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Preface 

In one sentence the aim of this thesis is to incorporate intensional reasoning in type theory 
by means of a 'propositions-as-types' interpretation of modallogic. 

To explain this goal properly, we first introduce the reader briefly to the traditional set
ting of this monograph: the embedding of logies in type theory. These embeddings have been 
stuclied extensively, motivated by applications in proof theory, matbematics and computer 
science. After a brief survey of this research, we focus on the recent use of type theory in 
'knowledge representation' which motivated our study of the propositions-as-types interpre
tation of modallogic. Then the objectives of this thesis are stated, foliowed by an explanation 
of the choice of forma! frameworks . We conclude by giving an overview of the contents of the 
thesis. 

The propositions-as-types interpretation 

The language of typed lambda calculus consistsof 'statements' which are of the general form 
A : B, expressing that the 'term' A is of ' type' B (also pronounced as 'object A has type B', 
or 'A is an inhabitant of B '). Whether such a statement on the relation between expressions 
A and B is correct, bas to he decided in relation to the 'context'. A context is an ordered 
sequence of statements, which contains all relevant information about the objects and types 
that are considered primitive. L·o show that a term (A) of a certain type (B) exists, one 
has to demonstrate that a statement (A : B) to this effect is derivable on a given context. 
Generally speaking, this involves showing that the statement is either already present in the 
context, or can he obtained from the statements in the context by means of the 'derivation 
rules'. T hese rules prescribe recursively how derivable statements can he combined into new 
derivable statements. 

The propositions-as-types interpretation maps logic to typed lambda calculus by interpret
ing the propositions of the logic as the types of statements, and the proofs of these propositions 
as the terms inhabiting the types. Under this interpretation there is a direct relation between 
provability of propositions in the logic and the existence of terms in typed lambda calculus: 
if a proposition has a proof, there exists a term of the corresponding type. The existence of 
that term is again decided in relation to a context, which in this case represents all the (logi
ca!) assumptions that are in force. Since terms correspond to proofs in this set t ing, they are 
sametimes referred t o as 'pro of objects' . Through the proof objects proofs become first class 
citizens in type theory, which offers interesting possibilities for the formalization of reasoning 
about proofs inside the system. 

Since Howard first gave a description of a propositions-as-types embedding of (first order 
predicate) logic into (an extension of simply) typed lambda-calculus in 1968\ a lot of work 
has been done in this area, mot ivated by different applications. Originally, the motivation was 
pro of theoret ica!. Howard wanted to give a formalization of t he intuitionistic2 interpretation of 
the logica! connectives. By representing natura! deduction proofs as typed lambda terms, the 
introduetion and elimination rules of the connectives could he phrased as basic operations on 
lambda terms: lambda abstraction and application. The idea of using typed lambda calculi 
in the proof theoretica! analysis of logies has been taken up and extended by others like 
Martin-Löf ([Martin-Löf 1984]) and Girard ([Girard et al. 1989]). 

1His manuscript wasn't publisbed till much later, see [Howard 1980]. 
2The so-called Brouwer-Heyting-Kolmogorov interpreta t ion, see !Troelstra and Van Dalen 1988]. 

lil 
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The research project Automath ([Nederpelt et al. 1994]) drew its motivation from math
ematics. In 1968 De Bruijn independently defined a propositions-as-types interpretation of 
logic in typed lambda calculus, with the purpose of using it as a framework for mathematica! 
reasoning in genera!. By writing rnathematics in the language of type theory, it becomes pos
sibie to verify mathematica! proofs using a computer: the user can present a mathematica! 
proposition (in the farm of a type) and a (supposed) proof of this proposition (in the form of a 
term) to the computer. The computer then checks whether the proof proves the proposition, 
by checking whether the term is of the given type. 

Developments by other research groups have led to systems like Coq ([Dowek et al. 1991]), 
LEGO ([Luo and Pollack 1992]), and Nuprl ([Constable et al. 1986]), which not only perfarm 
proof checking but also give the user some assistance in the construction of proofs. 

In computer science, type theory bas been used successfully as a framework for the study 
and development of programming languages. It is possible to view typed lambda calculi as 
rudimentary but expressive programming languages with the terms functioning as programs 
and the types as data types (see e.g. [Reynolds 1985]). 

In very expressive type theories, such as the Calculus of Constructions ([Coquand and 
Huet 1988]) and Martin-Löf's Type Theory ([Martin-Löf 1979]), a type can be seen as a 
complete specification of a program: an intuitionistic (constructive) proof of the proposition 
\fx E C.pre(x) :::> 3y E D.post(x, y) contains an algorithm which given an x E C and a proof 
that this element satisfies the precondition (pre(x)), returns an element y E D and a proof 
that the postconditionis satisfied (post(x, y)). This algorithm is completely described by the 
proposition, hence we can identify types with specifications and terms with programs. In this 
perspective, deriving the existence of a term of a certain type (A : B) corresponds to finding 
a program (A) that satisfies specification (B) (~ee for instanee [Krivine and Parigat 1990]). 
Usually this 'program' will not be efficient since the term represents the entire proof of the 
satisfaction of the specification, i.e. it is a mixture of computation and logic. Therefore this 
application of the propositions-as-types interpretation is usually called 'program extraction', 
since most of the workin obtaining a feasible program lies in the isolation of the computational 
content of the proof term (see [Paulin 1989]). 

An alternative approach combining these two perspectives on type theory can be found 
in [Poll 1994]: a program is constructed under the 'data-types-as-types/programs-as-terms' 
view and its correctness is proved separately under the 'specifications-as-types/ programs-as
terms' view. Since both activities take place in the same type system, the typing rules for 
the program construction can match the pro of rules for the correctness pro of. In this way, a 
program and its correctness proof can be developed hand in hand . 

Contexts as information states 

Currently a new application of type theory is emerging: typed lambda calculi are beginning to 
be used in knowledge representation. For instance, in [Ahn 1992] a type theoretica! approach 
to user rnadelling in man-machine communication is proposed. Central to this proposal is the 
idea that the information state of an agent ( animate or inanimate) can be modelled by a type 
theoretica! context. In this view, the assertions that make up an agent's information state 
are represented as statements, where the type of a statement corresponds to an assertion of 
the agent and the term inhabiting the type corresponds to the 'justification' or 'evidence' 
the agent has for this assertion. There are two features of type theoretica! contexts that 
make them suitable for the representation of information states: their 'partiality', and their 
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'dependency structure'. 

In genera!, the information state of an agent will not contain a complete (or even accurate) 
description of the world, an agent may be uncertain about some propositions and unaware 
of others. Contexts match these partial descriptions: the statements in a context represent 
the propositions for which the agent has evidence, and by means of the derivation rules the 
logica! consequences of these propositions can be deduced. Statements that are not elements 
of the context or cannot be derived on it, are currently not part of the agents information 
state. Since the information state of the agent is incomplete, it may 'grow' as he learns 
more about the world. This growth can be modelled by appending statements representing 
the new information to the context (cf. [Ranta 1990]). On the extended context, additional 
statements will be derivable reflecting the consequences of the agents new-found information. 

Another feature of contexts is their structure: they represent information states not as a 
set of formulas, but as a sequence of statements in which each statement may depend on its 
predecessors. Complicated dependencies can be handled using this structuring. An example 
of this is the verification of Landau's 'Grundlagen der Analysis' in the Automath language 
AUT-QE by Van Benthem Jutting ([Van Benthem Jutting 1977]), which shows that the 
web of dependencies of theorems, lemmas and definitions on previous theorems, lemmas and 
definitions throughout a mathematica! textbook cart be treated formally in a typed lambda 
calculus. The same holcis for the anaphoric dependencies in natura! language texts that are 
formalized in Discourse Represr'ntation Theory ([Kamp 1981]). Ahn and Kolb ([Ahn and 
Kolb 1990]) show that the representations of texts generated by DRT can he translated into 
type theoretica! contexts3 . 

These two features allow us to represent the development of the information state of an 
agent by the sequentia! construction of a type theoretica! context. However, type theory 
also has two basic limitations that have to be dealt with if it is to be used for knowledge 
representation in a communication setting; these can be labelled as its 'rigidity' and its 
'loneliness'. 

Type theory is too 'rigid' in the se.nse that all represented information is of the same kind, 
i.e. it was designed to deal exclusively with (mathematica!) propositions and their proofs. In 
representing information states we would like to express various degrees of certainty an agent 
may have about his information, discerning for instanee between things the agent 'knows' and 
things he rnerely 'believes'. 

The 'loneliness' of type theory refers to its mono-logica! nature: by the sequentia! con
struction of a context we can represent theevolving information state of a single (or ' lonely') 
agent, whereas an application to communication requires the representation of the Qoint) 
development of the information states of a group of agents. 

In logic, these limitations have been 'overcome' by the development of rnodal logic. The 
various 'epistemic attitudes' an agent can have towards a proposition (such as knowing it, 
or believing it) are traditionally dealt with by extending the language with modal opera
tors. Starting from Rintikka's modal logic for one person knowing or believing propositions 
([Hintikka 1962]), 'epistemic logies' have been developed that deal with multiple agents and 
multiple modalities, even with episternic attitudes of groups of agents like comrnon knowledge. 

It is our goal to extend type theory with this approach to intensional reasoning. 

3 A more general discussion of the type theoretica! formalization of dependencies in texts can he found in 
[Ranta 1989] 
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Contributions of this thesis 

In this thesis we present (a class of) type systems in which a propositions-as-types interpre
tation of (a family of) rnadal logies is given. The research presented in this monograph is 
meant to be conducive to the development of type theoretica! knowledge representation, but 
some of its results are also of interest to the disciplines contributing to it: modallogic, proof 
theory, and type theory. 

The proposed 'modal' type systems have a language extended with rnadal operators, and 
additional structure in their contexts. By means of the propositions-as-types interpretation, 
standard systems of epistemic logic can he brought to these type systems. The forma! rigour of 
the embedding guarantees that the intuitions about epistemic reasoning forma!lized in modal 
logies are transferred reliably to the type systems, i.e. the rnadalities in the type system 
behave exactly like the modal operators in the original modallogic. This means that we can 
now represent epistemic attitudes of agents towards the assertions in their belief state, as wel! 
as the reasoning of agents about their own belief state and those of others. 

Reasoning about information statesof (other) agents plays an important role in communi
cation. Participants in dialogues often exhibit so-called cooperative behaviour, like not asking 
your dialogue partner sarnething you already know, or not asking him a question you know he 
cannot answer. A famous attempt to codify this behaviour are the Gricean maxims ([Grice 
1989]). Some of these maxims have already been expressed in terrns of the modal operators 
for knowledge and belief ([Thijsse 1992]) . A general formalization of communication based 
on Gricean principles, wil! probably involve other rnadalities expressing intentions ([Appelt 
1985], [Beun 1989]) and epistemic attitudes of groups, such as mutual belief ([Jones 1983j, 
[Bunt 19901). The Fitch-style natura! deduction systerns for modallogic (described in next 
section) that underlie the propositions-as-types interpretation allow us to deal with knowledge 
and belief of multiple agents, and offers prospects for the treatment of intentions and group 
modalities. 

The class of rnadal type systems to which the interpretation maps modal logies contains 
very expressive typed lambda calculi, where types may depend on terms. This is also of 
interest in conneetion with the formalization of dialogues, since it allows us to combine the 
dynamic (DRT-)representation of natura! language (for which this expressivity is needed) 
with the rnadal reasoning used for rnadelling cooperative behaviour. 

The interest our research may have for each of the disciplines that fostered it, can be 
indicated as follows. 

Proof theory: The propositions-as-types interpretation establishes an isomorphism be
tween modal natura! deduction proofs and type theoret ica! terms. This offers the op
portunity to formalize reductions on rnadal proofs as reduction rules in type theory. A 
number of these reductions are defi.ned in our framework and are proven to he well
behaved. 

Modallogic: T he primary contri bution to this field consists in the straightforward gener
alization of Fitch-style modal deduction to multi-agent multi-modal systems. However, 
in a more general perspective our work ties in with the current move towards formulating 
logies (for AI and linguistics) in a binary format, as propagated by Gabbay's Labelled 
Deductive Systems research program ([Gabbay 1993]). In [Van Benthem 199laj this 
approach is proposed for epistemic logic, with the aim of incorporating justifications of 
knowledge into the logic as first-class citizens. The terros in our rnadal type systems in-
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dicate what the explicit calculus of justifications induced by traditional epistemic logies 
looks like. 

Type theory: Although the rnadal type systems are a generalization of the Pure Type 
Systems (described below), there currently seem to be no intrinsic type theoretica! 
reasans for studying them. However, there may be applications of type theory (other 
than in knowledge representation) which could benefit from the use of modalities along 
the lines of our work. 

Frameworks 

As the reader wiJl have gathered from the brief overview above, there are many systems of 
typed lambda calculus around, formulated with different objectives in mind. However, in re
cent years some unitkation and standardization has been achieved. Barendregt noticed that 
many of the existing systems of (explicitly) typed lambda calculus could be uniformly repre
sented in a framework which is parametrized with respect to the derivation rules ([Barendregt 
1992]). This insight eventually led to the format of Pure Type Systems (PTSs); a general 
description of a large class of typed lambda calculi, for which most of the desirabie meta 
theoretica! properties can be proved generically. This attractive feature has rapidly gained 
PTSs a central position in research in type theorety. 

A more specific property th .t makes PTSs such a suitable type theoretica! framework 
for our investigations, is their weli-stuclied conneetion with (non-modal) logic. The work of 
Geuvers ([Geuvers 1993]) gives a comprehensive and detailed account of the propositions-as
types interpretation of first and higher order propositional and predicate logies. The 'modal' 
typed lambda calculi presented in this thesis are an extension of the PTSs, unsurprisingly 
called 'Modal Pure Type Systems' (MPTSs). In studying their properties and conneetion 
to rnadal logic we fruitfully and gratefully use theory and techniques developed in the PTS
framework. 

Finding a suitable framework for the natura! deduction formulation of rnadal logies is a 
problem. Despite the spectacular ad vances in the model theory of modallogic, its proof theory 
has remained underdeveloped. Recently, interest in modal proof theory has rekindled and 
new approaches have been developed, e.g. to rnadal sequent calculi ([Wansing 1992],[Martini 
and Masini 1993]). However, to our knowledge this has not lead to 'Prawitz-style' natura! 
deduction systems or 'Gentzen-style' sequent calculi for the rnadallogies we are interested in 
in this thesis. In lieu of these traditional tools, we use lineair, 'Fitch-style', natura! deduction 
systems as a basis for the propositions-as-types interpretation. 

Starting from [Fitch 1952] which gives a deduction system for a single rnadal logic (84), 
this approach has evolved toa point where a modular presentation can be given of a reasanabie 
number of the modallogics (above K) that are most camman in literature (see [Fitting 1983]). 
This thesis shows that, despite its limited scope, Fitch-style deduction is a well-behaved and 
intuitive framework for the logies we are interested in. Moreover, it is flexible enough to allow 
generalization to logies with multiple agents and multiple modalities. 

The contents of this thesis 

We start with an introductory chapter in which we provide a natura! deduction formulation of 
a family of normal modallogics, and present the Modal Pure Type Systems. Chapter 2 gives 
a detailed account of the propositions-as-types interpretation of the rnadal logies in MPTSs. 
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We define mappings from natura! deduction proofs to typed lambda terms and vice versa, and 
prove soundness for these mappings as well as some invariance results for their compositioo. 
In addition, reduction rules on MPTS-terms are proposed that correspond toproof reductions 
on the modal natura! deductions. In chapter 3 we show that the MPTSs are a well-behaved 
extension of the PTSs, by proving that the desirabie meta theoretica! properties of the PTSs 
are preserved. 

The fourth chapter discusses how both the modal natura! deduction systems and the 
MPTSs can he generalized to deal with multiple agents and multiple modalities. This discus
sion is guided by Wiebe van der Hoek's work on the system KBcD of [Kraus and Lehmann 
1986] (see [Van der Hoek 1992]). The subject of chapter 5 is another strengthening: changing 
the logic underlying the modal systems to predicate logic. Section 5.1 analyzes the conse
quences of this move for the interpretation described in chapter 2. In the second part of the 
chapter, we re-examine familiar probieros of modal predicate logic in the setting of MPTSs. 
In chapter 6 we indicate how the MPTSs could be put to work in the formalization of com
munication. The final chapter contains some concluding remarks and directions for future 
research. 

Readers who are oot interested in the technica! details of the interpretation and the meta 
theory of modal type systems, are advised to take a short cut through the thesis by skipping 
chapters 2 and 3. The introduetion (chapter 1) is intended to provide them with sufficient 
understanding of the MPTSs, and fee! for the propositions-as-types interpretation to make 
their way through chapters 4-7 (with exception of sections 4.2.4 and 5.1 which presuppose 
familiarity with chapter 2). 

In this thesis we combine two well-established sports: modal logic and typed lambda
calculus. Since few people play in both fields, we have tried to keep this thesis self-contained 
enough to be read by modal logicians as well as type theoreticians. A drawback of this 
approach is that things cao become too self-contained in sections dealing with one's native 
discipline. We kindly ask the reader to view this as a tribute to his knowledge, rather than a 
presumption of bis ignorance. 
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Chapter 1 

Introduetion 

This chapter introduces the two formalisros that wil! be starring in this thesis. In the first 
section we give a natura! deduction formulation of a family of modal logies. The second 
section presents the Modal Pure Type Systems in which these logies are to be interpreted. 
To give the reader a preliminary idea of the interpretation, we begin this presentation with a 
description of the Pure Type Systems (on which the MPTSs are based) and their relat ion to 
propositional and predicate logic. 

1.1. Morlal natural deduction 

Natura! deduction systems for proposition and predicate logic come in two 'styles', character
ized by the form of their proofs: 'Prawitz-style' systems have deduction proofs in the form of 
trees, 'Fitch-style' systems have lineair proofs. For modal logic the vast majority of systems 
in the literature is linear1 . Fitch-style deduction for modallogic starts in [Fitch 1952], where 
a new construct is introduced that extends his deduction system for propositional logic to 
one for modallogic. His original system works only for one particular modallogic {S4), but 
in [Fitch 1966a] the idea is successfully applied to other logies. Using some further extensions 
as given in [Siemens 1977], Fitting ([Fitting 1993]) is able to give a modular presentation of 
Fitch-style deduction systems for the 'normal' modal logies that are most common in litera
ture. Before explaining the deduction rules, a short introduetion to these modal logies and 
'normality' wil! he given. 

1.1.1. Normal modallogic 

Technically, modal logic is an extension of propositional or predicate logic with the operators 
'D', expressing necessity, and '<>', expressing possibility. Given a propositional language 
eonsist ing of proposition letters A1,A2, .. . ,B, . .. , eonstants Tand _1_, and connectives 
-., 1\, V, :::>, +->; D<p ('necessarily <p' ) and <>1/J ('possibly 1/J') are well-formed formulas if <p and 
1/J are well-formed formulas. 

A modal logic is considered 'normal' if: 

• its modal operators are related by the definition: O<p +-+ ..,o ..,<p 

1 An exception being a paper by Pitch! ([Pitch 1966b]). 

1 
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• it is closed under the following rule: 

Normality (tpl 1\ ··· 1\ IPn) :J 'Ij; ( n > 1) 
(Orpl 1\ .. . 1\ Otpn) :J O'lj; -

The smallest normal modal logic bas just this rule and definition. lt is the well-known logic 
K, which can alternatively be characterized as thesetof propositions derivable by means of: 

• all propositional tautologies 

• axiom: O(tp :J 'Ij;) :J (Orp :J O'lj;) 

• rules: 

Modus Ponens 'P 'P :J 'Ij; 
'Ij; 

Necessitation: if <p is a thesis, then Otp is a thesis 

(where a thesis is a well-formed formula that is an axiom or a theorem of the logic). 

K can be strengtherred by adding further intuitive properties of necessity in the form of 
axioms. Throughout this thesis we wil! consider normal systems resulting from the extension 
of K with one or more of these axiom(schema)s: 

D: Otp :J Otp 

T: Drp :J 'P 

4: Orp :J DOrp 

5: -.Orp :J 0-.0tp 

B: <p :J DOtp 

The following convention wil! be used in referring to the normal extensions of K: 

KS1 .. . Sn = the smallest normal system of modallogic containing (every instanee 
of) the schemas S1 ... Sn. 

Combining K with these axioms yields 14 different normal modallogics2 above K, which 
are well-behaved and common in literature. These standard logies are a firm point of departure 
for our type theoretica! interpretation, and also of a more specific interest for this thesis: the 
axioms D, T, 4, and 5 are importantprinciplesin epistemic and doxastic logic (where 'D' is 
interpreted as 'it is known that', and 'it is believed that' respectively), and the B-axiom is of 
technica! interest in modal predicate logic. 

2See (Chellas 1980]. 
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1.1.2. Natura! deduction rules for K 

Central to Fitch-style propositional deduction is a construction known as 'subordinate proof'. 
It consists in writing a proof as part of another proof. For instance, to prove A ::J B one 
starts a new, subordinate, pro of by assuming A and then sets out to prove B. Wh en this goal 
is achieved the subordinate proof is ended by ad ding A ::J B to the original pro of, justified by 
the implication introduetion rule, thereby discharging the assumption A. 

A 

B 

A ::JE 

c 

A 

c 

B 

A ::JE 

A subordinate proof Reiteration 

Structurally (in the graphical representation), subordinate proofs are positioned to the 
right of the proof to which they are subordinate, the 'main' proof. The topmost formula (A) 
is the hypothesis of the subordinate proof, the vertical line indicates the exact extent of the 
subordinate proof; the hypothesis interval. 

Subordinate proofs are just like 'main' proofs except that some of the formulas in them 
may be repetitions of formulas from a proof to which they are subordinate (in the figure 
above, C is such a formula). Such a repetitionis called 'reiteration'; a formula in a proof may 
be reiterated in another proof if the latter is subordinate to the former. Subordinate proofs 
can be nested at will: a subordinate proof may be written as part of a subordinate proof. 

To extend his deduction system to modal logic, Fitch added a new kind of subordinate 
proof, the strict subordinate proof. It differs from 'ordinary' subordinate proofs in two re
spects: 

• A strict subordinate proof may be started at any point in a proof, it requires no hy
pothesis. 

• Reiteration in a strict subordinate proof is restricted to formulas of a certain form. 

Structurally these proofs are just like subordinate proofs, their 'strictness' is indicated by 
means of a 'D' on top of the vertical line, which indicates the modal interval. 

For the logic K reiteration is restricted to formulas of the general form D<p : formulas of 
this form occurring in a proof may be repeated in a strict subordinate proof, without their 
boxes (as <p). This procedure can be added toa Fitch-style deduction system for propositional 
logic in the form of the following rule: 
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Dip 

A strict subordinate proof K-import 

K -import: ip may occur in a strict subordinate prooj ij Dip occurs earlier in the prooj to which 
it is immediately subordinate. 

A formula that has been imported into a strict subordinate pro of never counts as hypoth
esis of that proof. Strict subordinate proofs may he written as part of another proef, hence 
we can have arbitrary nestings of strict and ordinary subordinate proofs. 

Formulas can also 'travel' in the eppesite direction: conclusions (ip) derived by means of 
a categorical strict subordinate proof may he added to the main proof in a necessitated form 
(Dip). A subordinate proof is categorical when all its assumptions have been discharged; the 
condusion lies directly inside the modal interval, there are no nested subordinate proofs that 
are still 'open'. This procedure for 'exporting' information from the strict subordinate proef 
to the main proof is expressed in the following rule: 

T. 
Dip 

K- export: ij ip occurs in a categorical strict subordinate proof then Dip may occur later in the 
prooj to which it is immediately subordinate. 

In terros of possible worlds the procedures for import and export can he understood in the 
following way: if we take a main proef to he the world in which we try to establish the truth 
of a modal formula, a strict subordinate proef corresponds to an arbitrary accessible world. 
In such a world we only know the truth of the propositions ( ip) that were necessary (Dip) in 
the original world. In this view, starting a strict subordinate proef amounts to continuing 
the proef in an arbitrary accessible world. Every proposition ( 1/J) that can he derived without 
hypotheses in such a world could have been derived in any accessible world, hence it can 
be considered necessary in the original world (D'I/!) . In this way conclusions obtained in the 
accessible world can he brought back (exported) to the world where the proof was started, 
and the proef can be resumed there. 

To illustrate the use of these rul es we prove an instanee of the K -axiomschema. 
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1. D(A :::> B) 

2. DA 

3. D(A :::> B) (reiteration, 1) 

4. r~~· (K -import 3) 
5. (K-import 2) 
6. ( :::>-elim 4,5) 

7. DB (K -export 6) 

8. DA ::>DB (::>-intro 2-7) 

9. D(A :::> B) :::> (DA :::> DB) (::>-intro 1-8) 

The formula D(A :::> B) has to be reiterated (line 3) before it can be imported. This is due to 
conditions on the application of K -import that wiJl be specified in forthcoming definitions. 

Adding the K -import rule and the K -export rule to a Fitch-style deduction system for 
classica! propositionallogic yields a deduction system for K . 

1.1.3. DPROPfitch 

We now give a forma! definition ,f DPROPfitch, a Fitch-style deduction system for the modal 
logic K. The system will be prcsented in the manner of [Van Westrhenen et al. 1993], de
scribing the proof figures and deduction rules in terros of intervals. Although the definition 
is somewhat elaborate, it is more concise than the usual 'look at the picture'-type of pre
sentation. The benefits of this will become apparent in later chapters, where the vocabulary 
introduced here allows us to easily describe extensions of the system and to define various 
notions needed in meta theoretica! proofs. 

