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474 PROBLEMS AND SOLUTIONS

Point of Minimum Temperature

Problem 91-15*, by M. S. KLAMKIN (University of Alberta).

A homogeneous convex centrosymmetric body with constant thermal properties is
initially at temperature zero and its boundary is maintained at a temperature 7} > 0.
Prove or disprove that at any time ¢ > 0, the point of minimum temperature is the center.
Also, prove or disprove that the isothermal surfaces are convex and centrosymmetric.
Note that the convexity of the isothermal surfaces will imply that the center is the point
of minimum temperature.

SOLUTIONS

Two Integrals Arising from a Cloud Model

Problem 90-12, by JOHANNES VERLINDE (Colorado State University).
Determine a closed-form solution or a good approximation to the following integrals,
where d is a rational number:

(1.1) In(a, u,b,c,d)=f 1@~ Ve b(y, ctd) dt,
0

(1.2) IL(a,v,b,c,d)= 1@ Ve bin(y, ct?)dt.
Y 0

We can get a general form for the closed form of this integral for the special case d = 1
from Prudnikov, Brychkov, and Marichev [1, form. 2.10.3.2]:

c’T(a+v) c I'(v) T («)
(1.3) Ip(dzl)Z—WZFl(V,a+V;V+1;—B)+—ba—,
c’T(a+v) ) ¢
(14) I.Y(d=1)=W2F1(V,OI+V,V+1,—E).

This problem arises in the mean collection growth equation as used in large mesoscale
numerical cloud models.

REFERENCE
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Solution by J. BOERSMA and P. J. DE DOELDER (Eindhoven University of Technology,
Eindhoven, the Netherlands).
For simplicity, it is assumed that all parameters «, v, b, ¢, d are real and positive,
to ensure convergence of the integrals. Since

® I'(»)T
(1) IF+L,=I‘(v)f e let dt=Lba(-a—),
0
it is sufficient to consider the integral I, only.
By inversion of the Mellin transform
o T'(v+
f 7(v,x)x‘_]dx=~—u, —v<Res<0,
0
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we obtain the representation
1 [ T(v+s) s
—_— ds,
27!'1 8 — 100

which is inserted into the integral 7,. By interchanging the order of integration, we are
led to a representation of I, by a Mellin-Barnes integral:

b St P(y+ )Mo — ds)( )
= X ds

y(v,x)=— —r<6<0,

i 27rl 5 — ico s

(2)

—v<6<0.

_ b D+ s)D(a—ds)T(—s) [ ¢\ ds
2mi Js - ioo I(1-s) b?

The latter integral can be expressed in terms of Fox’s H-function. Using the definition

and notation from [2, § 8.3], we find

(l—a,d),(l,l)] b-egy 21[1)"(1—y 1),(1, 1)]
b (v,1),(0,1) c| (ad),(0,1)

The first integral in (2) can also be evaluated as a series of residues at the poles
s=—-v—k, k=0,1,2, --- to the left, or at the poles s = 0 and s = (« + k)/d, k =
0, 1, 2, - - - to the right of the integration contour. Closing the contour to the left (right)
can be shown to be permissible if d < 1 (d> 1)andifd=1,c<b(d=1,c> b). Thus
we obtain the series representations

¢’ Z INa+dv+dk) c
@ Lo 2 TR (_ﬁ

k=0

(3) I,=b" asz[

k
), d<1l or d=1, c¢<b,

I'(»)T 1 2 Twv+d'la+d'k) b \k
5) I, _ﬂﬁ(_az 7 > o (a+0;()k! (—Zm) »d>1lord=1, ¢c>b.

k=20

These results also follow from [1, form. 2.10.1.5]. From (1), (4), and (5) we deduce
the symmetry relation

IL(a,v,b,c,d)= Ip(Vacbd)

which can also be verified in a direct manner.
In the special case d = 1, the representations (4) and (5) simplify to

c'T(a+v c
(6) I.,(d=1)=—Vb“‘Ty)2F1<a+v,l/;ll+1;—5), c<b,
I'(v)T I'(a+
(7) I(d=1)="0T) (aay)2F1<a+v,a;a+1;—é), ¢>b.
b ac c

