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Mathj)Jad is a system for preparing documents (books, articles etc.) on a computer. 
The main strength of the system lies in the preparation of documents of a mathematical 
nature, particularly in the case that the mathematics is non-standard. It builds upon 
the flexibility of the TEX [5] and J}TEX document-preparation systems [6] by providing 
a mechanism for converting documents prepared with the aid of the system into J1.TEX 
documents. Like these systems MathJPad emphasises logical design rather than visual 
desiyn and is not a WYSIWYG (what you see is what you get) system. Unlike TEX and 
J}TEX, however, MathJPad provides an ergonomically-designed user interface that allows 
one to create and manipulate mathematical formulae at a computer terminal in a form 
whose readability approaches the high standard of graphics-based WYSIWYG systems. 
The current document is itself a MatfUPad document and has been written in its entirety 
directly on-screen. Instructions for how to obtain MathJPad and how to read this document 
at your computer terminal are included in the final section. 

MatfUPad is of potential value to those authors whose work typically contains lots of 
items of a mathematical nature, for example mathematical formulae like 

• Now at CWI, Amsterdam 
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or computer programs (with or without comments of a mathematical nature): 

program example; 
var 
k , m : integer 
x, y : real; 
begin 

{O::;m} 
k := 0; y := 1; 
{ Invariant: y = Xk 

Variant: m-k} 
while k <> m do begin 

k := k+ 1 ; Y := y*x 
end 
{y = xm} 

end. 

If, however, one restricts oneself to standard mathematical notation such as taught up 
to, but not including, university level it is likely that a software package that has been 
tailor-made to respect such standards is more suited to one's purposes. MattUPad begins 
to be an attractive alternative when one wishes to deviate from accepted notation and 
invent one's own. It may be preferred, for example, to write the tautology 

using a two-dimensional turnstile notation as shown below: 

The most important component of the MattUPad system is a "stencil" -definition mech
anism which allows one to design and use one's own notation - if necessary on the fly 
during the preparation of a document. Included in this mechanism is a method for spec
ifying the J1.1EX output that the notation should generate thus ensuring a high-quality 
printed version of the document even if the screen version has some shortcomings. 
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The use of MattUPad truly becomes worthwhile if the documents one writes often 
contain symbolic calculations. Symbolic calculations are very much like the weather: oc
casionally sudden changes take place, but most of the time the changes are gradual. Below 
is an example of such a symbolic calculation. Unless one belongs to a very small in-crowd 
of researchers one will not have any idea what this calculation is about. That is indeed an 
advantage since then viewing the calculation from a purely syntactic perspective becomes 
unavoidable. What one observes is that there is only one sudden change in the calcula
tion, that expressed in the first equation. Following that the calculation consists of various 
rearrangements of a small number of patterns. One notes, for example, that the pattern 
"1 0 " is repeated without change, and that the sub expression "d GF; G.fD" is also copied 
repeatedly but in different positions in the formula. 

f30Ct 

- { definitions of f3 and Ct } 

1 0 F.dGF; G.ID 0 F.inGF 
= { F is a functor } 

1 0 F.(dGF; G.ID 0 inGF) 
= { SELF } 

1 0 F.(G.I 0 G.F.dGF; G.ID) 
{ G is a functor } 

I o F.G.(J 0 F.dGF; G.ID) 
= { definition of f3 } 

I 0 F.G.f3 . 

MattUPad is in fact just a tree editor, the structure of the trees one manipulates being 
defined by the user. Its strength lies in the flexibility with which one can define the logical 
structure of formulae and how they are to be laid out on the screen, and in the ease with 
which one can select, copy and rearrange sub expressions in a mathematical formula. 

In summary, MattUPad has been designed as a hybrid between WYSIWYG and macro
based document preparation systems. It is intended to appeal to those whose work demands 
the comprehensiveness, power and flexibility of a logical-design system like 'lEX or ~'lEX. 
By choosing to use MattUPad one will not be sacrificing any of these advantages. (Nor is 
it necessary to rewrite old documents: a MattUPad document can include any amount of 
raw 'lEX or ~'lEX code. No special conversion program is necessary.) On the other hand, 
one gains the indispensable advantage of a visual design system so that one can read what 
one has written as one writes. 