The first stage in defining DPROPfitch is to specify what configurations of modal and 
hypothesis intervals are allowed in the Fitch-style modal deduction proofs, given the set of 
PROP ofwell-formed formulas of K. Intervals are represented as [i,j], where i and jare the 
line numbers of the lines in the proof figure that form the extremes of the interval. 

1.1.1. DEFINITION. Proof figure 
A proof figure D is a mathematica! structure consisting of: 

1 an interval D = [1, n], where D C IN, 

2 a function F : D--+ PROP, and 

3 a colledion I of subintervals of D, such that for each interval [i,j] E I , i :<::; j, and 
such that for each pair of (different) intervals [i, j], [ k, l] E I we have i < k < l :<::; j, or 
k < i < j :<::; l or [i,j] n [k, I] = 0. The colledion I of subintervals is the union of two 
disjunct subcollections H and M: 

H the hypothesis intervals of the proof figure. If D "i H, then D is called the 0-th 
interval. If [k, I] E H then the formula Fk is called the hypothesis of [k , 1]. 

M the modal intervals of the proof figure. D may not be an element of M. 
If [k, IJ E M then the formula Fk is nota hypothesis of [k, /] . 
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In Fitch-style decluctien for non-medal propositional logic I=H; every subinterval is a 
hypothesis interval introduced by assuming the topmost formula of that interval. The presence 
of a rnadal interval in a proof tigure does nat require an assumption and hence the topmost 
formula of such an interval is nat a hypothesis. Another difference is that a rnadal interval 
may never be the leftroost ('0-th') interval of a proof figure: the figure only qualifies as a 
derivation after all rnadal subordinate proofs have been closed. In a proof figure a rnadal 
interval can be recognized by the box ('D') on top of its vertical line. 

Some more terminology is needed before we can define the deduction rules: 

1.1.2. DEFINITION. Precede, lie in 

If i E D, then F(i), usually written as F;, denotes the formula online i of the proof 
figure. We say that F; preceeds Fj, if i < j. 

If i E I fora certain interval I E I U{D} and there is no J E I such that i E J C I, 
than it is said that the formula F; lies in I, written as F; E I. An interval I lies in 
interval JE I U{D} if IC J and there is noK EI, such that IC K C J . 

To each formula in a proof we attribute a degree of 'nestedness'. In a non-madal system 
the degree of a formula F; is simply the number of hypotheses at that stage of the proof: 
'the number of verticallines to the left of the formula' at line i in the proof figure. In rnadal 
deduction proofs this set of hypothesescan be 'partitioned' by rnadal intervals (as in the figure 
below), and for the forma! definition of the K -rules we have to keep track of this. Therefore 
the degree of a formula in a modal proof figure is represented as a pair of natura! numbers, 
where the first number denotes the 'modal depth' of F; : number of nested rnadal intervals 
( EM) 'to the left' of F;. The second number represents the number of hypothesis intervals 
(EH) 'to the right' of the deepest rnadal interval of which F; is an element. 

B 
0 

(0, 0) (0, 1)(0, n)(1, 0)(1, 1)(1, m)(2, 0) (degree) 

In this schematic rnadal proof figure, B is of degree (0, n) since there are no modal intervals 
to the left of it, and it occurs under n hypotheses. C has degree (2, 0) since it lies in the 
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secoud modal interval. The hypotheses An+b . .. , An+m have degree (1, i) with (1 ~ i ~ m), 
since they !ie in the i-th hypothesis-interval to the right of the first modal interval. 

1.1.3. DEFINITION . Degree 

The degree of a formula F;, written gr(i), is defined as a pair of natura! numbers: 
gr(i) = (card{I EMii EI}, card{I EH'Ii EI}) where 
H' ={IE bfHii EI and there is no JE M such that (iE J C J))} . 
( card denotes the cardinality of a set) 

The natura! deduction rules of DPROPfitch are defined in two stages; first their structural 
effect on the proof figures is shown in a picture, then the conditions for their application are 
defined in terms of the form of the formulas acting as the premisses and condusion of the 
rule and in terms of the relation between the intervals in which these formulas !ie. 

1.1.4. DEFINITION. Deduction rules 

V-intro 
A E 

AVE AVE 

-.-intro 
A 

E 

---.-elim 
-.--.A 

A 

V-elim 
AVE 

c 
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-:)-intro 

A :JE 

/\-intro 
A 

B 

A/\B 

+-+-intro 

A :JE 

B:JA 

reitemtion 

A 

Kimport 

DA 
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:J-elim 

A :JE 

A 

B 

1\-elim 
A/\B A/\B 

A B 

A:JB B:JA 

K export 

DA 



1.1. MODAL NATURAL DEDUCTION 9 

1.1.5. DEFINITJON. Application of deduction rules 
Given a proof figure D, with interval D = [1, n], formulas F1. ... , Fn and intervals I. A 
formula E is the result of an application of deduction rule R, if E is the condusion of R, the 
premisses of R preeede E in the proof figure, and one of the following conditions is met: 

R E {V-intro , -,-elim, :J-elim, /\-intro , 1\-elim, (+-+-intro, +-+-elim)}. 
In this case the premisses and the condusion E all !ie in the same interval. The order 
in the which the premisses appear may differ from the one given in the table. 

2 R = -, - intro. 
there has to he a hypothesis-interval [k, Ij EH, such that Fk =A, and such that either 
F1 = -,B and B lies in [k, 1], or Fz = B and -,B lies in [k, l]. The condusion E = -,A 
and the interval [k, I] have to !ie in the sameinterval (it is allowed that B = Fk (A and 
B coincide), or that -,B = Fk (A and -,B coincide). 

3 R =:!-intro . 
There has to he a hypothesis-interval [k, ll E H, such that Fk = A and Fz = B. The 
condusion E = A :J B and the interval [k, 1] have to !ie in the same interval. 

4 R = V-elim. 
There have to he hypothesis-intervals [i,j], [k, l] EH, such that F; =A, Fj = C,Fk = B 
and Fz = C, where j < k, or l < i. The condusion E = C, the premiss A V B and the 
intervals [i,j] and [k, 1] have to tie in the same interval. 

5 R = reiteration. 
If the premiss A lies in the interval I E I U{D} and the condusion E = A lies in the 
interval JE I u{D}, then it has to he the case that (J Ç I) 1\ -,3K E M.(J C K Ç 1). 
Or, in terrns of modal depth: the first coordinate of gr(A) is equal to the first coordinate 
of gr(E), and the second coordinate of gr(A) is smaller than or equal to the second 
coordinate of gr(E). 

6 R = K import. 
If the premiss DA lies in interval I E I and the condusion E = A lies in the interval 
J E M, then it has to he the case that the interval J lies in the interval I. 

7 R = K export. 
If the premiss A lies in interval I E M and the condusion E = DA lies in the interval 
J El, then it has to he the case that the interval I lies in the interval J. 

Note that K export allows us to export more than one formula from a strict subordinate proof, 
as long as these formulas all occur after the assumptions in the strict subordinate proof are 
discharged. 

In the modal system reiteration is defined in such a way that ( arbitrary) formulas may only 
he repeated in subordinate proofs that have the same modal depth as the interval in which 
the original occurrence lies. Note that, although K import is limited to the modal interval 
immediately to the right of the hypothesis-interval, combining Kimport and reiteration makes 
it possible to import the formula cp 'over' any number of assumptions (hypothesis intervals) 
lying inside the modal subordinate proof: 
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DA 

0 
A (K import) 

( reiteration) 

1.1.6. DEFINITION. Derivation without hypotheses 
A derivation of a formula Cis a prooffigure D with interval D = [1, n] and formulas F1, . .. Fn, 
that satisfies the following conditions: 

1 Fn = C and gr(n) = (0,0); 

2 every formula F;(1 S i S n) is a hypothesis or the result of the application of a 
deduction ruleon a number of formulas preceding F; . 

1.1.7. DEFINITION. Derivation with hypotheses 
A derivation of a formula C from the formulas P1, .. . , P m ( m ~ 1) is a pro of figure D with 
interval D = [1, n] (n > m) and formulas F1, ... Fn, that satisfies the following conditions: 

1 F; = P; is a hypothesis for 1 SiS m, such that gr(i) = (0, i); 

2 Fn = C, and C and Pm !ie in the same hypothesis-interval, where gr(n) .= (0, m) 

3 every formula F;(1 S i S n) is a hypothesis or the result of the application of a 
deduction ruleon a number of formulas preceding F; . 

A derivation with hypotheses is a proof where the assumptions Pt, ... , Pm are not dis
charged. These assumptions are listed consecutively at the first m lines of the proof figure, 
this mandatory enumeration excludes the possibility that there are modal intervals mixed in 
with the hypothesis intervals: 

1. pl 
f-----

n. C 

The actual proof of C (denoted by the vertical dots) is then a derivation in the hypothesis 
interval of Pm. 
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1.1.8. DEFINITION. Derivability 

1 A formula C is derivable if there exists a derivation of C, written as 1- C. 

2 A formula C is derivable from the formulas P 1, ... P m if there exists a derivation of C 
from P1 . . . Pm, written as P1, ... , Pm 1- C. 

3 Let r Ç PROP be a set of formulas. A formula C is derivable from r if there exist a 
finite number of formulas P1, ... , Pm E r such that Pb ... , Pm 1- C. This is written: 
r 1- c. If r = 0, 1- c. 

1.1.4. Modal deduction for extensions of K 

We distinguish two ways in which a natura! deduction system for K can be extended to 
accommodate stronger normal rnadal logies: extension by axioms and extension by rules. 
In the first case, added axioms determine the rnadal strength of the deduction system. In 
the second case, additional import- and export-rules, governing the exchange of formulas 
between proofs and strict subordinate proofs, determine the strength of the system. After 
the presentation of these two approaches, it will be shown that they are equivalent for the 
systems we are concerned with. 

Extension by axioms 

In this approach, rnadal axioms are added to the proofs as some sort of tacit assumptions; 
they are formulas that may be written at any stage in any proof without further justification. 
In this way conclusions not available in K can be reached by proving the antecedent of an 
axiom with the rules of K and then, after writing that axiom in the proof, deriving the 
consequent of the axiom by Modus Ponens. Although any rnadal axiom could be added in 
this way, we restriet ourselves to ( combinations of) the following axioms: 

D: DA :::><>A 

T: DA :::>A 

4 : DA :::> DDA 

5: ..,oA :::> o..,oA 

B: A:::> D<>A 

As an example, we show how A can be derived from DA after extending K with the 
T-axiom. 

DA 
DA :::> A ( T-axiom) 
A 
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Extension by rules 

The deduction system for K cao also be strengthened by adding import and export rules in 
order to: 

Increase the number of propositions derivable in strict subordinate proofs by providing 
thern with more 'input'. This can be done by a!lowing more (kinds of) formulas to be 
reiterated in these proofs: add import rules. 

Make better use in the main proof of the propositions derived in the subordinate proofs 
(their 'output'). This can be done by making the conclusions of the strict subordinate 
proofs available to the main proof in more than one (the necessitated) form: add export 
rul es. 

For all the axioms we are concerned with, a single import or export rule can be given 
that, when added to the rules for K, strengthens the deduction system in the same way as 
the axiorn: for the axioms 4, 5, and B an extra import rule is needed, for the axioms D and 
T an extra export rule. First each of the extra rules will be given along with its structural 
form. Then we will show how these rules can be derived in the presence of 'their' axioms, 
and how the axioms can be obtained from the rules. 

The import rule corresponding to the 4-axiom allows the reiteration of formulas of the 
form Dip in a strict subordinate pro of without changing their form. Similarly, the rule corre
sponding to the 5-axiom al!ows the 'verbatim' reiteration of formulas of the form -.Dip. Any 
formula ip may be reiterated as -.0-,ip in a strict subordinate proof, using the rule for the 
B-axiom. 

1.1.9. DEFINITION. Import rules 

4-import 5-import B-import 

Dip 

The export rule corresponding to the D-axiom permits a formula ip to be brought back 
to the main proof in the form -.D-,ip. The export rule for the T-axiom allows any formula 
from the strict subordinate proof to be brought back to the main proof without changes. 
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1.1.10. DEFINITION. Export rules 

D-export T-export 

r~ r~ 
To complete the forma! definition of these rules in OPROPfitch we complement the figures 

above by the following definition. 

1.1.11. DEFINITION. Application of deduction rules 
Given a proof tigure D, with interval D = [1, n], formulas F1, ... , Fn and intervals I. A 
formula E is the result of an application of deduction rule R, if E is the condusion of R, the 
premisses of R preeede E in the proof figure, and one of the following conditions is met: 

8 R = 4 import. 
If the premiss OA lies in interval I E I and the condusion E = OA lies in the interval 
J E M, then it has to be the case that the interval J lies in the interval I. 

9 R = 5 import. 
If the premiss ·DA lies in interval I E I and the condusion E = ·DA lies in the interval 
J E M, then it has to be the case that the interval J lies in the interval I. 

10 R = B import. 
If the premiss A lies in interval I E I and the condusion E = -.0-.A lies in the interval 
J E M, then it has to be the case that the interval J lies in the interval I. 

11 R = D export . 
If the premiss A lies in interval I E M and the condusion E = -.0-.A lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J . 

12 R = T export. 
If the premiss A lies in interval I E M and the condusion E = A lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J . 

From axioms to rules 

In the natura! deduction system for K extended with the 4, 5, B, D, and T axioms, the 
import and export rules given above are derivable. 

The 4-, 5- and B-import rules can be shown to be derived rules using the corresponding 
axiom and the K-import rule. We show this for 4-import: a formula of the form stipulated 
by the rule (OA) is used to derive the consequens of the axiom {DOA) to which the K-import 
rule is then applied. The result of this procedure is the same as that of applying the extra 
import rule directly to the formula of the required form. 
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OA 
OA ~ OOA 
OOA 

IDA 
4-axiom & K -import 

CHAPTER 1. INTRODUCTION 

OA 

4-import rule 

The D- and T -export rules can be shown to be derived rules using the corresponding 
axiom and the K -export rule; after the application of K -export to a condusion (A ) of the 
strict subordinate proof the resulting formula (OA) is used to derive the consequens of the 
axiom ( -,0-,A, or A). The result of this procedure is the same as that of a direct application 
of the extra export rule to the condusion of the strict subordinate proof. For example: 

OA 
OA ~A 
A 

T -axiom & K -export 

From rules to axioms 

A 

T -export rule 

The 4, 5, and B-axioms can be derived from the new rules as follows. First assume the axiom's 
antecedent, then apply the import rule corresponding to the axiom, immediately Collowed by 
K-export. 

OA -,OA A 

eroA er ..,oA er ..,o..,A 

OOA 0-,0A 0-,0-,A 

OA ~ OOA -,OA ~ Q-,OA A~ 0-,0-,A 

4-axiom 5-axiom B-axiom 

Similarly, the D and T -axioms can be derived by subsequent application of K -import and 
their corresponding export rules. 
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DA 

~ erA 
..,o..,A 

DA ::::> ..,o..,A DA ::::>A 
D-axiom T-axiom 

1.1.5. Deduction systems 

In this section we first give natura! deduction systems for the extensions of K with combina
tions of 4, 5, B, D, and T , and compare these to Fitch-style systems in the literature. Then 
we briefiy discuss the general prospects of 'extension by rules' versus 'extensions by axioms'. 

Given the equivalence of axioms and rules, a natura! deduction system for a normal 
extension KS1 ... Sn of K can be found by adding to a system for classica! propositional 
deduction the rul es for K -import, K -export and : 

• all instauces of the axiomschemas 81 . .. Sn ( extension by axioms), or 

• the import-orexport-rules corresponding to S1 ... Sn (extension by rules). 

Of course 'mixed systems' with both added axioms and rules are also possible. All of the 
Fitch-style systems in literature ([Fitch 1952], [Siemens 1977], [Fitting 1983]) are mixed in 
this sense: 4, 5 and B are dealt with by import rules ('modifying strict reiteration'), D and 
T using axioms. Instead of allowing the D and T axiom to be written anywhere in a proof, 
'rules' are used as shorthand for deriving the consequent of an axiom by modus ponens: a 
'D-rule' that allows the derivation of ..,o..,A from DA, and a 'T-rule' for the direct inference 
of A from DA. A reason for this mixed approach may be that originally only normal systems 
at least as strong as KT were considered, where '0' can be treated on a par with the logica! 
connectives; it has an introduetion rule (K-export) and an elimination rule (the ' T-rule') . 

By varying both import and export rules we put more emphasis on the structural role of 
the modalities: a modal proof is conceived of as a group of propositional deductions between 
which formulas may be exchanged. The import and export-rules governing this exchange 
determine the modal strength of the system. This 'separation of concerns' wil! prove to be of 
interest in the interpretation of the extension-by-rules-systems in typed >.-calculus. 

Unfortunately, little seems to be known of the general scope of 'rules' in Fitch-style de
duction. Hawthorn ([Hawthorn 1990)), commenting on [Fiteh 1966a], is not very hopeful for 
logies other than the ones treated above:'These systems have all t he virtues of a good natura! 
deduction system: they are easy to work in and provide a fee! for the deductive strueture of 
the respective logies. The disadvantage is that these virtues begin to disappear as soon as 
one tries to extend their methods to other logies. The metbod of varying the rule of strict 
reiteration works only for axioms of the form aA ::::> D,BA, where a and ,Bare modalities, and 
the number of axioms that ean plausibly thought of as embodying a DE rule is extremely 
smal!. Very soon, one has to admit defeat and just add axioms, as Segerberg3 advocated.' 

The left figure below shows the general format for proving axioms of the form aA ::::> D,BA 
by varying the import rule: the idea is to add an import rule that imports a formula of the 

3 See (Bull a.nd Segerberg 1984]. 
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formaAas f]A in the modal subordinate proof, K-export wiJlthen yield Df]A. Besides 4, 5, 
and B, this scheme gives us rules for axioms like <>DA:::) D<>A. This axiom is characteristic 
of a well-known extension of KT4, S4.2. 

1. a A 1. DaA 1. 

~ 2. er f]A 2. eraA 2. 

3. Df3A 3. ,BA 3. A 

4. aA:::) Df3A 4. DaA:::) f]A 4. aA:::) f]A 

varying import varying export varying import & export 

By the same reasoning, varying the export rule gives us rules for axioms of the general form 
DaA :::) f]A (middle figure above) : K-import is used to import DaA as aA in the modal 
subordinate proof, an additional export rule then exports aA as ,BA. Other than Dor T, this 
suggest rules for an axiom like D<> A :::) <>DA, the characteristic axiom of another well-known 
extension of KT4 (S4.1) . 

To get a grip on the expressibility of the import- and export- rules, we need to answer the 
question which of the many possible variations on this theme are reasonable and meaningful 
rules. The rightmost figure above shows that any axiom aA :::) f]A is trivially derivable when 
we are allowed to add an import- export-rule pair for it. Hence it seems reasanabie to restriet 
ourselves to axioms that can be derived adding only an import rule or only an export rule. 
But even then questions remain, like does this always have to be derivability with respect to 
the basic logic K? Another question is whether we allow import and export rules to change 
the 'matrix' of the formula rather than just the modalities, like in the following import rule 
for Löb's axiom: 

D(DA:::) A) D(DA:::) A) D(DA:::) A) 

erA 

D(DA:::) A):::) DA 

r~ 
DA 

DA 

iA D(DA:::) A) :::) DA 

Löb-import rule to axiom axiom to rule 

Regardless of the general prospects of Fitch-style modal deduction, the system OP ROPfitch 
proves to be a very well-behaved and intuitive framework for the normal modal logies we are 
interested in in this thesis. In later chapters its flexibility will be exploited by extending it to 
accommodate multi-agent and multi-modallogics. 

1.2. Morlal Pure Type Systems 

In this section we propose a set of systems of typed À-calculi in which several normal modal 
propositional and predicate logies can be interpreted. These systems are obtained by extend
ing the format of the Pure Type Systems (PTSs) popularized by Barendregt ([Barendregt 
1991], [Barendregt 1992]). Under the so-called 'propositions-as-types'interpretation, Fitch
style deduction for propositional and predicate logic can already he accommodated in these 
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typed À-calculi: there are type theoretica) analogons of 'proofs' and 'subordinate proofs'. 
The idea behind the proposed extension is to add an analogon of 'strict subordinate proof' 
to the PTSs and then see if the modal natura] deduction rules have a counterpart in such a 
framework. 

The structure of this section mirrors that of section 1.2; first an introduetion to PTSs and 
the propositions-as-types interpretation of propositional logic will be given, then the extra 
rules for the smallest modal system (K) will bc explained followP.d by the forma! definition of 
the 'Modal Pure Type Systems' and two ways to extend these type theoretica] systems: an 
extension by rules, and an extension by axioms. 

1.2.1. Pure Type Systems 

Since the beginning of typed lambda calculus4, many different systems have been proposed 
with different applications in mind. They can be divided into systems with ' implicit ' and 'ex
plicit' typing. In implicit or Curry-typing one tries to find a (most genera!) suitable typefora 
given untyped lambda-term. In the more common explicit or Church-typing, type information 
is inserted in the term: variables are introduced along with a type. The type of a lambda-term 
can then be built during its construction from the types of the variables, according to ccrtain 
derivation rules. 

Barendregt noticed that many of the existing systems of lambda calculus with explicit 
typing could be uniformly reprcsented in a framework which is parametrized with respec:t 
to these derivation rules ([Barendregt 1991]). This insight eventually led to the format of 
Pure Type Systems; a general description of a large class of typed lambda calculi , providing 
possiblities for generic proofs of meta theoretica] properties. 

PTSs are forma! systems for deriving judgements of the form r f- M : A, meaning that 
type 'A' can be assigned to term 'M' in context 'r' ( also pronounced as: ' M is of type A', 
or 'M is in A is derivable in context r'). Both M and A are elements of the set of so-c:alled 
pseudoterms, a set of expressions from which the derivation rules select the ones that are fit in 
a judgement. Since PTSs have explicit typing, the typing of a term M with a type A can only 
be done relative to a typing of the free variables that occur in M and A. This information is 
recorded in the context r , which is a finite sequence of so-callcd declaratious, statements of 
the form x : B where x is a variabie and B is a pseudoterm. 

We start the definition of Pure Type Systems by defining the set of pseudoterrus T from 
a base setS of constauts called 'sorts'. 

1.2.1. DEFINITION. Pseudoterms 
For S some set, the set T of pseudoterrus over S is 

T ::= SI Vari(IT Var : T.T)I(>. Var : T.T) I(TT) 

where Var is a countable set of variables. 

Both II and À bind variables and hence we have the usual notion of free variabie and bound 
variable. Like in untyped À-calculus we have !3-reduction5 on T: (>.x : A.M)P ->(J M[P /x], 
where. M[P /x] denotes the substitution of P for all free xs in M (avoiding capturing of free 
variables by renaming) . The transitive reflexive ciosure of ->(J is denoted by -»{J and the 

4 Usually marked with !Curry 1934] and !Church 1940] . 
51)-reduction could also be added, see !Geu 93], but will not be considered here. 
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transitive symmetrie ciosure of --»(3 by =(3· Syntactical identity of pseudoterms A and B is 

denoted by A = B. 

1.2.2. DEFINITION. Contexts 

(i) A statement is an expression of the form A : B, with A, B E T. The pseudoterm A 
is called the subject of the statement A : B. A declamtion is a statement of the farm 
x : A, where x is a variabie and A a pseudoterm. 

(ii) A pseudo-context is a finite ordered sequence of declarations (x : A), all with distinct 
subjects: XJ : Ar, ... , Xn : An . The empty context is denoted by é . If 
r = XJ: Ar, . . . ,Xn: An then r,x : B = Xr: Ar, .. . ,Xn : An,X: B . 

1.2.3. DEFINITION. Pure Type Systems 
A Pure Type System with /3-conversion, PTS(J, is given by a set S of sorts , a set A C S x S 
of axioms, and a set R CS x S x Sof rules. The PTS that is given by S, A and Ris denoted 
by >.(J(S,A, R) and is the typed >.-calculus with the following deduction rules: 

( axiom) E f- Si : s2 if Si : s2 E A 

ff-A:s 
(start) r, x: A f- x : A 

ff-A:B ff-C:s 
(weakening) r, x: C f- A: B 

( ) r r- A : si r, x : A r- B : s2 
product r f- (IIx : A.B) : s3 

) r f- F : (llx : A.B) r f- a : A 
( application r f- Fa : B[a/x] 

( ) r , x : A f- b : B r f- (IIx : A.B) : s 
abstraction r f- (>.x: A.b): (IIx : A.B) 

f f-A :B 
( conversion) 

r r- B': s 

r f-A : B' 
B = f3B' 

where s ranges overS, thesetof sorts, x ranges over variables, and it is assumed t hat in the 
rules (start) and (weakening) the newly declarèd variabie x is always fresh, that is it has nat 
yet been declared in r. These rules axiomatize the notion r f- A : B stating that A : B can 
be derived from context f; in that case A and B are called legal expressions and r is a legal 
context. 

All rules except product hold uniformly for all PTSs; given a set of sorts S and axioms 
A, systems differ only in the instantiations of the product rule that are allowed by R . Rather 
than explaining the PTS-rules in this general format, we focus on a small number of systems 
which are of importance for the interpretation of logic. These are the PTSs on which the 
work in this thesis is based, and it is convenient to introduce the PTS-rules in the setting in 
which we wil! be using them. 
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There are several ways in which logic can he coded into typed >.-calculus. One of the more 
direct methods is to simply interpret the propos i ti ons of logic as types in typed >.-calculus. The 
proofs of propositions are then coded as terms ( called pro of objects) of the type corresponding 
to those propositions. Under this so-called 'propositions-as-types' interpretation6 there is a 
direct relation between provability in logic and the existence of terms in typed À-calculus: if 
a proposition has a proof there exists a term of the corresponding type (this type is then said 
to be 'inhabited' by that term). 