These results are related by analytic continuation and can be combined into the single
expression

c’T(a+v)

—>F +v, L;v+1;

Wb+c)a "’ 1(“ BT e )

c'T(a+v) F S c
T bty TN

L(d=1)=

see [3, form. 2.10 (2), (6)].
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Consider next the case where d is rational, say, d = p/q, where p and g are positive
integers that are mutually prime. It is known [4], [2, form. 8.3.2.22] that for rational d
Fox’s H-function in (3) can be reduced to a Meijer’s G-function. To that end we start
from the first integral in (2). By setting d = p/q and by replacing s by gs, we obtain

—v/q<6<0.

¥y

b« "+’°°I‘(v+qs)I‘(a ps) [ c?\~S ds
27ri 86— i S bp ’

Using the Gauss-Legendre multiplication formula for the I'-function (cf. [3, form. 1.2
(11)]), we write

+
T(v+gs)=(2x) ! 92 v+qs—]/2Hr(qu S)
k=0

and similarly for I'(a — ps). Thus we are led to the Mellin—-Barnes integral representation
M briwa 1 [yt k atk \ I(=s) (pPc’\™
I= r
8) I, I1 ( )H ( p )P(l_s)(qup) ds,

2 §—io - 0
—v/q<6<0,

in which
9) M=(2r)! ~@+tor2pe=1/12gr=1/2p -

The integral (8) is readily expressed in terms of Meijer’s G-function. Using the definition
and notation from [2, § 8.2], we find

I"/

P ~q
C

g.p+1 p
MG,,+1q+1< P

(q"b" !
Lp+1

l—al,l—az,'”,l—ap,l
0

Vi, V2, = ° qu,
_V191_V27 e ,I—Vq,l
a17a29...7ap’0 '
with the short notation oy = (« + k= 1)/p, v = (v + k—1)/q.
Finally, the G-function can be expressed as a finite sum of generalized hypergeometric

series. Omitting further details, we present the following series representations for 7, in
the two cases of rational d < 1 and d > 1:

Il

(10) MG2}

ppcq

¢ &L T(at+dv+k—1)) ¢\ !
11) I,= ——
(a5 ba+d"2](u+k—1)(k—1)v b
Vk+alavk+a25.“avk+apavk;
. F
pr1fal L fe+1 k+qg—1 Ped |°
_5 ""’*’...7 q ’Vk+1;( )qpc
9 q q q'b”

p<q or

p=q, c<b;
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I(»)T(a) 1 2 T(wv+d "(atk—1))( b \!
12) I,=——F—— _
(12) I, be c“/",z:l (at+tk—1)(k—=1)! cl
oty oty o at g ag
. F
a1 | ko k+1 k+p—1 apr |
_3_’..‘ *9‘..’L’ak+l;(_l)pq q
p D )4 ple
p>q or
p=q, c>b.

Here the asterisk denotes that the value 1 should be omitted in the sequence of parameters.
In the special case d = 1, we have p = g = 1, and the representations (11) and (12)
simplify to those in (6) and (7).
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Also solved by the proposer.

A Two-Point Boundary Problem for Airy Functions

Problem 90-13*, by RICHARD B. EVANS (Science Application International Corporation,
New London, Connecticut).
Airy functions satisfy the differential equation

(D w'(z)—zw(z) =0,

where z may be complex. Find two distinct complex numbers z, and z; and a nonzero
solution to (1) such that

(2) w(z,)=0,
(3) w(z2)=0,
(4) fzz w2(z)dz=0.

The value of the integral in (4) is independent of the path of integration since
wldz=d[zw?*—(w")?],
and (4) may be replaced by the condition
w(z))==xw'(z2).

This problem arises from a study of underwater acoustic propagation in a waveguide
where the complex index of refraction is a linear function of depth.
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