controlled by the Lennard-Jones
parameterε. For the solid-solid interaction, the RA potential with strengthεS−S = 6ε∗

is used whereas for the gas-gas interaction (εG−G) and the gas-solid interaction (εG−S)
the RA potential with values between 0.05ε∗ and 0.5ε∗ or the PR potential are used.

The mass and the size of the solid particles could have been chosen differently, but this
choice was made to keep the system as simple as possible, though realistic. To show
that the values chosen are in realistic ranges, we consider the example of an Argon gas
and a Calcium crystal. In SI units the corresponding LJ parameters areε = 0.0104eV
and σ = 3.40Å for Ar and ε = 0.2152eV andσ = 3.60Å for Ca. Converting these
parameters to our reduced units yieldsε = 6.0ε∗, σ = 1.0σ∗, and m= 1.0m∗ for the
crystal andε = 0.048ε∗, σ = 0.944σ∗, and m= 0.997m∗ for the gas.
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Every simulation consists of two parts. In the first part the system is run until equilib-
rium is reached. From the second part, the macroscopic quantities like density, tem-
perature, flow velocity, and heat flux are obtained. The number of iterations differs per
simulation as a lower density gas needs more time to come to equilibrium. In order to
keep the number of iterations needed for the lowest gas densities tractable we used the
following procedure. We start with the highest concentration simulations, where the av-
erage gas densityn0 = 0.40σ∗−3. A configuration from this simulations is taken when
this simulation has come to equilibrium and half of the gas particles are removed to
obtain an initial configuration for gas density 0.20σ∗−3. This is repeated till the lowest
density (n0 = 0.01σ∗−3) is reached. The initial configurations obtained in this way are
already closer to equilibrium than randomly generated configurations, but still sufficient
iterations were used to let the system come to equilibrium for every concentration. The
simulations at the lowest densities for example consist of 5000000 iterations, taking
approximately 200 hours on 8 cpu’s of our AMD Athlon 1800+ Beowulf cluster.

5.2.2 Simulation results for density oscillations near interface

We start by considering the behavior of the gas particles near the wall. The wall influ-
ences the nearby gas particles. As a result the gas density near the wall can deviate from
the density in the middle of the channel (the bulk density). These density oscillations
near the interface are studied both as a function of the bulk density and as a function of
the gas-wall and gas-gas interaction since this behavior at the gas wall interface is the
basis for understanding heat conduction and flow.
In order to study the gas particles at the interface most purely, the system is studied in
thermodynamic equilibrium. Both walls and the gas have temperatureT = 1T∗ and the
total momentum of the system is zero. In this case, all four gas-surface interfaces in our
system are all identical. Therefore we concentrate our attention on one of them, namely
the interface at the left in Figure 5.1. First the influence of the gas density is studied and
subsequently the influence of the gas-gas and the gas-wall interaction strength.

Density dependence The influence of the bulk density on the density near the wall is
shown in Figure 5.2. In this figure density profiles are shown for gas densities ranging
from n0 = 0.01σ∗−3 to n0 = 0.4σ∗−3, where these profiles are all normalized withn0

to make them comparable. In the inset also the density profile of the wall is shown.
From this inset can be seen that the origin of the coordinate system has been chosen
such that the last lattice plane of the wall is centered aroundx = 0. The Lennard-Jones
parameters used for these simulations, both for the gas-gas interactionεG−G and for the
gas-wall interactionεG−S, equal 0.5ε∗. For all gas densities, the normalized density is
slightly lower than unity in the bulk as a result of an increase in the density near the
walls. This effect of an increased density near the wall is referred to as wetting of the
surface. Particles sticking to the wall are entropically unfavorable, but energetically it is
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Figure 5.2: Profile of the relative density near the wall as a function of the distance to the
wall for various gas densities. Both for the gas-wall and the gas-gas interaction
the RA potential is used withεG−G = εG−S = 0.5ε∗. The inset shows the density
profile of the wall. The last lattice plane of the wall is centered around x= 0.

much more favorable for a particle to be nearby the wall, because there it has more near
neighbors and thus more negative energy contributions than in the gas phase. Because
this effect is the highest for a low density gas a higher peak in the relative density near
the wall is visible for a low density gas than for a high density gas. For a high density
gas the interface can also be saturated, resulting in a second layer which is visible as a
second peak for the dense gases aroundx = 2σ∗.

Interaction dependence Apart from the bulk density, the density deviations also de-
pend on the gas-gas and gas-wall interactions. In Figure 5.3a the density profiles are
shown first for the case of a relatively low gas density (n0 = 0.05σ∗−3) whenεG−G and
εG−S are varied simultaneously. Important aspects in this figure are the differences in
the heights of the peaks for different interaction parameters and the area in vicinity to the
wall. For the PR potential the first particles are at a larger distance from the wall com-
pared to the RA potential, what we refer to as the depletion layer for the PR potential.
The differences in peak height can be explained because the larger the interaction pa-
rameter of the interaction of gas particles with the wall particles the larger the energetic
gain for particles to be close to the wall.
In part b) of the same figure, the density profiles are shown for the case of a relatively
high gas density (n0 = 0.4σ∗−3). Also here the depletion layer for the PR interaction
potential is visible, although being somewhat smaller. A larger difference is formed by
the heights of the density peaks. For the strongest attractive interactions the peaks for
n0 = 0.4σ∗−3 are smaller than forn0 = 0.05σ∗−3, for which two reasons exist. In the
first place, the surface is already much more covered in case of a high density and in
the second place, the bulk particles in a high density gas have already many more close
neighbors such that the energetic advantage of being near the wall is relatively smaller
than for a rarefied gas. For the weakest attractive interactions it is the other way around.
Here the peaks forn0 = 0.4σ∗−3 are higher than forn0 = 0.05σ∗−3. A remarkable
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(a) (b) (c)

Figure 5.3: Density profiles.(a) Density profiles for a low density gas (n0 = 0.05σ∗−3) for
different interaction parametersεG−G = εG−S. (b) The same, but now for a dense
gas (n0 = 0.4σ∗−3). (c) Density profiles for a low density gas (n0 = 0.05σ∗−3)
for different gas-surface interaction parametersεG−S, but with constant gas-gas
interaction (RAεG−G = 0.5ε∗).

difference is that for the high density gas even the PR has a peak in the density near the
wall. This can be explained as that the peak in the density is not only the result from the
attractive force from the wall, but also from ‘pushing’ by the bulk gas atoms.

Finally, Figure 5.3c shows the effect of only varying the gas-wall interaction while keep-
ing the gas-gas interaction at 0.5ε∗ in case of the low density gas. Comparison with
Figure 5.3a shows hardly any differences, indicating that, for low density gases, the in-
fluence of the gas-gas interaction parameter is negligible compared to the gas-surface
interaction parameter.

