

MathSpad : a system for on-line preparation of mathematical
documents
Citation for published version (APA):
Backhouse, R. C., Verhoeven, R., & Weber, O. (1995). MathSpad : a system for on-line preparation of
mathematical documents. (Computing science reports; Vol. 9510). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/f7a82bd6-963d-468d-9dc7-b8b4f745e2ad

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology

Department of Mathematics and Computing Science

Math f pad: A System for On-Line Preparation of

Mathematical Documents

by

R.C. Backhouse. R. Verhoeven and O. Weber

editors: prof.dr. J.C.M. Baeten
prof.dr. M. Rem

Computing Science Report 95/10
Eindhoven. April 1995

95/10

MathJpad : A System for On-Line Preparation of
Mathematical Documents

Roland Bad,honse, Richard Verhoeven and Olaf Weber'

1 Introduction

Department of Computing Science,

Eindhoven University of Technology,

P.O. Box 513,

5600 MB Eindhoven,

The Netherlands.

mathpad~win.tue.nl

March 199.5

Mathj)Jad is a system for preparing documents (books, articles etc.) on a computer.
The main strength of the system lies in the preparation of documents of a mathematical
nature, particularly in the case that the mathematics is non-standard. It builds upon
the flexibility of the TEX [5] and J}TEX document-preparation systems [6] by providing
a mechanism for converting documents prepared with the aid of the system into J1.TEX
documents. Like these systems MathJPad emphasises logical design rather than visual
desiyn and is not a WYSIWYG (what you see is what you get) system. Unlike TEX and
J}TEX, however, MathJPad provides an ergonomically-designed user interface that allows
one to create and manipulate mathematical formulae at a computer terminal in a form
whose readability approaches the high standard of graphics-based WYSIWYG systems.
The current document is itself a MatfUPad document and has been written in its entirety
directly on-screen. Instructions for how to obtain MathJPad and how to read this document
at your computer terminal are included in the final section.

MatfUPad is of potential value to those authors whose work typically contains lots of
items of a mathematical nature, for example mathematical formulae like

• Now at CWI, Amsterdam

1

l nk:x J m-l d-m
+--n+--

2 2

or computer programs (with or without comments of a mathematical nature):

program example;
var
k , m : integer
x, y : real;
begin

{O::;m}
k := 0; y := 1;
{ Invariant: y = Xk

Variant: m-k}
while k <> m do begin

k := k+ 1 ; Y := y*x
end
{y = xm}

end.

If, however, one restricts oneself to standard mathematical notation such as taught up
to, but not including, university level it is likely that a software package that has been
tailor-made to respect such standards is more suited to one's purposes. MattUPad begins
to be an attractive alternative when one wishes to deviate from accepted notation and
invent one's own. It may be preferred, for example, to write the tautology

using a two-dimensional turnstile notation as shown below:

The most important component of the MattUPad system is a "stencil" -definition mech
anism which allows one to design and use one's own notation - if necessary on the fly
during the preparation of a document. Included in this mechanism is a method for spec
ifying the J1.1EX output that the notation should generate thus ensuring a high-quality
printed version of the document even if the screen version has some shortcomings.

2

The use of MattUPad truly becomes worthwhile if the documents one writes often
contain symbolic calculations. Symbolic calculations are very much like the weather: oc
casionally sudden changes take place, but most of the time the changes are gradual. Below
is an example of such a symbolic calculation. Unless one belongs to a very small in-crowd
of researchers one will not have any idea what this calculation is about. That is indeed an
advantage since then viewing the calculation from a purely syntactic perspective becomes
unavoidable. What one observes is that there is only one sudden change in the calcula
tion, that expressed in the first equation. Following that the calculation consists of various
rearrangements of a small number of patterns. One notes, for example, that the pattern
"1 0 " is repeated without change, and that the sub expression "d GF; G.fD" is also copied
repeatedly but in different positions in the formula.

f30Ct

- { definitions of f3 and Ct }

1 0 F.dGF; G.ID 0 F.inGF
= { F is a functor }

1 0 F.(dGF; G.ID 0 inGF)
= { SELF }

1 0 F.(G.I 0 G.F.dGF; G.ID)
{ G is a functor }

I o F.G.(J 0 F.dGF; G.ID)
= { definition of f3 }

I 0 F.G.f3 .

MattUPad is in fact just a tree editor, the structure of the trees one manipulates being
defined by the user. Its strength lies in the flexibility with which one can define the logical
structure of formulae and how they are to be laid out on the screen, and in the ease with
which one can select, copy and rearrange sub expressions in a mathematical formula.