MattUPad inevitably has its limitations, some minor, the most major. It was developed 
as a research project in the design of computer interfaces for the writing of mathemati
cal documents. As such its capabilites for editing and viewing plain text are relatively 
primitive compared to conventional editing systems. Even for the input of mathematics 
its ergonomics is severely hampered by the inhuman nature of keyboard-mouse input, and 
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there is at present no mechanism to interface Mat~ad with any of the many mathemati
cal systems that are currently available. Mat~ad is nevertheless intended as a practical, 
pleasant-to-use system, as judged within the context of current technology, and one that 
will have a place in the emerging generation of computer interfaces. 

This paper comprises an overview of the main elements of the system. 

2 Design Considerations 

2.1 Background 

Development of the Mat~ad system was initiated in 1987 by Roland Backhouse. The 
priorities identified at that time have had a major influence on the design of Mat~ad 
and are therefore worth enumerating. A brief description of the research undertaken by 
Backhouse's group and our own perspective on the historical development of computerised 
mathematics also help to justify our choice of priorities. 

Our research concerns the mathematics of program construction. That is, we are con
cerned with advancing the use of formal, mathematically-based program development sys
tems. (By "system" we do not mean computer system in this context.) The articles we 
write tend to be highly mathematical in nature and they contain large quantities of al
gebraic calculations. More importantly, because our work is concerned with research into 
formal systems (with the emphasis on the final "s"), articles we write are varied and the 
mathematics they employ is non-standard. 

Computer support for mathematical work has a long tradition and takes various forms 
- including algebraic manipulation syste~s like Maple and Mathematica, theorem provers 
like that designed and implemented by Boyer and Moore [1 J and proof assistants like 
mural [4J. Typically, the goal of such systems is to improve the reliability of mathematical 
calculation. In the area of program development systems (of which mural and the Boyer
Moore theorem prover are examples) the emphasis has traditionally been on the use of 
the computer as verifier. This tradition is not surprising given the history of computer 
development: true "interaction" with a computer is only now becoming possible and the use 
of a computer as verifier was until recently about the only feasible application imaginable. 
In the design of MattUPad, the goal from the outset was however to develop a system to 
support the creative activity of doing mathematics, in keeping with our research goal of 
developing mathematics of program construction (rather than verification). 

The possibility of developing a system like MattUPad began to emerge in the late 
eighties. At the time of the project's initiation 'lEX had begun to firmly establish itself 
among the computing science community. The flexibility and high quality of 'lEX output 
created a minor revolution in the preparation of scientific papers. In spite of the major 
investment needed to learn 'lEX, or its successor ~'IEX, and both systems subsequent 
unabated unfriendliness, many thousands of scientists now make daily use of them and 
would at no costs wish to relinquish their advantages for a more user-friendly - but 
inevitably more restrictive - what-you-see-is-what-you-get system. 
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At about the same time the use of window systems began to exert a major influence on 
the design of computer software. Instead of the norm being what one might call "teletype 
systems" - systems characterised by monos paced input/output and an orderly command
line mode of operation - the idea that the computer screen might be made to resemble 
one's desk - characterised typically by apparently permanent disorder and a never empty 
pending list of assignments - became concrete. 

With this background, a project was formulated with the goal of constructing an on
screen "scratch pad" for doing symbolic algebraic calculations. The resulting prototype 
system, the design of which was formulated in intensive discussions between Paul Chisholm 
and Roland Backhouse, was implemented by Chisholm with technical support from Harm 
Paas, and became available for general use in 1990 [2J. The principal design element of 
this system was a flexible mechanism for on-the-fly definition of mathematical notations 
(the "stencils" of the current system). 

2.2 A Question of Priorities 

Suppose that one's research goal is to enhance the reliability of mathematical calculation in 
some advancing field of mathematics and one sets out to implement a tool to support that 
goal. Bearing the limitations of current technology in mind, what should one's priorities 
be? This is a fundamental question that dictates the nature of the tool that is built. 

The first priority set in the design of Matl'upad was readability. Mathematical notation 
has been designed over centuries to be eminently readable, so a first requirement of the 
MaUlf'pad system was that one should be able to work directly with mathematical notation 
(and not some approximation to mathematical notation). 