For low gas densities the density peak at the interface thus depends on the attractive
part of the gas-wall interaction potential. The higher the interaction of the gas with the
wall is, the higher the gas density near the wall. An explanation for this is that in the
presence of an attraction between the gas and the wall, some gas particles stick to the
wall for some time. To study this, the time (∆t) spent by a particle per collision with a
wall is measured. A way to measure this time is to measure the time that a particle in
a low density gas spends within an interface region which is defined as a slice of width
2σ∗ from the center of the last surface lattice plane. The particles in a low density gas
with a density ofn0 = 0.01σ∗−3 have a mean free path (λ = 1/(

√
2πσ2n0)) of about

22σ∗, which is much larger than the width of the interface region. As a result, the
chance that a particle collides with another gas particle in this interface region is small,
resulting in the fact that the time spent in the interface region by a particle equals the
distance to be traveled in the interface region in thex direction divided by its velocity
in thex direction plus the time spent at the interface. In Figure 5.4 histograms of this
time (∆t) spent by a particle per collision with a wall within the interface region are
given for different gas-wall interaction parameters for a gas densityn0 = 0.01σ∗−3 and
gas and wall temperatureT = 1T∗. In the same figure also the theoretically expected
time distribution is given for the case of reflective walls. In this theoretically expected
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Figure 5.4: Histograms of the time spent per particle per collision with a wall within the
interface region for different gas-wall interaction parameters. The inset zooms in
at the tails.

time distribution an additional collision time of 0.15τ is added to account for the time
needed to flip the velocity at the interface. The velocity cannot just flip from negative
to positive. Instead, the particle should decelerate and again accelerate in the opposite
direction resulting in the extra time. For the PR interaction, thus in case there is no
attracting force of the wall, the distribution is close to this theoretical result. In case
of an attractive gas-surface interaction, high velocity particles are hardly affected, but
slower particles are caught by the wall. As a result, the peak decreases for average
collision times as these particles are trapped for a while and are thus visible for even
higher residence times as can be seen clearly in the inset in the same figure.
Summarizing, density peaks at the interface can have two distinct roots. In the first place
they are the result of gas particles sticking to the wall because of the energetic gain. For
high gas densities they are also the result of other gas particles pushing from only one
side, the bulk side. Next we will study how this wetting influences heat conduction.

5.2.3 Heat flux dependence on wettability

To study the heat conduction a temperature difference between the two plates is implied.
One wall, the warm wall W, is kept at temperatureT = 1.0T∗ whereas the other wall,
the cold wall C, is kept at temperatureT = 0.5T∗. As a result, the gas in between the
two plates shows a temperature gradient. The influence of the gas density as well as
the influence of the gas-gas and gas-wall interactions on this temperature gradient are
studied.

Density dependence For εG−G = εG−S = 0.25ε∗, the temperature and normalized
density profiles for different gas densities are shown in Figure 5.5. From the figure
it is clear that when the average gas density is higher, a higher temperature gradient
is present in the gas. Furthermore, for high densities the temperature profile is linear,
whereas for low densities it is linear in the bulk and different near the interfaces. These
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(a) (b)

Figure 5.5: Temperature(a) and density(b) profiles of the gas for different gas densities
when one wall has a temperature1.0T∗ whereas the other wall is kept at0.5T∗.

increased gradients in the temperature near the interfaces coincide with the increased
density near these interfaces.
Xue et al. [Xue04, Eas04] studied the effect of ordering near the walls for the solid-
liquid interface, also using MD. They concluded from their simulations that the layering
of the liquid near the interface does not enhance the thermal transport. Our results for
high density gases which limit to the liquid phase match with this conclusion. However,
for lower density gases, an enhanced thermal transport is clearly visible from the in-
creased temperature gradients in Figure 5.5, an effect that is outlined in the next section.
Another property that can be derived from our simulations is the heat current. The heat
current vector is given by [McG04]

q =
d
dt ∑

i
xiEi , (5.1)

where the summation is over all the particles in the system, andxi andEi are the position
vector and energy of particlei respectively. For a pair potential, such as the potentials
that we use, Equation (5.1) can be recast as

q = ∑
i

viEi + 1
2 ∑

i, j
(Fi j ·vi)r i j , (5.2)

wherev is the velocity vector of a particle, andr i j andFi j are the inter particle separation
and force between particlesi and j, respectively. Because of the geometry of our system
we are here interested in thex component of this vector, i.e.qx.
This heat flux in thex direction as a function of the gas density is shown in Figure 5.6.
This heat flux can also be calculated by measuring the energy that is added and removed
by the heat bath that is used to keep the walls at their constant temperature. This energy
divided by the simulation time and twice the area inyzdirection of the simulation box
yields the same numbers. An increase in the density clearly results in an increase in the
heat flux.

Interaction dependence As shown in the previous section, for a gas densityn0 =
0.01σ∗−3 large temperature jumps occur near the walls. From Figure 5.7 it can be seen
that the exact shape of these jumps depends on the gas-gas interaction and the gas-
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Figure 5.6: The heat flux qx
for different gas densities for
εG−G = εG−S = 0.25ε∗.

Figure 5.7: Density and temperature profiles of the gas for
different gas interaction parameters, zoomed in at the in-
terface region for an average gas density n0 = 0.01σ∗−3.

wall interaction. In this figure the density and temperature profiles are given for three
different values forεG−G andεG−S, where has been zoomed in at the interface region.
This figure shows that the width of the temperature jump overlaps with the width of the
density peak near the wall. This increased density near the wall comes from wetting, as
we have seen in Section 5.2.2.

As a result of particles sticking to the wall, their velocity is adapted much more to
the wall temperature than for particles that only make a single collision with the wall.
This can be seen in Table 5.1, where the number of particlesN of the bulk gas (thus
excluding the interface region) of the left compartment and their average temperature
Tavg are given both for particles moving from the warm to the cold wall and for particles
moving from the cold wall to the warm wall. The higher the attraction with the wall the
fewer particles in the bulk and at the same time the higher the difference in temperature
between gas particles moving to the left and particles moving to the right.

As can be seen from Table 5.2 this also influences the heat flux. In this table the heat flux
is given for different combinations of interaction parameters for the same gas density
(n0 = 0.01σ∗−3). As the deviations within the rows of the table are much larger than

C→W W→C

potential N Tavg N Tavg

PR 294 0.71 292 0.75

RA 0.10 287 0.71 274 0.75

RA 0.25 281 0.68 261 0.77

RA 0.50 225 0.62 204 0.80

Table 5.1:The difference in average
temperature of particles moving
in the direction from the cold to
the warm wall (C→ W) versus
particles moving in the opposite
direction (W→C) depends on the
gas interaction parameters.

gas-wall

PR RA 0.10 RA 0.25 RA 0.50

PR 0.00046 0.00047 0.00087 0.00124

RA 0.10 0.00046 0.00046 0.00086 0.00122

RA 0.25 0.00046 0.00046 0.00081 0.00117

RA 0.50 0.00045 0.00046 0.00080 0.00113ga
s-

ga
s

Table 5.2:Heat flux qx [ε∗/(σ∗2τ)] for different param-
eters for the gas-gas as well as the gas-wall interac-
tion for a low gas density n0 = 0.01σ∗−3.
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within the columns, we notice again that the relevant parameter is the gas-wall interac-
tion strength, whereas the gas-gas interaction is of much less influence on the resulting
heat flux. An increased gas-wall attraction thus results in an increased ordering at the
interface and an increased heat flux, grounding our conclusion from the previous sec-
tion that for gases, contrary to liquids, the layering near the interface enhances thermal
transport.

5.2.4 Gas flow dependence on wettability

The wettability does not only influence heat transport. As shown by Cieplaket al.
[Cie00, Cie01] and Nagayamaet al. [Nag04], the flow profile of a liquid near a solid-
liquid interface also depends on the interface wettability.