In summary, MattUPad has been designed as a hybrid between WYSIWYG and macro
based document preparation systems. It is intended to appeal to those whose work demands
the comprehensiveness, power and flexibility of a logical-design system like 'lEX or ~'lEX.
By choosing to use MattUPad one will not be sacrificing any of these advantages. (Nor is
it necessary to rewrite old documents: a MattUPad document can include any amount of
raw 'lEX or ~'lEX code. No special conversion program is necessary.) On the other hand,
one gains the indispensable advantage of a visual design system so that one can read what
one has written as one writes.

MattUPad inevitably has its limitations, some minor, the most major. It was developed
as a research project in the design of computer interfaces for the writing of mathemati
cal documents. As such its capabilites for editing and viewing plain text are relatively
primitive compared to conventional editing systems. Even for the input of mathematics
its ergonomics is severely hampered by the inhuman nature of keyboard-mouse input, and

3

there is at present no mechanism to interface Mat~ad with any of the many mathemati
cal systems that are currently available. Mat~ad is nevertheless intended as a practical,
pleasant-to-use system, as judged within the context of current technology, and one that
will have a place in the emerging generation of computer interfaces.

This paper comprises an overview of the main elements of the system.

2 Design Considerations

2.1 Background

Development of the Mat~ad system was initiated in 1987 by Roland Backhouse. The
priorities identified at that time have had a major influence on the design of Mat~ad
and are therefore worth enumerating. A brief description of the research undertaken by
Backhouse's group and our own perspective on the historical development of computerised
mathematics also help to justify our choice of priorities.

Our research concerns the mathematics of program construction. That is, we are con
cerned with advancing the use of formal, mathematically-based program development sys
tems. (By "system" we do not mean computer system in this context.) The articles we
write tend to be highly mathematical in nature and they contain large quantities of al
gebraic calculations. More importantly, because our work is concerned with research into
formal systems (with the emphasis on the final "s"), articles we write are varied and the
mathematics they employ is non-standard.

Computer support for mathematical work has a long tradition and takes various forms
- including algebraic manipulation syste~s like Maple and Mathematica, theorem provers
like that designed and implemented by Boyer and Moore [1 J and proof assistants like
mural [4J. Typically, the goal of such systems is to improve the reliability of mathematical
calculation. In the area of program development systems (of which mural and the Boyer
Moore theorem prover are examples) the emphasis has traditionally been on the use of
the computer as verifier. This tradition is not surprising given the history of computer
development: true "interaction" with a computer is only now becoming possible and the use
of a computer as verifier was until recently about the only feasible application imaginable.
In the design of MattUPad, the goal from the outset was however to develop a system to
support the creative activity of doing mathematics, in keeping with our research goal of
developing mathematics of program construction (rather than verification).

The possibility of developing a system like MattUPad began to emerge in the late
eighties. At the time of the project's initiation 'lEX had begun to firmly establish itself
among the computing science community. The flexibility and high quality of 'lEX output
created a minor revolution in the preparation of scientific papers. In spite of the major
investment needed to learn 'lEX, or its successor ~'IEX, and both systems subsequent
unabated unfriendliness, many thousands of scientists now make daily use of them and
would at no costs wish to relinquish their advantages for a more user-friendly - but
inevitably more restrictive - what-you-see-is-what-you-get system.

4

At about the same time the use of window systems began to exert a major influence on
the design of computer software. Instead of the norm being what one might call "teletype
systems" - systems characterised by monos paced input/output and an orderly command
line mode of operation - the idea that the computer screen might be made to resemble
one's desk - characterised typically by apparently permanent disorder and a never empty
pending list of assignments - became concrete.

With this background, a project was formulated with the goal of constructing an on
screen "scratch pad" for doing symbolic algebraic calculations. The resulting prototype
system, the design of which was formulated in intensive discussions between Paul Chisholm
and Roland Backhouse, was implemented by Chisholm with technical support from Harm
Paas, and became available for general use in 1990 [2J. The principal design element of
this system was a flexible mechanism for on-the-fly definition of mathematical notations
(the "stencils" of the current system).

2.2 A Question of Priorities

Suppose that one's research goal is to enhance the reliability of mathematical calculation in
some advancing field of mathematics and one sets out to implement a tool to support that
goal. Bearing the limitations of current technology in mind, what should one's priorities
be? This is a fundamental question that dictates the nature of the tool that is built.

The first priority set in the design of Matl'upad was readability. Mathematical notation
has been designed over centuries to be eminently readable, so a first requirement of the
MaUlf'pad system was that one should be able to work directly with mathematical notation
(and not some approximation to mathematical notation).