Of course, we can all train ourselves to read the unreadable. Blind people learn to 
read braille and are able to cope admirably well. Those who have been programming for a 
quarter of a century or more will remember the time when it Was necessary to be able to 
read paper tape in order to amend or correct a program. It is a skill that is soon learnt and, 
after some practice, it is possible to convince oneself that it can be done without thinking. 
To do so is however pure self-deception. Indeed, it is quite probably the case that the use 
of paper tape as input medium contributed far more in those days to the unreliability of 
computer software than did the lack of structured programming techniques. 

Typewriter font is also unreadable, although it has been around for so long that most 
of us do not realise the training that has to be undergone to learn how to read it. To 
illustrate the point consider the expression a+b. c+d as written here in typewriter font. The 
justification for the mathematical convention that multiplication is denoted by the smallest 
symbol (a dot) and has the highest precedence is totally negated by the white space around 
the symbol created by the use of a non-proportionally-spaced font. The eye naturally 
groups the expression into the two subexpressions a+b and c+d, and the intended structure 
of the expression is completely disguised. In general, the use of monospacing completely 
frustrates attempts to impart structure to the reader. It is indeed our contention that 
the continuing use of monos paced fonts as primary input medium to computer programs 
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is the most significant single source of programming error. The belief that one can do 
creative mathematics in such a font is as ridiculous as the belief that one can do creative 
mathematics in paper tape format. 

MattUPad documents (as displayed on-screen) are proportionally-spaced, allow multiple 
fonts (bold, sans serif, etc.), an unlimited symbol set (Greek letters: a, (3 etc., special 
symbols like @, oTo , and so on), stacked expressions and subscripts and superscripts. See 
figs. 2-4 for illustrations. (All figures are collected together at the end of this document.) 

Our second priority was flexibility. MattUPad was designed to support the work of a 
research group engaged in the exploration of novel mathematical theories and so flexibility 
was a must. But flexibility is also vital to all scientists. Even if one is - for example -
designing an algorithm for some well-defined, specialist task it is likely that one needs to 
appeal to a whole host of existing mathematical theories. (It is often the case that it is only 
when one submits one's design to a completely formal proof that one becomes truly aware 
of just how many.) The use of a system designed to support only a subset of available 
mathematical knowledge will be more effort than it is worth. 

Flexibility means that the responsibility for error lies fairly and squarely on the shoul
ders of the user. All formal proof assistants of which we are aware attempt to relieve the 
user of some of this responsibility by restricting the available possibilities. One often sees 
claims like: "the system guarantees that only type-correct statements can be entered". 
Our view is that this is a misguided policy. The discipline of thoroughness must remain 
an integral part of the scientific ethic and not be imposed by a machine. We have to throw 
away the idea of "expert systems" intended to replace the experts and get back to "systems 
for experts", i.e. systems designed to assist experts in a particular field in doing their work 
efficiently and effectively. 

The third priority in the design of MattUPad was to support the writing of scientific 
articles rather than the production of a finished product. The papers that we ourselves 
write tend to undergo many revisions, often extending over years rather than months. The 
drafts we write need to be highly readable but often contain inadequate proofs - inade
quate because they are too complicated, not at the right level of abstraction, incomplete, 
and sometimes downright wrong. When the finished product is finally ready it is usually 
the case that we feel a sense of shame at our own stupidity during the course of its pro
duction. The finished product is intended to show how the ideas should be formulated, 
and how the theorems should be proved, but it is rarely the case that the finished product 
represents how its results were first established. The time required for the production of 
the finished product is also relatively short compared to the time required to reach a state 
in which a finished product is conceivable. 

Verification systems seem to assume that their users are as inhuman as the system itself: 
always systematic, always tidy and well organised, always precise and always correct. (Or, 
if this is not the case, at least willing to be disciplined by the machine into such a mode of 
working.) They are intended to provide the final seal of approval on work that is already 
well developed and well organised. They do have a purpose but, in our view, a purpose 
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that has been given an unduly high priority. A machine-supplied seal of approval has had 
no priority in the development of MattUPad. 