Thermal equilibrium A Poiseuille flow can be induced in the model in different
ways. The first method is a gravitational flow. This is achieved by applying an addi-
tional force to all gas particles. A second method, the one that we use here, is a pressure
driven flow. This is created by applying the additional force only to the gas particles at
the inlet of the channel. In order to generate a flow in the positivey direction, i.e. from
the back to the front in Figure 5.1, an additional force in they direction is applied to all
gas particles with ay coordinate between zero and three, i.e. in a small slice at the back
of the figure.
Because of this additional force the gas starts to flow. Because the wall particles are not
restricted in position and there is friction between the gas and the wall, the walls start
to move also. There are again several ways to prevent this. One solution that is often
applied is to add additional harmonic forces to all wall particles to keep them close to
their original position. However, since we do not want to add any additional forces to
restrict the walls we apply a different method. We repeatedly remove the linear momen-
tum that is transferred from the gas to the wall because of the friction. By resetting the
total linear momentum of the wall particles to zero every 10 iterations, when this total
linear momentum is still negligible, the walls remain at their place without having to
constrain the particles within the walls.
The friction between the wall and the gas increases with the flow velocity and when
the total frictional force equals the additional force on the gas particles an equilibrium
flow is reached, resulting in a velocity profile that is quite Poiseuille in appearance.
The resulting flow profiles are shown in Figure 5.8 for different gas-wall interaction
parameters for a gas densityn0 = 0.4σ∗−3 andεG−G = 0.25ε∗. All four velocity profiles
have the same shape as expected since the gas-gas interaction is the same. The difference
between the four profiles is the velocity of the gas at the interface. Since the walls are
stationary this velocity at the interface is the slip. As we have seen, in case of a strongly
attractive force between the gas and the wall particles, gas particles stick to the wall
resulting in such a large friction that the flow velocity at the interface is zero, i.e. no
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Figure 5.8: Flow-velocity profiles in the channels for different gas-wall interaction pa-
rameters for an average gas density n0 = 0.4σ∗−3 and a RAεG−G = 0.25ε∗ gas-gas
interaction.

slip. However, the lower the gas-wall attractive interaction is, the smaller the friction
and thus the larger the slip. For the case of the purely repulsive gas-wall interaction the
extra depletion layer between the wall and the gas results in an even lower friction and
thus an even larger slip.

Cold gas cooling warm walls As we have shown, the wettability influences the heat
transfer over the interface as well as the flow velocity at the interface. And, both effects
are influenced in an opposite fashion: an increased wettability results in an increased
heat transfer and at the same time in a decreased flow velocity. When cooling warm
walls with a cold gas flow, both these effects play a role.
In order to study this heat transfer from warm walls to a cold fluid, the temperature of
the fluid has to be reset when it crosses the periodic boundary. This can be achieved
by rescaling the velocity of every particle that crosses the periodic boundary in the
flow direction. The temperature is defined as the deviations in the velocities from the
local mean flow velocity. The rescaling is thus performed by first subtracting the local
mean velocity corresponding to thex position of the particle, subsequently rescaling the
velocity to the desired temperature and finally again adding the local mean flow velocity
that was removed in the beginning.
The results for a gas inflow temperature 0.9T∗ and walls at temperature 1.0T∗ are shown
in Figure 5.9 for two different gas-wall interaction parameters. On the top the profiles
are shown for the RA potential withεG−S = 0.25ε∗, whereas the bottom part is for the
PR potential withεG−S = 1.0ε∗.
The profiles at the left hand side show the density distribution. Because of the attractive
interaction between the gas and the wall particles density peaks appear again in case of
the RA interaction, whereas there is again a dip in the density near the walls in case of
the repulsive PR interaction. The profiles in the middle show the flow velocities in the
channels. It is clearly visible that the flow for the PR potential is again higher than for
the RA potential. The attraction with the wall causes friction resulting in hardly any slip
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Figure 5.9: Density, flow-velocity and temperature distributions in the channels for a gas
of average density n0 = 0.4σ∗−3 at temperature T= 0.9T∗ flowing along wall at
temperature T= 1.0T∗ for two different sets of interaction parameters: (top) RA
εG−S = 0.25ε∗ interaction between gas and wall particles, (bottom) PRεG−S =
1.00ε∗ interaction between gas and wall particles, whereas the gas-gas interaction
is the same in both cases (RAεG−G = 0.25ε∗).

near the walls. However, in case of the repulsive interaction, a large slip at the walls is
present. But the attractive interaction also enables more heat transfer between the wall
and the gas, thus resulting in a higher temperature of the gas in case of an attractive
interaction than in case of repulsive interaction as can be seen from the profiles at the
right of the figure.

In order to keep the walls at their constant temperature, as much energy has to be added
from the heat bath to the walls as is removed from the walls by the gas. The net effect of
the wettability on the cooling can thus be studied by measuring this energy that is added
to the walls by the heat bath. For the simulations described above, the heat that is carried
away equals 50 units of energy per unit of time for the PR gas-wall interaction versus
52 units of energy per unit of time for the RA gas-wall interaction. The cooling is thus
slightly better for the RA gas-wall interaction. However, when the forces to generate
the flow for the case of the RA gas-wall interaction are increased with 45% such that the
mean flow velocity equals that of the PR case, the amount of heat that is carried away
increases to 135 units of energy per unit of time. Thus, at the expense of an increasing
pressure drop much more heat can be carried away.

Thus, although the flow is smaller, the amount of heat that can be removed is larger
in case of attractive walls because of the better heat transfer over the interface. This
explains the results of experiments of convective heat transfer in silicon micro channels
with different surface conditions, i.e., a micro channel with hydrophilic walls versus a
micro channel with hydrophobic walls [Wu03].
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5.2.5 Conclusion of molecular dynamics simulations

Two potentials were used to describe the gas-wall interaction; the Lennard-Jones po-
tential with different interaction strengths and the PR potential for a purely repulsive
interaction. The most remarkable difference in the resulting density profiles at the inter-
faces is that hard sphere gases result in a depletion layer compared to RA gases.
In case of an attractive gas-surface interaction an increased density near the wall is
visible for all gas densities. For a purely repulsive gas-surface interaction this increase
is only visible for high gas densities. Thus, for high densities the gas is not only attracted
by the wall but also pushed against the wall by the other gas particles in the bulk.
From varying the gas-surface interaction only on one side and both the gas-surface and
the gas-gas interactions on the other, it is clear that the gas-gas interaction is not as
important as the gas-surface interaction for the behavior at the interface.
Whereas the increased layering at the solid-liquid interface for higher solid-liquid bind-
ing strength seems to have no effect on the thermal conductivity [Xue04], the solid-gas
binding strength seems to have an effect on the solid-gas thermal conductivity.
Hard sphere (PR) interaction results in specular walls whereas strong attractive interac-
tion results in thermal walls (RA). The amount in which a wall behaves like a thermal
wall depends on the gas-wall interaction strength.
In case of flow, also the flow profile depends on the gas-wall interaction strength. The
weaker the interaction is, the larger the slip at the interface. Thus in case of a cold flow
along a warm wall there are two opposite effects. The heat transfer from the wall to the
gas is enhanced for high attractive interaction whereas this causes the gas to flow slower.
But the net result is that more heat can be transferred in case of an attractive interac-
tion than in case of a purely repulsive interaction. This explains the results from Wuet
al. [Wu03] who concluded that the Nusselt number and apparent friction constant of the
trapezoidal microchannels having strong hydrophilic surfaces (thermal oxide surfaces)
are larger than those having weak hydrophilic surfaces (silicon surface). This suggests
that convective heat transfer can be enhanced by increasing the surface hydrophilic ca-
pability at the expense of increasing pressure drop.
A disadvantage of using molecular dynamics is that the simulations are quite time con-
suming. In order to obtain proper statistics for the profiles of macroscopic quantities
simulations up to millions of iterations can be necessary, requiring weeks of simulation
even when using 10 CPU’s in parallel on our AMD Athlon 1800+ Linux cluster. The
simulation of larger systems thus requires much more computer power or more efficient
and thus simplified methods, like the direct simulation Monte Carlo method.
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5.3 Direct simulation Monte Carlo method