The following group of PTSs, first proposed in [Berardi 1988], is specially suitable for this 
interpretation, and known as the 'Logic Cube'7• 

1.2.4. DEFINITION. Logic Cube The cube of logical typed lambda calculi consists of the fol
lowing eight PTSps. Each of them has 

S = {Prop, Set, TypeP, Types} 

A Type = Prop : TypeP, Set : Types. 

The rules of the systems are given by the following list. Since for these PTSs all rules 
(s1, s2, sa) E n have identical second and third arguments (s2 = sa), we will henceforth 
abbreviate them as (st, s2). 

>.PROP 
>.PROP2 
>.PROPw 
>.PROPw 

>.PRED 
>.PRED2 

>.PREDw 

>.PREDw 

(Prop, Prop) 

(Prop,Prop), (TypeP,Prop) 

(Prop, Prop), ( TypeP, TypeP) 

(Prop, Prop), ( TypeP, Prop), ( TypeP, TypeP) 

(Prop, Prop), (Set, Set), (Set, Prop), (Set, TypeP) 

(Prop, Prop), (Set, Set), (Set, Prop), (Set, TypeP), 

( TypeP, Prop) 

(Prop, Prop), (Set, Set), (Set, Prop), (Set, TypeP), 

(TypeP,Set), (TypeP, TypeP) 

(Prop, Prop), (Set, Set), (Set, Prop), (Set, TypeP), 

( TypeP, Set), ( TypeP, TypeP), ( TypeP, Prop) 

6 Also known as the Curry.Howard·De Bruijn isomorphism , see (Nederpelt 1990] . 
7We follow the terminology of (Geuvers 1993]. In [Barendregt 1991] these systems are referred to as the 

'L-cube', there the term 'Logic Cu be' is reserved for the actual !Dgics to which these PTSs correspond. 
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.XPROPw ------->.PREDw 

/ / 
>.PROP2----------~>.PRED2 

>.PROPw ------ --~>.PREDw 

/ / 
>.PROP ------>.PRED 

(In the diagram an arrow denotes ioclusion of one system in another.) 

The sorts of the PTSs in the Logic Cube are named in accordance with their role in the 
propositions-as-types interpretation: Prop is to denote the class of all propositions and Set 
the class of all sets, hence A : Prop and B : Set can be read as 'A is a proposition' and 'B is 
a set' respectively. As the type axioms (Prop : TypeP , Set : Type') show, TypeP and Type• 
are supposed to serve as the 'types' of Prop and Set, and of the constructs built from Prop 
and Set by means of the rules. 

The only PTS-rule that yields such constructs is product. Contrary to most standard pre
sentations of logic, the derivation of a 'product' by means of a rule (SJ., s2 , sa) ER corresponds 
to showing inside the formalism that the particular product is a well-formed expression of the 
language. Only after a formula has been shown to be well-formed, we can create an inhabitant 
for it (using abstraction and application). 

Viewed in this way the basic rule (Prop, Prop) allows the construction of a 'product 
proposition', IIx : A .B, from two propositions A and B: 

r f- A : Prop r, x : A f- B : Prop 

r f- (IIx : A.B) : Prop 

Because x (/. FV(B) in this case, Ilx : A.B can be seen as the implication A ::) B in logic. 
This is con.firmed by the introduetion and elimination procedures for IIx : A.B prescribed by 
abstraction and application respectively: in order to prove IIx : A.B we must show that given 
an inhabitant of A (x: A in the context), we can findan inhabitant of B. From a proof term 
for IIx : A. B, we obtain a pro of (term) of B by applying it to a pro of term for A. 

In the same way (Set, Set) !ets one define 'simple functional domains'. (Set , Prop) cor
responds to first order quantification over sets (Vx : A.<p, with A : Set), and second order 
quantification (Va : Prop.<p) is introduced. by (TypeP , Prop). Note that we write 'V' instead 
of 'II' in such cases, for obvious reasons. Furthermore, (Set, TypeP) allows the formation of 
predicates as 'functions' from sets to propositions: e.g. terms P of type IIx : A.Prop act 
as predicates in the sense that applying them to an element a of the set A yields a propo
sition Pa of type Prop) . Finally ( TypeP, TypeP ) makes it possible to construct 'functions' 



1.2. MODAL PURE TYPE SYSTEMS 21 

from Prop to Prop (and so on), which could for instanee be used to include the logica! con
nective for negation as a constant representing a function from propositions to propositions: 
--, : Prop --> Prop . 

If we call terms in Prop and Set (A : Prop, B : Set) types and terms in TypeP and Type' 
( C : TypeP, D : Type•) kinds, the arrangement of the PTS in the cube can be understood as 
arising from the dependencies between types and kinds; the possibilities for abstrading over 
terms of a specific category to form a term of another category. 

In the standard orientation of the Logic Cube the system >..PROP, the smallest system, 
lies in the origin. There we can use the rule (Prop, Prop) to abstract over a type to define a 
term that is again a type; 'types depending on types'. We can now think of the other three 
possible dependencies between types and kinds as spanning the cube, by viewing them as 
spatial dimensions: 

Up: types depending on kinds, ( TypeP , Prop) 
Right: kinds depending on types, (Set , TypeP) 
Backward: kinds depending on kinds, ( TypeP, TypeP) 

Each typed >..-calculus (>..L) in the Logic Cube corresponds toa systems (L) of intuitionistic 
logie. 

PROP proposition logie 
PROP2 second order proposition logie 
PROPw weakly higher order proposition logie 
PROPwhigher order proposition logic 
P RED predieate logic 
PRED2 seeond order predieate logic 
P REDw weakly higher order predicate logic 
PREDw higher order predicate logic 

All these logies are minimal in the sense that the only logica! operators are :::) and V. Weakly 
higher order logies have variables for higher order propositions or predieates but no quan
tification over them. In the second and higher order systems it is possible to quantify over 
propositions. This feature enables us to define all the usuallogieal eonnectives in terms of 'V' 
and ':::)': 

AI\B .- Va: Prop.(A :::) (B :::) a)) :::) a 

AVE .- Va: Prop.((A :::) a) :::) (B :::) a)) :::) a 

_l .- Va: P rop.a 

· A .- A:::)l_ 

The seeond order quantifieation also lets us express the rule of double negation elimination 
as an axiom schema: Va: Prop.(( a :::) _i) :::) _i ) :::) a. 

By adding this axiom to the context of the type derivation in PTSs, using some variabie 
as inhabitant, every needed instanee (e. g. ••A :::) A) can be derived by eliminating the 
quantification in the axiom schema with the appropriate type (A : Prop) using application. 
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In second (and higher) order systems with this axiom, classica/ propositional and predicate 
logies can be interpreted8 . Classica! versions of the fust order systems (lower plane of the 
cube) are also possible but they require the introduetion of '..L' as a constant, the Ex Falso 
Sequitur Quodlibet rule, and the double negation rule in the type system (see [Geuvers 1993]). 

1.2.2. Propositional logic in the propositions-as-types-interpretation 

To give the reader some initia! idea about the interpretation of logies in PTSs, we now 
give a simple example of a type derivation in >.PROP proving the propositional tautology 
(A :::l (B :::l C)) :::l ((A :::l B) :::l (A :::l C)). By camparing the type derivation with a natura! 
deduction proof of this formula in DPROPFitch, we point out the type theoretica! analogons 
of some of the main ingredients of Fitch-style deduction. This wil! give us a point of departure 
for the introduetion of 'modal' PTSs. 

In DPROPFitch the tautology can be provedas follows: 

1. A :::l (B :::l C) 

2. A:::lB 

3. A 

4. A:::lB (reiteration 2) 
5. B (:::l-elim 3,4) 
6. A :::l (B :::l C) (reiteration 1) 
7. B:::lC (:::l-elim 3,6) 
8. c ( :::l-elim 5, 7) 

9. A:::lC ( :::l-intro 3-8) 

10. (A :::l B) :::l (A :::l C) (:::l-intro 2-9) 

11. (A :::l (B :::l C)) :::l ((A :::l B) :::l (A :::l C)) (:::l-intro 1-10) 

This natura! deduction proof corresponds to the term Àx : A :::l (B :::l C).>.y : A :::l B.Àz : 
A.xz(yz) in >.PROP. 

That this term is an inhabitant of the type (A :::l (B :::l C)) :::l ((A :::l B) :::l (A :::l C)) can 
be derived as follows (assuming that A :::l (B :::l C) : Prop, A :::l B : Prop and A : Prop are 
already valid in r): 

8 See [Geuvers 1988]. 
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0. r f- A :::) (B :::) C) : Prop (Start Iem.) 

1. r,x:A:::)(B:::)C) f- x:A:::)(B:::)C) (start 0) 

1' r, x : A :::) (B :::) C) f- A :::> B : Prop (Start Iem.) 

2. r, x : A :::) (B :::) C), y : A:::) B f- y : A :::) B (start 1') 

2' r, x : A :::) (B :::) C), y : A :::> B f- A : Prop (Start Iem.) 

3. r, x : A :::) (B :::) C), y : A:::) B, z : A f- z: A (start 21) 

4. r, x: A:::) (B:::) C), y: A:::) B, z: A f- y: A:::) B (Start Iem.) 

5. r, x : A:::) (B :::) C), y : A :::) B, z :A f- yz: B (appl. 3,4) 

6. r, x : A :::) (B :::) C), y : A:::) B, z :A f- x: A:::) (B:::) C) (Start Iem.) 

7. r, x: A:::) (B:::) C), y : A:::) B, z : A f- xz: (B:::) C) (appl. 3,6) 

8. r, x: A:::) (B:::) C), y: A:::) B, z : A f- xz(yz) : C (appl. 5,7) 

9. r, x: A :::) (B :::) C), y : A:::) B f- >.z : A.xz(yz) : A :::) C (abstr. 3,8) 

10. r, x : A :::) (B :::) C) f- >.y : A :::) B .>.z : A.xz(yz) : (A :::) B) :::) (A :::> C) (abstr. 2,9) 

11. r f- >.x: A:::) (B:::) C).>.y: A:::) B.>.z: A.xz(yz): 
(A :::) (B :::) C)) :::) ((A:::) B) :::) (A :::) C)) (abstr. 1,10) 

In order to prove (A :::) (B :::) C)) :::) ((A :::) B) :::) (A :::) C)), we mustfindan inhabitant (proof 
object) of this type. Given the analogy between abstraction and :)-intro and application and 
:::)-elim, we can adopt the same strategy as in the natura! deduction proof: first we simplify 
the problem to finding a term of type (A :::) B) :::) (A :::) C) in a context extended with a 'fresh' 
object (x) of type (A:::) (B:::) C)) (Jine 1). By the same reasoning we can reduce the problem 
further to that of finding a proof object for C, in context which is extended with objects (y, 
and z) inhabiting A :::) B and A respectively (Jine 2-3). Clearly we are done if we have proof 
terms for B and B :::) C. These can be found by combining the statements available in the 
context : applying the proof term x for A :::) (B :::) C) to the proof term z for A yields a term 
xz proving B :::) C (Jine 7). Likewise, combining the proof y of (A :::) B) with z results in an 
inhabitant yz of B (Iine 5). Applying the new found inhabitants gives us the desired proof 
term, xz(yz) for C (Jine 8) . We end the derivation by discharging the statements added to 
the context through subsequent applications of abstraction (Jine 9-11). 

To bring out the analogy between Fitch-style deduction and derivations in PTSs, we have 
numbered the lines in the type derivation in such a way that the type of a statement derivable 
in line i corresponds to the proposition occurring at line i in the natura! deduction proof. 
Although some extra steps (0,1' and 2') are needed in the type derivation, it is easy to see 
how the addition of the statements x : (A :::) (B :::) C)), y : (A:::) B), and z : A to the context 
r corresponds to starting the subordinate proofs in the proof figure (Jioes 1, 2, and 3). Just 
as the hypotheses are dischargedat the end of the subordinate proof by ao application of :)-I, 
the statements are removed from the context by an applica.tion of abstraction (Jines 9,10,11) 
. Moreover, the nesting of the subordinate proofs in the proof tigure is reflected in the order 
of the additional statements in the context of the type derivation: both proofs deal with the 
assumptions on a 'last in, first out' basis. 

There is no rule corresponding directly to reitemtion in natura! deduction. This also 
becomes clear when comparing lines 4 and 6 in the natura! deduction proof with lines 4 and 
6 in the type deriva.tion. There a meta. theoretica! property of PTSs, the Start lemma, is 
invoked. 
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1.2.5. LEMMA. Start lemma 
Let f be a {legal) context, then (x :A) E f => f r x : A 

This lemma tells us that a statement that is an element of a context is derivable on that 
context regardless of its position in that context (the proof uses induction and the rules start 
and weakening, given in the definition of PTSs). Hence a statement added to the context at 
some stage in the derivation will still be derivable when this context is extended with further 
statements. Since 'being derivable in a context' is the type theoretica! analogon of 'occurring 
in a proof', the effect of the lemma is that 'hypotheses' can be 'reiterated' in type derivations. 

1.2.3. Modal rules for K 

In section 1.2 it was shown how Fitch-style deduction treats modallogic by cxtending propo
sitional deduction with a new sort of proofs. If we want to use this idea to interpret modal 
logic in type theory, a type theoretica! version of strict subordinate proofs is needed. In the 
frameworkof such a procedure the import rules and export rules of natura! deduction (which 
depend on the general form of propositions) can be 'translated' into type theoretica! rules 
depending on the general form of types. 

In the preceding section we have seen that in the interpretation of propositional natura! 
deduction the starting of a subordinate proof from an assumption corresponds to adding a 
statement to the context. Strict subordinate proofs differ from subordinate proofs in two 
respects: they require no hypotheses, and only formulas of a certain form may be reiterated 
in them. In formulating a type theoretica! analogon to strict subordinate proofs the secoud 
requirement causes a problem; it implies that strict subordinate proofs correspond to deriva
tions in a context in which (of the statements originally present) only statements with types of 
a certain form are available. In other words, strict subordinate proofs take place in a different 
context. 

That this is not just a figure of speech follows from the above discussion of reiteration in 
typed À-calculus. The Start lemma shows that in PTSs any statement that appears in the 
'main proof' will automatically be available in any 'subordinate proof'. Therefore reiteration 
can not be restricted to statements of a certain form as long as the derivation is carried 
out in the (augmented) context of the main proof. A salution to this problem is to let the 
type theoretica! counterparts of the import and export rules exchange statements between 
the original context of the derivation and a new related context. In this new context only 
certain statements that are derivable in the original context could then be declared derivable, 
depending on their type. 

This salution requires a broadening of the notion of context: if r and r' are PTS-contexts 
then r ~ r' is a 'generalized context', in which r is to be called the 'main context' and 
r' the 'subordinate context' . The symbol '~' syntactically denotes that r and f' are in 
the subordination relation. Since subordinate contexts are to play the part of the strict 
subordinate proofs of modal natura! deduction, we have to allow that every subordinate 
context can have its own subordinate context to an arbitrary depth. This means that things 
like T IQ) r' (g E IQl r" IQ) t:' have to count as generalized contexts. 

Given the extended set of contexts the K -import and -export rules can be expressed type 
theoretically. The K -import rule should state that from any statement with a type of the form 
DB derivable in a generalized context G, a context G IQl t: can be generated where a statement 
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of type B is derivable. This is the start of a strict subordinate proof; the subordinate context 
is empty. Furthermore any such statement with the type of the form DB, derivable the main 
context may be repeated in the subordinate context with its type in the form B (import in 
an existing strict subordinate proof). Hence the basic type theoretica! import rule is: 

. G f--A: DB 
Klmport: • 

GIQJê f-- kA:B. 

Consequently the K -export rule should say that a statement with type B derivable in the 
subordinate context may be reiterated in the main context with its type in the form DB: 

GIQJê f--A: B 
K export : ------;;-. ---

G f-- kA:DB. 

Note that in this case the subordinate context has to be empty; the proof of B must be 
categorical (all assumptions discharged). 

So far we have only discussed modal deduction in terms of types and contexts but, as 
the above rules show, there is another aspect to be considered: the proof objects. Since the 
types of the statements are changed u pon K -import and K -export it is clear that the original 
proof objects cannot be left unchanged: a proof object of type DB in the main context 
cannot simply be assumed to be an inhabitant of type B in the subordinate context. Yet 
the formulation of the K-import and -export rules suggests that there is a simple relation 
between the proof object before and after the application of the rules, the proof object (A) 
is transformed into a pro of object consisting of the original object with a function (k or k) 
applied to it. The function k 'specializes' a proof of B in all accessible worlds (i.e. a proof of 
DB) to a proof of B in one (arbitrary) world, the function k 'generalizes' a categorical proof 
of B in an arbitrary accessible world to a proof o( B in all accessible worlds. 

The use of these functions garantees that the 'modal' steps in the proof of a proposition 
are represented in its proof object. The natura! deduction pro of of the K -axiom (D(A :> 
B) :> (DA :> DB)), given in section 1.1.2, corresponds to the term >..x : D(A :> B).(>..y : 
DA.k(kx(ky))). The 'ks' and 'ks' appearing in this term signify applications of K-import 
and K -export. To illustrate the use of the modal type theoretica! rules, we prove that the 
above term is of type D(A :> B) :> (DA :> DB) (assuming that f f-- D(A :> B) : Prop and 
r f-- DA: Prop): 

1. r f-- D(A :> B) : Prop 

2. f, x : D(A :> B) f-- x : D(A :> B) 
3. f,x: D(A :> B) f-- DA: Prop 

4. f, x : D(A :> B), y : DA f-- y : DA 
5. f, x : D(A :> B), y : DA f-- x : D(A :> B) 

6. f, x: D(A :> B), y : DA IQJ ê f-- kx : A:> B 
7. r, x : D(A :> B), y : DA IQJ ê f-- ky : A 
8. r, x : D(A :> B), y: DA IQJ ê f-- kx(ky) : B 

9. f, x : D(A :> B), y : DA f-- k(kx(ky)) : DB 

(Start lemma) 
(start 1) 
(Start lemma) 
(start 3) 
(Start lemma) 

(K-import 5) 

(K-import 4) 

(appl. 6,7) 

(K-export 8} 

10. f, x : D(A :> B) f-- >..y: DA.k(kx(ky)) : DA :> DB (abstr. 4,9) 

11. f f-- Àx: D(A :> B).(>.y: DA.k(kx(ky))): D(A :> B) :> (DA :>DB) (abstr. 2,10) 
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Modal Pure Type Systems 

We now give a forma! definition of the 'modal' type systems. They will be called Moda/ Pure 
Type Systems (MPTSs), and they differ from PTSs in three respects: 

Additional (modal) terms 

A generalized notion of context 

Additional (modal) rules 

We will start by giving definitions of these extensions. First the set of pseudoterrus has to be 
extended with 'modal types' (OT) and 'modal proof terms' (kT, ÎcT). 

1.2.6. DEFINITION. Pseudoterms 
ForS some set, the set of pseudoterms overS, T is 

T ::=SI VarlilVar: T.T)I(>. Var: T.T)jTTIDTikTIÎcTIC, 

where Var is a countable set of variables, and C is a countable set of constants which wil! be 
used to deal with ' logica! axioms'. 

The extended notion of context in MPTS is defined starting from the PTS-definition of 
pseudocontext. 

1.2. 7. DEFINITION. Generalized contexts 

(i) A dec/a ration is a judgement of the farm x : A, where x is a variabie and A a pseudoterm 

(ii) A pseudo-context is a finite ordered sequence of declarations (x : A), all with distinct 
subjects: x1 : A1, ... , Xn : An. The empty context is denoted byE. If 
r = Xl : Al, .. . ' Xn : An then r, x : B = Xl :Al, . . . , Xn : An, x : B 

(iiia) A generalized pseudo-context is a finite ordered sequence of pseudo-contexts and sepa
rators IQ!, in which all variables accuring as subject are different: G = r1 IQJ • • • IQJ r n 

If G =XI: A1, ... IQJ •• • IQJ Xm: Am, ... ,xn: An 
then G,x: B =XI: Al,··· IQ) ••• IQlxm: Am, ... ,Xn: An,X: B, 
and G l!:ll é: = Xl : A1, ... !bi ... IQ) Xm : Am, ... , Xn : An l!:ll é: 

(iiib) Alternatively an inductive definition of thesetof generalized pseudo contexts 9 can be 
given based on the set 0 of PTS-contexts: 9 = 0 I 9 IQl 0 

We take r, r', ... to be ranging over 0 and G, G', ... to range over 9. 

Given the following notational device, we can complete the definition of MPTSs. 

NOTATION. G f- A : B : C means G f- A : B and G f- B : C. 



1.2. MODAL PURE TYPE SYSTEMS 27 

1.2.8. ÜEFINITION. Modal Pure Type Systems 
A Modal Pure Type System with (3-conversion, MPTS13, is given by a set Sof sorts containing 
Prop,Set, and Type, a set A Type CS x Softyping axioms, a set ALogic CC x Tof logica[ 
axioms, and a set n c S x S x S of rules. The MPTS that is given by S , A and n is denoted 
by D.Xt~(S,A, R) and is the typed À-calculus with the following deduction rules: 

( axiom) E 1- s1 : s2 if s1 : s2 E A type E 1- C : A : Prop if C : A E A Logic 

Gt-A:s 
(start) -=c---,-------,

,x:AI-x:A 

GI-A:B Gt-C:s 
( weakening) 

G, x: C 1- A : B 

( ) G 1- A : Sl G' x : A 1- B : S2 
product 

G 1- (ITx : A.B) : s3 

( I. . ) G 1- F : (llx : A.B) G 1- a : A 
app ~catwn G B[ ] 1- Fa: x:= a 

( b . ) G, x: A 1- b: B G 1- (ITx : A.B) : s 
a stractwn 

G 1- (>.x: A.b): (llx : A.B) 

G 1- A:B 
(con version) 

G 1- B': s 

G t- A: B' 

(b . ) G t- A : Prop 
oxmg 

G 1- DA: Prop 

( transfeTI) 
GIQi t: I-A: s 

Gt-A:s 

G t- A:B:Type 
( transfeT2 ) G 1- A B 

IQ) E : 

G 1- A: B : Set 
( transfer3) G IQ) E t- A : B 

G 1- c : A : Prop 
(transferax) 

GIQit:l-c:A 

(K . ) G 1- A : DB : Prop tmport _ 
G IQ) E t- kA: B 

(K ) G IQJ E 1- A: B : Prop 
export , 

G t- kA : DB 

B=t~B' 

where s ranges over thesetof sorts S, c over thesetof constauts C, x ranges over variables, 
and it is assumed that in the rules (start) and (weakening) the newly declared variabie x is 
always fresh, i.e. that is it has not yet been declared in G. 
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The rules up to converswn are familiar, they are the PTS-rules stated for generalized 
contexts ( G). This means that the original rules for type derivation hold in all subordi
nate contexts regardless of their 'modal depth', just like the propositional deduction rules in 
DPROPfitch holdinall (strict) subordinate proofs. 

The K -import and K -export rule are defined somewhat differently than in the previous 
section. For both rules we additionally demand that the type of the premiss (DB for import, 
B for export) is itself of type Prop. In this way the K-export rule together with the boxing 
rule ensures that no terms are 'modalized' other than terms of type Prop. Formulating the 
K -rules like this also facilitates the proofs of meta-theoretical properties of MPTSs. 

The import and export rules deal with the transport of statements A : B : Prop between 
main and subordinate context, where the term A represents a pro of of the proposition B. 
For these statements, reiteration is restricted in a modal system. However, besides these 
proof/proposition statements there are many other kinds of statements in MPTSs. The 
transfer-rules makesure that all of these can be reiterated freely in all subordinate contexts. In 
this way any derivable statement that a certain term (A) is asetor a proposition (A : Set, A: 
Prop), will be derivable in a subordinate context by means of transfer!. Likewise transfer2 
makes predicates (A : B --> Prop : TypeP) available in subordinate contexts. Transfera does 
the same for elementsof sets, and transferax-rule for 'logica! axioms'. The combined effect of 
the transfer-rules is that for all terms not representing proofs in MPTSs the extra structure of 
the generalized contexts is irrelevant, they behave just like they do in PTSs9 . This corresponds 
to the meta theoretica! assumption in DPROPfitch that the language (the set of proposition 
letters) is the same for all (strict) subordinate proofs. 

In PTSs we only had axioms of the form s1 : s2, where s1. s2 E S. We shall call these 
axioms 'Typing axioms' (elements of A Type), to distinguish them from the 'Logica! axioms' 
(elements of ALogic) like the law of double negation and additional modal axioms that can be 
expressed in the type theoretica! language. 

There is noneed to formally define the use of logica! axioms in PTSs, in that fvamework one 
postulates a variabie inhabiting the axiom, e. g. x :'Va: Prop.((a :J .l) :J .l) :Ja, and adds 
this statement to the context. The axiom can then be used throughout the type derivation, 
after which it remains in the context as would an undischarged assumption. In MPTSs, 
however, it has to be ensured that the logica! axioms are also derivable in the subordinate 
context. Hence postulating an inhabiting variabie for an axiom is not enough; we also need 
a way to propagate these variables to subordinate contexts. This creates a problem: such an 
inhabiting variabie is a term representing a proof of a proposition (A : B : Prop). Therefore 
any form of 'transfer' for these axiomatic statements bring us into conflict with the basic idea 
that only terms representing proofs of propositions of a certain modal form (DB) may be 
imported into a subordinate context. 