Of course, we can all train ourselves to read the unreadable. Blind people learn to
read braille and are able to cope admirably well. Those who have been programming for a
quarter of a century or more will remember the time when it Was necessary to be able to
read paper tape in order to amend or correct a program. It is a skill that is soon learnt and,
after some practice, it is possible to convince oneself that it can be done without thinking.
To do so is however pure self-deception. Indeed, it is quite probably the case that the use
of paper tape as input medium contributed far more in those days to the unreliability of
computer software than did the lack of structured programming techniques.

Typewriter font is also unreadable, although it has been around for so long that most
of us do not realise the training that has to be undergone to learn how to read it. To
illustrate the point consider the expression a+b. c+d as written here in typewriter font. The
justification for the mathematical convention that multiplication is denoted by the smallest
symbol (a dot) and has the highest precedence is totally negated by the white space around
the symbol created by the use of a non-proportionally-spaced font. The eye naturally
groups the expression into the two subexpressions a+b and c+d, and the intended structure
of the expression is completely disguised. In general, the use of monospacing completely
frustrates attempts to impart structure to the reader. It is indeed our contention that
the continuing use of monos paced fonts as primary input medium to computer programs

5

is the most significant single source of programming error. The belief that one can do
creative mathematics in such a font is as ridiculous as the belief that one can do creative
mathematics in paper tape format.

MattUPad documents (as displayed on-screen) are proportionally-spaced, allow multiple
fonts (bold, sans serif, etc.), an unlimited symbol set (Greek letters: a, (3 etc., special
symbols like @, oTo , and so on), stacked expressions and subscripts and superscripts. See
figs. 2-4 for illustrations. (All figures are collected together at the end of this document.)

Our second priority was flexibility. MattUPad was designed to support the work of a
research group engaged in the exploration of novel mathematical theories and so flexibility
was a must. But flexibility is also vital to all scientists. Even if one is - for example -
designing an algorithm for some well-defined, specialist task it is likely that one needs to
appeal to a whole host of existing mathematical theories. (It is often the case that it is only
when one submits one's design to a completely formal proof that one becomes truly aware
of just how many.) The use of a system designed to support only a subset of available
mathematical knowledge will be more effort than it is worth.

Flexibility means that the responsibility for error lies fairly and squarely on the shoul
ders of the user. All formal proof assistants of which we are aware attempt to relieve the
user of some of this responsibility by restricting the available possibilities. One often sees
claims like: "the system guarantees that only type-correct statements can be entered".
Our view is that this is a misguided policy. The discipline of thoroughness must remain
an integral part of the scientific ethic and not be imposed by a machine. We have to throw
away the idea of "expert systems" intended to replace the experts and get back to "systems
for experts", i.e. systems designed to assist experts in a particular field in doing their work
efficiently and effectively.

The third priority in the design of MattUPad was to support the writing of scientific
articles rather than the production of a finished product. The papers that we ourselves
write tend to undergo many revisions, often extending over years rather than months. The
drafts we write need to be highly readable but often contain inadequate proofs - inade
quate because they are too complicated, not at the right level of abstraction, incomplete,
and sometimes downright wrong. When the finished product is finally ready it is usually
the case that we feel a sense of shame at our own stupidity during the course of its pro
duction. The finished product is intended to show how the ideas should be formulated,
and how the theorems should be proved, but it is rarely the case that the finished product
represents how its results were first established. The time required for the production of
the finished product is also relatively short compared to the time required to reach a state
in which a finished product is conceivable.

Verification systems seem to assume that their users are as inhuman as the system itself:
always systematic, always tidy and well organised, always precise and always correct. (Or,
if this is not the case, at least willing to be disciplined by the machine into such a mode of
working.) They are intended to provide the final seal of approval on work that is already
well developed and well organised. They do have a purpose but, in our view, a purpose

6

that has been given an unduly high priority. A machine-supplied seal of approval has had
no priority in the development of MattUPad.

The final priority in the design of Mathfpad was that mathematics and text should be
completely integrated. Mathematics is not about mathematical calculations. It is about
the nature of the calculations: what the mathematics is about, why one should be interested
in a particular calculation or theorem, and what one can learn from it. Doing mathematics
is a literary exercise: a mathematical article is an essay, and a mathematics book is a
novel complete with a plot and main characters. (We include in this writing computer
programs which we also regard as a mathematical exercise.) We cannot envisage doing
mathematics without being able to freely intersperse prose with mathematical calculations.
Computerised math systems rarely cater for this viewpoint. It is often physically impossible
to include explanatory text and where it is possible it is often the case that the inclusion
of text is severely restricted.