5.3.1 The method

Another particle simulation technique that can be used to study heat flow in micro- and
nanochannels is the direct simulation Monte Carlo method [Bir94]. In DSMC, move-
ments and collisions of particles occur where the collisions are generated stochastically
with scattering rates and post-collision velocity distributions determined from the ki-
netic theory of gases. However, this method, based on the Boltzmann equation, is only
valid for low density gases.
For a dense gas the governing equation of the flow model is an extension of the Boltz-
mann equation, called the Enskog equation [Ens22, vB73]

∂F
∂t

+ξ ·5F = JE(F,F), (5.3)

whereF(x,ξ, t) is the one-particle distribution function of the molecular velocityξ.
The collision integralJE(F,F) keeps the same binary structure of the corresponding
Boltzmann term, but the colliding molecules occupy different positions in space and the
collision frequency is modified by the factorY which plays the role of an approximate
pair correlation function. TheY function has the form:Y(η) = 1

2
2−η

(1−η)3 , whereη is the

reduced density.
Different MC particle simulation methods have been proposed to solve this equation.
The first method described by Alexander et al. [Ale95, Ale97] is an attempt to bring into
DSMC the spatial correlations which are absent in an ideal gas. This method encounters
problems with boundary conditions when walls are introduced. A particle method for
the numerical solution of the Enskog equation has been presented by Montanero and
Santos [Mon96, Mon97] extending the scheme originally proposed by Nanbu [Nan86]
for the Boltzmann equation. The method correctly reproduced the transport properties
of the Enskog gas, but inherited from the original Nanbu scheme the feature of conserv-
ing momentum and energy only in a statistical way and not in a single collision. The
particle method proposed by Frezzotti [Fre99] constructed for the Enskog equation in
the spirit of the DSMC method exactly conserves momentum and energy. We use this
latter method for our MC simulations of nano- and microchannels.
In this particle simulation method the molecules of the gas are replaced by a number of
mathematical particles. Each particle is characterized by its positionx and its velocity
v. The particles are allowed to move in the flow field region and to collide, where the
collision partners are selected from prescribed collision probabilities. First the particles
are advected with their velocities and then collisions take place at each spatial location
by dividing the domain into cells. In the case of the Boltzmann equation collisions are
computed locally between particles belonging to the same cell. In case of the Enskog
equation, because of the finite extent of a molecule, the particles in a given cell can also
collide with particles located in neighboring cells.
Important macroscopic quantities that can be computed from such DSMC simulations
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(a) (b)

Figure 5.10:The model of a microchannel consists of two parallel infinite plates at dis-
tance L apart from each other, and gas molecules confined between these plates.
Depending on the simulation method, the walls can be modeled(a) explicitly, or
(b) using boundary conditions.

are the number densityn, the mean velocityu, the temperatureT, the heat fluxq and
the stressP. How these macroscopic quantities can be obtained from the particle dis-
tribution and pre-collision and post-collision velocities of the interacting molecules is
described by Frezzotti [Fre97, Fre99].

5.3.2 The physical model

Our model to study the heat flow in nano- and microchannels using DSMC is similar to
the model used before for MD. It consists once more of two parallel plates at a distance
L apart from each other and of gas molecules confined between these two walls. In
the MD simulations described before, the walls were simulated explicitly like in Fig-
ure 5.10a. However, since the direct simulation Monte Carlo method can only simulate
gases, in this method the walls have to be described by the boundary conditions (e.g.
thermal walls, specular walls, etc.). This is shown in Figure 5.10b by the two gray
shaded walls. Periodic boundary conditions are used again in the directions parallel to
the walls such that these walls form infinite plates. An advantage of using boundary
conditions to model the walls is that the simulation contains much less particles, be-
cause of the absence of the wall particles. Furthermore, it now suffices to use a single
channel, because both walls do not influence each other anymore as was the case for
periodic boundaries, resulting in a further reduction of the number of particles in the
simulation. However, for accurate simulations, all the boundary effects that we have
seen before in the MD simulations with explicit walls have to be incorporated in these
boundary conditions modeling the walls. As we will see in the next section this is not
the case for standard thermal wall boundary conditions. But, because the development
of new boundary conditions is not our goal here, we will use these thermal wall bound-
ary conditions both for MD and DSMC to compare the results of MD and DSMC when
using the same boundary conditions.
Both plates have again their own temperature,T1 andT2 respectively, where this temper-
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(a) η=0.001 (b) η=0.1 (c) η=0.25

Figure 5.11:Comparisons between MC and MD density profiles for different reduced gas
densitiesη and wall temperatures T1 = 1.0 and T2 = 2.0.

ature is uniform on the plate surface and constant in time. The gas consists of spherical
particles of diametera. The density of the gas can be expressed asn, being the number of
particles per unit of volume, or using a reduced densityη, which also takes the particle
sizes into account and is related to the number density asη = πna3/6 [Fre99]. The mean
free pathλ of the gas particles is related to this reduced density asλ = 1/(

√
2πa2nY(η)),

where theY factor is the pair correlation function as defined above. For a relatively
dense gas withη≈ 0.1, the mean free path and the molecular diametera have the same
order of magnitude.

5.3.3 Comparison of MD and DSMC results

To compare MD and DSMC results, nanochannels with different gas densities are sim-
ulated both using MD and using DSMC, both using thermal wall boundary conditions
to model the walls. The left wall is kept at a temperatureT = 1.0T∗, whereas the right
wall is kept at a temperatureT = 2.0T∗. For the DSMC simulations we started from
the 1D code by Bird [Bir94], which we adapted for dense gases according to Frezzotti’s
method [Fre97]. For the MD simulations, thermal wall boundary conditions have been
added to our molecular dynamics codePumMa.
In Figure 5.11 the resulting density profiles of the MD and the DSMC simulations are
compared for three different gas densities, ranging from a rarefied gas (η = 0.001) to a
dense gas (η = 0.25). Comparison of the MD and MC results shows that the results are
almost identical for low densities, but that for higher gas densities a larger and larger
deviation is visible near the walls. Although the density profiles for both MC and MD
have the same shape, differences appear in the peak region. These differences are an
effect of the different collision mechanisms between the gas particles in both simulation
methods as the boundary conditions are the same.
In Figure 5.12, also the MC and MD results for the temperature, heat flux and pressure
profiles are compared for a gas densityη = 0.1. The figure shows that the temperature,
heat flux and the pressure are in good agreement as well. The total pressure and total
heat flux should be independent of the position. The deviations for the MD results
visible in the figure for the total pressure and the total heat flux near the walls are caused
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(a) Temperature (b) Heat flux (c) Pressure

Figure 5.12:Comparisons between MC and MD simulation results for temperature, heat
flux and pressure profiles for a reduced gas densityη = 0.1 and wall temperatures
T1 = 1.0 and T2 = 2.0.

because the interaction with the walls is not taken into account in the calculation of the
pressure and heat flux.

Comparison of the MD and MC results shows that the results in the bulk are very similar.
However, even though the same boundary conditions have been used, at the interface the
results differ, especially for higher gas densities. From comparison with the first part of
this chapter it is clear that when explicit walls are used in MD, the profiles differ even
much more.