To maintain a manageable distinction between terms for which the import and export 
rules apply (terms representing proofs) and terms for which the transfer rules apply, we 
have opted for an explicit treatment of the logica! axioms. Each MPTS has a (possibly 
empty) set of logica! axioms ALogic. The axioms all have inhabiting constants c, elements 
of a set of constants C. For instanee all 'classica!' MPTSs have the double negation axiom 
c: 'Va.((a :J .l) :J .l) :Ja as an element of ALogic. This use of constants allows us to treat 
the logica! axioms exactly like the typing axioms. Therefore the axiom-ru!e of the PTSs has 

9 See Block insertion and deletion lemma, chapter 3.4. 
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been extended by a clause declaring that the logic axioms are derivable in the empty context: 

ê f- c : A : Prop if c : A E A Logic 

A transfer rule ensures that the logica! axioms wil! be derivable in any subordinate context 
(like transfe1'J. does for the typing axioms): 

G f- c : A : Prop 
(transfer ax) 

GfQJt: f- c:A 

In analogy with the Logic Cube we now define a cube of modal type systems 

1.2.9. DEFINITION. Modal Logic Cube 
The cube of modal logica/ typed lambda calculi consists of the following eight MPTS13s. Each 
of them has 

S ={Prop, Set, TypeP, Type' } 

A Type = Prop : TypeP, Set : Type'. 

ALogic = c: ('Va: Prop.((o ::::> ..l) ::::> ..l) ::::>a) 

The rules n of an MPTS >.OS in the Modal Logic Cube are the same as those of the PTS 
>.Sin the Logic Cube, e.g. like >.PROP, >. DPROP has n =(Prop, P rop). 

>.DPROPw -------->.DPREDw 

/ / 
>.DPROP2 ------------ >.DPRED2 

>.DPROPw - - -- - - - ..... >.DPREDw 

/ / 
>.DPROP -------->.DPRED 

1.2.4. Extending the MPTSs 

Just like in modal natura[ deduction there are two options regarding the strengthening of the 
modal type systems: adding axioms and adding rules. 



30 CHAPTER 1. INTRODUCTION 

Extension by axioms 

Modal axioms can be added to the second order MPTSs (in the upper plane of the Modal 
Logic Cube) rather straightforwardly because the quantification over types (propositions) 
enables the formulation of axiom schemes in the type theoretica! language: 

cd : (Va: Prop.(Da :l --,0--,a)) 

Ct : (Va: Prop.(Da :la)) 

Cb : (Va: Prop.(a :l 0--,0--,a)) 

c4 : (Va: Prop.(Da :l DDa)) 

c5: (Va: Prop.(•Da :l 0--,Da)) 

To obtain a deduction system for normal modal logies extending K, one or more axiom 
schemes (along with an inhabiting constant) are added to thesetof logica! axioms ALogic. The 
rules axioms, weakening and transferax wiJl then make sure that these schemas ;l.re derivable 
on any generalized context10 . 

During the deduction the needed axioms can be derived from these schemas by means 
of the (VE)-rule, for instanee to prove A from the assumption DA in a context r using the 
axiom schema T: 

1. r,x: DA 1- x:DA 
2. r,x: DA 1- Ct : Va : Prop.(Da :l a) ( axiom) 
3. r,x: DA 1- A: Prop (A: PropEr) 

4. r,x: DA 1- CtA : (DA :l A) 
5. r,x: DA 1- (ctA)x: A 

Hence, this extension works just like the Fitch-style extension by axioms with one differ
ence: instead of writing an axiom at any point in a proof, an axiom schema may be written 
at any point in a proof. 

Extension by rules 

The extension of a MPTS by means of rules to accommodate normal systems stronger than 
K is completely analogous to the extension by rules of the Fitch-style deduction: extra rules 
are given for the import and export from statements into, respectively out of, the subordinate 
context. Again a single import rule for each of the axiorns 4, 5, and B, a single export rule 
for the axioms D and T . Each of these rules introducesits own function, a 'check'-function 
fortheimport rules and a 'hat'-function for the export rules (we add 4TjSTibTidTjtT to 
the setTof pseudo terms), introducing a new conneetion between proofs in the main context 
and the subordinate context. 

G 1- A : DB : Prop 
4 import : G l!:ll ë 1- 4.A : DB 

10See proof of Start-lemma chapter 3 
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From axioms to rules 

G 1- A : ....,oB : Prop 
5 import : G l1dl ê 1- SA : ....,oB 

G 1- A : B : Prop 
Bimport: ------~~--~~ 

G g:jj ~:: 1- bA : ....,o....,B 

G !:'.iJ t: 1- A : B : Prop 
D export : ------.....----------'

G 1- dA: ....,o....,B 

G § ê 1- A : B : Prop 
T export : G 1- tA : B 

31 

For each of the modal axioms inhabited by constauts in the extension by axioms, we can find 
an inhabitant in the extension by rules. For the 4, 5 and B axiom, this inhabitant is derived 
using the corresponding import rule in combination with K-export. We show this for the 4 
axiom: 

1. a : Prop, x : Da 1- x : Da 
2. a: Prop, x: Da § t: 1- 4x: Da (4-import 1) 

3. a: Prop, x: Da 1- k(4x): DDa (K-export 2) 

4. a: Prop 1- >.x: Da.k(4x): Da :::> DDa 

5. t: 1- >.a: Prop.(>.x: Da.k(4x)): Va: Prop.(Da :::> DDa)) 

The D and T axioms are proved using the corresponding export rule in combination with 
K -import. For instanee the T -axiom: 

1. a : Prop, x : Da f- x : Da 
2. a : Prop, x : Da IQJ t: 1- kx : a 

3. a: Prop, x: Da 1- t(kx): a 

4. a : Prop 1- >.x: Da.t(kx): Da :::>a 

5. é 1- >.a : Prop.(>.x: Da.t(kx)): Va : Prop .(Da :::>a)) 

(K -import 1) 

( T -export 2) 

If we distinguish between the two extensions by indexing the derivation sign ('1-"'" for 
extension by axioms, 'I-ru' for extension by rules), the situation can he summarized as follows: 

G 1-ax M : <p => G 1-ru M : <p, where M is obtained from M by substituting 

>.a: Prop.(>.x : Da.k(4x)) for all occurrences of c4, 

>.a: Prop.(>.x: ....,oa.k(5x)) for all occurrences of es, 

>.a: Prop.(>.x: a.k(bx)) for all occurrences of eb , 

>.a : Prop.(>.x : Da.d(kx)) for all occurrences of CJ, 

>.a: Prop.(>.x: Da.t(kx)) for all occurrences of c1 • 
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From rules to axioms 

To get from rules to axioms, we must know how the additional import and export rules can 
he 'mimicked' using the axiom schemasin ALogic and the K-rules. 

For the import rules, this can he done using the corresponding axiom schema and K
import. For instance, 5-import: 

1. G I- M: --.DA: Prop 
2. G I- es: (Va: Prop.(-.Oa :::J 0--.0a)) (5-axiom) 
3. G I- A: Prop 
4. G I- csA : (OA :::J 0--.0A) 
5. G I- csAM: 0--.0A 

6. G IQl é I- k(csAM): --.OA (K -import 5) 

To achleve the effect of 5-import on M : -.OA, we first derive an A-instance of the 5-
axiomschema (lines 2-4). By applying it with M : --.OA, we obtain a term of type O·OA. 
This statement is of the right form to apply K -import, and that yields the desired result: a 
term, hased on M, of type ..,oA on context G IIlJ é. Hence k(csAM) is the 'axiomatic version' 
of SM. Note that the axiomatic term corresponding to SM depends on the type of M, since 
the axiom schema has to be instantiated with the correct type for the ahove derivation to 
work. 

To mimic the export rules, we need K -export and the corresponding axiom schema. For 
example D-export: 

1. G IQ! é I- M : A : Prop 

2. G I- kM :OA (K-export 1) 
3. G I- cd : (\fa: Prop.(Oa :::J ..,o--.a)) (D-axiom) 
4. G I- A: Prop 
5. G I- cdA : (OA :::J --.0--.A) 

6. G I- (cdA)(kM): -.0--.A 

Here we first apply K-export, resulting in a proof of OA in context G, and then perfarm ':::J

elim' with an A-instance of the D-axiom. Hence the axiomatic version of dM is ( cdA)(kM) 
for M of type A. 

Therefore, we have the following relation between terms in the extension hy rules and 
terms in the extension hy axiorns: G I-"' M : cp => G 1-= M : cp, where M is ohtained 
from M by substituting 

k(c4 AM) for all occurrences of 4M, where M : OA, 

k(csAM) for all occurrences of SM, where M: --.DA, 

k(cbAM) for all occurrences of bM, where M: A, 

cdAM(kM) for all occurrences of dM, where M: A, 

c1AM(kM) for all occurrences of tM, where M: A. 

Tagether with the suhstitution given earlier, this implies that the extension hy axioms 
and the extension by rules are equivalent in the sense that for every inhahited type in the 
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extension by rules we can find an inhabitant in the extension by axioms and vice versa. Note 
that this 'equi-inhabitability' does not yet give us a bijeetion between inhabitants in the two 
extensions11 . 

In this thesis we concentrate on two MPTSs from the Modal Logic Cube: >..DPROP2 for 
the interpretation of modal propositionallogics and >..DPRED2 for modal predicate logies. 
As defined, both systerns correspond to the basic normal modal (propositionaljpredicate) 
logic K. For normal modal logies KS1 ... Sn, we simply add the conesponding axioms or 
import/export rules. 

11 lt can be shown that ( M ) is equal to M and that (M) is equal to M, but o nly modulo _...,.~ and some 

modal reductions on terms tha t will be discussed in chapters 2 and 3. 
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Chapter 2 

Interpreting modal logic 

Following [Geuvers 1993), we map modal logic to typed À-calculus by first defining a: typed 
system (AL) as close as possible to the originallogic (L) and then showing that this system 
is equivalent to the systelll (ÀL) in the Modal Logj.c Cube. . 

However, we cannot use the original Fitch-style formulation of modal propósitionallogic 
DPROPfitch since it has classica! propositional logic underlying it. In the standard inter
pretation of non-modal first order (intuitionistic as well as èlassical) propositional logic, the 
Cube system ÀPROP2 is used. It corresponds to second order intuitionistic propositional 
logic. The quantification over propositions makes it possible to define the usual propositional 
connectives /\,V, and .-., in terrus of. ''v'' ·and ':)', and to express the double negation law as 
an axiom. 

Therefore we wiJl start the mapping by reformulating our modal logic as a second order 
intuitionistic logic DPROP2 and then follow the path: 

DPROPfitch =? DPROP2 # ADPROP2 # ÀDPROP2 

to the MPTS ÀDPROP2 through the intermediate system ADPROP2 (where the =? is the 
conservativity of DPROP2 over DPROPfitch)· 

The structure of the chapter follows that of the mapping, the syst~ms are introduced 
following the arrows from left to right. The chapter doses with a discussion of the possibilities 
for proof reductions in the modal typed lambda calculus system. 

2.1. DPROP2 

As in the Logic Cube, we move to second order intuitionistic logic to interpret modal (classica!) 
propositional logic. This logic will be defined in a typed lambda calculus manner. The 
difference with presentation in [Geuvers 1993] is that we wil! be using Fitch-style instead of 
Gentzen-style deduction rules. 

2.1.1. DEFINITION. Language 

1 The domain is 
V::= Prop, 

2 The terms of the second order language are the following elements of Prop: 

35 



36 CHAPTER 2. INTERPRETING MODAL LOGIC 

- There are countably many variables of domain Prop 

- If ep E Prop, x a variabie of domain Prop then ('<lx E Prop.ep) E Prop, 

- If epEPropand 1/J E Prop, then ep:::) 1/J E Prop 

- If ep E Prop, then Dep E Prop 

We adopt the terminology of [Geuvers 1993] and understand terms to denote the set of 
all expressions in the language of the system. The set of formulas is a subset of terms: all 
terms that are an element of Prop. Since Prop is the only domain in DPROP2, formulas and 
terms coincide for this logic. However, we wil! need the distinction later on, when we move 
to modal predicate logic. 

In addition to terms and formulas, we need a third category of expressions: a notification 
is an expression of the form t E D, where t is a term and D a domain of the logic. Since 
DPROP2 has Prop as its only domain, notifications in this logic are of the form ep E Prop, 
where ep is a formula. Notifications are needed to deal explicitly with the variables and terrns 
involved in 'V-intro and '<1-elim rules (to he defined below) in the natura! deduction proofs. 

The other logica! connectives featuring in DPROPfitch are definable in DPROP2 using ''V' 
and ':::>' (where ep and 1/J are formulas): 

ep/\'1/J .- '</x E Prop.(cp:::) (1/J:::) x)):::) x, 

epV'IjJ .- '</x E Prop.(ep:::) x):::> ((1/J:::) x):::> x), 

_l_ '</x E Prop.x, 

•ep .- ep :::) _l_ , 

In the same way the existential quantifier and the diamond operator can he defined: 
3x E Prop.ep := 'Vy E Prop .('Vx E Prop.ep :::> y) :::> y, <>ep := (Dep :::) _i) :::) L 

The underlying propositionallogic of DPROP2 is second order intuitionistic logic. This 
requires two modifications of the deduction rules given for DPROPfitch (classica! first order 
logic): we need quantification rules for the propositional variables, and a wà.y to deal with 
the 'classica!' elimination of double negation (the •-elim rule in DPROPfitch)· 

Quantification will be treated using 'explicit declaration' of propositional variables. This 
means that in the 'V-intro rule the propositional variabie (over which the quantification is to 
take place) is first introduced as an assumption with its own hypothesis interval. Likewise 
in the '<1-elim rule, the term with which the '<1-formula is instantiated is derived befarehand 
(by means of the new term-rule). This approach brings out the similarity between the 'V- and 
:>-rules, taking us closer to typed À-calculus. It is comparable with the ' x-genera! proofs' of 
Fitch ([Fitch 1952]) and with Nederpelts 'flag deduction' ([Nederpelt 1977]), and avoids the 
'free occurrence administration' of the ' implicit' rules used in [Van Westrhenen et al. 1993]. 

Using the second order quantification, we can express the double negation rule ( •-elim) 
as an axwm: 

'</x E Prop.((x :::> _i) :::) _i) ::>x 
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A rule is added to ensure that this axiom is instantly derivable anywhere in a proof. 

The definition of proof figure of DPROP2 is the same as for DPROPfitch , with the difference 
that we now write expressions from the second order language in the proof figures. 

2.1.2. DEFINITION. Deduction rules 

For ep and 'Ij; formulas of thesecondorder language the Fitch-style deduction ru/es of DPROP2 
are: 

-:)-intro :J-elim 

ep 

\;/-intro V'-elim 

I ~ EProp 

V'x E Prop.ep 

tE Prop 

V'x E Prop.ep 
ep[ t J x] 

K-import 4-import 

Dep Dep 

D D 
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5-import B-import 

0 0 

D-export T-export 

I. T. 
Orp 

reitemtion 

term axwm 
tE Prop Vx E Prop.((x :::) ..L) :::) ..L) :::) x 

2.1.3. DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1, n], formulas and notifications F1, . .. , Fn and 
hypotheses intervals H. A formula or notification E is the result of an application of deduction 
rule R, if E is the condusion of R, the premisses of R preeede E, and one of the following 
conditions is met: 

1 RE {V-elim, :::)-e/im)}. 
In this case the premisses and the condusion E all !ie in the same interval. The order 
in the which the premisses appear may differ from the one given in the table. 

2 R =:>-intro. 
There has to be a hypothesis-interval [k, l] E H, such that Fk = rp and F1 = 1/J. The 
condusion E = rp :::) 1/J and the interval [k, IJ have to !ie in the same interval. 
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3 R = '<I-intro. 
There has to be a hypothesis-interval [k, IJ EH, such that Fk =x E Propand F1 = ep, 
where x is fresh variabie (x does not occur in F1 , . . . , Fk-d- The condusion 
E = '<lx E Prop.ep and the interval [k, I] have to !ie in the same interval. 

4 R = reiteration. 
If the premiss A lies in the interval I E I U { D} and the condusion E = A lies in the 
interval JE I U{D}, then it has to be the case that (J Ç I) I\•3K E M.(J C K Ç I) Or, 
in terms of modal depth: the first coordinate of gr(A) is equal to the first coordinate 
of gr(E), and the second coordinate of gr(A) is smaller than or equal to the second 
coordinate of gr(E). 

5 R =term. 
If t is an element of terms the condusion E = t E Prop may !ie in any interval I E I. 

6 R = axiom. 
The condusion E = '<lx E Prop.( x :::> .l) :::> .l) :::>x may lie in any interval IE I . 

7 R = K import . 
If the premiss Dep lies in interval I E I and the condusion E = ep lies in the interval 
J E I, then it has to be the case that the interval J C I and there exists exactly one 
K E M such that J Ç K C I. Or in terrns of gr: the first coordinate of gr(E) is the 
first coordinate of gr(Dep) + L 

8 R = K export. 
If the premiss ep lies in interval I E M and the condusion E = Dep lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J . 

9 R = 4 import. 
If the premiss Dep lies in interval I E I and the condusion E = Dep lies in the interval 
J E I, then it has to be the case that the interval J C I and there exists exactly one 
K E M such that J Ç K C I. Or in terrns of gr: the first coordinate of gr(E) is the 
first coordinate of gr(Dep) + 1. 

10 R = 5 import . 
If the premiss •Dep lies in interval I E I and the condusion E = •D<p lies in the interval 
J E I, then it has to be the case that the interval J C I and there exists exactly one 
K E M such that J Ç K C I. Or in terms of gr: the first coordinate of gr(E) is the 
first coordinate of gr(Dep) + 1. 

11 R = B import . 
If the premiss ep lies in interval I E I and the condusion E = • D• <p lies in the interval 
J E I, then it has to be the case that the interval J C I and there exists exactly one 
K E M such that J Ç K C I. Or in terms of gr: the first coordinate of gr(E ) is the 
first coordinate of gr(Dep) + 1. 

12 R = D export. 
If the premiss ep lies in interval I E M and the condusion E = -,D-,ep lies in the interval 
J E I , then it has to be the case that the interval I lies in the interval J . 
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13 R = T export. 
If the premiss rp lies in interval I E M and the condusion E = rp lies in the interval 
J E I, then it has to be the case that the interval I lies in the interval J . 

Clauses 5 and 6 are meant to ensure that terms and the double negation axiom may be written 
at any line in a proof tigure without further justification (cf. [Fitch 1952]). 

Note that in this system each import-rule itself allows import 'over' any number of as
sumptions (hypothesis intervals) lying inside the modal subordinate proof. The import-rules 
of DPropfitch are a special case under this formulation. 

2.1.4. DEFINITION. Derivation without hypotheses 
A derivation of a formula Cis a prooffigure D with interval D = [1, n] and formulas F1, ... Fn , 
that satisfies the following conditions: 

1 Fn=Candgr(n)=(O,O); 

2 every formula or notification F; ( 1 ~ i ~ n) is a hypothesis or the result of the application 
of a deduction ruleon a number of formulas or notifications preceding F;. 

2.1.5. DEFINITION. Derivation with hypotheses 
A derivation of a formula C from the formulas P1, .. . , Pm(m ~ 1) is a proof tigure D with 
interval D = [1, n] (n > m) and formulas F1, . .. Fn, that satisfies the following conditions: 

1 F; = P; is a hypothesis for 1 ~i~ m, such that gr(i) = (0, i); 

2 Fn = C, and C and Pm !ie in the same hypothesis-interval, where gr(n) = (0, m); 

3 every formula or notitication F;(1 ~ i ~ n) is a hypothesis or theresult ofthe application 
of a deduction ruleon a number of formulas or notifications preceding F;. 

Derivability is a property of formulas, not of notifications. Hence we have to restriet the 
hypotheses in the definition of 'derivation with hypotheses' to formulas: derivations in which 
assumptions like ' x E Prop' are left open should not be allowed. 

2.1.6. DEFINITION. Derivability 

1 A formula C is derivable (notation f- C) if there exists a derivation of C . 

2 A formula C is derivable from the formulas P1 , . . . P m if there exists a derivation of C 
from P1 ... Pm; notation as P1, . . . , Pm f- C. 

3 Let r Ç terms be a set of formulas. A formula C is derivable from r if there exist a 
finite number of formulas P1, . . . , Pm E r such that P1 , . .. , Pm f- C. This is written: 
r f- C. (f may be empty; notation t/> f- C iff f- C) . 
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Defined connectives 

Given the rules for V and ::l, it is easy to see that the second order definit ions of the 
other connectives are correct; the introduetion and eliminatien rules for these connectives 
in OPROPfitch are derived rules in DPROP2. We show the case for V-elim: 

<pV1/J <pV1/J 

j 

~ j' 

k 

~ k' 

x 

1. Va.(<p ::l er) ::l ((1/J ::la) ::la) ( definition i) 
2. XE Prop (term) 
3. (lP ::l x) ::l ( ( 1/J ::l x ) ::l x) (V-elim 1,2) 
j 

~ j' 

4. lf'::lX (::l-intro j-j') 
5. (1/J ::l x) ::l x (::l-elim 3, 4) 
k 

~ k' 

6. (1/J ::l x) (::l-intro k-k') 

7. x (::l-elim 5, 6) 

rule definition 

Reiteration for assumptions only 

In PTSs, contexts are ordered sequences of declarations. For these declarations an analogon 
of the reitemtion rule of Fitch-style natura! deduction holds: a deelaratien x : A is derivable 
from any context in which it occurs. Once a deelaratien is added to the context , it wil! 
remain derivable on extensions of that context. Since 'complex terms' (applications and 
abstractions) are not recorded in PTS contexts, they cannot be reiterated directly. Given a 
context on which a complex term is derivable, the complex term is derivable on extensions 
of that context but only by 'rebuilding' it on the spot from the declarations in the context 
using the type derivation rules. From the point of view of natura! deduction proofs the 
declarations in the context correspond to hypotheses. Hence in (M)PTSs reiteratien holds 
only for hypotheses, whereas in Fitch-style natura! deduction any formula may be reiterated. 
This discrepancy poses a problem, since we want to map the natura! deduction proofs of 
DPROP2 to terms of )..DPROP2 in an inductive way (based on the natura! deduction rules 
applied in the proofs). Therefore we propose to restriet ourselves to the following class of 
DPROP2-proofs in defining the mappings. 

2.1.7. DEFINITION. OK-proofs A natura! deduction proof 2: of <pin PROP2 is an OK proof 
if all reiterated formulas in 2: are hypotheses. Formally, for all ,P such that 1/J is a premiss of 
reiteratien in 2:, if F(i) = 1/J, then i = k forsome [k , Ij EH . 

Restricting the reiteratien rule to hypotheses ('h-reiteration') may seem artifical from 
the point of view of Fitch-deduction, but it does not mean that any 'proving power' is lost 
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because reiteration of other formulas ('nh-reiteration') in Fitch-style deduction can be seen 
as a derived rule: the non-hypothesis that is to be reiterated is rebuilt 'on the spot' out of 
reiterated hypotheses, using the deduction rules. Hence it is clear that for any formula <p 

provable with a natura! deduction proof L: in DPROP2, we can findan OK-proof I:' proving 

'P· 
That it is not difficult to find such a proof can be seen from the following simpleminded 

construction that eliminates nh-reiterations from proof figures. Given a nh-reiterated formula 
<p, the idea is to insert a 'duplicate' of (part of) the proof of <p (the 'proofblock' of <p) for the nh
reiterated occurrence of <p. Given that this inserted proof block contains only h-reiterations, 
'duplication' removes the nh-reiteration. We first give an example. 

2.1.8. EXAMPLE. 
1. X~'P 1. X~'P 

2. x 2. x 
3. X~'P ( reiter at ion 1) 3. X~'P (reiteration 1) 
4. 'P 4. 'P 
5. '1/J 5. '1/J 

6. 'P (reiteration 4) 6. x (reiteration 2) 

7. '1/J~<p 

8. x~ ('1/J ~ cp) 

9. (x~ 'P) ~ (x~ ('1/J ~ 'P)) 

7. X~'P ( reiteration 1) 
8. 'P 

9. '1/J~'P 

10. x~ ('1/J ~ 'P) 

11. (x ~ 'P) ~ (x ~ ( '1/J ~ 'P)) 
with nh-reiteration without nh-reiteration 

The proof on the left contains an nh-reiteration of <p in line 4. It can be eliminated by 
substituting a duplicate of its derivation from the hypotheses x and (x~ 'P) (line 2-4) for the 
reiterated occurrence of <p in line 6. This results in the proof on the right were <p (line 8) is 
proved by ~-elim from x (line 6) and x ~ <p (line 7), which are both h-reiterated. 

Before we can look at this elimation procedure in a general setting, we need definitions of 
'proof block' and 'duplication'. 

2.1.9. DEFINITION. Proof block 
The proof blockof a formula <p occurring at line i in a natura! deduction proof L: is the part 
(k, i] of the interval [k, IJ EI in which <p lies. 

Note that the interval I can be a hypothesis interval (I EH) as wei! as a modal interval 
(I EM). In both cases the proofblock of <p simply consistsof <p, and all formulas, notifications, 
and subordinate proofs that !ie in the interval I 'above' 'P· 

2.1.10. DEFINITION. Duplication 
Given a reiteration of a formula <p in a proof figure I:, duplication is the operation that 
substitutes the proof block of <p for the reiterated occurrence of <p in L: (yielding a proof I:' 
of <p ). 

The following figure shows the general format of duplication, where the proof block of 'P 
is indicated by e and the vertical lines to the right of the proof figure. 
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e =? duplication e 

tp 

reiteration i e 

tp 

By repeated duplication all nh-reiterations can he removed from a natura! deduction proof 
in DPROP2, since with every duplication the topmost nh-reiteration in the proof figure can 
he eliminated. To show this, we first make two observations. 