The final priority in the design of Mathfpad was that mathematics and text should be 
completely integrated. Mathematics is not about mathematical calculations. It is about 
the nature of the calculations: what the mathematics is about, why one should be interested 
in a particular calculation or theorem, and what one can learn from it. Doing mathematics 
is a literary exercise: a mathematical article is an essay, and a mathematics book is a 
novel complete with a plot and main characters. (We include in this writing computer 
programs which we also regard as a mathematical exercise.) We cannot envisage doing 
mathematics without being able to freely intersperse prose with mathematical calculations. 
Computerised math systems rarely cater for this viewpoint. It is often physically impossible 
to include explanatory text and where it is possible it is often the case that the inclusion 
of text is severely restricted. 

3 System Highlights 

3.1 Stencils 

The most important element in the design of MattUPad is formed by the so-called stencils. 
A MattUPad stencil is a file describing the notational conventions used in one or more 
MattUPad documents, and how these are to be set using the ~'fEX document preparation 
system. Each stencil consists of a number of templates, each of which may have various 
verSIons. 

In order to illustrate the use of stencils we have extracted various notational elements 
from the book "A Logical Approach to Discrete Math" by David Gries and Fred B. Schnei
der [3J. and incorporated them in the stencil "Gries-Schneider". This stencil, as it appears 
on the screen is shown in fig. 1. 

Like all authors, Gries and Schneider have their own style for presenting definitions, 
theorems etc., and their own notational conventions for constructing mathematical expres
sions. The Gries-Schneider stencil is in effect a syntax-directed editor for statements in 
their book. (This is, of course, only partially true. The stencil we have created contains 
only a small number of templates in order to illustrate the general idea. Much more would 
be needed for the complete book. More importantly, not all the conventions used by Gries 
and Schneider are peculiar to their own book. For organisational reasons it is better to cre
ate several stencils, each forming a logical unit. For the examples below we have made use 
of other stencils, in particular a ~'fEX stencil, in addition to the Gries-Schneider stencil.) 

Figure 2 shows an extract from one page of their book (p.l5l); fig. 2(a) IS a screen 
dump, and fig. 2(b) shows the extract after processing with ~'fEX. 

The Gries-Schneider stencil (fig. 1) illustrates the general form of a MattUPad stencil. 
There are six sections, labelled None, Prefix, Postfix, Infix, Left and Right. All but the first 
of these sections define mathematical operators and their precedences. The first section 
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(the one labelled None) is used to define mathematical notations and other (not necessarily 
mathematical) conventions that are used in a document. 

Ostensibly, nine conventional operators have been defined in the Gries-Schneider stencil 
- reading from top to bottom, ' , == , /\ , = ,. ,¢= and =? . The first is a prefix 
operator, the next six are all associative infix operators, the next two are left-associative 
infix operators, and the last one a right-associative operator. We say "ostensibly" because 
several of the operators have different "versions". If for instance one moves the mouse to 
point at "/\" in the stencil and presses down with the rightmost mouse button a small menu 
will appear containing two items "/\" and "V". The two operators have different meanings, 
of course, but accorcling to the definition in the stencil, they are treated by MattU'pad as 
different "versions" of the same operator. In fact the total list of operators defined in the 
stencil amounts to sixteen. 

The operator "[V := EJ" is somewhat unconventional although its use should be evident 
from fig. 2. It illustrates a common phenomenon in mathematics, namely the use of an 
operator that is parameterised, in this case by a variable "V" and an expression "E". The 
operator "O(T)" in the stencil is also parameterised by an operator "0" and text "T". It 
has been used to create the proof steps in fig. 2. Its use will be discussed further later. 

Each operator has been assigned a precedence according to a list to be found at the 
beginning of Gries and Schneider's book. Different versions of an operator all have the same 
precedence. Although we don't discuss how here, it is very easy to add new operators to 
the stencil or to modify existing definitions. Doing so results in a simple syntax-directed 
editor for mathematical expressions. By clicking on entries in the stencil expressions can 
be entered into a MattU'pad edit document. This can be done either top-down ("syntax
directed"), or from left to right, or indeed using a combination of top-down and left to 
right input. 