These differences are also evident when we study particle flow. For this purpose the
MC code has been extended to a 2D version as well to which flow has been added in
a way equivalent to the MD case. Results of such 2D simulations, with again a cold
gas flow (T = 0.9T∗) in they direction between warm walls (T = 1.0T∗), are shown in
Figure 5.13. Comparison with Figure 5.9 where the MD results for an equivalent system
(but with the walls simulated explicitly) were shown, shows large differences, which are
especially visible in the resulting temperature profiles.

These comparisons show that the accuracy of the simulation results depends on how
accurate we model the interactions between the gas molecules and between the gas and
the wall and that one should be very careful with using simplified methods to study
phenomena where interfaces play a key role, such as heat flow and velocity profiles
that we have studied, since the behavior at these interfaces determines ultimately the

Figure 5.13:Two dimensional normalized density, flow-velocity and temperature dis-
tributions in the channel for a DSMC simulation of a gas with reduced density
η = 0.213.
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behavior of the whole system. Pure MC is thus not accurate enough to describe micro-
and nanochannels. On the other hand MD simulations can be very accurate but, to model
a complete microchannel, MD simulations are too slow. If the system to be studied is too
large to be studied with molecular dynamics completely, hybrid methods could be used
that couple molecular dynamics to another more efficient simulation technique, and use
molecular dynamics there where necessary for accuracy and the other technique where
possible.

5.4 Hybrid molecular dynamics-Monte Carlo

5.4.1 Coupling

In order to perform more efficient, though accurate, simulations, we propose a simu-
lation method that combines the advantages of the molecular dynamics and the Monte
Carlo simulations, by simulating particles near the wall over the scale of the oscillation
region using the molecular dynamics technique to obtain more accurate results near the
wall, and the Monte Carlo technique for the particles in the bulk where it yields, as we
have seen above, the same results as MD but at a much lower computational cost. This
is achieved by dividing our simulation domain into subdomains, where we use either
MD or MC, and a coupling between these subdomains.
In order to explain the method and to test it, we use in first instance two subdomains: one
with MD and the other one with MC. Because the MD method needs information from
the neighboring MC particles and vice versa, an interface coupling the two subdomains
is built as shown in Figure 5.14. Our hybrid simulation method couples the MD and
MC simulations through a buffer layer at the interface between the two domains. In
Figure 5.14 we have labeled with (II) the buffer layer of MC subdomain (III+IV), and
with (III) the buffer layer of the MD subdomain (I+II).
Our hybrid simulation algorithm consists of the following steps:

1. Generate an initial configuration, i.e. the initial positions and velocities for all
particles in the whole domain.

2. Assign particles in region I and II to MD code, and in III and IV to MC code.
3. Send particle information of particles in region II to MC code, and of particles in

region III to MD code.
4. Perform MD simulation of particles in I, II, and III, and MC simulation in II, III

and IV, computing their new positions and velocities.
5. Restart from step 3.

Initially, the particles are randomly placed in the simulation domain, and the velocities
of the particles are generated from a Maxwell-Boltzmann distribution. MC and MD
simulations are updating the velocities and positions of the particles assigned to their
subdomain in parallel using also the information from the buffer layer in the other sub-
domain. The time step size in MC depends on the mean free path, whereas in MD it is
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Figure 5.14:The coupling of the MD and MC
simulations is obtained via an interface
layer.

Figure 5.15:The MD and the MC code are
coupled via a python interface.

independent of this mean free path but depends on the shape of the interaction poten-
tial. Because the time step in MD is usually small compared to the time step in MC, a
number of MD time steps has to be performed for every single MC simulation step. For
the caseη = 0.1, (λ ≈ a), five MD steps and one MC step are used per iteration of the
hybrid method to synchronize the physical time in both subdomains.

A straightforward approach to update particles in the interface layer (II+III) after each
iteration is by allowing each subdomain to communicate the new positions and veloc-
ities of its own particles in the interface layer to the other subdomain. First we in-
vestigated the coupling between the two methods realized by importing and exporting
particles from one subdomain to another. As we couple two simulation methods based
on a different mechanism of computing the interactions between particles, problems
were encountered as expected when trying to couple the less detailed method with the
more accurate method. This is the case for coupling the MC and MD particle domains.
Whereas for MD to MC particle coupling, particles from the MD domain could be di-
rectly imported into the MC domain using the exact positions and velocities (of course
taking the proper unit conversions into account), this cannot be done for MC to MD
particle coupling as in MC simulations particles can overlap each other. Imported into
the MD domain, this results in very large energies and forces, leading to energy conser-
vation problems and a temperature peak at the interface. Attempts to circumvent this
problem by repositioning particles that overlap and by rescaling velocities to conserve
the total energy did not solve the problems completely. Therefore, another approach has
been used that uses macroscopic averages instead of single particles. Thus, for the MC
to MD coupling, the MD boundary layer (III) is divided into subcells, and the average
properties of the particles in the subcells are imported from the MC domain rather than
updating the exact positions and molecular velocities.

To update the temperature in the MD buffer layer (III), particle velocities are rescaled
according to the corresponding imported MC average temperature per subcell. Updating
the density in the buffer layer (III) is more difficult because of the problems encountered
with energy conservation when generating or removing particles in the MD subdomain.
Therefore, we introduce a soft border for the MD buffer layer (III), such that this border
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(a) η = 0.1 (b) η = 0.01

Figure 5.16:The density and temperature profiles in the channel as obtained from the
hybrid MD-MC simulations for two different densities when T2/T1 = 2, and L=
20λ. The domain is split in two subdomains, the left one being MC (50%), and the
right one MD (50%).

is shifted to the right if the density is decreasing and to the left if the density is increas-
ing. For the MD to MC coupling, MD particle velocities and positions can be directly
imported from the MD and updated in the boundary layer (II). The size of the boundary
layer is usually around a few mean free paths.
Both for the MD and the MC method we already had optimized codes available; an MC
simulator written in the programming language Fortran77 and an MD simulator written
in C. In order to implement the hybrid method described above a new code could be
written. However, because both simulators are implemented in different programming
languages and use completely different data structures this implies rewriting at least one
code completely. Another possibility is to couple the existing codes using an interface.
For this purpose a higher order programming language can be used that provides easy
communication and input/output routines, like the programming language Python. The
idea behind this is separation of concerns: using a low level language for the compu-
tationally demanding parts and a more manageable language for the rest. To prevent
performance loss Van Leeuwen [vL02] developed some additional Python communica-
tion routines.
Following this latter option of coupling the existing codes via a Python interface, our
simulator consists of three parts; the MD code for the MD simulations, the MC code
for the MC simulations, and an interface between the first two codes written in Python,
coupling the MD and MC simulations. The way this is done has been depicted schemat-
ically in Figure 5.15. Both the MD code and the MC code have been wrapped in a
Python layer. The MD and the MC code have been extended both with two subroutines
to import and export data from and to that Python layer. This resulted in two separate
components that can communicate with each other via their Python layers. The MD
and MC components are independent, the MD and MC steps being computed by two
different independent codes. Another advantage of this approach is that the MD and
MC components, being independent, can reside on different computers, and can run in
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Figure 5.17:The density profile in the channel forη = 0.1, T2 = T1 = 1T∗, and L= 30λ
as obtained from a hybrid MD-MC simulation when the domain is split into three
parts: two MD domains (25%) near the walls and one MC domain (50%) in the
middle.

parallel being synchronized and coupled by the interface written in Python, such that
this approach could also be used for grid computing.