2.1.11. ÜBSERVATION. By duplicating the proof block (e) of a reiterated formula tp, we can 
eliminate that reiteration of tp from the proof. 

N ote that if the reiterated occurrence of tp is replaced by the proof block for tp, the last rule 
in the derivation of tp in the duplicate block is the same as in the original proof block. Hence 
the application of reiteration has been eliminated from the proof, even if the last step in the 
derivation of tp in the proof block was itself an application of reiteration. In that case it must 
have been a reiteratien of an occurrence of tp at an earlier line j < i, preceding the occurrence 
at line i. Therefore the derivation of tp in the copied proof block is now a reiteration of the 
tp in line j in stead of the tp in line i. 

2.1.12. ÜBSERVATION. If the proof block 6 of the nh-reiterated formula tp does not contain 
nh-reiterations, then duplication reduces the number of nh-reiteratons in a natura! deduction 
pro of (I: of tp) by one. 

By observation 2.1.11., the particular application of nh-reiteration is eliminated. Further
more, it is immedia te that the h-reiterations present in the proof block remain h-reiterations 
(of the same hypotheses) in the duplicate proof block. Copying the proof block can only 
create one new reiteration: if tp lies in a hypothesis interval (I EH, as in the figure above), 
the hypothesis of this interval wil! appear in the duplicate proof block. But since this is also 
a case of h-reiteration, duplication does not create nh-reiterations. Hence if the proof block 
for tp does not contain nh-reiterations, the nh-reiteration of tp is removed from the proof by 
duplication. 
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2.1.13. PROPOSITION. For every proof ~ of cp in DPROP2, there exists an OK-proof ~~ of 
the same formula in DPROP2. 

PROOF. The OK-proof~' is constructed from the given proof~ , by removing all nh-reiterations 
by means of duplication. That this is possible follows by induction on the number of nh
reiterations in ~. By observation 2.1.12. we can eliminate the first (topmost) nh-reiteration 
in ~: since this is the first nh-reiteration the proof block of the nh-reiterated formula cannot 
contain nh-reiterations, hence we can eliminate it by duplication. Note that in the resulting 
proof no nh-reiterations occurs up to and including the duplicated proof block. Therefore we 
can again apply observation 2.1.12. to the next nh-reiteration and eliminate it by duplication. 
Proceeding in this way, we subsequently remove all nh-reiterations in ~ by duplication. 

Since we can always find a natura! deduction pro of without reiterations of non-hypotheses, 
we can safely restriet the deductions in DPROP2 that are to he mapped to lambda terms to 
the class of OK-proofs. 

2.2. ADPROP2 

The typed >.-calculus ADPROP2 corresponding to the logic DPROP2 can he defined as in 
[Geuvers 1993]. Insteadof a simple context divided into an 'object part' (f) and a 'proof part' 
(.6.), the modal system will have 'generalized contexts' consisting of a series of these pairs 
ordered by separators (f1; .6.1 [QJ • • • [QJ r ni Än), and 'generalized object contexts' , a series of 
object parts (rl (Q] • • • [QJ r n). 

1 Theset of fun ctional types of A.DPROP2, Type!, is empty. Thesetof predicate types of 
A.DPROP2, TypeP, consists solely of Prop. 

2 The object-termsof the language of A.DPROP2 forma subset of the set of pseudoterms, 
T, which is generated by the following abstract syntax. 

with VarProp a countable set of object-variables. An object-term is of a certain type 
only under assumption of specific types (functional or predicative) forthefree variables 
that occur in that term. That the object term t is of type A if x; is of type A; for 
1 ::; i ::; n, is denoted by 

Xj : A1, ... , Xj : A; [QJ ••• [QJ Xj : Aj, . . . , Xn : An 1- t : A. 

Here x1, . . . ,xn are different objectvariables and At.···An are types. We ,call such a 
sequence of statements and separators a generalized object context. An object context is 
a sequence of declarations with different subjects that is not interrupted by separators 
(x1 : A1, ... , x; : A;). By letting r~, f2, ... range over object contexts, we can represent 
generalized object contexts as f 1 IQJ •• • IQJ r n· Sametimes we abbreviate even further by 
letting F, F', ... range over the set of generalized object contexts. 

The rules for deriving judgements are the following. 

(var) ifx:Propinfn r 1 IQJ • • • IQJ r n 1- x : Prop 
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( ::>) F f- cp : Prop F f- 7/; : Prop 
F f- cp :::> 7/J : Prop 

(V') F, x :Prop f- cp: Prop 
F f- 'fx : Prop.cp: Prop 

(D) F f- cp : Prop 
F f- Dep: Prop 

F f- cp: Prop 
(transfer) F f- P 

IQ) é" cp : rop 

Besides the usual rules, stated for generalized object contexts, we have the (0)-rule which 
allows us to modalize every formula rp, and (transfer) which allows us to use any non-proof 
term derivable on a generalized object context F on arbitrary (deep) subordinatecontextsof 
F. 

3 The set of proof-terms is a subset of the set of pseudoproojs, Pr, generated by the 
following abstract syntax. 

Pr ::= VarPr [PrPr[PrT[Àx : 1)pe.Pr[Àx : T.Pr [k Pr[4Pr[5Pr[bPr[kPr[dPr[tPr[C, 

where VarPr is the set of proof-variables and C is the set of constants. 

That the proof term M is of type A if Pi is of type 'Pi for 1 ~ i ~ I is denoted by 

where the r1, ... , r n are as in 2, Pl> ... PI are different proof-variables and 

We call such a sequence of statements and separators a generalized context. A proof 
context is an uninterrupted sequence of declarations with different proof variables (Pt : 
'Pl, ... , Ph : 'Ph) · By letting ~1 , ~2, .. . range over object contexts, we can represent 
generalized contexts as r1; ~t IQJ ••• IQJ r ni ~n· We let G, G', ... range over the set of 
generalized contexts. 

The rules for the derivation of judgements are the following 

( . ) G,p:cp f- M: 7j; 
::> mtro 

G f- Àp : cp.M : cp ::> 7/; 

( elim) G f- M : cp ::> 7/; G f- N: cp 
::> G f- MN: 7/; 
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(K . ) G I- M: D<p (:Prop) 
tmport -

GIQlt:;t:l-kM : <p 

( . ) G I- M : D<p (: Prop) 
4 tmport _ 

G IQl t:; c I- 4M : D<p 

( . ) G I- M:..,D<p(: Prop) 
5 tmport _ 

G IQl t:; t: I- 5M : -.D<p 

( B . ) G I- M : <p (: Prop) 
tmport -

G ~ t: ; c I- bM : ..,o..,'P 

(K export) 
G IQJ e: ; e: I- M : <p (: Prop) 

G I- kM: D<p 

(D export) 
G IQJc;c I- M: <p (:Prop) 

G I- dM: ..,o..,", 

G IQJ e:; e: I- M : <p ( : Prop) 
( T export) --'----..".--:-'--'--....:....:. 

G I- tM: <p 

(Doubleneg) t:; e: I- c: Va: Prop.((a :J .l) :J .l) :Ja 

( m... f ) G I- c: Va: Prop.((a :J .l) :J .l) :Ja 
n-ans er~~ (( 

Gl!:ilt:; t: I- c:Va:Prop. a:J.l):J.l):Ja 

Besides the import and export rules, we need two extra rules to ensure that the double 
negation axioms holds on every generalized context: (Doubleneg) states that the axiom is 
derivable on an empty context, and by means of (Transfer~~) it can be brought to any 
subordinate context. 

We now list some meta-theoretical properties of ADPROP2 that will be of use in proving 
properties of the mappings. These properties hold for all MPTSs in the Modal Logic Cube, 
and we will prove them for all systems at once in the next chapter. 

2.2.1. FACTS. Let G 1- M: <p, where G = rl; ~1 IQ] •• • IQ] r ni ~n (and F = rl IQ] • • • IQ] r n) 
be derivable in ADPROP2. We have the following properties. 

1 Permutation: If for all i, 1 $ i $ n, r; is a permutation of r; and ~i is a permutation 
of ~i, then r; ; ~; IQl ... IQl r~; ~~ I- M: <pis also derivable. 

2 Substitution: If f; contains x: A and f 1 IQJ . . . IQJ f; 1- t: A then 
f1; ~l iQJ ... IQl f;/(x: A); ~i(tjx]IQJ G'[tjx] I- M [tjx]: <p[t/x] is also derivable, where 
G'[tjx] = f;+l[t/x]; ~i+l [t/x] .. . IQl r n[t/x]; ~n [tjx]. 

3 Thinning for generalized object contexts: If for all i, 1 $ i $ n, r; ;2 f; with r; object 
contexts and all object-variables occurring as subjects in f].IQJ ... IQJ r~ are different, 
then f].lQJ . .. IQJ r~ 1- M : <p is also derivable. 

Thinning for generalized contexts: If for all i, 1 $ i $ n, fj ;2 f; with fj object 
contexts and ~i ;2 ~i, ~i proof-contexts and all object and proof variables occurring 
as subjectsin f].; ~J. IQl ... IQJ r~; ~~are different, then r;; ~].IQJ . . . IQJ r~; ~~ I- M: 'P 

is also derivable. 
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Note that for a generalized object context F, the combination of Thinning with the 
transfer rule makes it possible to derive any term <p : Prop on F from the fact that it is 
derivable on a 'prefix' of F(=: r~ IQl .. . IQJ r; where 1 :::; i :::; n and rj ç; ri for 1 :::; j :::; i). 
We call this Strong Thinning. 

4 Ciosure or Subject-reduction: If M -»13 M', then G f- M': <p is also derivable. 

5 Stripping or Generation: 

r 1 IQJ . . . IQJ r n f- x :Prop (x an object variable) => 
x : Prop E r; for some i, 1 :::; i :::; n 

F f- <p ::l 1/J : Prop => F f- <p : Prop and F f- 1/J : Prop 

r1 IQJ .. . IQJrn f- Vx: Prop.'I/J: Prop => 
r1 IQJ ... IQJ r n, x : Prop f- 1/J: Prop 

F f- Dep : Prop => F f- cp : Prop 

r1; bo1 IQJ . . . IQJ r n; bon f- p: cp (p a proof variable) => p: <p E bon 

f1; bo1 IQJ ••• ~ f n; bon f- .Àx : Prop.M : cp => 
rl;bol IQ) ••• IQlfn,X : Prop; bon f- M: 1/J 
with <p =: Vx : Prop.'I/J for some 1/J 

f1; bo1 !QJ • •• ~ r n; bon f- .Àp: x.M: cp (x a proposition) => 
rl ; bol[QJ .. . IQJrn;bon,p:x f- M:1/Jwithcp=:x::l1/Jjorsome1/J 

G f- MN : cp ( N a prooi) => G f- M : 1/J ::l x and G f- N : 1/J 
with <p = x for some 1/1, X 

f1; bo1 l!:ll • • • l!:ll r n; bon f- Mt: cp (t an object) => 
f1;bo1 IQJ . . . IQJrn;bon f- M: Vx: Prop.'I/J, and f1 IQJ ... !QJ fn f- t: Prop 
with <p =: 1/J[t/x], forsome 1/J,cp 

G f- kM : cp (M a prooi) => G =: G' IQJ f; bo and G' f- M: 01/J where 1/J =: cp 

G f- 4M : cp (M a prooi)=> G =: G' IQJ f; bo and G' f- M: 01/J where 01/J =: cp 

G f- SM : cp (M a prooi)=> G =: G' IQJ f; bo and G' f- M: --,01/J where --,01/J =: cp 

G f- bM : cp (M a prooi) => G = G' IQJ f; bo and G' f- M: 1/J where --,0--,1/J := cp 

G f- kM : <p (M a prooi) => G IQJ E f- M : 1/J where 01/J = cp 

G f- dM: <p (M a prooi) => G lQI E f- M: 1/J where --,0--,1/J =: cp 

G f- tM : <p (M a prooi) => G lQI E f- M : 1/J where 1/J =: cp 

G f- c : <p => <p =Va: Prop.((a ::l .i) ::l .i) ::la 

2.3. Mapping DPROP2 to ADPROP2 

To an OK-deduction of 'PI, ... , 'Pn f- 1/J in OP ROP2 we are going to associate an object
context r and a proof-term M such that f; Pl : 'Pl, ... , Pn : 'Pn f- M : 1/J. 

In order to make M a faithful representation of the deduction in DPROP2, r should 
assign types to all the free term-variables in the deduction that are not 'bound by a V' at any 
later stage. 
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2.3.1. DEFINITION. Term-contexts 
For every term tof the language of DPROP2 wedefine a context ft such that ft f- t : D 
(in ADPROP2) if t E D (in DPROP2), as follows 

t =' XProp =} ft:= xProp: Prop, 

t=~.p-:J 'I/J =} ft:= f"' u f "' 
t =\:/x E Prop.i.p * ft:= f "' /{x : Prop) 

t =' Di.p =} ft :=f<p 

This definition is correct in the sense that every term t is derivable on 'its' context: 

2.3.2. LEMMA. Term-context lemma 
For all terms tE Prop of DPROP2, ft f- t: Prop in ADPROP2. 

PROOF. By induction on the structure of the term. 

The mapping does not use the annotation of the proof figures, but some indexing is needed 
to link the hypotheses to variables in A DPROP2. 

2.3.3. CONVENTION. lndexing 

Hypotheses (propositions as well as variables) are numbered consecutively, reading the 
proof tigure top to bottorn 

Reiterated formulas receive the index of the hypothesis they are a reiteration of 

In this way all formulas with a trivia! proof {hypotheses and reiterations of hypotheses) wiJl 
have a unique index as wil! the proof- and object-variables assigned to them by the mapping. 

The OK-deductions in DPROP2 are mapped toa term/object-context {f), proof-context 
(~) and a term (M) in ADPROP2 by an inductively defined mapping, '!'. This mapping con
structs a ADPROP2-term 'from the inside out': starting from the condusion it inductively 
works its way upward through the pro of figure guided by the last applied deduction rule until 
a formula with an 'atomie' proof is reached. In the OK-proofs these formulas without further 
justification are (reiterations of) assumptions, terms and axioms. During the deconstruc
tien each !-step generates a corresponding typetheoretical 'inference rule ', for which we have 
enough information to determine the types. The contexts and proof terms in these inference 
rules can only be determined after the formulas with atomie proofs are reached. ! maps these 
directly to object- and proof-variables and starting from these 'atomie' proof terms we move 
back down the chain of inference rules to obtain the ADPROP2-term corresponding to the 
complete proof figure. 

The definition of'!' has a clause for each deduction rule of DPROP2, and in addition a 
clause to deal with derivations with hypotheses. In these derivations some assumptions are 
not discharged and '!' has to map these to the proof context. In the case for -:J-elim contexts 
are joined by means of a special union operatien 'U zip', in other cases the union 'U*' is used. 
These operations will be explained later, along with the underlinings of parts of the context 
that are introduced in some of the other cases. Finally, we assume that in an OK-deduction 
all bound variables are chosen to be different and in such a way that they differ from the free 
on es. 
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2.3.4. DEFINITION. '!', the mapping 

prop-assumption 
'Ij;' 

=} 

r .p; Pi : 1/; f- Pi : 1/; 

term 
tE Prop term 

=} 

r 1 f- t: Prop 

var-assumption 
x E Prop1 

=} 

Xi : Prop E f- Xi : Prop 

axiom 
'rio: E Prop.((o: :::J ..L) :::J ..L) :::Jo: axiom 

=} 

t:; E f- c :'rio:: Prop.((o::) ..L) :::J ..L) :) o: 

J-intro 
'Pi E 

:::J-elim 
E e 
I I 

I 
I 

tp:::J'Ij; I 

=} 

G1 f- E! : 'P :::J p G2 f- e' : 'P 

G1 U zip G2 f- E!e! : 'Ij; 

49 
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V-intro 
x E Prop; E 

'Ij; 

Vx E Prop.'lj; 

=> 

f1; b.1 IQJ .. . IQJ f n/(x;: Prop); b.n f- Àx;: Prop.L:' : Vx: Prop.'lj; 

'v'-elim 

'v'x E Prop .'I/J 

tE Prop 
'1/J[t/x] 

=> 

E 

I 

f1; b.1 IQJ ... IQJ r ni b.n f- E': Vx: Prop.p f 1 f- t : Prop 
r1u•rt;b.11QJ ... IQJfn;b.n f- E!t:'lj;[t/x] 
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K -import 4-import 
L L 

D D 

=> 
G 1- L!: Dep 

G IQ] éj E 1- k(L ) : cp 

5-import B-import 

D D 

=> => 
G 1- L!: --.Dep G 1- L! : 'P 
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K-export 
0 

O<p 

=> 

E 

I 

G (Q) t:; E 1- E! : rp 

G 1- k(E') : Orp 

hypothesis 
rp; E 

=> 
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D-export 
0 

-.0-.<p 

=> 

E 

I 

G (Q) Ej E 1- E! : rp 

G 1- d(E') : -.0-.rp 

T-export 
0 

rp 

=> 

E 

I 

G (Q) Ej E 1- r;! : rp 

G 1- t(E') : <p 

r; t:l 1- r:' : '1/J 
r u r .,.; t:l up; : rp 1- E! : '1/J 

If for E a deduction in PROP2, f; t:l 1- E' : rp is the judgement that we obtain from E 
by the definition above, we write fi; for f and /:ll: for /:l . 

2.3.5. FACTS. 

1 For E an OK-deduction in OPROP2 there is a one-to-one-correspondence between oc
currences of non-discharged formulas of E and declarations of variables to the same 
formula in /:lE. 

2 In the case for the \i-intro rule the variabie x does not occur free in the proof-context 
t:l. 

3 During every stage of applying '!' to an OK-deduction the resulting context is a gener
alized context (all statements in the context have a different object- or proof-variabie 
as subject). 

For applications of ::J-elim in the proof figure the mapping has to 'uni te' two generalized 
contexts. For non-modal propositional logic we could simply take the union of t he object
contexts (f1 Uf2) and the proof-contexts (tl1 Utl2) . However, in modal type has to deal with 
two generalized contexts which may be of different modal depth ( contain a different number 
of IQJs ). This consideration leads to an operation called zip-union, which can he understood 
as 'zipping' two generalized contexts together. 

Given generalized contexts G1 = f 1; /:l1 (Q) ••• (Q) r n; t:ln and G2 =: r~; t:l~ (Q) ••• fQJ r~ ; t:l~ 

(where n ~ m}, the idea is to first line up the contexts in such a way that their 'fQJs' are 
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(vertically) aligned starting from their rightmost r; t.-part: 

fl;fl!IQI ··· IQifn-m;fl,._m IQl . •. IQ) fn;fl,. 

r~ ; t.~ IQ) . . . IQ) r~; t.~ 
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The 'zipper' then moves from right to left, joining the corresponding f; t.-parts into new 
r; t.-parts by taking the union of the object-contexts and the proof-contexts: 

f1;fl11QJ ... IQ)fn-m;fln-m lQJ ·· • } r r' A Al r f' A Al 

r ' . A 1 ." IQ) n-jU m-j; '-"n-jUum-j IQ) . .. IQI nU m; u,.Uum 
1' LJ.1 ""' . . . 

This 'zipping' continues further to the left until the leftmost r; t.-part of the shortest context is 
reached. The proof-context t.~ is joined with the .corresponding proof-context of G1, Lln-m· 
The object-context r~ is treated differently. Statements in r~ may have been underlined 
during the application of the mapping '!'. Thesetof these statements, r~ , contains all terms 
( <p : Prop) that do not function as the hypothesis of a V-subordinate pro of in the part of the 
proof figure that is mapped to ~ - This well-typedness information could he 'in the way' 
during the rest of the proof (see example below). Therefore it is stored in the leftmost object 
context (ri) of the longest generalized context participating in the zip-union ( G1). To avoid 
'double declarations', we do not :,.dd these well-typedness statements to f 1 by 'U' but by 'u• ', 
i.e. we add only those statements in r~ that do not already occur (anywhere) in G1. The 
remaioder of r~, r~;r~, is joined to r:=m· 

2.3.6. DEFINITION. Zipping 
For two generalized contexts G1 and G2 (assuming without loss of generality that G1 _ 

f 1;fl1 1QJ ... IQifn;Lln and G2 = r~;t.~ IQI .•• IQif~;t.~, where n ~ m) 

where r~ is the set of all statements in r; that have been underlined by '!'. 

2.3.7. EXAMPLE. We illustrate how '!' constructs a proofterm from a modal natura! deduction 
proof by means of a simple example. 

1. DA 1. DA 1 

2. 

i 
2. 

i 3. (K-import 1) 3. 
4. 

I ~~B 
::)-elim 2,3 4. 

I ~ ~B' 

5. (A::)BB)::)B (:)-intro 2-4) 5. (A::)BB)::)B 

6. D((A::) B)::) B) (K -export,5) 6. D((A::) B)::) B) 

The pro of figure on the left is a derivation with hypotheses in DP ROP2. Indexing it according 
to the convention given earlier yields the figure on the right to which '!' can he applied . 
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D((A :::> B) :::> B) 

'* 
f;b. I- E!: D((A :::> B) :::> B) (7) 

f; b. U Pt : DA f- E1 : D((A :::> B) :::> B) 

0 
Et 

I 

I 
I 

(A:::> B) :::> B I 
D((A:::>B):::>B) 

'* 
G IQJ e;_e ~ E\ : (A :::> B) :::> B (B) 
G I- k(Ei) : D((A :::> B) :::> B) 

The general form of the deduction proof is that of a derivation with the hypothesis DA. 
Applying the hypothesis clause maps this undischarged assumption to a proof variabie that 
is added to the proof context. The 'breakdown' of the proof is started by reducing it to a 
proof E 1 of (A :::> B) :::> B in a modal subordinate proof, and subsequently toa proof E2 of B 
under the additional assumption A :::> B. 

B 

(A:::> B) :::> B 

'* 
ft;b.tl!ll .. . IQJfn;b.ni-Eh:B 1 (5) 

ft UfA::JBib.tiQl ... 1Qlfn;b.nf(P2: A:::> B) f- ÀP2: A:::> B.E2: (A :J B) :::> B 

The proof of B is reduced to two proofs: E3 of A :::> B and E 4 of A. Proving the imported 
formula A in the modal subordinate is then reduced to proving DA, by Es in the main proof. 

A:::>B 

A 
B 

'* 
Gt I- Eh : A :::> B G2 I- E~ : A ( 4) 

G1 Uzip G2 I- EhE~ : B 

DA 
0 

'* 

A 

G I- E~ : DA (2) 
G gj E j E f- k(E~) : DA 
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A ::::> B and DA have atomie proofs. They are bath assumptions of the natura! deduction 
proof, and consequently '!' maps them to proof variables. 

"E3 =A::> B2 
=} 

"Es=DAl 

=} 

f üB; P2 : A::::> B r P2 : A ::::> B (3) foA ;Pl: DA r Pl: DA (1) 

From these fust type theoretica! statements, we move back through the clauses and obtain 
a term for the proof figure: 

1. foA;Pl: DA r Pl : DA 

2. foA;p1:DA!Olê;ê r kp1:A 
3. f A::JB; P2 : A ::::> B r P2 : A ::::> B 

4. foA U f A::lB; Pl : DA IQl ê; P2 : A :J B r P2(kp1) : B 

5. foA U f A::lB; P1 : DA IQJ ê; ê r >.p2 : (A ::::> B) .p2(kp1) : (A ::::> B) ::::> B 

6. foA U f A::lB ;Pl: DA r k(>.p2: (A :J B).p2(kp1)) : D((A :J B) ::::> B) 

7. foA U f A::JB; Pl : DA r k(>.P2 : (A ::::> B).p2(kp1)) : D((A ::::> B) ::::> B) 

In the application of inference rule 4 (line 4), contexts of different modal depth are 'zipped' 
together. The term kp1 proves the imported version A of the global assumption DA on the 
generalized context f oA; p1 : DA IQJ ê; ê, whereas P2 proves the local assumption A ::> Bon the 
'simple' context f A::lB; P2 : A ::::> B. Zipping these contexts tagether (starting from the right) 
yields a generalized context in which the 'scope' of the assumptions is correctly maintained: 
the proof variabie P2 which is local to the subordinate context ends up to the right of the 'IQ)'. 

The object context r A::lB has been underlined by the mapping and is hence referred to the 
leftmost object context, leaving an empty subordinate object context. This is important, since 
after the discharge of the assumption A ::::> B (5) the subordinate context is completely empty 
(ê; ê), which makes it legitimate to apply the export rule to obtain the rnadal conclusion. 

Note that the final (hypothesis) rule, 7, makes no difference: the statement P2 : A ::> B 
is already presented in the object context. The rule only alters the context when it adds a 
statement corresponding to an hypothesis that is not used in the derivation. 

In the proof of soundness of '!' we need the property that typability is preserved under 
'zipping': if a proof term is derivable on a generalized context C, it is derivable on all 
generalized contexts obtained by 'zipping' C with another generalized context. 

2.3.8. LEMMA. Zip-lemma for proofs 
Assuming {without loss of generality) that C1 := f1; .6.1 IQI • •• IQI r n; Lln and 
C2 := r~; Ll~ IQI • • • IQI r~; Ll~, where n ~ m, we have jor all generalized contexts C1, C2 such 
that C1 Uz;p C2 is a generalized context, and types tp: 

PROOF. i is proved by Thinning, and ii by induction on the structure of the term M. 
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Proof of i. Suppose that that (1) G1 1- 1p: Prop, we have to show that G1 U zip G2 1- lP: Prop , 
i.e. f1U*f1;~1 IQJ ... !Qifn-mUf}/(f1)i~n-mU~1 !QJ ... Wnur:,.;~nu~:,. 1- lP: Prop . 
This followsfrom (1) by Thinning, since G1 Uzip G2 is a generalized context and: 

• rl u• r};;? rl, r n-m u f1/(f1);;? r n-m, and r(n-m)+i u r~;;? f; for all i: 1 :::; i:::; m 

• ~(n-m)+i U~~ ;;? ~i for all i : 1 :::; i :::; m. 