The first entry in the None section of the Gries-Schneider stencil is labelled "rule". This 
template describes the style used by Gries and Schneider to present rules. Specifically, 
each rule typically has a label - "8.22" in the example, a name - "Change of dummy" 
in the example -, a condition or context under which the rule is valid - "Provided 
'occurs('y' , 'R ,PI) and f has an inverse" in the example, and the statement of the rule 
itself - "(*x I R : P) = (*y I R[x:= f.yJ : P[x:= f.yJ)" in the example. Clicking on 
"rule" in the stencil with the left mouse button causes the following template to appear in 
your document at the location of the target selection: 

(T) Name: T: 
Condition: T, 
Statement: E 

The three bold T's and the bold E are place holders for text and a mathematical ex
pression, respectively. In Gries and Schneider's book the headings "Name", "Condition:" 
and "Statement:" do not appear. The template has been so defined that the headings do 
appear on the screen, in order to remind the writer of the function of each of the place 
holders, but do not a.ppear in the J5.1EX output genera.ted by the MattU'pad document. 
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(Compare fig. 2(a) with fig. 2(b).) The MattUPad system incorporates an automatic 
mechanism for generating f:).TEX output so that in principle it is unnecessary for the user 
to learn f:).TEX in order to use the system. In practice it is sometimes desirable to over-ride 
the system-generated f:).TEX either, as in this case, because the screen version of a template 
is designed to assist in the writing of the document, or to improve the quality of the output. 
The general design principle that this illustrates is: the user is the boss and can always 
over-ride automatic actions of the system. 

The creation of (versions of) a template in a stencil can be very straightforward; it can 
also be the most difficult task of all in the use of MattUPad. It is very straightforward to 
enter simple mathematical operators. The difficulties begin when you require special layout 
conventions. The difficulties are compounded when the f:).TEX automatically generated by 
MattUPad is not adequate to your needs. This is undoubtedly a major hurdle for the 
beginning user of MattUPad. The experienced user will, however, already have several 
stencils at their disposal and will seldom need to augment or modify them. When it 
is necessary to do so this can always be done "on-the-fly". Moreover, if a sufficiently 
large community of MattUPad users develops, we expect (hope!) that in time stencils for 
particular application areas (a C stencil, a category theory stencil, a calculus stencil etc.) 
will become readily available and will be shared among users thus making the initial hurdle 
for beginners much more palatable. 

3.2 Expression Manipulation 

The primary goal of MattUPad is to provide a pleasant, useable interface for performing 
algebraic calculations at a computer terminal. The argument for using a computer for 
such calculations rather than doing them by hand is a very simple one: computers are able 
to copy information very reliably and quickly whereas human beings tend to introduce 
mistakes in the process. 

The fact that MattUPad is a structure editor pays enormous dividends in the ease with 
which substructures may be selected. To select an expression in a text it suffices to point 
the mouse at the principal operator in the expression and click. In other systems that we 
know of selection is effected by dragging the mouse - usually over some encoding of the 
expression involving "funny" control characters or umpteen backslashes and macro names 
rather than the expression itself. The result is that the most basic editing operation, 
namely copying, becomes clumsy and hence unreliable in those systems. With MattUPad 
that is not the case. 

Apart from being able to copy subexpressions easily and quickly, MattUPad provides 
simple-to-use functions for rearranging expressions, and for finding and replacing mathe
matical expressions of a given structure. The functions provided by MattUPad for expres
sion manipulation are Copy and Swap, Reverse, Distribute and Factorise, Group and Ungroup, 
Apply, Rename and Find. The functions Swap, Copy and Find can also be used on plain 
text, but the remainder are peculiar to the manipulation of mathematical expressions. 

Group and Ungroup are used to change the default structure of an expression. Apply is 
used to "apply" a function to an expression. (The operation is purely syntactic and not to 
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be confused with evaluation of the function.) Rename is used to rename dummy variables 
within a given scope. We do not discuss these operations any further here. 

Find is short for Find / Find-and-Replace. It can be used to search for, and possibly 
replace, both text and mathematical expressions. The effectiveness of Find is considerably 
enhanced by the fact that Matll/Pad is a structure editor. It can be used to search for 
expressions of a particular shape simply by specifying a pattern containing one or more 
unfilled place-holders. By combining this with a replacement pattern the operation can 
be used to transform expressions according to mathematical rules. For example, Find-and
Replace can be used to transform all (or some) expressions of the shape (El+E2)* to 
El* 0 (E2 0 El*)* where El and E2 are place holders for expressions. 