5.4.2 Hybrid MD-MC results

The applicability of our hybrid MD-MC simulation method is demonstrated by some
simulations of the same channels as were used for the comparison between MD and
MC. To start with, we split the channel into two equal parts, one half being the MD sub-
domain, and the other half the MC subdomain like in Figure 5.14. Thus in this first case
there is one wall in the MD subdomain and one in the MC subdomain. Both these walls
are again provided by the thermal wall boundary conditions such that the results can be
compared with pure MC and pure MD simulations with the same boundary conditions.
The temperature of the warm wallT2 is also again twice the temperature of the cold wall
T1 = 1.0T∗. Figure 5.16 shows the hybrid MD-MC simulation results for the density
and temperature profile in the channel when the width of the channelL = 20λ both for
a dense(η = 0.1) and for a more dilute gas(η = 0.01).
The next step is to use MD near both channel walls and MC in the middle for the bulk.
In our implementation this means adding one extra MD component, which can again
run in parallel with the other two components. Figure 5.17 shows the density profile in
the channel for such a simulation, for the case when both walls and the gas are at the
same temperatureT = 1T∗.

5.4.3 Accuracy of hybrid simulations

The profiles resulting from the hybrid method look similar to the profiles from the pure
MD and pure MC simulation. To prove that the hybrid method coupling MD and MC
simulations yields accurate results a comparison between the results of pure MD and
pure MC and two hybrid simulations with different subdomain divisions is made. In the
first hybrid simulation MD is used for the left half and MC for the right half, whereas
in the second simulation only in a small layer of 10% of the box near the left wall MD
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(a) (b)

Figure 5.18:Comparison of the density and temperature profiles for different methods(a)
over the whole box and(b) zoomed in at the region near the interface.

is performed and MC in the rest. This is done for a dense gas withη = 0.2 because for
such a high density gas the pure MD and MC results differ even when, like here, the
same boundary conditions are used. In Figure 5.18a the density and temperature profiles
of the four simulations are compared. In part b of the same figure has been zoomed in
onto the density profile near the wall with the MD subdomain. The profiles show the
first 15% of the box. Thus, for the hybrid simulation with only 10% MD this includes
the MD domain as well as part of the MC domain.
We quantify the accuracy of the simulation results for the number densityn, by com-
puting the deviations of the simulation results using the methodmx from the pure MD
simulation results that are considered to be the exact solution. The deviations are given
by the relation

√∫
dx(nmx(x)−nMD(x))2/

∫
dxnMD(x), wherenmx denotes the density

results when using the simulation methodmx. Themx simulation method can be the
MC, MD, or hybrid MD-MC with different sizes of the MD and MC domains. When
looking at the whole simulation box, the deviations of the MC simulation results are
found to be around 0.8%, whereas they are around 0.3% for the hybrid method. When
zooming in again at the first 15% of the box the difference is even more clear. The
deviations of the MC simulation results are found to be around 1.9% and for the hybrid
between 0.2% and 0.3%.

5.4.4 Timings of hybrid simulations

Besides the accuracy of the methods also the required computational time is important.
Therefore, we measured the simulation times for the system as described above consist-
ing of 20000 particles. Comparisons between pure MD, pure MC and hybrid MD-MC
simulation times are performed for simulations consisting of 500 combined MD-MC
iterations. This is done for two different reduced densities:η = 0.1 andη = 0.01. For
a dense gas (η = 0.1), the 500 combined iterations consisted of 500 MC steps and 2500
MD steps, while for a dilute gas (η = 0.01) these iterations consisted of 500 MC steps
and 30000 MD steps, because in this case 60 MD steps are needed per MC iteration.
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timings η = 0.1 η = 0.01
pure MC 2.4 2.3
pure MD 203.3 1169.6
MD (50%) - MC (50%) 246.5 1162.9
MD (10%) - MC (90%) 43.4 206.9

Table 5.3:Simulation times for 500 combined iterations and20000particles. Forη =
0.1, simulation times are computed for 500 MC steps and 2500 MD steps. For
(η = 0.01), timings are done for 500 MC steps and30000MD steps.

For the hybrid simulations the same two situations were considered as before, i.e., the
case where the simulation domain is equally divided between MD and MC and the case
where the MD domain covers only 10% of the whole domain and 90% forms the MC
domain. The timing results are presented in Table 5.3. We notice that the speedup
when using the hybrid MD-MC method for 50% MD and 50% MC is very small when
compared to pure MD simulations times, but this speedup increases drastically when
the bulk is larger than the region near the wall. For example, when the MC domain is
extended to 90% of the simulation domain and the MD domain reduced to 10% of the
simulation domain, the speedup of the simulations increases roughly with a factor five.

5.4.5 Discussion of hybrid simulations

We coupled two particle simulation methods, namely molecular dynamics and the direct
simulation Monte Carlo method and combined in this way in one hybrid method the
advantages of both simulation methods. This method coupled MD for the accuracy near
the boundary and MC for lower computational cost in the bulk. Resulting profiles and
timing results demonstrated the methods feasibility.

The main argument for using the hybrid method so far has been the accuracy of the
gas-surface interactions. This is especially the case since the walls can be simulated
explicitly with MD instead of using boundary conditions, whereas the bulk gas is simu-
lated using DSMC.

Another good argument in favor of the hybrid method is the possible extension to two-
phased microchannel cooling. Namely, microchannel cooling performs extra good in
case of a phase transition inside the channel, i.e., in case of evaporation of a liquid.
Because such a phase transition can also be modeled with MD and not with MC, this
could also be done with the hybrid method.

A next step in this approach of hybrid methods can be the coupling of MC with another
MC simulation with larger particles, or the coupling of MC with a continuum approach
with partial differential equations. In this way a stepwise transition of length and time
scales can be made. In the presented approach such an extra coupling is realized by
adding a new component.
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5.5 Conclusion

First, the dependence of the wettability on the heat flow in a nanochannel was studied
using MD. This was done for both rarefied and dense gases and both for a static and
a flowing gas. These simulations show that the type and strength of the gas-surface
interaction is determining the behavior of the whole system for heat transfer as well
as for flow profiles. However, MD is computationally expensive such that only very
small nanochannels can be studied. In order to study larger systems we have to resort to
other methods. However, because the interfaces are so important, it is vulnerable to use
a method where these gas-surface interfaces are described using boundary conditions.
This is shown by comparisons of MC and MD simulation results. When using the same
boundary conditions, MD and MC results are alike, especially in the bulk, although they
differ near the boundaries for high gas densities. But, these results differ from the prior
more accurate MD simulations where the walls were modeled explicitly and where the
behavior near the wall is strongly influenced by the strength of the gas-wall interactions
such that density peaks can appear even in the case of a dilute gas.
To circumvent this problem we developed a hybrid method by coupling two particle
simulation methods, namely molecular dynamics and direct simulations Monte Carlo.
This method couples MD simulations near the walls for the accuracy of the interaction
with the wall, and MC in the bulk where it yields the same results at much lower compu-
tational costs. The accuracy of the hybrid simulation results were tested by comparing
them with the pure MD and pure MC simulation results. Also comparisons of the com-
puting times for these different techniques were given. These results showed that the
hybrid MD-MC simulation results are very accurate compared to the pure MC simu-
lation results and the hybrid simulations are fast compared to the pure MD simulation
times. Now the coupling of MD and MC has been shown, the next step would be to
model the walls again explicitly in MD and the bulk gas using DSMC, or to couple MD
with different techniques.
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6
Concluding remarks

I n this thesis, the development and application of various molecular simulation
methods have been described. Here we shortly summarize results of the sep-

arate parts, emphasize the relation between the different subjects and give some
directions how the connection between these subjects can be exploited for further
application of molecular simulations.
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In this thesis the development of a framework consisting of various molecular simula-
tion approaches and its application to a broad range of physical, chemical and biological
inspired cases has been described, where every approach is used in a trade-off between
the size of the system, the length and time scale of the internal processes, and the re-
quired level of detail and accuracy for reasonable computation time.