Proof of ii. By induction on the structure of the term (M), for all generalized contexts G1, G2 
such that G1 U zip G2 is a generalized context, and types 'P· This quantification over generalized 
contexts is needed in the modal cases, as can be seen from the case for K -import: 

M = kM1 is an import term. If f1; ~1 IQJ .. . IQJ r:,.; ~:.,. 1- kM1 : 1p, then by Stripping 
f}; ~} !QJ ... !QJ r:,._ 1; ~:.,._ 1 1- M1 : D1p. Then by IH 
f1U*f1;~11QJ ... IQJfn-mUf1/(f1);~n-mU~}IQJ .. . IQJfn-lur:.,._l;~n-lU~:n-1 1-
Ml : D1p. This is taking the zip-union of Gt/(IQJ r ni ~n) and G2/(IQJ r:,.; ~:.,.), which is 
allowed since the induction on the structure of the term quantifies over all pairs gener
alized contexts whose zip-union is again a generalized context (that G1/(!QJ f ni ~n) U 2 ;p 

G2/(IQJ r:,.; ~:.,.) is a generalized context follows from the assumption that G1 u zip G2 is 
a generalized context). Hence by K-import 
r1 u· r1;~1 IQ] ... {QJ rn-m u r1f(rD;~n-m u ~1 IQ] .. . IQ] rn-1 u r:,.-1i~n-1 u 
~:,._ 1!QJ éi g 1- kM1 : lP, 
and so by Thinning (f nU r:,. ;;? é, ~nU~:.,. ;;? g) 
f1U*f};~1!QJ ... !Qifn-mUf1/(fD;~n-mU~1!QJ ... IQJfn-lur:,._ 1 ;~n-lu~:,._ 11QJfnU 
r:,.; ~nu r:,. 1- kM1 :lP, in other words G1 U zip G2 1- kM: 'P· 

In the export cases we use the 'inductive freedom' in a similar way, by applying the lH to the 
zip-union of G1 IQ] éj g and G2 IQ] éj é. 

Now we are ready to prove the soundness of'!'. Note that the definition of derivation 
requires that all rnadal subproofs in L: have been closed, hence the ' n' of the context GE 
generated by mapping L: has to be equal to 1. 

2.3.9. THEOREM. IjL: is an OK natura[ deduction proof of lP in DPROP2, then fE; ~E I
I:! : 1p is derivable in ADPROP2. 

PROOF. By induction on the deduction L: . 

The cases for object variable, axiom, term and the modal cases are immediate by the rules of 
ADPROP2 and the Term-context lemma. The cases for reiteration, assumption and V-elim 
require Thinning. Given the Zip-lemma, the :J-elim case is straightforward. For :)-intro and 
V-intro we need Permutation, we show the case for :)-intro: 

'Pi L: 
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By IH 

We have to prove f 1 u• r "'; bo1 IQJ ••• IQJ r n; bon/(Pi : 'P) f- >.pi : 1p.E! : 'P ::> '1/J (1'). 
Given the ::>-1 rule of ADPROP2 it is sufficient to prove that 
f1 u• r "'; bo1 IQJ ••• IQJ r n; bo~,Pi: 'P f- E!: '1/J. 
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Since f1 u• r"' ::;? f1, by Thinning we have f1 u• r "'; bo1 IQJ ••• IQJ r n; bon f- E! : '1/J. What 
remains to be shown is that E! : '1/J is derivable on this context with bo~, Pi : 'P = bon, i. 
e. on a proof-context where Pi : 'P is in rightmost position. 

There are two possible cases: 

1 Pi : 'P is already an element of bon. Then by Permutation we can shuffle bon in 
such a way that it ends up in rightmost position: f1 u• r "'; bo1 IQJ ••• IQJ r n; bo~, Pi : 
'P f- E! : '1/J. 

2 Pi : 'P is not in bon. Then by Thinning, bo~ =(bon U Pi : <p) ::;? bon 
f 1 u• r "'; bo1 IQJ ••• IQJ r n; bon U Pi : 'P f- E! : '1/J. Using Permutation as in 1, 
Pi : 'P can then be brought in rightmost position. 

In both cases we end up with f1 u• r "'; bo1 IQJ ••• IQJ r n; bo~, Pi : 'P f- E! : '1/J, and so 
f1 u• r "'; bo1 IQJ ••• IQJ r n; bon/(Pi : 'P) f- Àpi : 1p.E! : 'P ::> '1/J. 

2.4. Mapping ADPROP2 to DPROP2 

In this section we define a mapping,'?', that maps lambda-terms in ADPROP2 to natura! 
deduction proofs in DPROP2. Contrary to '!' that builds a term for a proof figure 'from 
the inside out', '?' builds a proof figure reading the term 'from the outside in'. During the 
deconstruction of the lambda term each '?'-step generates a part of the proof figure until a 
variabie or a constant is reached, corresponding to an item in the pro of figure with an 'atomie' 
derivation: a hypothesis (or reiteration thereof), an axiom or a notification. 

According to the definitions of derivation and derivation with hypotheses for DPROP2 
(section 2.1), a proof figure in which the condusion is an element of a modal interval is not 
a proper natura! deduction proof. Hence '?' should yield a derivation M? of 'P in DPROP2 
for those proof terms M that are derivable on a simple context: f; bo f- M : 'P· Proof terms 
derivable on a generalized context rl; bol IQ] ••• IQ] r n; bon ( n 2: 2) can only represent part 
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of a derivation, since the IQJ's in the context indicate that at least one modal interval in the 
corresponding proof figure is left 'open' . Still we have to define '?' for generalized contexts 
G rather than simple contexts f; !:::., since processing the modal steps represented in M may 
force us to consider subordinate contexts of f; !:::. . 

Consequently '?' can be applied to any derivable proof term, and the result of its ap
plication need not he a derivation. As noted above, it may only he a 'pre-derivation': all 
items occurring in it are hypotheses or the result of applying a deduction rule to preceding 
items, but the condusion could he an element of a modal interval. In general applying '?' will 
result in a proof figure M 7 which is a pre-derivation in combination with the constellation 
of hypothesis intervals and modal intervals represented in the context ( G) on wh.ich M is 
derivable. M 7 may contain reiterations or imports of hypotheses that do not appear in the 
proof figure, but are represented in the context. 

2.4.1. DEFINITION. Pre-derivation with respect to G 
A pre-derivation of C with respect to G is a proof figure D with interval D 
formulas and notifications F1, ... F n that satisfies the following conditions. 

1 Fn = C 

[1, n] and 

2 Every formula or notification F;(1 $ i $ n) is a hypothesis or the result of the ap
plication of a deduction rule on a number of formulas or notifications preceding F; or 
represented in the generalized context G. 

In a generalized context G the proof contexts 1:::.;(1 $ i $ n) each represent a group of nested 
hypothesis intervals with formulas as hypotheses, the object contexts f;(l $ i $ n) each 
represent a group of nested hypothesis intervals with notifications as hypotheses, and the IQJ's 
each represent a modal interval. 

Even for proof terms derivable on a simple context we have to take into account that 
part of the derivation may be represented in the context. When the proof context is empty, 
f; e: f- M: cp, applying '?'wiJl result in a derivation without hypotheses of DPROP2. When 
the proof context is non-empty, f; 1:::. f- M : cp, the statements in 1:::. represent hypotheses of 
the derivation M 7 of cp. The mapping '?' wiJl not 'print' these hypotheses in the proof figure 
it constructs, since it is defined on the structure of the term. To overcome this deficiency, we 
define an additional mapping that turns the statements of (the rightmost) proof context (of 
a generalized context) into hypotheses of the proof figure that is to he constructed by '?'. 

2.4.2. DEFINITION. Proof context mapping 

G'IQJf;pl:'I/Jl, ... ,p;:'I/Ji f- M:cp => 

M• (on G'IQJ f;e:) 

tp 
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Applying this proof context mapping before '?' will result in a proof figure of the form pre
scribed in the definition of derivation with hypotheses; the hypotheses 'ljJ1 , ... , '1/Ji are declared 
in the first i lines of the proof. 

2.4.3. DEFINITION. '?', the mapping 

For any proof-term M with G f- M : cp we define by induction on the structure of M a 
pre-derivation M? of cp with respect to G as follows (where G := f 1; b..1 IQ1 •. • IQ1 r n; b..n, 
G':=f1 ; b..11Q1 . . . (Q]fn-l;b..n- l>andF:=fl(Q] . . . LQlfn)· 

object var proof var 
G f- Pi: '1/J 

=} 

F f- x;: Prop 
=} 

'1/Ji x E Propi 

term axiom constant 
F f- t: Prop 

=} 

G f- c: '<tx : Prop.((x :::> ..l) :::> ..l) :::>x 
=} 

tE Prop 

proof-abstraction 
G f- >.p; : '1/J.N : '1/J :::> x 

proof application 
G f- MN: 'ljJ 

=} 

N ? {on G) 

I 
I 

x I 
M ? (on G) 

Vx E Prop.((x :::> ..l) :::> ..l} :::>x 

object-abstraction 
G f- >.x; : Prop.N : Vx : Prop.'ljJ 

=} 

x(E Prop)i 

Vx E Prop.'ljJ 

object application 
G f- Nt: 'ljJ 

=} 

tE Prop 

'<tx E Prop.'ljJ 
'1/J[t /x] 

((on F) 

I 
N ? (on G) 
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K-import 
G IQI f; b. f- kM : ep 

Dep 

D 

5-import 

M? (on G) 

G ~ril f; b. f- SM : -.Dep 

M ? (on G) 

-,Dep 

DJ 

K-export 
G f- kM: Dep 

D 
M ? (on G ~ril e;e) 

Dep 

I 
I 

ep I 
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4-import 
G IQI f; b. f- 4M : Dep 

M ? (on G) 

Dep 

D 

Dep 

B-import 
G ~ril f ; b. f- bM : -.D-.ep 

M? (on G) 

D 

D-export 
G f- dM : -.D•ep 

D 
M ? (on G lkll e; e) 

I 
I 

ep I 
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T-export 
G 1- tM: tp 

~ 

0 
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The mapping of the import terms deserves some explanation, since its effects on the pro of 
figure under construction are not 'local'. The idea is that an import term, say kM, derivable 
on a generalized context ( G l!:iJ f; ~) represents a proof of its type, tp, inside a modal interval 

The proof of tp in this position consists in a preceding proof of Dtp in the interval immediately 
to the leftof the modal interval, followed by K -import. Hence '?' decomposes kM by mapping 
M : Dtp derivable on G toa proof (M7

) of Dtp just above the modal interval 

Note that the modal interval is not introduced by mapping the import term, it is supposed to 
be already present in the proof figure under construction. In an earlier stage of the mapping, 
an export step is assumed to have introduced the modal interval in which kM : tp is to 
be evaluated by '?'. To define the mapping of the import terms for the general case that 
the subordinate context is not empty ( G IQ! f; ~) , '? ' allows that an unspecified number of 
hypothesis intervals is already present inside the modal interval. 

The definition of '?' is justified by the Stripping Lemma, which says that the proposition 
tp is always equal to a proposition of the form we require. We illustrate the use of the modal 
rules by means of an example. 

2.4.4. EXAMPLE. In this example we construct a proof ligure for A : Prop , B : Prop; p1 : 

DA 1- k(>..p2 : B.(kp1)): D(B ::>A). Clearly the proof context~ is not empty, so before we 
unravel the term, we have to apply the rule for free proof variables: 
A :Prop , B : Prop; PI : DA 1- k(>..p2 : B.(kpJ)) : D(B ::> A) ~ 
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(k(>..p2: B .(kp1))f (on A: Prop,B: Prop;e) 
D(B ::>A) I 

Now that the proof context is empty we can start the mapping of the term by applying the 
rule for K -export terms, which demands that we open a modal subordinate proof: 

0 

B::>A 

D(B ::>A) 

(>..p2: B.(kp1)f (on A: Prop, B: Prop; e IQJ e; e) 

I 

(kp1f (on A: Prop,B: Prop;e 1Qle;p2: B) 

I 

After an application of the rule for abstraction that puts the hypothesis B in place, we are 
faced withaK-import term kp1 proving A in a subordinate proof inside a modal proof.'?' 
decomposes this term by inserting the proof p{ of DA in the proof figure directly above the 
modal subordinate proof. 

DA 

rr~ 
I B:::>A 

D(B ::>A) 

Pi (on A : Prop, B :Prop; e) 

I 

rr~ 
I B ::>A 

D(B ::>A) 

The proofterm for DA turns out to be the pro of variabie p{, hence an occurrence of DA 1 is 
inserted and we are clone. 

The reader wil! have noted that we end up with a natura! deduction proof that contains 
two occurrences of DA 1 in the same interval, where the topmost occurrence would suffi.ce. The 
reason for this is that in every step '?' acts on the current structure of the term. Hence the 
atomie proof object P1 is mapped to DA 1, si nee '?' cannot 'see' that the the hypothesis interval 
in which p{ is to be processed already contains an ocurrence of DA 1 . This 'duplication' will 
be discussed later when we try to establish an isomorphism between terms and deduction 
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proofs. For the moment we sim:ply remark that these duplications are harmless since they are 
allowed by the reiteration rule in the natura! deduction system. 

2.4.5. THEOREM. lf r; !1 f- M: <p fora proof term M in ADPROP2, then 

1 M? is a deduction proof of <p in DPROP2 and all non-discharged assumptions of M ? 
are declared in !1, 

2 (M?)! = M. 

Bath parts of the theorem are basically proved by induction on the structure of M , but since 
these proofs are not straightforward we discuss them separately. 

The problem with the first part of the theorem is that we cannot prove it directly by 
the desired induction, since unravelling export steps in the term will take us from the simple 
context r ; !1 to a generalized context (at least r; !1 IQ] éj é) where we na langer have a induction 
hypothesis. Hence the theorem must be proved as corollary of sarnething more genera!. 

2.4.6. LEMMA. Pre-derivation Lemma 
IJ G f- M : <p for a proof term M in ADPROP2, then M ? is a pre-derivation of <p with 
respect to G. 

PROOF. By induction on the structure of the term. We show the basic case and two rnadal 
cases. 

M = p; is a pro of variable. 
G f- Pi : <p, applying '?' yields a partial proof figure consisting of one formula: 

This is only a pre-derivation with respect to G if <pi can be construed as a reiteration of 
the hypothesis <pi, in other words if Pi : <p is an element of the rightmost proof context 
D.n . But this is garanteed by Stripping. 

M =kM is an import term. 
G f- kM : <p. By Stripping, G' f- M : D<p where G = G' IQJ r ; !1, hence by IH M ? is a 
pre-derivation of D<p with respect to G'. Since the context G contains a IQJ immediately 
following G' M ? is a pre-derivation of D<p in an interval immediately to the left of a 
modal interval. Hence K -import can be applied to D<p. This rule allows import of a 
formula over an arbitrary number of hypothesis-intervals inside the modal interval 

D<p 
0 
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Therefore we can apply K-import to obtain a pre-derivation (kM) 7 of ep with respect 
to G' IQJ r; Ll(:: G). 

M =kM is an export term. 
G f- kM : Dep. By Stripping G IQJ c; c f- M : ep, hence by lH M? is a pre-derivation 
of ep with respect to G IQJ c; E . Since the context contains a IQJ, M? is a pre-derivation of 
ep inside a modal interval. Moreover, the subordinate context is empty (E; c) and so ep 
lies in the modal interval (there are no undischarged hypotheses): 

Dep 

Therefore we can apply K-export to obtain a pre-derivation (kM)' of Dep with respect 
to G. 

Given the pre-derivation lemma and the following fact, we can prove that ' ?' yields de
duction proofs in DPROP2. 

2.4.7. FACT. A pre-derivation ofwhich the conclusion, C, is not an element of a modal interval 
( degree( C) = (0, i) for some i) is a derivation (with hypotheses) in DPROP2. 

2.4.8. THEOREM. (part 1) 
Ij r; Ll f- M : ep for a prooj term M in ADPROP2, M? is a derivation of ep in DPROP2, 
and all hypotheses of M? are declared in Ll. 

PROOF. By the pre-derivation lemma, we have that M? is a pre-derivation of ep with respect 
to r; Ll. Since r; Ll is a simple context, the condusion of M 7 is not an element of a modal 
interval. Hence by the fact above, M ? is a derivation (possibly with hypotheses) of ep. If 
M 7 has hypotheses, these correspond toproof variables occurring freely in M. By the meta 
theory of ADPROP2 these variables are all declared in Ll1, and hence all hypotheses of M? 
are declared in Ll. 

To prove the second part of the theorem, we have to take an additional feature of natura! 
deductions into account. Fitch deduction proofs can contain 'blind alleys', the rules allow the 
occurrence of (series of) deduction steps that do not contribute in any way to proving the goal 
formula. A simple example of this is that the reiteration rules allows you to repeat assumptions 
anywhere in their hypothesis interval, regardless whether this reiterated formula will be used 
in the remainder of the proof. Sequences of useless steps can also appear, for instanee as 
a result of the duplication procedure described in the formulation of OK-de<!luctions. The 
following is an example of a modal proof with a blind alley: 

1 Cf. the free variabie lemma. for MPTSs in cha.pter 3. 



2.4. MAPPING AOPROP2 TO OPROP2 

1. o(x ~ ~) 
2. 

3. 

4. 

5. 
6. 
7. 
8. 

9. 

10. 

o(x ~ ~) 
0 

x~'I/J 

x~~ 

x 
~ 

'Ij; 

(x~ '1/J) ~ '1/J 

o((x~'I/J)~'I/J) 

(reiteration 1) 

(K-import 3) 
(Import 2) 
(~-elim 5,6) 
(~-elim 4,6) 

(~-intro 4-8) 

(K-export 9) 

11. ox ~ O((x ~ "P) ~'Ij;) (~-intro 2-10) 

12. o(x ~ ~) ~ (Ox ~ O((x ~ "P) ~'Ij;)) (~-intro 1-11) 
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This proof contains a useless derivation leading from the assumptions to ~ at line 7. The 
mapping '!' ignores this blind alley, which can be seen from looking at the resulting term 
Àp1: O(x ~ "P).ÀP2: Ox.k(ÀP3: X~ "P.(p3kp2)). lt does not contain a subterm of the form 
kp2kP1> corresponding to the application of (the K-imported hypotheses) x~~ and x in line 
7 of the proof. Mapping this term back to a natura! deduction proof leads to the following 
proof tigure from which the entire blind alley (lines 3,5, and 7 above) is missing. 

1. o(x ~ ~)1 
2. ox2 

1-------
0 

3. x~ "p3 

4. x~ "p3 
5. x 
6. 'Ij; 

7. (x~ '1/J) ~ '1/J 

8. o((x~'I/J)~'I/J) 

9. ox ~ o((x ~ '1/J) ~ '1/J) 

10. o(x ~ ~) ~ (ox ~ o(x ~ '1/J) ~ '1/J)) 

The reason that '!' removes blind alleys, is that it starts from the condusion of the deduc
tion proof and inductively works its way upward. Hence formulas that are not involved in 
applications of deduction rules in a backward path from the condusion are ignored. Given 
the notion of blind alley and the knowledge that they are ignored by '!', we can prove that 
(M'f = M. 

2.4.9. THEOREM. (part 2) 
IJ f; b. 1- M: ~fora proof term M in AOPROP2, then (M')? = M. 

PROOF. By induction on the structure of the term. Some reasoning about the proof intervals 
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over which the M? 'range' is required in the cases for application, abstraction and free proof 
variables. We do an application case, the others are similar. 

M = M1M2 is an application (of proof terms). 

G f- Mt M2 : '1/J =*? 

M? 
1 <p 

Mi Mi .Mi 
j I 

I 
I 

In the proof ligure on the left resulting from applying '?', the proofs Ml and M] are 
disjoint. However, for '!' the situation is as depicted in the figure on the right, where 
Mi-Ml proving rp ::> '1/J is Mi foliowed by Ml. Hence applying '!' leaves us with (1) 
Gt f- (Mi-MlJ' : rp ::> '1/J and (2) G2 f- (Mi)' : rp. However, by the fact that in the 
proof Mi of rp ::> '1/J no rules are applied to formulas of Mi, we can conclude that Mi is 
a blindalleyin Mi.Ml. Therefore '!' will remove it and (Mi-Mi)!= (Mn!. The rest 
is straightforward: 

(1) Gt f- (Mi)! : rp:::) '1/J by IH (M1?)! =MI> hence Gt f- Mt : rp ::> '1/J 

(2) G2 f- (Mi)! : rp by IH (Mi)! = M2, hence G2 f- M2 : rp 

If we want to prove a 'back and forth'-equivalence for mapping natura! deductions to terms 
to natura! deductions, we will have to deal with a number of ways in which the composition 
of '!' and '?' transforms natura! deduction proofs. These transformations indicate how the 
class of 'OK-deductions' has to be restricted to obtain an invariance result . 

We have just seen such a transformation, the combination of ! and ? 'cleans' natura! 
deductions proofs by removing blind alleys. This indicates that a back and forth equivalence 
can only be reached on a class of 'clean proofs ' . Using the annotation of the natura! deduction 
proofs, a definition of 'clean proof' and a method for 'cleaning' proofs can be given. The idea 
is that since the annotation of the proof figures records the applied rule as well as the line 
numbers of the premisses of that rule, we can teil that a formula appearing in a proof is not 
used in the rest of that proof if its line number does not appear in the annotation of any of 
the lines of the proof. 

2.4.10. DEFINITION. Set of used line numbers 
Given a proof ligure D, the set of used line numbers in D is: 
,ND = { il i appears in the annotation of D } 
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2.4.11. DEFINITION. Clean proofs 
A proof tigure D consisting of a closed interval D = [1, n] (D C IN) is clean when for allline 
numbers j (1 ::; j < n) : (j = k forsome [k, IJ EH or j E ]I[D) . 

Note that j < n since the last line always contains the conclusion, and that the definition 
allows for assumptions (topmost formulas of hypothesis intervals) that are not used in the 
proof. 'Cleaning' a proof simply consists in removing the unused formulas. 

2.4.12. DEFINITION. Cleaning (=>clean) 

Given a proof figure D consisting of a closed interval D = [1 , n] (D C IN), the cleaning 
operation =>clean removes all Jin es j (1 ::; j < n) for which (j rf. ]I[D and line j does not 
contain a hypothesis ) . 

Cleaning will remove blind alleys consisting of a series of deduction steps when applied 
repeatedly: after the removal of the 'conclusion' of the blind alley, the line numbers of the 
premisses used in the last rule application will disappear from the set ]I[D since they only 
appeared in the annotation of the line of the conclusion. We will demonstrate this using the 
modal proof with blind alley discussed above. In order to avoid complicated renurnbering 
operations on the annotation in between applications of cleaning, we will compare the set 
]I[D with the set }1{1 of line numbers of the proof figure, instead of the interval D. 

The pro of figure contains a useless derivation of cp at line 7. Camparing ]I[D = {1, 2, 3, 4, 5, 
6,8,9,10,11} with}l{1 = {1,2,3,4,5,6,7,8,9,10,11,12} shows that, except for 12 (the last 
line), the only 'missing number' is 7. Applying =>clean removes this line: 

1. 

2. 

3. 

4. 

5. 

6. 
8. 

9. 

10. 

11. 

12. 

D(x :::> cp) 

o(x :::> cp) 
0 

Ir 
(x:::> 1/J) :::> 1/J 

o((x :::> 1/J) :::> '1/J) 

ox :::> o((x :::> '1/J) :::> 1/J) 

D(x :::> cp) :::> (Dx :::> o((x :::> "P) :::> "P)) 

(reiteration 1) 

(Import 3) 
(Import 2) 
(::>-elim 4,6) 

(:>-intro 4-8) 

(K-export 9) 

(:>-intro 2-10) 

(:>-intro 1-11) 

Since removing line 7 also removes its annotation, we can now see that the Import of x :::> cp 
at line 5 is pointless: ]I[D = {1, 2, 3, 4, 6, 8, 9, 10, 11} and }1{1 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12}. 

=>clean 
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1. 

2. 

3. 

4. 

6. 
8. 

9. 

10. 

11. 
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o(x:J'P) 

o(x :J 'P) 
DJ 

I J"~ 
(x :J 1/J) :J 1/J 

o((x :J 1/J) :J 1/J) 

ox :J D((x :J 1/J) :J 1/J) 

(reiteration 1) 

(Import 2) 
(:J-elim 4,6) 

(:J-intro 4-8) 

(K-export 9) 

(:J-intro 2-10) 

12. D(x :J 'P) :J (Dx :J D((x :J 1/J) :J 1/J)) (:J-intro 1-ll) 

The set .AfD = {1, 2, 4, 6, 7, 8, 9} of the resulting proof tigure misses 3. This is correct since 
removing the imported aceurenee of x :J tp ruakes the reiteration of the assumption D(x :J tp) 
superfluous. 

~clean 

1. o(x :J 'P) 

2. ox 

4. 

6. 
8. 

9. 

10. 

11. 