Infix operators playa vital role in mathematical formulae. This is due in no small 
measure to the relative importance of associativity among all the algebraic properties that 
an operator may enjoy. Because of the associativity of an operator like addition we can 
freely write, say, a+b+c+d without fear of confusion. This is of great benefit to calculation 
because the notation is not biased to any particular grouping of the subexpressions. The 
exploitation of associativity in a calculation becomes an invisible step, one that we are 
often not consciously aware of. 

A similar phenomenon lies at the heart of the use of infix notation for transitive rela
tions. When we write, say, a = b = c then we mean a = band b = c. But, because 
of the transitivity of equality, it is also the case that a = c. In an extended calculation in 
which several steps occur it is typically the equality between the first and last terms that 
we are interested in, the intermediate terms being only of passing interest. At the end of 
such a calculation it is nonetheless rare to see explicitly stated "and hence, by transitivity of 
equality, the first and last terms are equal". Such would only happen in a very elementary 
mathematical text, or in an extremely detailed (and pedantic) logical argument. The infix 
notation encourages us to associate the first and last terms with each other. 

Several elements of Matll/Pad are geared to the use of infix notation in the two ways 
explained above. When creating a MathJj:Jad stencil it is possible to declare that an 
operator is "associative". This does not mean that the operator is "associative" in the 
narrow mathematical sense exemplified by addition. It means instead that the operator 
can have a list of arguments, of arbitrary finite length, whereby the notation used to 
denote the application of the operator to a list is to repeatedly write the operator between 
successive elements in the list of arguments. Thus a + b + c denotes the application of 
the operator + to the list {a, b , c} . Equally, a = b = c denotes the application of the 
operator = to the list {a, b, c} . These are both called "associative" in Matll/Pad jargon 
because the notation is intended to encou~age one to "associate" terms in the expression 
together in a variety of different ways. 

(It is also possible to declare an operator to be "left associative" or "right associative". 
Such a declaration has the conventional meaning. For example, if the operator '* has 
been declared to be right associative then the expression a,* b,* c has the structure 
a,* (b '* c) . ) 

The Matll/Pad functions that exploit the notion of associativity are Reverse, Distribute 
and its inverse Factorise. The function Reverse reverses the order of the elements in a 
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list of arguments and (associative) infix operators. For example, reversing the expression 
a ::; b < c = d ::; e results in the expression e ::; d = c < b ::; a. (Note that the 
operation does not replace "<" by">" or "::;" by";:::". ) Sub expressions can also be 
reversed. Reversing the sub expression (c+d)·e in a·b + (c+d)·e + f , for example, results 
in a·b + e·( c+d) + f. (Note that the operation is not recursive: the arguments of the 
division operator are not reversed.) Distribute and Factorise are most often used in the 
normal situation in a calculation where a function is known to distribute over a binary 
operator, for instance to take the step fro~ a·(b+c+d) to a·b + a·c + a·d ("distribute") 
or vice-versa to go from a·b + a'c + a·d to a·(b+c+d) ("factorise"). 

The ease with which one can select, copy and rearrange expressions using these few 
simple operations makes MattU'pad a very "handy" symbolic calculator, particularly in 
areas of mathematics where no specialised machine support is available. Yet more benefit 
can be obtained from the system if one is prepared to use it in seemingly unorthodox ways. 
The use of the template labelled "0 (T)" in the Gries-Schneider stencil is one such example. 
It defines a binary associative operator, just like the addition operator, except that the 
operator itself has two arguments: "0", which is used for the relation holding between 
the operator's two arguments in a proof step, and "T", which is used for the explanation 
of the proof step. (Note that the explanation can run over several lines: see fig. 2.) In 
this way no special "feature" has to be added to the system in order to accommodate the 
calculational proof style (or indeed other proof styles) used by Gries and Schneider in their 
book. 

4 The Current Status 

The first alpha release of the MattU'pad system took place in December 1993, and a second 
release is due to take place in the spring of 1995. The system is freely available via 
world-wide web at http://www.win.tue.nl/win/cs/wp/mathspad. Several documents 
produced with the aid of the system (almost all documents inserted in the directory in 
1993 or later) are stored at http://www.win.tue.nl/win/cs/wp/papers. 