In Chapter 2 we developed an electronic structure calculation framework based on
wavelets and proved with the aid of analytically solvable cases that it works and yields
accurate results. From comparison between the use of different types and orders of
wavelets and different preconditioners, the interpolet 6 wavelet in combination with a
Modified Inverse Cholesky preconditioner was found to yield accurate results at the
lowest computational expense. These cases also perfectly demonstrated the power of
the wavelet basis. By introducing extra levels of fine wavelet basis functions only in
the regions where needed, a very cost effective way is provided to enable the inclu-
sion of extra high resolution for local detail where necessary instead of the need to add
this resolution over the whole domain. A good example of this was provided by the
case of the potential well where extra resolution around the discontinuities in the po-
tential tremendously increased the accuracy with hardly any additional computational
cost. Thereafter, the code was successfully used to study real cases, namely 2D quan-
tum dots and small 3D molecular systems. In the 3D molecular systems, the effects
of different choices for pseudopotentials and exchange-correlation potentials were stud-
ied on properties such as ionization potentials, electron affinities, excitation energies,
binding energies, bond frequencies, force constants, and bond lengths of atoms and
small molecules. With increasing complexity of the potentials, i.e., going from the local
density approximation via the local spin density approximation to generalized gradient
approximations, the results compare increasingly well with experimental data and elec-
tronic structure calculations with other basis sets, proving the suitability of the code for
this class of problems. In order to study the electronic states of 2D quantum dots as well,
a two-dimensional version of Chelikowsky’s direct integration method has been devel-
oped to evaluate the Hartree potential. The correctness of this 2D version was proved
as for single quantum dots the orbitals and the filling of the shells agree with results in
literature for the case of a parabolic model potential for the quantum dots. However,
because such an infinite potential is unphysical, we introduced a new potential which
we derived from the description of a quantum dot as a 2D jellium. Calculation of the
orbitals of such quantum dots resulted in filling of the lowest energy orbitals as for the
parabolic potential, whereas the highest energy orbitals are closer to those expected for
2D atoms. By laterally coupling quantum dots, what can be done using the newly devel-
oped potential straightforwardly, quantum dot molecules have been modeled. The shell
filling for two laterally coupled quantum dots has been calculated as a function of the
inter center distance. This possibility to couple quantum dots also enables the study of
larger quantum dot arrays.

From the electronic structure also forces between atoms can be calculated that can be
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used to study dynamics. However, for many applications the electronic structure does
not need to be calculated to study the dynamics. Instead, it suffices to use empirical
potentials to describe the interactions between these atoms, allowing for the simula-
tion of much larger systems. In this way the influence of surface wettability on static
and flowing gases in nanochannels has been successfully studied in Chapter 5. By sys-
tematically changing the interaction potential between the gas and the wall atoms, the
influence of the wettability on particle and heat flow were studied in a molecular dynam-
ics simulation where the walls were modeled explicitly. These simulations showed that
the strength of the gas-wall interaction determines the extent of layering of gas particles
against the wall, and that, whereas such an increased layering seems to have no effect
on the thermal conductivity at a solid-liquid interface, it has an effect on the thermal
conductivity of the solid-gas interface. Furthermore, these simulations showed that the
type and strength of the gas-surface interaction determines the flow profiles and that the
effects at the interface are crucial for the behavior of the whole nanochannel.

In other cases even coarse grained models can be used where the average behavior of
several atoms is described by a single coarse grained particle instead of every atom
separately. In Chapter 3 this was applied for lipids, for which a coarse grained lipid
model was developed. In this model we refrained from as much detail as possible while
maintaining realistic behavior. The model is as simple as possible while maintaining
all essential features. Instead of all approximately 130 atoms, it consists of only 12
particles of two different types, four hydrophilic head group particles and two tails of
four hydrophobic tail particles each. A third particle type is used for water molecules
that form the solvent. Three potentials are used to describe the interactions between
the particles; one for atoms that are bonded to each other, one for between all other
pairs, and a bending potential to add additional rigidity to the lipids. The suitability
of the model was shown as the expected aggregation behavior was obtained as well
as bilayer properties comparable with experimental results. Using this coarse grained
model, molecular dynamics simulations showed spontaneous bilayer and vesicle for-
mation. These simulations confirmed the pathway of vesicle formation as suggested
in literature from experimental studies. The lipids first rapidly aggregate into micelles
and small bilayers, also called bicelles. Subsequently, the micelles and bicelles slowly
merge into a larger aggregate, being a disc-like bilayer, which finally bends to form a
vesicle. Further analysis of these simulations showed that for such lipid membranes the
potential energy of the membrane as well as the potential energy of the whole system
increases during the bilayer-vesicle transition. The reason that the transition from flat
bilayers to vesicles does take place is that for sufficiently large bilayers, the solvent ac-
cessible surface of the bilayer decreases during the transition, resulting in fewer water
molecules near the membrane and more in the bulk, and a higher entropy of the wa-
ter. The bilayer-vesicle transition is thus an entropy driven mechanism. Furthermore,
it was shown that the same modeling technique can be used to analyze more complex
processes such as vesicle fusion. Another step could be the development of a coarse
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grained model for proteins, such that biomembranes including proteins can be studied.

In Chapter 4 we showed that the limitation of molecular dynamics of having a fixed
molecular composition can be overcome by extending the above described framework
with stochastic chemical reactions. A novel framework for molecular simulations was
developed which combines coarse grained molecular dynamics with (artificial) chemi-
cal reactions. In this method, such a reaction is a switch from one potential describing
the interaction between two particles to another potential or a change of the parameters
of the potential. The occurrence of reactions is determined stochastically taking into
account the surrounding of every particle. For example, two particles that are within a
certain distance of each other form a bond with a certain chance and this chance can be
increased by the presence of catalysts in the neighborhood. As the surroundings of each
particle is already inspected in molecular dynamics to obtain the forces on the particles,
this approach hardly results in any additional computational costs and has the advan-
tage that this method enables, apart from bond forming and breaking reactions, also
transitions of particle types. This technique was applied on some biologically inspired
cases related to the origin of life using an even simpler lipid model where the two tails
are no longer present separately but which results in simple chemical reactions. With
lipid forming and auto-catalytic reactions the formation of membranes, micelles, and
unilamellar and multilamellar vesicles, as well as healing, growth and bursting of the
latter were shown. So proving the feasibility and usefulness of adding such stochastic
reactions to coarse grained molecular dynamics method, but the method could also be
coupled to atomistic molecular dynamics in the same way.

In Chapter 5 it was also shown that the nanochannels that were studied with molecular
dynamics could also be simulated using other particle methods, like the direct simulation
Monte Carlo method, that are less time consuming than molecular dynamics, but that
these methods are not always accurate enough. For example for our nanochannels, these
methods can not explicitly model the walls but describe these walls using boundary
conditions. As was shown, the influence of the gas-surface interface is so important
that it is inaccurate to use a method where these interfaces are described using thermal
wall boundary conditions instead of an explicitly simulated wall. However, for the bulk,
i.e., away from the walls, the method turned out to be accurate enough. Subsequently
it was shown that this latter could be exploited by coupling molecular dynamics to this
direct simulation Monte Carlo method as the results obtained with this hybrid method,
coupling molecular dynamics for accuracy near the walls with the direct simulation
Monte Carlo method for efficiency in the bulk gas, compare well with results from pure
molecular dynamics simulations but at lower computational cost.