3 System Highlights

3.1 Stencils

The most important element in the design of MattUPad is formed by the so-called stencils.
A MattUPad stencil is a file describing the notational conventions used in one or more
MattUPad documents, and how these are to be set using the ~'fEX document preparation
system. Each stencil consists of a number of templates, each of which may have various
verSIons.

In order to illustrate the use of stencils we have extracted various notational elements
from the book "A Logical Approach to Discrete Math" by David Gries and Fred B. Schnei
der [3J. and incorporated them in the stencil "Gries-Schneider". This stencil, as it appears
on the screen is shown in fig. 1.

Like all authors, Gries and Schneider have their own style for presenting definitions,
theorems etc., and their own notational conventions for constructing mathematical expres
sions. The Gries-Schneider stencil is in effect a syntax-directed editor for statements in
their book. (This is, of course, only partially true. The stencil we have created contains
only a small number of templates in order to illustrate the general idea. Much more would
be needed for the complete book. More importantly, not all the conventions used by Gries
and Schneider are peculiar to their own book. For organisational reasons it is better to cre
ate several stencils, each forming a logical unit. For the examples below we have made use
of other stencils, in particular a ~'fEX stencil, in addition to the Gries-Schneider stencil.)

Figure 2 shows an extract from one page of their book (p.l5l); fig. 2(a) IS a screen
dump, and fig. 2(b) shows the extract after processing with ~'fEX.

The Gries-Schneider stencil (fig. 1) illustrates the general form of a MattUPad stencil.
There are six sections, labelled None, Prefix, Postfix, Infix, Left and Right. All but the first
of these sections define mathematical operators and their precedences. The first section

7

(the one labelled None) is used to define mathematical notations and other (not necessarily
mathematical) conventions that are used in a document.

Ostensibly, nine conventional operators have been defined in the Gries-Schneider stencil
- reading from top to bottom, ' , == , /\ , = ,. ,¢= and =? . The first is a prefix
operator, the next six are all associative infix operators, the next two are left-associative
infix operators, and the last one a right-associative operator. We say "ostensibly" because
several of the operators have different "versions". If for instance one moves the mouse to
point at "/\" in the stencil and presses down with the rightmost mouse button a small menu
will appear containing two items "/\" and "V". The two operators have different meanings,
of course, but accorcling to the definition in the stencil, they are treated by MattU'pad as
different "versions" of the same operator. In fact the total list of operators defined in the
stencil amounts to sixteen.

The operator "[V := EJ" is somewhat unconventional although its use should be evident
from fig. 2. It illustrates a common phenomenon in mathematics, namely the use of an
operator that is parameterised, in this case by a variable "V" and an expression "E". The
operator "O(T)" in the stencil is also parameterised by an operator "0" and text "T". It
has been used to create the proof steps in fig. 2. Its use will be discussed further later.

Each operator has been assigned a precedence according to a list to be found at the
beginning of Gries and Schneider's book. Different versions of an operator all have the same
precedence. Although we don't discuss how here, it is very easy to add new operators to
the stencil or to modify existing definitions. Doing so results in a simple syntax-directed
editor for mathematical expressions. By clicking on entries in the stencil expressions can
be entered into a MattU'pad edit document. This can be done either top-down ("syntax
directed"), or from left to right, or indeed using a combination of top-down and left to
right input.

The first entry in the None section of the Gries-Schneider stencil is labelled "rule". This
template describes the style used by Gries and Schneider to present rules. Specifically,
each rule typically has a label - "8.22" in the example, a name - "Change of dummy"
in the example -, a condition or context under which the rule is valid - "Provided
'occurs('y' , 'R ,PI) and f has an inverse" in the example, and the statement of the rule
itself - "(*x I R : P) = (*y I R[x:= f.yJ : P[x:= f.yJ)" in the example. Clicking on
"rule" in the stencil with the left mouse button causes the following template to appear in
your document at the location of the target selection:

(T) Name: T:
Condition: T,
Statement: E

The three bold T's and the bold E are place holders for text and a mathematical ex
pression, respectively. In Gries and Schneider's book the headings "Name", "Condition:"
and "Statement:" do not appear. The template has been so defined that the headings do
appear on the screen, in order to remind the writer of the function of each of the place
holders, but do not a.ppear in the J5.1EX output genera.ted by the MattU'pad document.