1------ --
0 

I ~0~ 
(x :J 1/J) :J 1/J 

o((x :J 1/J) :J 1/J) 

ox :J D((x :J 1/J) :J 1/J) 

(Import 2) 
( :J-elim 4,6) 

(:J-intro 4-8) 

(K-export 9) 

(:J-intro 2-10) 

12. D(x :J 'P) :J (Dx :J D((x :J 1/J) :J 1/J)) (:J-intro 1-11) 

The blind alley from the original deduction has now completely been removed, and the clean
ing operation halts si nee .AfD = { 1, 2, 4, 6, 8, 9, 10, 11} and .N1 = {1, 2, 4, 6, 8, 9, 10, 11 , 12} (the 
only missing number is that of the last line, 12). 

Cleaning up is still not suflicient to get a rnanagabie class of deductions which are invariant 
under the composed mappings. There is a degree of freedom in the definition of the application 
of the elimination rules for :J and V, that can cause the deduction resulting from the composed 
mappings to differ substantially from the original: 

RE {:J-elim,V-elim}. 
In this case the premisses and the condusion E all !ie in the same interval. 
The order in which the premisses appear is free. 

Under the type theoretica! rules the order of the subterms proving tp :J 1/J and tp (or V x : Prop.'I/J 
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and t E Prop) cannot be varied, the 'function term' of type tp ::> 7/J must be · applied to the 
'argument term' of type tp. This means that under the combined mappings partsof the proof 
tigure may get interchanged: 

~ e 
I I 

e 
I 

I 
I 

tp I 
~ 

I 

I 
I 

tp => 7/J I 
7/J 

However, we can drop the clause allowing free order of arguments for ::>-elim and V-elim. lt 
is obvious that if ~ proves tp with free order of arguments for these rules we can find a ~' 
which does the same with argumentsin fixed order. 

R = {::>-e/im)}. 
In this case the premisses P1 = tp, P2 = tp ::> 7/J and the condusion E = 7/J all lie in the 
same interval, and P1 precedes P2. 

R = {V-e/im)}. 
In this case the premisses P1 = tE Prop, P2 = Vx E Prop.'I/J and the condusion E = 7/J 
alltie in the same interval, and P1 precedes P2 . 

Since the order 'argument' above 'function' is now fixed in the deduction proof and the ? 
mapping puts the subterms representing them back in the same order, these parts of the 
proof figure can no longer get interchanged. 

The modal rules can also cause trouble under the combined mappings. The rules of 
DPROP2 allow 'multiple export': it is possible to export more than one formula from a 
modal subordinate proof. Unfortunately, this practice is not supported by the combined 
mappings. 

A schematical example of multiple export is the following deduction (where k(~') and 
k(G') appear in M and Dtp and 07/J may appear in A): 
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0 

O<p 
01/J 

<p 

"" 

E e 
I I 

=>! G f- M(k"E!, k6!) : A(O<p, 01/J) ? 
=>· 

0 

<p 

O<p 
0 

(e!f 

I 

"" 0 1/J 

Since '!' maps proof figures to terrns ' from the condusion upward', applying it toa multiple 
export results in a term in which several export subterms appear: (kE and fe!) . The '?'
mapping will then open a new modal subordinate modal pro of from each of these subterrns in 
the (re )construction of the proof figure instead ofreuniting (E!f and (6'}? in one subordinate 
modal proof. However, from the example we can already see that nothing is lost by restricting 
export to only one formula per modal subordinate proof. At worst we have to duplicate the 
original rnadal subordinate proof for each of the formulas originally part of the multiple 
export. 

Combining the above observations we arrive at a restricted class of OK proofs that seems 
suitable for proving a 'back-and-forth' equivalence. 

2.4.13. DEFINITION. A-OK proofs 
A natura! deduction proof E of <pis A-OK iff: 

Eis OK 

Eis clean 

E has ordered premisses for V-elim and ::J-elim 

E has no multiple exports 

Before we can establish a bijeetion between terms and proof figures we have to take care 
of one last transformation of the natura! deduction proofs caused by the composition of the 
mappings. As noticed in earlier examples, the combined mappingscan lead to 'duplication' 
of formulas. The following simple example shows this effect: 
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Ä 
I ~ _) 1pl 

cp~'I/J 

(cp ~ 1/J) ~ (cp ~ 1/J) 

2 

2 

1 

cp~'I/J 

(cp~'I/J)~(cp~'I/J) 
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After application of '!'and '? ' we end up with an additional occurrence of cp2 . The inductive 
mapping '!' generates two occurrences of pz in the term: one corresponding to the occurrence 
of cp2 as the hypothesis of the inner subordinate proof, and one corresponding to the use of cp2 

as a premisse for ~-elimination . The mapping '?' acts on the structure of the term, first the 
abstraction over pz is mapped toa subordinate proofwith hypothesis cp2 , later the (sub)term 
consisting of the proof variabie pz is mapped to reiteration of cp2 in that hypothesis interval. 
Since '?' does not take the partial proof figure into account that it has already constructed, 
it is too 'shortsighted' to see that it is duplicating cp2 . 

Unlike the previous cases, this transformation cannot be excluded by restricting the class 
of proofs on which the mappings are to be applied. However we can deal with this relatively 
innocent phenomenon by introducing an equivalence relation on A-OK proofs: two natura! 
deduction proofs are equivalent if they are identical when stripped of doubles. 

2.4.14. DEFINITION. Double occurrence 
A formula cp occurs doubly in a proof ligure D iff ~I E (H UD) such that ~i,j E I(F(i) = 
F(j)) . 

2.4.15. DEFINITION. Doubles normal form 
An A-OK natura! deduction proof E of <p is in doubles normal farm iff no formula 1/J occurs 
doubly in it. 

2.4 .16. DEFINITION. Doubles equivalence 
Two A-OK natura! deduction proofs E and 0 of a formula cp are doubles equivalent, E =(double.) 

e, iff they have the same doubles normal farm. 

A proof ligure can easily be brought in doubles normal farm by simply deleting for each 
doubly occurring formula (say F( i) = F(j) and i < j) the occurrence at the line with the 
higher number (j). 
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2.4.17. PROPOSITION. Let E be an A-OK natura/ deduction proof in DPROP2, then 

PROOF. By induction on the derivation E. Doubles equivalence is used in the cases for 
abstraction, application and proof assumption. We show the case for ::}-elim. 

cp::)1/J 
1/J 

=>! G1 U,;p Gz 1- EiE~: 1/J =>? 
(Ekf 
I 
I 
I 

cp I 
(Eif 
I 

I 
I 

cp :::,) 1/J I 
1/J 

By IH (Eif = double& E1 and (E~)? =doubles Ez. Hence the only difference between E 
and (E!f is that in E the subderivations E1 and E2 can overlap, allowing formulas of 
E1 to he used in E2. Since by IH (Eif =doubles E1 and (Ek)7 =doubles E2, we have 
that in (E')' some occurrences of formulas in (Ei) 7 may be cloubied in (Ekf. But then 
(E')7 = doubles E. 

2.4.18. COROLLARY. The mappings ~ ' and '?' constitute a bijeetion between =doubles-equivalence 
classes of A-OK deductions in DPROP2 and pairs (Ll, M) in ADPROP2. 

PROOF. By the result above and the earlier back-and-forth theorem for termsof ADPROP2 
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2.5. From ADPROP2 to >.DPROP2 and back 

The last step in mapping modal natura! deduction to modal pure type sytems is to show that 
the system ADPROP2 is equivalent to the MPTS >.DPROP2. In [Geuvers 1993] the proof of 
equivalence of the intermediate and the 'target' type system of the interpretation hinges on 
the following basic property of PTSs in the Logic Cube. 

2.5.1. PROPOSITION. In >.PREDw we have the following. 
Iff f- M: A then fv,fr,fp f- M: A where 

• f D, fT, f p is a sound permutation of f (i. e. , it is a leg al context that is a permutation 
off ), 

• r D only contains declarations of the form x : Set' 

• r T only contains. declamtions of the form x : A with r D f- A : Set I TypeP' 

• r p only contains ( ordered) declamtions of the form x : I{! with r D' r T f- I{! : Prop' 

• ifA=SetfTypeP, thenfv f- M:A, 

• iff f- A: SetfTypeP, then fv,fr f- M: A. 

PROOF. By induction on the derivation 

For the subsystem >.PROP2, this proposition allows us to split any context r into two parts. 
In >.PROP2 Set is nota sort, hence fv is always empty. 

2.5.2. PROPOSITION. In >.PROP2 we have the following. 
IJ f f- M : A then r T, r p f- M : A where 

• fT, f p is a sound permutation of f 

• fr only contains declarations of the form x :Prop, 

• f p only contains ( ordered) declamtions of the form x : 1f! with fT f- 1f! : Prop, 

• ij A= TypeP, then E f- M: A with M =Prop, 

• iJ r f- A : TypeP' then r T f- M : A with A = Prop. 

In the generalized contexts ofthe MPTS >.DPROP2 we would like to have these properties 
for each of the constituting contexts rl, ... r n: 

2.5.3. PROPOSITION. In ÀDPROP2 we have the following. 
IJ G f- M : A, G = f1 IQJ ••• IQJ r n, then r~, r~ IQJ ••• IQJ q., fj, f- M : A where 

• r~, r~ is a permutation of ri for all i: 1 ~ i ~ n and r~, r~ IQJ ••• IQJ q., fj, is legal, 

• r~ only contains declarations of the form x : Prop for all i : 1 ~ i ~ n, , 

• r~ only contains {ordered) declarations of the form x : I{! with 
r~ IQJ ••• IQI r~ f- lP: Prop, 
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• ij A= TypeP, then e 1- M: A with A= Prop, 

• ij f 1 IQJ • • • IQJ f n 1- A : TypeP, then f~ IQJ • • • ll:iJ fj. 1- M : A with A = Prop. 

PROOF. By induction on the derivation (using the Strong Permutation Lemma2 for MPTS13 
in the subcase of Weakening where s = TypeP). 

The lemma clearly shows the similarities between ADPROP2 and ÀDPROP2, just read 
'f~' for 'fi' and 'f~' for '.6.i'. Hence we would like to prove: 

1 f1 IQJ ••• IQJ r n 1- M: Prop (in ADPROP2) <* 

r~ IQJ ••• IQI fj. 1- M: Prop (in >.DPROP2) 

2 f1;bq IQJ ••• 1Qlfn;.6.n 1- M: A(: Prop) (in ADPROP2) <* 

r~,f~IQJ ... IQJfj.,fp 1- M:A( : Prop) (in>.DPROP2) 

However, the syntax of ADPROP2 differs slightly from that of >.DPROP2 so we first define 
translations mappi11.g pseudo terrus of either system to pseudo terms of the other system. 

2.5.4. DEFINITION. Translation ADPROP2 =? )..OPROP2 
Pseudoterrus and generalized contextsof ADPROP2 are mapped to pseudoterms and gener
alized contexts of )..DPROP2 by the inductively defined mapping 'U' , where the variables of 
>..DPROP2 are partitioned into 'kind variables' (xTypeP :Prop) and 'type variables' (xProp : 
cp : Prop). 

Object terms 

PropÖ =Prop 

(x;)Ö = X;TypeP (x; E Var 0 b) 

( T :J T)U = ITxProp : Tl. Tl 

(\/x :Prop. T)l = ITxÖ :Prop. Tl 

(DT)I = oTI 

Proofterms 

(p;)l = xtrop (Pi E VarP') 

(PrPr)l = Pr1Pr1 

(PrT)I = Prl Tl 

(>.p: T.T)I = >.pö: Tl. TU 

(>.x: Prop.T)I = )..xÖ: Prop.TÖ 

(c)Ö(c E ConstantsAOPROP2) = c (c E ConstantswPROP2) 

(kT)Ö = kTö, (4T)I = 4TI, (ST)I = 5TI, (bT)I = bTI 

(kT)I = kTö, (dT)I = dTI, (tT)Ö = tTU 

Contexts 

2 For G,, z : A, y: B, r, a generalized context, M and C terms, with z ft FV(B), 
G,, z : A, y : B, I' 2 I- M : C ~ G,, y : B, x : AI' 2 I- M : C. Pro of cf. Chapter 3 



2.5. FROM AOPROP2 TO >.oPROP2 AND BACK 

el= t: 

(r,x;: Prop)l = rtt,xf: Prop 

(F [Q] r)U = pU [Q] rtt 

(A,p;: 'P)I = Al,p!: 'PU 

(r; A)tt = ru , Au 

(G @r;A)I = ctt [Q] (r;A)I. 

2.5.5. DEFINITION. Translation )..DPROP2::::? ADPROP2 
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Pseudoterros and generalized contexs of >.DPROP2 are mapped to pseudoterros and gen
eralized contexts of ADPROP2 by the inductively defined mapping '11', where the vari
ables of >.OPROP2 are partioned into 'kind variables' (xTypeP : Prop) and 'type variables' 
(x Prop : A : Prop) . 

Object terms 

ProP'= Prop 
(x;TypeP)~ = x;(E Var 0 b) 

(ITxProp : T. T? = Tb :J T 0 

(ITx TypeP : Prop. T)b = 'V(x TypeP)b : Prop. T 0 

(DT)" = oT• 

Proof terms 

(xtrop )b = p;(E Var1") 

(TT)" = T"T" 
(>.xProp: T.T)b = >.(xProp)b: T b. Tb 

(>.xTypeP: Prop.T? = >.(xTypeP)b: Prop.T~ 

( c )0 ( c E Constants>.oPROP2) = c ( c E ConstantsAoPROP2) 

(kT)0 = kT~, (4T)0 = 4T0, (ST)"= ST0, (bT)0 = bT0 

(ÎcT)0 = ÎcT0, (dT) 0 = dT~, (ÎT)~ = tT0 

Contexts 

t:0 = t: 

(rr,x;: Prop)0 = r~,xf : Prop 

(r p, x; : 'P)0 = r~, p~ :'Pb 

(rr,rP)" = r~;r~ 
(G [gJ rp,rr)" = c• [gJ (rr,rP)'. 

Since both T and '11' preserve the indices of the variables we have 'enharmonic equality' for 
their compositions: 

If M is a pseudo term in )..DPROP2, then (MI)b = M 
If G is a generalized context in >.DPROP2, then ( Gl)b = G 
If M is a pseudo term in ADPROP2, then (M0)d = M 
If G is a generalized context in ADPROP2, tben ( G')l = G 
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In proving the equivalence of the two systems, we need that the mappings are transparent 
with respect to substitution. 

2.5.6. LEMMA. Substitution Preservation Lemma 

# preserves substitutions: 
jor ADPROP2-terms A and B (A[Bjx])# = AI[Bijx#]. 

P preserves substitutions: 
jor >..DPROP2-terms A and B (A[Bjx])' = A'[B' fx'J. 

PROOF. Bath are proved by induction on the structure of the term A. 

Now we are ready to prove that bath mappings preserve typeability, for any term that is 
typeable in ADPROP2 (with a certain type on a certain context), its translation is typeable 
in >..DPROP2 (with the translation of the type on the translation of the context) and vice 
versa. In some cases additional properties of MPTS's are needed. For full forma! definitions 
and proofs of these properties the reader is referred to the next chapter. 

2.5.7. THEOREM. For all terms M in ADPROP2: 

1 Ij f 1 !bi ... R':il r n f- M : Prop, then (rt IQ! •.• IQJ r n)l f- MI : Prop 

2 Ij f1; .ó.1 IQ! .. • IQJ r ni .Ó.n f- M: tp(: Prop), then (f1; .ó.1 IQJ . .. IQJ r ni .ó.n)l f- MI: 'PI 

PROOF. By induction on the structure of the term (M). 

In the proof of 1 the additional property Strong Thinning is needed: 

M = x;(E Var00 ) 

rl IQ) ••• IQ! r n f- Xj: Prop, hence by Stripping (x;: Prop) Er; forsome i: 1 ~i ~ n, 
but then (by definition) (x;)d E (f;)l and so by the Start lemma: 
(f1 )1 IQJ ••• IQJ (f;)# f- (x;)l :Prop and hence by Strong Thinning: 
(f1)l IQJ •• • IQJ (f;)d IQJ •.• IQJ (r n)l f- (x;)# : Prop. Since by definition 
(ft)d IQJ ... IQJ (f n)# = (f1 R':i1 ••• R':i1 f n)l we have 
(f1 IQJ ... IQ! r n)d f- (x;)d : Prop. 

In the proof of 2, the case of abstraction over a propositional variabie causes trouble. 
In ADPROP2 the abstraction rule requires that the variabie is in rightmost position in the 
left part (r r ) of the context, whereas in >..oP ROP2 the rule requires the variabie to be in 
rightmost position with respect to the entire context. To reconcile the abstraction rules we 
use the Strong Permutation Lemma: 

M := >..x; : Prop.M1 
ft; .ó.1 IQJ ••• IQJ r ni .ó.n f- >..x; : Prop.M1 : Vx : Prop.'ljJ, then by Stripping 
ftj.Ó.liQJ . .. IQJfn,Xi : Prop;.ó.n f- M1: 1/J. 
Hence by IH (1) (ft; .ó.1 ll:ll . . . IQ! r n-li .ó.n_t)d fQI (r n)d, (x;)#: Prop, (.ó.n)d f- (M1)1: "pd . 
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Sirree we know (by the condition on the \;1-l rule) that 
x;{/. FV(~n), we have that (x;)~{/. FV(~n)~. This means that the Strong Permutation 
Lemma for >.DPROP2 can he used to push (x; : Prop) 'through' (~n)tt, permuting it 
one by one with all elements of (~n)l which results in 
(2) (r1; ~1 lQl ..• lQl r n-1; ~n-d lQl (r n)l, (~n)l, (x;)l: Prop f- (M1)~: (1/!)U. 
From r 1; ~1 lQl .•• lQl r n' x; : Prop; ~n f- M1 : 1/J ,we also have by Well-typedness that 
(3) r 1; ~1 lQl •.• lQl r n, x; : Prop f- 1/J : Prop from which we can prove (\;I-case, part 1 
of this theorem), (4) (r1; ~1 lQl ••. lQl r n-1; ~n-1)U lQl (r n)l f- (IIxtt : Prop.1j!U) :Prop. 
Herree by Thinning 
(5) (r1; ~1 lQl •.. lQl r n-1; ~n-dtt lQl (r n)tt, (~n)tt f- (IIxtt : Prop.1j!U) : Prop. and so by 
Abstraction on (1) and (5) 
(r1; ~1 [QJ ••• [QJ r n-1; ~n-1)U [QJ (r n)tt, (~n)U f- >.(x;)tt: Prop.(M1)~: IIxU: Prop.(1/!)~ 
By definition of U, (r1; ~1 lQl ••• lQl r n; ~n)~ f- (>.x;: Prop.M1)~: (\;I x: Prop.1j!)~ 

2.5.8. THEOREM. For all terms M in )..DPROP2: 

1 Ij r~ lQl ••. lQl rr f- M: Prop, then (r~ lQl ••. lQl rr)' f- M': Prop 

2 Jjr~,r~ lQl •.. lQl rr,rJ> f- M: <p(: Prop), then (r~,r~ lQl ••• lQl rr,rP)0 f- M0 : ",• 

PROOF. by induction on the structure of the term (M). 

In the 'TI-case' of the proof of 1 we need the Strengtherring Lemma for MPTSf3: 
For G1 , x : A, G2 a context, and M and B terms, Gr, x : A, G2 f- M : B and 
x{/. FV(G2,M,B) => G1 , G2 f- M: B. 

M = ITxProp : <p.1/J 
r~ lQl ••• lQl rr f- (ITxProp : <p.1/J) : Prop, herree by Stripping 
(1) r~ [gJ .•. [gJ rT f- 'P: Prop and (2) r~ [gJ ••• [gJ rT, X Prop : 'P f- 1/J: Prop. Sirree we 
know that xProp {/. FV(1/!, Prop), we have by Strengtherring (taking 'G2'to he empty) 
on (2) that (3) r~ lQl .•. lQl rr r 1/;0 :Prop. By IH on (1) and (3), 
(4) (r~ [QJ ••• [QJ fT)" f- <p0 : Propand 
(5) (r~ lQl ••• lQl rr)", (xProp)o: <p0 f- 1/;0 : Prop. Therefore by the :l-rule on (4) 
and (5) (r~ lQl ••• lQl rr)" f- <p0 :J1/;0 : Prop. and hence by definition of 11, 
(r~ [Q] ••• [Q] rr)" f- (ITxProp: <p.1/J) 0 : Prop. 

In the proof of 2, we face again the conflicting requirements of the abstraction rules in 
the case of abstraction over a propositional variable. As above we solve this using the Strong 
Permutation Lemma for >.DPROP2. Sirree we do induction on the structure of the term, 
rather than on the derivation, we can move the propositional variabie to the 'correct' position 
in the context befare applying the mapping. 

M = >.x;TypeP : Prop.M1 

r~, r~ [Q] ••• [Q] rr, rJ, f- >.x;TypeP : Prop.M1 : Ilx : Prop.1j!, then by Stripping 

r~, r~ lQl ••• [Q] rT, r],, X;TypeP : Prop f- M1 : 1/J. Sirree X;TypeP {/. FVr p, we can use the 
Strong Permutation Lemma for >.PROP2 to push (x; :Prop) 'through' rJ,, permuting 
it one by one 'to the left' with all elements of rJ, which results in 

r~, r~ [gJ ... [Q] r-;,- 1 ' r~- 1 [gJ rT, X;TypeP : Prop, r], f- M1 : 1/J. By IH 
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(r~,r~ IQJ ••• ll:il rr- 1 ,r~-l)b ll:il (fT)', (x,TypeP)' : Prop; (rJ.)' 1- (Md: (?jJ)' . 
By 'v'-1 we get (r~, r~ [gJ . .. [gJ rT-1, r;.-l )' [gJ {fT)'; (r;, )' l-

>.(xt'0P)o : Prop.(Ml)' : 'v'(xProp)b : Prop.(?/J)0• Therefore by the definition of b, 
(r~,r~ ll:il ... ll:ilf7.,r;,)b 1- (>.x,P'op: Prop.Ml)': (IIxProp: Prop.?fJ)' . 

2.6. Proof reductions 

It is well-known that for the logies corresponding to the systems in the Logic Cube, cut
elimination corresponds to normalization of ,8-reduction. The same holds true for the modal 
logies corresponding to the systems in the Modal Logic Cube. We show this by defining a 
reduction relation on deductions of DPROP2. 

2.6.1. DEFINITION. The reduction relation ->B on deductions of DPROP2 is defined as fol-
lows. 

l(J 
l(Ji 

?jJ 

l(J~?/J 

1/J 

tE Prop 

e 
I 

E 

I 

I 
I 
I 

x E Prop' 

1/J 

'v'x E Prop.?jJ 
1/l[tjxj 

-+B 

e 
I 

E 

I 

I 
I 
I 

-+s 

e 
I 
I 
I 

lfJ I 
E 

I 

tE Prop 

1/J[tjxj 

e 
I 

I 
I 

E[tjxj 

I 

In the V-case, e represents the part of the proof preceding the notification t E Prop (which 
itself has anatomie proof), and E[t/xJ is the derivation E with every occurrence of x E Prop' 
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replaced by t E Prop. It is easy to check that if E is a derivation of '1/J under the hypothesis 
x E Prop, E[t/x] is derivation of '1/J[t/x]. 

2.6.2. PROPOSITION. There is a one-to-one correspondence between reduction steps -> B in 
an A-OK deduction e of DPROP2 and {3-reductions in the corresponding proof-term e! of 
II.DPROP2. Hence we have: 

-+ B is {strongly) normalizing on A-OK deductions of DPROP2 {'} 
{3-reduction is {strongly) normalizing on proof terms of II.DPROP2 . 

PROOF. Immediate from the one-to-one-correspondence between equivalence classes of A-OK 
proofs and proof terms. 

The -> B reduction on deductions is a 'propositional' reduction, it removes pairs of in
troduction and eliminatien rule applications for :J and V. Given this relationship between 
operations on terros and operations on propositional proofs the question arises if the extended 
type theoretica! system allows forsome sart of 'modal proof reduction' . 

2.6.1. Reduction in K 

First we shalllook at the basic rnadal rules, K -import and K -export. Because of the symmetry 
between import and export the application of the import rule on a proposition immediately 
foliowed by an application of the export rule does not have any observable effect on that 
proposition. It has not been used to derive anything in the subordinate proof (no rules have 
been applied to it between import and export) and all steps in the proof that could have been 
taken befare this 'detour' can be taken after it. 

DA DA 

E[A 
DA 

k(kM) M 
Type theoretically there is a difference between the occurrences of DA befare and after the 
detour. If the original proof object for DA is M, then the inhabitant of DA after the detour 
will be k(kM). In this term it is reearcled that the original proof (M) of the proposition (DA) 
in the main context wruch has first been specialized to a proof (kM) of the 'denecessitated' 
proposition (A) in the subordinate context by means of the funct ion k and then generalized 
back into a proof of the original proposition (DA) in the main context by k. 

Given this signature of a detour, we can define a type theoretica! reduction rule to formalize 
the idea that a combination of subsequent K -import and K -export is pointless in a natura! 
deduction proof. 

2.6.3. DEFINITION. kfc reduction : k(kM) => M 
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In combination with the mappings ' !' and '?', kk-reduction allows us to eliminate detours in a 
natura! deduction pro of in the way depicted above: any sequence of K -import and immediate 
K -export of a formula can be eliminated from the pro of. 

In view of the summetry of the basic modal rules, it is not surprising that we can make 
a similar observation about sequences of K -export and K -import. Given an occurrence of A 
in a strict subordinate pro of, subsequent applications of K -export and K -import again yield 
an occurrence of A in a strict subordinate proof. 

i~ 
DA 

TA 
k(kM) M 

Eliminating this detour does not make a difference for the rest of the natura! deduction proof; 
since K-export could be applied toA, we know that the first occurrence of A does notdepend 
on any hypotheses of the modal subordinate proof ( degree( A) = (i, 0), for some i). 