As we have seen, each of the simulation techniques has its own range of applicability.
Especially for many biologically interesting problems, the system size of the problem is
larger than the level of detail needed allows for in reasonable computational time. One
possibility is to speed up the method. In Chapter 2 a good example of such an exertion
was described. But most currently available simulation techniques have already been
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developed so far that further optimization is hardly possible. However, the same feature
that was exploited for electronic structure calculations using wavelets, namely the fact
that for many physical, chemical and biological problems the finest level of detail is
often only needed in part of the domain, can also be exploited at other length scales.
Namely, for many problems different techniques could be combined in a hybrid method
so optimizing for a second time on the trade-off between the size of the system, the
length and time scale of the internal processes, the level of detail and accuracy required
for a reasonable computation time. In such hybrid methods the more detailed method
will only be used in the area where fine details are needed and the less detailed method
elsewhere, so enabling again the simulation of larger systems. We already demonstrated
such a coupling of molecular dynamics with the direct simulation Monte Carlo method,
but there are possibilities at all length scales. Starting at the highest length scale, coarse
grained molecular dynamics could be coupled with continuum theory. A nice applica-
tion of this would be our lipid simulations, where coarse grained molecular dynamics
simulation of the lipids could be combined with a continuum treatment of the solvent
further away from the bilayer, which for our simulations exhaust a large part of the
computation time. Going to smaller length scales, another option is to couple coarse
grained molecular dynamics with fully atomistic molecular dynamics. An application
of this could be a coarse grained molecular dynamics simulation of a lipid bilayer with
fully atomistic treatment of a protein in that bilayer. And again one step further to more
detail, fully atomistic molecular dynamics simulations where part of the forces is cal-
culated quantum mechanically. For example for the molecular dynamics simulation of
a large protein, where the docking site of the protein is evaluated quantum mechani-
cally. Chapters 4 and 5 demonstrated that it is possible to combine different techniques.
Further development of such hybrid simulations will further increase the possibilities
of computer simulations. Especially as in the mean time experimental techniques also
develop further, reaching smaller and smaller systems with better and better time res-
olution, molecular simulations and experiments start to approach each other such that,
where validation of molecular simulations is now often still difficult, molecular simula-
tions and experiments will go hand in hand increasingly.
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Summary

In many biology, chemistry and physics applications molecular simulations can be used
to study material and process properties. The level of detail needed in such simulations
depends on the application. In some cases quantum mechanical simulations are indis-
pensable. However, traditional ab-initio methods, usually employing plane waves or a
linear combination of atomic orbitals as a basis, are extremely expensive in terms of
computational as well as memory requirements. The well-known fact that electronic
wave functions vary much more rapidly near the atomic nuclei than in inter-atomic re-
gions calls for a multi-resolution approach, allowing one to use low resolution and to
add extra resolution only in those regions where necessary, so limiting the costs. This
is provided by an alternative basis formed of wavelets. Using such a wavelet basis, a
method has been developed for solving electronic structure problems that has been ap-
plied successfully to 2D quantum dots and 3D molecular systems. In other cases, it
suffices to use effective potentials to describe the atomic interaction instead of the use
of the electronic structure, enabling the simulation of larger systems. Molecular dynam-
ics simulations with such effective potentials have been used for a systematic study of
surface wettability influence on particle and heat flow in nanochannels, showing that the
effects at the solid-gas interface are crucial for the behavior of the whole nanochannel.
Again in other cases even coarse grained models can be used where the average behav-
ior of several atoms is combined into a single particle. Such a model, refraining from
as much detail as possible while maintaining realistic behavior, has been developed for
lipids and with this model the dynamics of membranes and vesicle formation have been
studied in detail. A disadvantage of molecular dynamics simulations with effective po-
tentials is that no reactions are possible. Therefore a new method has been developed,
where molecular dynamics is coupled with stochastic reactions. Using this method, both
unilamellar and multilamellar vesicle formation, and vesicle growth, bursting, and heal-
ing are shown. Still larger systems can be simulated using other methods, like the direct
simulation Monte Carlo method. However, as shown for nanochannels, these methods
are not always accurate enough. But, exploiting again that the finest level of detail is
often only needed in part of the domain, a hybrid method has been developed coupling
molecular dynamics, where needed for accuracy, and direct simulation Monte Carlo,
where possible in order to speed up the calculation. Further development of such hybrid
simulations will further increase molecular simulation’s scientific role.
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Samenvatting

Dit proefschrift gaat over de ontwikkeling en de toepassing van een aantal moleculaire
simulatie technieken. Zulke moleculaire simulaties kunnen binnen de natuurkunde,
chemie en biologie gebruikt worden om materiaal en proces eigenschappen te bestu-
deren. De benodigde mate van detail wordt bepaald door de toepassing. Voor sommige
toepassingen zijn kwantummechanische berekeningen noodzakelijk. Traditionele ab-
initio methoden maken vaak gebruik van basissets bestaande uit sinussen of atomaire
orbitalen en zijn zowel qua geheugengebruik als qua rekenkracht duur. Het feit dat
elektrongolffuncties veel meer variëren rond de atoomkernen dan in gebieden tussen de
kernen in, vraagt om een methode waarbij op de ene plaats een veel hogere resolutie
gebruikt kan worden dan op de andere. Hierin wordt precies voorzien met de wavelet
basis. Een methode gebaseerd op zulke wavelets is ontwikkeld en wordt toegepast op
moleculen en ‘quantum dots’. Voor andere toepassingen hoeven de interacties tussen de
atomen niet kwantummechanisch uitgerekend te worden, maar volstaat het gebruik van
effectieve potentialen, zodat grotere systemen berekend kunnen worden. Met behulp
van Moleculaire Dynamica simulaties met zulke effectieve potentialen is de invloed van
de gas-wand interactie op warmte transport en stroming in nanokanalen bestudeerd. In
weer andere gevallen kan het gemiddelde gedrag van enkele atomen beschreven worden
door een enkel deeltje. Hiervan gebruik makend is een model gemaakt voor lipiden,
waarbij van zoveel mogelijk detail geabstraheerd is, maar dat toch realistisch gedrag
vertoont. Met behulp van dit model is de dynamica van membranen en de formatie
van vesicels bestudeerd. Een nadeel van simulaties met effectieve potentialen is dat er
geen chemische reacties mogelijk zijn. Om toch reacties mogelijk te maken hebben we
Moleculaire Dynamica gekoppeld met stochastische reacties. Met deze techniek laten
we de formatie van enkel- en dubbelwandige vesicels zien evenals groei, barsten en
genezen van zulke vesicels. Met behulp van andere minder nauwkeurige maar snellere
methoden, zoals de Direct Simulation Monte Carlo methode, kunnen weer grotere sys-
temen bestudeerd worden. Maar zoals we laten zien voor nanokanalen, zijn deze me-
thoden niet altijd nauwkeurig genoeg. Echter, wederom gebruik makend van het feit
dat vaak niet overal in de ruimte dezelfde mate van detail vereist is, hebben we een hy-
bride methode ontwikkeld bestaande uit een koppeling van Moleculaire Dynamica en
Direct Simulation Monte Carlo. Door alleen daar waar voor de nauwkeurigheid vereist
Moleculaire Dynamica te gebruiken en daar waar mogelijk de efficiëntere methode kan
de simulatie versneld worden. Verdere ontwikkeling van zulk soort hybride methoden
zal de rol van moleculaire simulaties verder versterken.
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