8

(Compare fig. 2(a) with fig. 2(b).) The MattUPad system incorporates an automatic
mechanism for generating f:).TEX output so that in principle it is unnecessary for the user
to learn f:).TEX in order to use the system. In practice it is sometimes desirable to over-ride
the system-generated f:).TEX either, as in this case, because the screen version of a template
is designed to assist in the writing of the document, or to improve the quality of the output.
The general design principle that this illustrates is: the user is the boss and can always
over-ride automatic actions of the system.

The creation of (versions of) a template in a stencil can be very straightforward; it can
also be the most difficult task of all in the use of MattUPad. It is very straightforward to
enter simple mathematical operators. The difficulties begin when you require special layout
conventions. The difficulties are compounded when the f:).TEX automatically generated by
MattUPad is not adequate to your needs. This is undoubtedly a major hurdle for the
beginning user of MattUPad. The experienced user will, however, already have several
stencils at their disposal and will seldom need to augment or modify them. When it
is necessary to do so this can always be done "on-the-fly". Moreover, if a sufficiently
large community of MattUPad users develops, we expect (hope!) that in time stencils for
particular application areas (a C stencil, a category theory stencil, a calculus stencil etc.)
will become readily available and will be shared among users thus making the initial hurdle
for beginners much more palatable.

3.2 Expression Manipulation

The primary goal of MattUPad is to provide a pleasant, useable interface for performing
algebraic calculations at a computer terminal. The argument for using a computer for
such calculations rather than doing them by hand is a very simple one: computers are able
to copy information very reliably and quickly whereas human beings tend to introduce
mistakes in the process.

The fact that MattUPad is a structure editor pays enormous dividends in the ease with
which substructures may be selected. To select an expression in a text it suffices to point
the mouse at the principal operator in the expression and click. In other systems that we
know of selection is effected by dragging the mouse - usually over some encoding of the
expression involving "funny" control characters or umpteen backslashes and macro names
rather than the expression itself. The result is that the most basic editing operation,
namely copying, becomes clumsy and hence unreliable in those systems. With MattUPad
that is not the case.

Apart from being able to copy subexpressions easily and quickly, MattUPad provides
simple-to-use functions for rearranging expressions, and for finding and replacing mathe
matical expressions of a given structure. The functions provided by MattUPad for expres
sion manipulation are Copy and Swap, Reverse, Distribute and Factorise, Group and Ungroup,
Apply, Rename and Find. The functions Swap, Copy and Find can also be used on plain
text, but the remainder are peculiar to the manipulation of mathematical expressions.

Group and Ungroup are used to change the default structure of an expression. Apply is
used to "apply" a function to an expression. (The operation is purely syntactic and not to

9

be confused with evaluation of the function.) Rename is used to rename dummy variables
within a given scope. We do not discuss these operations any further here.

Find is short for Find / Find-and-Replace. It can be used to search for, and possibly
replace, both text and mathematical expressions. The effectiveness of Find is considerably
enhanced by the fact that Matll/Pad is a structure editor. It can be used to search for
expressions of a particular shape simply by specifying a pattern containing one or more
unfilled place-holders. By combining this with a replacement pattern the operation can
be used to transform expressions according to mathematical rules. For example, Find-and
Replace can be used to transform all (or some) expressions of the shape (El+E2)* to
El* 0 (E2 0 El*)* where El and E2 are place holders for expressions.

Infix operators playa vital role in mathematical formulae. This is due in no small
measure to the relative importance of associativity among all the algebraic properties that
an operator may enjoy. Because of the associativity of an operator like addition we can
freely write, say, a+b+c+d without fear of confusion. This is of great benefit to calculation
because the notation is not biased to any particular grouping of the subexpressions. The
exploitation of associativity in a calculation becomes an invisible step, one that we are
often not consciously aware of.

A similar phenomenon lies at the heart of the use of infix notation for transitive rela
tions. When we write, say, a = b = c then we mean a = band b = c. But, because
of the transitivity of equality, it is also the case that a = c. In an extended calculation in
which several steps occur it is typically the equality between the first and last terms that
we are interested in, the intermediate terms being only of passing interest. At the end of
such a calculation it is nonetheless rare to see explicitly stated "and hence, by transitivity of
equality, the first and last terms are equal". Such would only happen in a very elementary
mathematical text, or in an extremely detailed (and pedantic) logical argument. The infix
notation encourages us to associate the first and last terms with each other.