The MattU'pad manual is itself a MattU'pad document and, with the exception of screen 
dumps, is distributed with the system. It is planned to publish the manual in book form 
in the near future. 
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('8.22') Name 
Condition: 

'Change of dummy': 

Statement: 
. Provided -,oceurs('y,'R,P) and { has an inverse', 
(*x I R: P) = (*y I Jilx:= {.y] : l'[x:= (.y]) 

The proof of this theorem illustra tes the use of several of the axioms given above. 
The proof starts with the RHS of (8.22), because it has more structure. 

(*y I Jilx:= (.yj : l'[x:= f.y]) 
= ('One point rule (8.14) 

--- Quantification over x has to be introduced. The One
point rule is the 'only' rule that can be applied at first. . ) 

(*y I Jilx:= {.y] : (*x I x=f.Y: P) 
= ('Nesting (8.20) ---Moving dummy x to the outside 

gets us closer to the final form.' ) 
(*x,y I Jilx:= (.yj AX=f.Y: P) 

(a) Snapshot of MattU'pad document 

(8.22) Change of dummy: 
Provided -, occurs(,y' , 'R , P') and f has an inverse, 
(*x I R : P) = (*y I R[x:= f.y] : P[x:= f.y]) 

The proof of this theorem illustrates the use of several of the axioms given above. The proof 
starts with the RHS of (8.22), because it has more structure. 

(*y I R[x:= f.y] : P[x:= f.y]) 
(One point rule (8.14) 

- Quantification over x has to be introduced. The One

point rule is the only rule that can be applied at first.) 

(*y I R[x:= f.y] : (*x I x = f.y : P)) 
(Nesting (8.20) -Moving dummy x to the outside 

gets us closer to the final form.) 

(*x,y I R[x:= f.y] A x = f·y : P) 

(b) Output produced after processing with ~1EX 

Figure 2: Running example. (Note the integration of prose with mathematical calculations) 
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\font\pics = kevpics scaled 1000 
\unitlength lcm 
\begin{picture}(O,O) 
\def\myput( # 1,#2)#3{\put( # 1,#2){\makebox(0,0)( #3}}} 
\myput(1O.3,-1.7)(\pics B} 
\myput(10.3,-0.5)(Fn} 
\myput(10,-2.0)(F rem} 
\myput(1O.8,-3.0){\vbox to Ocm(\hbox to Ocm(\hss Fz \hss}\vss}} 
\end(picture}% 
Volgens de regel hierboven geldt: 

Fn = F. 1 m·g 
= • .j 1+[f'(x)]2 .j 1+~ 

Frem = Fz ' 
e1 = 

m·g·f'(x) 

.j 1+~ .j 1+[f'(x)]2 

(a) Snapshot of a MattUPad document 

Volgens de regel hierboven geldt: 

1 m·g 
Fn = F.· jl+ci = jl+[!'(x)j2 

F.. Cl _ m·g-f'(x) 

• jl+ci - jl+[!'(x)]2 F. 

(b) Output produced after processing with B-TEX 

Figure 3: Raw TEX may be included in MattliPad files. 
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(a) 

(whererid
A A Eo- A x 11 is the obvious natural isomorphism) commutes, and 

Diagram: 

F(A x (B x C)). 

F«A x B) x C)<-
SAxB ,C 

SA,BxC 
<--- FAx(BxC) 

(FAxB)xC 

(where ass A, B, C : (A x B) x C Eo- A x (B x C) is the obvious natural 

isomorphism) commutes as well. A functor that has at least one strength is said 
to be strong. 

Snapshot of a Mattifpad document 

(where rid A : A <- A x 1 is the obvious natural isomorphism) commutes, and 

F(A x (B x C)) 

FaSSA, B > C 

FAx(BxC) 

laSSFA . B • e 

F((A x B) x C) • F(A x B) x C . (FAx B) x C 
BAxB • e BA ,B x .de 

(where ass A , B ,e : (A x B) x C ;- A x (B x C) is the obvious natural isomorphism) com
mutes as well. A functor that has at least one strength is said to be strong. 

(b) Output produced after processing with ~'I'EX 

Figure 4: An example of using Mattifpad for making diagrams using Paul Taylor's diagram 
macro package. 
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