Several elements of Matll/Pad are geared to the use of infix notation in the two ways
explained above. When creating a MathJj:Jad stencil it is possible to declare that an
operator is "associative". This does not mean that the operator is "associative" in the
narrow mathematical sense exemplified by addition. It means instead that the operator
can have a list of arguments, of arbitrary finite length, whereby the notation used to
denote the application of the operator to a list is to repeatedly write the operator between
successive elements in the list of arguments. Thus a + b + c denotes the application of
the operator + to the list {a, b , c} . Equally, a = b = c denotes the application of the
operator = to the list {a, b, c} . These are both called "associative" in Matll/Pad jargon
because the notation is intended to encou~age one to "associate" terms in the expression
together in a variety of different ways.

(It is also possible to declare an operator to be "left associative" or "right associative".
Such a declaration has the conventional meaning. For example, if the operator '* has
been declared to be right associative then the expression a,* b,* c has the structure
a,* (b '* c) .)

The Matll/Pad functions that exploit the notion of associativity are Reverse, Distribute
and its inverse Factorise. The function Reverse reverses the order of the elements in a

10

list of arguments and (associative) infix operators. For example, reversing the expression
a ::; b < c = d ::; e results in the expression e ::; d = c < b ::; a. (Note that the
operation does not replace "<" by">" or "::;" by";:::".) Sub expressions can also be
reversed. Reversing the sub expression (c+d)·e in a·b + (c+d)·e + f , for example, results
in a·b + e·(c+d) + f. (Note that the operation is not recursive: the arguments of the
division operator are not reversed.) Distribute and Factorise are most often used in the
normal situation in a calculation where a function is known to distribute over a binary
operator, for instance to take the step fro~ a·(b+c+d) to a·b + a·c + a·d ("distribute")
or vice-versa to go from a·b + a'c + a·d to a·(b+c+d) ("factorise").

The ease with which one can select, copy and rearrange expressions using these few
simple operations makes MattU'pad a very "handy" symbolic calculator, particularly in
areas of mathematics where no specialised machine support is available. Yet more benefit
can be obtained from the system if one is prepared to use it in seemingly unorthodox ways.
The use of the template labelled "0 (T)" in the Gries-Schneider stencil is one such example.
It defines a binary associative operator, just like the addition operator, except that the
operator itself has two arguments: "0", which is used for the relation holding between
the operator's two arguments in a proof step, and "T", which is used for the explanation
of the proof step. (Note that the explanation can run over several lines: see fig. 2.) In
this way no special "feature" has to be added to the system in order to accommodate the
calculational proof style (or indeed other proof styles) used by Gries and Schneider in their
book.

4 The Current Status

The first alpha release of the MattU'pad system took place in December 1993, and a second
release is due to take place in the spring of 1995. The system is freely available via
world-wide web at http://www.win.tue.nl/win/cs/wp/mathspad. Several documents
produced with the aid of the system (almost all documents inserted in the directory in
1993 or later) are stored at http://www.win.tue.nl/win/cs/wp/papers.

The MattU'pad manual is itself a MattU'pad document and, with the exception of screen
dumps, is distributed with the system. It is planned to publish the manual in book form
in the near future.

Acknowledgement

Figures 3 and 4 are extracted from unpublished work by Kevin Backhouse and Paul
Hoogendijk, respectively. We are very grateful to them for allowing us to include them in
this document.

11

References

.!J Gries-Schneider Stencil

Postfix
[V:= E]
Infix
O(T)

Quant. E(E)

"

Figure 1: The Gries-Schneider stencil

[1] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

[2] P. Chisholm. Calculation by computer. In Third International Workshop Software
Engineering and its Applications, pages 713-728, Toulouse, France, December 3-71990.
EC2.

[3] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer
Verlag, 1993.

[4] C.B. Jones, K.D. Jones, P.A.Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, London, 1991.

[5] D.E. Knuth. The Tj;;Xbook. Adison-Wesley, Reading, Massachusetts, 1984.

[6] Leslie Lamport. MTj;;X: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, 1986.

12

('8.22') Name
Condition:

'Change of dummy':

Statement:
. Provided -,oceurs('y,'R,P) and { has an inverse',
(*x I R: P) = (*y I Jilx:= {.y] : l'[x:= (.y])

The proof of this theorem illustra tes the use of several of the axioms given above.
The proof starts with the RHS of (8.22), because it has more structure.

(*y I Jilx:= (.yj : l'[x:= f.y])
= ('One point rule (8.14)

--- Quantification over x has to be introduced. The One
point rule is the 'only' rule that can be applied at first. .)

(*y I Jilx:= {.y] : (*x I x=f.Y: P)
= ('Nesting (8.20) ---Moving dummy x to the outside

gets us closer to the final form.')
(*x,y I Jilx:= (.yj AX=f.Y: P)

(a) Snapshot of MattU'pad document

(8.22) Change of dummy:
Provided -, occurs(,y' , 'R , P') and f has an inverse,
(*x I R : P) = (*y I R[x:= f.y] : P[x:= f.y])

The proof of this theorem illustrates the use of several of the axioms given above. The proof
starts with the RHS of (8.22), because it has more structure.

(*y I R[x:= f.y] : P[x:= f.y])
(One point rule (8.14)

- Quantification over x has to be introduced. The One

point rule is the only rule that can be applied at first.)

(*y I R[x:= f.y] : (*x I x = f.y : P))
(Nesting (8.20) -Moving dummy x to the outside

gets us closer to the final form.)

(*x,y I R[x:= f.y] A x = f·y : P)

(b) Output produced after processing with ~1EX

Figure 2: Running example. (Note the integration of prose with mathematical calculations)

13

\font\pics = kevpics scaled 1000
\unitlength lcm
\begin{picture}(O,O)
\def\myput(# 1,#2)#3{\put(# 1,#2){\makebox(0,0)(#3}}}
\myput(1O.3,-1.7)(\pics B}
\myput(10.3,-0.5)(Fn}
\myput(10,-2.0)(F rem}
\myput(1O.8,-3.0){\vbox to Ocm(\hbox to Ocm(\hss Fz \hss}\vss}}
\end(picture}%
Volgens de regel hierboven geldt:

Fn = F. 1 m·g
= • .j 1+[f'(x)]2 .j 1+~

Frem = Fz '
e1 =

m·g·f'(x)

.j 1+~ .j 1+[f'(x)]2

(a) Snapshot of a MattUPad document

Volgens de regel hierboven geldt:

1 m·g
Fn = F.· jl+ci = jl+[!'(x)j2

F.. Cl _ m·g-f'(x)

• jl+ci - jl+[!'(x)]2 F.

(b) Output produced after processing with B-TEX

Figure 3: Raw TEX may be included in MattliPad files.

14

(a)

(whererid
A A Eo- A x 11 is the obvious natural isomorphism) commutes, and

Diagram:

F(A x (B x C)).

F«A x B) x C)<-
SAxB ,C

SA,BxC
<--- FAx(BxC)

(FAxB)xC

(where ass A, B, C : (A x B) x C Eo- A x (B x C) is the obvious natural

isomorphism) commutes as well. A functor that has at least one strength is said
to be strong.

Snapshot of a Mattifpad document

(where rid A : A <- A x 1 is the obvious natural isomorphism) commutes, and

F(A x (B x C))

FaSSA, B > C

FAx(BxC)

laSSFA . B • e

F((A x B) x C) • F(A x B) x C . (FAx B) x C
BAxB • e BA ,B x .de

(where ass A , B ,e : (A x B) x C ;- A x (B x C) is the obvious natural isomorphism) com
mutes as well. A functor that has at least one strength is said to be strong.

(b) Output produced after processing with ~'I'EX

Figure 4: An example of using Mattifpad for making diagrams using Paul Taylor's diagram
macro package.

15

Computing Science Reports

In this sems appeared:

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
p J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 I.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M.van Hee

93/10 K.M.vanHee

93/11 K.M.van Hee

93/12 K.M. vanHee

93/13 K.M.vanHee

93/14 I.C.M. Baeten
I.A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93!l7 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

Department of Mathematics and Computing Sdence
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy
of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksoq for linked lists, p. 8.

Deterministic and randotrtized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time
Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Pan I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part IT: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Pan 1lI: Modeling Methods, p. 10 I.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Pan V: Specification Language, p.89.
On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systents, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Progranuning, p. 15.

93121 M. Codish
D.Dams
G.FiM
M. Bruynooghe

93122 E. Poll

93/23 E. de Kogel

93(24 E.Poll and Paula Severi

93125 H. Schepers and R. Gerth

93126 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93128 F. Kamareddine and
R. Nederpelt

93129 R. Post and P. De Bra

93/30 J. Deogun
T.Kloks
D. Kratsch
H. MUller

93/31 W.K<lrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93!37 J. Brunekreef
J-P. Katoen
R.Koyrnans
S.Mauw

93/38 C. Verhoef

93/39 W.P .M. Nuijten
EHL Aarts
D .A.A. van Erp Taa1rnan Kip
K.M. vanHee

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pnre Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pnre Type Systems with DefInitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Tltne Distribu
ted Systems, p. 31.

Multi-dltnensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. II.

A Semantics for a fme I.-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent CMOS cir
cuits' using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

!LIAS, a sequential language for parallel matrix computations, p. 20.

Real Tltne Process Algebra with Infmitesltnals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

93/40 P.D.V. vanderStok A Hierarchical Membership Protocol for Synchronous
M.M.MP J. Claessen Distributed Systems, p. 43.
D. Alstein

93/41 A. Bijlsma Temporal operators viewed as predicate transfonners,
p.11.

93/42 P.M.P. Rarnbags Automatic Verification of Regular Protocols in PIT Nets, p. 23.

93/43 B.W. Watson A taxomomy of fmite automata construction algorithms, p. 87.

93/44 B.W. Watson A taxonomy of fmite automata minintization algorithms, p. 23.

93/45 EJ. Luit A precise clock synchronization protocol,p.
I.M.M. Martin

93/46 T. Kloks Treewidth and Patwidth of Cocomparability graphs of
D. Kratsch Bounded Dimension, p. 14.
I. Spinrad

93/47 W. v.d. Aalst Browsing Semantics in the "Tower" Model, p. 19.
P.De Bra
GJ.Houben
Y.Komatzky

93/48 R. Gerth Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

94/01 P.Arnerica The object-<>riented paradigm, p. 28.
M. van der Karnrnen
R.P. Nederpelt
O.S. van Roosrnalen
H.CM. de Swart

94/02 F. Karnareddine Canonical typing and II-eonversion, p. 51.
R.P. Nederpelt

94/03 L.B. Harunan Application of Marcov Decision Processe to Search
K.M.vanHee Problems, p. 21.

94/04 I.C.M. Baeten Graph Isomorphism Models for Non Interleaving Process
I.A. Bergstra Algebra, p. 18.

94/05 P.Zhou Formal Specification and Compositional Verification of
I. Hoornan an Atomic Broadcast Protocol, p. 22.

94/06 T. Basten Time and the Order of Abstract Events in Distributed
T.Kunz Computations, p. 29.
I. Black
M.Coffm
D. Taylor

94/07 K.R. Apt LogiC Progranuning and Negation: A Survey, p. 62.
R.Bol

94/08 O.S. van Roosrnalen A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T.Kloks
D. Kratsch
H. Muller

94/13 R. Seljee

94/14 W.Peremans

94/15 RJ .M. Vaessens
EHL.Aarts
J.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Karnareddine
R. Nederpelt

94/19 B.w. Watson

94/20 R. Bloo
F. Karnareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.w. Watson

94/23 S. Mauwand M.A. Reniers

94/24 D.Darns
O. Grurnberg
R. Gerth

94/25 T.Kloks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p.31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Data
bases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Rerming Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple-keyword pattern
matching algorithms, p. 46.

Beyond P-Reduction in Church's .l.-, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata
and Regular Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving \lCTL *, 'lCTL * and CTL *, p. 28.

K.,-free and W.-free graphs, p. 10.

On the foundations of functional prognunming: a progranuner's point
of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fInite and
transfInite tecbniques for surface modelling, p. 20.

94{29 J. Hooman

94/30 J.C.M. Baeten
J .A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 JJ. Vereijken

94/33 T.Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S.Mauw

94/36 F. Karnareddine
R. Nederpelt

94/37 T. Basten
R.Bol
M. V oorhoeve

94/38 A. Bijlsma
C.S. Scholten

94/39 A. Blokhuis
T.Kloks

94/40 D. Alstein

94/41 T.Kloks
D.Kratsch

94/42 J. Engelfriet
JJ. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma
R. Gerth S. Graf
W.Janssen
S. Katz
M. Poel
C.Rump

94/45 GJ. Houben

94/46 R. Bloo
F. Karnareddine
R. Nederpelt

J. Davies

B. Jonsson
G.Lowe
A. Pnueli
J. Zwiers

Correcrness of Real TIme Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube,p.19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipanite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Adrninistratieve Logis
tiek", p. 43.

The looCube with classes of terms modulo conversion.
p.16.

o.

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 J.C.M. Baeten
J.A. Bergstra

94{50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Muller

94/52 W.Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W.Penczek

95/01 JJ.Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 J.C.M. Baeten
C. Verhoef

95/04

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Vehoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95/07 GAM. de Bruyn
D.S. van Roosrnalen

95/08 R. Bloo

95/09 J.CM. Baeten
J .A. Bergstra

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A shon and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial venices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Panial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CornrnunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra. p. 20

	1. Introduction
	2. Design Considerations
	2.1 Background
	2.2 A Question of Priorities
	3. System Highlights
	3.1 Stencils
	3.2 Expression Manipulation
	4. The Current Status
	Acknowledgement
	References