Supposing that the original inhabitant of A is M, the type theoretica! signature of such a 
detour is k(kM). Hence we can define the following reduction for its elim.ination. 

2.6.4. DEFINITION. fk reduction : k(kM) => M 

We shall cal! both kinds of reduction 'annihilation'; any time a k-function meets a k
function in any order in a term they 'destroy' each other. These reductions are 'compatible', 
which means that a subterm of the right form (e.g. k(kM)) may always be replaced (by M), 
regardless of the structure of the term in which it appears3 (an application N(k(kM)) for 
instance) . 

The annihilations are presented here as 'structural' reductions, but similar reductions 
arise by intepreting the modal operator 'D' explicitly as a universa! quantifier over worlds. A 
famous example of this approach is Gallin's two sorted theory of types Ty2 ([Gallin 1975)) . 
Instead of structured contexts and importjexport-rules, this system has an additional sor t 
of variables allowing direct reference to worlds. Using these 'world variables' (for which we 
provisionally write w; (of type W)), the rules for int roduetion and elim.ination of modal 
types are analogous to \;I-intro and \;1-elim. Hence from the ' two sorted' point of view, the 
annihilations look like this: 

k(kM): A => M : A becomes (>.w;: W.M)w;: A => M: A 

k(kM): DA => M: DA becomes >.w;: W(M(w;)) : \;Iw: W.A => M: \;Iw: W.A 

In other words, kk reduction corresponds to /3-reduction and kk reduction to 7]-reduction. 
However in Ty2 the second reduction is not generally correct, since the condition on 1)

reduction ( w; ft FV ( M)) is not always met. 

3See [Ba.rendregt 1992] . 
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Despite these remsembiances between the 'structural' and the 'quantifier' view on annihi
lations, it seems to be easier to generalize the idea of annihilations to modal systems above K 
in the structural perspective. There simply we can simply look at the effects of combinations 
of import and export rules, whereas the quantificational view requires that we use several 
kinds ofworld variables (' K-worlds', '4-worlds' etc.) or work with second order quantification 
over a structured collection of worlds ([De Queiroz and Gabbay 1995]). To give an idea of 
the possibilities for modal proof reduction affered by our type theoretica! forrnalism we will 
discuss the following topics: 

• Other annihilations: besides sequences of K -import and K -export there may he more 
pointless combinations of an import and an export step in the various normal modal 
systems. 

• Distribution: if the modal functions do not interfere with the operations of typed .À

calculus there could be functions distributing over application and abstraction. 

• Other rules: besides annihilation there may be other farms of reduction, perhaps in
volving groups of functions. 

2.6.2. Other annihilations 

To find other pointless combinations of import and export steps one can simply check all 
cases, but apparently these combinations consist of an 'extra' import rule and an 'extra' 
export rule. Looking at the export rules we see that the D-export rule 'adds ..,o..,' to the 
formula it exports, since there is no import rule that 'subtracts •D•' from the formula it 
imparts there can be no pointless combinations invalving the D-export rule. The T-export 
rule leaves every formula it exports unchanged, therefore any combination with an import 
rule that leaves formulas of a eertaio form unchanged wiJl result in a detour. We have seen 
two such import rules: the 4-import rule and the 5-import rule. 

Sequences of 4-import foliowed by immediate T-export and T-export directly foliowed by 
4-import are pointless, they can be eliminated, leaving the rest of the proof to he carried out 
in exactly the same way as before: 

DA DA 

crDA 
DA 

t(Li)M M 
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4{tM) M 

This observation can be formalized type theoretically by means of the following rules: 

2.6.5. DEFINITION. t4 reduction: t(4M) => Mand 4t reduction: 4(tM) => M. 

In the same way reduction rules rules can be given for the combination of 5-import and 
T-export: 

2.6.6. DEFINITION. ÎS reduction : Î(SM) => M and St reduction : s(tM) => M 

We call ADPROP2 with all of the annihilations rules added to it ADPROP2{3,annih· In 
this system we can prove (cf. chapter 3) that the annihilations have all the usual reduction 
properties: 

Subject Reduction If G 1- M : A and M reduces to M' through a number of 
annihilations (and ,8-steps), then G 1- M' :A: the reduced proof is again a proof of the 
original formula. 

Strong Normalisation For every term M, there is an upperbound to the reductions 
starting from it: the annihilation reductions of proofs terminate. 

Church RosserIf a term M andreduces to different terms M' and M" , then M' and 
M" have a common reduct: different reduction paths will eventually lead to the same 
result. 

2.6.3. Distribution 

Sofar we have only looked at reductions that correspond to ' local' simplifications of deduction 
proofs; the annihilations remave pointless cambinatians of consecutive modal steps. This 
raises the question whether applications of import and export rules can be permuted with 
applications of non-madal rules. If sa, more glabal reductions become possible: originally 
distant applications of import and export can be brought tagether and then annihilated. 

In type theoretica) terms, the question of permutation t ranslates as follows: can any of 
the modal functions (i:, 4, 5, b, k, d, Î) he made to distribute over application and abstraction 
? The only candidates for such distributive behaviour are those import and export functions 
that belang to rules that do not change the types of the statements to which they are applied. 
The rules for application (:)-elim, 'v'-elim) and abstraction (:)-intro, 'v'-intro) de mand a certain 
relation between the form of the types of their premisses. If this relation is not preserved 
by the modal rule, applications or abstractions possible befare the import or export of the 
premisses may become impossible afterwards. Far example, given that G 1- N : A and 
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G 1- M : A :J B we can apply :J-elim to ohtain G 1- MN : B, however after B-importing 
hoth premisses ( G lliJ t:; t: 1- bN: ..,o..,A and G IQJ t:; t: 1- bM: ..,o..,(A :J B)) :J-elim can no 
longer he applied. 

This ohservation leaves us with candidates 4, 5, and t. Even though the 4- and 5-import 
rule do not change the form of the type, they require a type of a certain form (D<p and ..,o<p, 
respectively) which precludes permutation with any of the rules :J-intro, :J-elim, V'-intro, and 
V'-elim. Hence we now investigate whether t can he made to distrihute over application and 
ahstraction. 

Distribution over application 

A straightforward attempt to formalize the possihle distrihution of t over application is the 
rule t(MN) =? (ÎM)(ÎM). For proof terros M and N, this rule gives a correct procedure 
to perroute applications of :J-elim and T-export. Given that G llil t:; t: 1- M : A :J B and 
G lliJ t:; t: 1- N : A, where first :J-elim is applied ( G llil t:; t: 1- MN : B) and then T -export 
( G 1- t(MN) : B), we could justas wel! have T-exported Mand N first ( G 1- tM: A :J B 
and G 1- tN : A), and then applied :J-elim ( G llil t:; t: 1- (tM)(tN) : B). The following figure 
shows that the corresponding reduction on deduction proofs splits the modal subordinate 
proof of Bending in T-export into two shorter modal subordinate proofs ending in T-export. 

0 

rA 
N? M? N? 

A 

A 

A:JB 

~~OB 
M? B 

B 

A:JB 
B 

Clearly, the derivation on the right is a correct deduction proof if the derivation on the left 
is. 

In the other possible application case M is a proof term, N is an object term, and the 
reduction rule should correctly describe the permutation of applications of V'-elim and T
export. However, it is easy to see that this is not the case. Suppose that G lliJ t:; t: 1-
M : V'x : Prop.'if; (where G =: ft; ~1 llil ... llil r n; ~n) and F llil t: 1- u : Prop (where 
F =: f 1 llil ... llil r n)· Then V'-elim yields G IQl t:; t: 1- Mu: 1/;[ujx], and hence by T-export we 
have G 1- t(Mu) : 1/J[u/x]. Starting from the same situation, we cannot first apply T-export 
and then V'-elim, since u : Prop is not a proof term and herree T-export cannot be applied to 
it. 

Looking at the corresponding deduction helps to find a correct distribution rule for V'-elim. 
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0 

u E Prop 

Vx E Prop."P 
"P[u/x] 

"P[u/x] 

u E Prop 

~~x E Prop. 

Vx E Prop."P 
"P[u/x] 

The notification u E Prop in the proof figure on the left could only have been derived in two 
ways: by reiterating a hypothesis u E Prop (where u is an object variable) or by the te1'1Tir 
rule. Since u E Prop lies in the modal interval it cannot he the reiteration of a hypothesis, 
as reiteration across modal intervals is not allowed. Hence u E Prop is derived by the term 
rule and has an atomie proof. Therefore u E Prop could just as well have been derived in the 
main proof right before the start of the modal proof. After proving Vx E Prop."P by M? in 
the subordinate proof, V x E Prop."P can he brought to the main proof where V-elim canthen 
be applied as in the right proof figure above. 

Type theoretically, this reduction corresponds to the rule t(MN) => (tM)N where M 
is a proof term and N is an object term. At first glance, this reduction rule may seem 
incorrect, since the rules of ADPROP2 do not allow us to derive G 1- (tM)u: "P[u/x] from 
G ll:il ë; g 1- M :V x : Prop."P and F IQ! g 1- u : Prop. The difficulty, obviously, is to derive that 
F 1- u : Prop given that F IQ! g 1- u : Prop. In chapter 3 we will show that this "backwards 
transfer" of non-proof terms is actually a derived rule of the MPTSs. For ADPROP2, the 
rule looks like this 

F IQ! ë 1- tp : Prop 
refsnart F 1- p . tp: rop 

Given refsnart it is immediate that the proposed reduction rule is correct. 

2.6.7. DEFINITION. t-distribution over application 

For M and N pr;oof terms: t(MN) => (tM)(tN) 

For M a proof termand N an object term: t(MN) => (tM)N 

Note that the "import pseudo terms" (kT, 4T, ST, bT) are not applications, hence T-export 
wiJl not distribute over an import rule, e.g. t(kM) =fo (tk)(tM). 

Distribution over abstraction 

The simplest way in which t could distribute over abstraction is expressed by the following 
rule. 

2.6.8. DEFINITION. t-distribution over abstraction 

t(.Àx : Prop.M) => .Àx : Prop.(tM) 

t(.Àp : tp.M) => .Àp : tp.(ÎM) 
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This rule claims that it makes no difference whether one first abstracts a variabie (say p :A) 
over a term (M : B) in the subordinate context ( G IQI êj ê f- >..p : A.M : A ::> B) and 
then T-exports the resulting statement ( G f- >..p : A .M : A ::> B), or first T-exports 
the term to a context extended with p : A ( G, p : A f- t M : B) and then abstracts 
( G f- >..p : A .(ÎM) : A ::> B). The correctness of this rule depends on the occurrence 
of the abstraction variabie in the term (p E FV(M)); since abstraction corresponds to the 
discharge a hypothesis in natura! deduction ('v-intro, :>-intro), the effect of the rule is to move 
a hypothesis(-interval) of the strict subordinate proof to the main proof: 

0 A 

~ 
M? 

r~ 
M? 

A::>B B 

A::>B A::>B 

Reducing the left derivation to the one on the right only results in a correct deduction proof 
if the hypothesis A is not used in the proof M? of B. Hence t dis tribution over abstraction 
has to be restricted to cases of 'vacuous' abstraction (x;,p; (/. FV(M)) to obtain a correct 
rule. Although we cannot distribute t over abstractions correctly in single steps, we do not 
have to give up the idea of permuting T-export with non-madal rules. The distribution rule 
given above tagether with t distribution over application and one new rule ( to be discussed 
below) allow us to bring terrns of the form tM inasort of 't-normal form' which is again an 
inhabitant of the type of tM. 

The combined effect of the rules defined so far is that t ca.n be 'moved through the term' 
by repeated distribution over applications and abstractions. This movement is stopped when 
t meets 

a varia bie: x; or p;, 

n animportsubterm: kN,4N,5N,bN, 

iii an export subterm: kN, dN, tN. 

A variabie occurring as a subterm of (ÎM) corresponds to the reiteration of a hypothesis 
of the strict subordinate proof. Since all hypotheses of a strict subordinate proof have to 
be discharged befare T-export is applied, the variables occurring as subterros in tM are 
bound. We already saw that t dis tribution over abstraction moves the hypotheses of the strict 
subordinate proof to the main proof, hence we now propose a rule that does the same for the 
reiterations of these hypotheses. 

2.6.9. DEFINITION. t var-reduetion 

for all object variables x, tx: Prop => x: Prop 
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for all proof variables p, tp : tp =} p : tp 

When no more applications of any of the three distribution rules are possible, a term is 
in 't-normal form' . Using the above case distinction, we know that ts in a term in t-normal 
form occur in front of an import subtermor an export subterm (cases ii and iii ). At in front 
of an import subterm signifies a 'minimal strict subordinate proof': the application of some 
import rule immediately followed by T-export. These minimal proofs offer possibilities for 
further reduction, when the import rule is 4 or 5-import it can be eliminated by annihilation. 

In the following schematic example we illustrate the effect of reduction to t-normal form 
on natura! deduction proofs. 

Pn 
0 

c 

P' 1 

P' 2 

P' n 

c 

Pt 

er p~ 
P' 1 

p2 

er P2 

P' 2 

Pn 

er p~ 
P' n 

E* 

c 
In the proof tigure on the left, C is derived in a strict subordinate proof ending in T
export. The derivation E of C uses the formulas PJ., P~, . .. , P~, which result from importing 
Pt, P2, ... , Pn occurring in the main proof. The proof figure on the right shows the effect of 
the distribution of T-export through E . The strict subordinate proof ending in T-export is 
reduced to a number of minimal strict subordinate proofs ending in T-export, which serve 
only to create occurrences of P~, P~, ... , P~ in the main proof. Once this is achieved C can 
be derived in the main proof in the same way as it was the derived in the strict subordinate 
proof. The only possible difference between E and E* is that the hypothesis-intervals lying 
inside E now range from just above the occurrence of P1 down into E* . In terms of possible 
worlds this pro of transformation can be understood in the following way: since 'T -worlds' 
are accessible to themselves, a proof in a reachable world of a T -world could just as well have 
been performed in the T-world itself. 

The nice reduction properties that hold for the annihilations can be proved for distri bution 
of t over application, but we can already see from the congruence cases for distribution over 
abstraction that these properties are difficult to prove for the full set of distribution rules. 
New ,6-redexes can emerge while distributing over abstraction, making the proof of Strong 



2.6. PROOF REDUCTIONS 87 

Normalisation complicated. Subject Reduction is lost for distribution over abstractions since 
(using the mappings) terms corresponding to 'illegal deduction proofs' will result. However, 
the set of distribution rules as a whole can be used to simplify modal proofs (see the example 
in 2.6.6). Therefore we propose the following. 

2.6.10. CONJECTURE. 

Weak Normalisation The set of annihilation rules tagether with the t-distribution 
rules is weakly normalizing: there is a procedure which turns terms in to t-normal 
farms. 

Subject Reduction for t-normal forms Given terms M and M' where M' is a t
normal farm of M, ij G r M : <p then G r M' : <p: the t-normal farm is 11.gain a 
proof of the original proposition. 

2.6.4. Other Rules 

In the previous sections we discussed the annihilating function pairs and distrihuting functions 
for the modallogics we are concerned with. However, there may be other possible reductions 
if we take reduction to be arelation between sequences of fundions (annihilation being the 
reduction of a pair of fundions to the empty sequence). 

One way to look for such rednctions is to concentrate on the inclusions between the various 
normal modallogics: Among these inclusions, those that do not arise from the mere addition 
of a rule (like KT C KT4) are interesting, because the strenger system can prove all theorems 
of the weaker system with a different set of rules. This means that certain sequences of steps 
in proofs of the strenger system are equivalent to a sequence of steps in proofs of the weaker 
system. Under the propositions-as-types-interpretation of modallogic these relations between 
sequences of steps may turn out to he formalizable as reduction rules on the import and export 
functions appearing in terms representing these proofs. 

One of the inclusions mentioned in (Chellas 1980] is KDB C KTB; theorems of KDB 
which were proved using the D-export rule can be proved in KTB using the T-export rule 
instead. A little doodling shows that any sequence of T -export, B-import, a.nd T -export in 
KTB corresponds to an a.pplica.tion of D-export in KDB: 

I\ => r~ 
A ...,o...,A 

Cf...,o...,A 
...,o...,A 

This relation could he formalized hy means of the reduction rule: t(b(tM)) => dM. Inter
esting inclusions ca.n a.lso yield more complex relations, e.g. from the inclusion KB4 c KT5 
we can conclude that the work of the b-function can be taken over by the k, 5, k, a.nd t func
tions. Quite a bit of doodling shows that bM : -,Q-,A in KB4 (resulting from an application 
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of B-import to M: A) corresponds to 5(>.y: o..,A.(t(ky))M: ..,o..,A (where M: A) in KT5. 
Obviously such a relation cannot be formalized as a reduction on sequences of functions, it 
requires major surgery on terms. 

These examples suggest that the possibilities of finding 'other rules' may be limited if we 
require that they are reductions between sequences of functions. However, there is a clear 
motivation for this requirement: reductions between sequences of functions do nat affect the 
independenee of the 'modal operations' and the usual operations of typed .À-calculus. When 
other sorts of reductions are added to the type sytem this orthogonality may be lost, making 
it much more difficult to ascertain that the system is well-behaved. 

2.6.5. Reduction rules for the extension by axioms 

In view of the equivalence of the 'extension by rul es' and the 'extension by axioms', the reader 
may wonder why na reduction rules for the latter extension were given. The reason for this is 
nat that there are na pointless combinations of steps in axiomatic proofs, as can be seen from 
the following example: first DDA is derived from DA and an A-instance of the 4-axiomschema, 
then DA is in turn derived from DDA by means of a DA-instance of the T-axiomschema. 

DA 
'Va E Prop.(Da :J DDa)) 
A E Prop 
DA :J DDA 
DDA 
'Va E Prop.(Da :Ja)) 
DDA :J DA 
DA 

DA 

M 

Assuming that the 4- and T-axiomschemas are in ALogic (inhabited by c4 and Gt respectively), 
we can try to extract an axiomatic version of t4 reduction from this example in the farm of a 
rule like (c1(DA))(C4AM) => M. However, such a ruleis nat general enough; the reduction 
should hold for any proposition of the farm D<p, nat just for DA. Ta express this, the rule will 
probably have to be to stated inthefarm of a schema: (c1(Da))(c4 aM) => M (where the 
type of M is of the general farm D<p and a= D<p). This shows that reduction rules for the 
extension by axioms have· a format that is rather different from that of traditional reduction 
rul es. 

2.6.11. EXAMPLE. Ta illustrate the effect of the reductions we shall now take a spectacularly 
inefficient proof of sarnething trivia! in KT45: 
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1. DDDA 

2. 

3. 

4. 
5. 

6. 

7. 
8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

DA ::J ..l 

DDDA ( reiteratien 1) 

0 
DDA (K-import 3) 

(reiteration 5) 

DDA ::J DDA (::J-intro 5-6) 

DDA (::J-elim 4,7) 

DDA 

ToA 
DA 

i DA ::J ..l 
DA 
..l 

D..l 

..l 

(DA ::J ..l) ::J ..l 

( T -export 8) 

(K-import 9) 

(T-export 10) 

(5-import 2) 

( 4-import 12) 

(::J-elim 12,13) 

(K -export 14) 

(K-import 15) 

(T-export 16) 

( ::J-intro 2-17) 

19. ODDA ::J ((DA ::J ..l) ::J ..l) (::J-intro 1-18) 

Using '!', this natura! deduction proof can be mapped to the term 

Àx: ODDA.(.Xz: DA ::J ..l.t(k(k((5z)(4(t(k(t((.Xy: DDA.y)(kx)))))))))), 
which can then be simplified by means of some =>- and ,6-reductions: 

Àx: DDDA.(.Xz: DA ::J ..l.t(k(k(5z)(4(t(k(Î((.Xy: DDA.y)(kx))))))))) 

Àx: DDDA.(.Xz: DA ::J ..l.t((5z)(4{t(k{t((.Xy: DDA.y)(kx)))))))) 

Àx: DDDA.(.Xz: DA ::J ..l.(t(5z)){t(4(Î(k(Î((.Xy: DDA.y)(kx)))))))) 

Àx: DDDA.(.Xz: DA ::J ..l.(z(t(.Ï(t(k(t((.Xy: DDA.y)(kx))))))))) 

Àx: DDDA.(.Xz: DA ::J ..L.(z(Î(k(Î((Ày: DDA.y)(kx)))))))) 

Àx: DDDA.(.Xz: DA ::J ..l.(z(Î(k(Î(.Xy : DDA.y)(t(kx))))))) 

Àx: DDDA.(.Xz: DA ::J ..l.(z(tk((.Xy: DDA.ty)(Î(kx)))))) 

Àx: ODDA.(.Xz: DA ::J ..l.(z(tk((.Xy: DDA.y)t(kx))))) 

Àx: DDDA.(.Xz: DA ::J ..l.(z(t(k{t(kx)))))) 

(kk red.) 
=} 

(i di~ppl.) 

(is red .) 
=} 

(i4 red .) 
=} 

(i distr .appl.) 
=} 

(i diJtr . abstr .) 
=} 

(1 varred.) 
=} 

({3~.) 

Mapping the simplified term back to a natura! deduction proof (using '?'), yields area
sonably smart proof of DDDA ::J ((DA ::J ..l) ::J ..l) in KT: 
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1. ODDA 

2. DA :::l.l. 

3. DDDA {reiteration 1) 

4. TooA (K-import 3) 

5. DDA (T-export 4) 

6. ToA (K-import 5) 

7. DA ( T -export 6) 

8. ..1. (:::l-elim 2,7) 

9. (DA :::l ..1.) :::l ..1. { :::l-intro 2-8) 

10. DDDA :::l ({DA :::l ..1.) :::l ..1.) (:::l-intro 1-9) 



Chapter 3 

Meta theory of MPTSs 

Modal Pure Type Systems (MPTSs) are an extension of Pure Type Systems, proposed with 
the aim of giving a 'propositions-as-types'-interpretation of modal propositionallogics as well 
as predicate logies. In this chapter we investigate the meta theory of the MPTSs introduced 
in chapter 1. 

First we briefly remind the reader of the definition of the Modal Logic Cube of MPTS's, 
and define some notions needed for the meta theoretica! proofs. After some preliminary 
results in the second section we will show that the meta theoretica! properties that hold for 
the systems in the Logic Cube continue to hold for the systems on the Modal Logic Cube. 
The proofs of the main properties are more or less analoguous to the proofs of these properties -
for PTS's. The difficulty is to prove a sufficiently strong Stripping Lemma, as is explained 
in section 3. The chapter ends with a discussion of the standard 'rewrite properties' for the 
modal reduction rules defined in the previous chapter. 

3.1. The Modal Logic Cube 

3.1.1. DEFINITION. Pseudoterms ForS some set, the setTof pseudoterms overS is 

T ::= SI VarlilVar : T.T)I(.X Var: T.T)ITTIDTikT14T15TibTikTidTi tT IC, 

where Var is a countable set of variables, and C is a countable set of constants. In principle 
we think of the set Var as partitioned over S, that is to say that the variables are indexed 
with their 'sort' (e.g. xProp : A where A : Prop). However, in many of the following proofs 
this division of variables is not significant, and in those cases it wil! be neglected. 

Given the additional pseudoterms of the MPTSs over PTSs, the PTS-definition of free 
variables has to be extended. 

3.1.2. DEFINITION. Free variables A map FV : T-> P( V) is defined as jollows: 

(i) FV(s) = FV(c) = 0 for all sE S and c E C 

(ii) FV(x) ={x} 

(iii) FV(AB) = FV(A) u FV(B) 

(iv) FV(.Xx : A.B) = FV(A) u (FV(B) - {x}) 

91 
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(v) FV(ITx: A.B) = FV(A) u (FV(B)- {x}) 

(vi) FV(DA) = FV(A), FV(Ü) = FV(4A) = FV(SA) = FV(bA) = F V(A), 
FV(Ü) = FV(dA) = FV(tA) = FV(A). 

3.1.3. DEFINITION. Generalized contexts 

(i) A declamtion is a judgement of the farm x : A, where x is a variabie and A a pseudoterm 

(ii) A pseudo-context is a finite ordered sequence of declarations (x : A), all with distinct 
subjects: Xt : At, .. . , Xn : An. The empty context is denoted by é . If 
r = Xt: At, . .. ,Xn : An then r,x: B = Xl: Al, ... ,Xn : An,X: B. 

(iiia) A generalized pseudo-context is a finite ordered sequence of pseudo-contexts and sepa
rators [QJ, in which all variables accuring as subjects are different: C =ft !QJ ••• !QJ r n· 

If C = X1: At , ··· IQ) • •• 1!:!1 Xm: Am,·· .,Xn: An 
then C, X: B = Xt :At, . .. IQ! •.• !QJ Xm: Am, ... , Xn: An, x: B, 
and c l!:ll é = Xt :Al> ... ~ .. . !!dl Xm: Am, ... , Xn : An !QJ é. 

(iiib) Alternatively an inductive definition of thesetof generalized pseudo contexts Ç can be 
given based on the set 0 of PTS-contexts: 
9=0I9!QJO 

We take r,rt, . .. to be ranging over 0, and C, Ct, . .. to range Ç.'é', the empty context, 
denotes the empty sequence of statements. It is introduced to clarify the notation of the 
modal rules. 

For genemlized pseudo-contexts the map FV {or Dom) is defined in stages: 

(i) FV(é) = 0 

(ii) FV(r, x: A)= FV(r) U {x} 

(iii) FV( C ltH) = FV( C) u FV(f) 

Based on the inclusion relation between PTS-contexts, we define two inclusion relations 
for generalized contexts. 

3.1.4. DEFINITION. Context ioclusion 
For r and rt PTS-pseudo-contexts, and C and Ct generalized pseudo-contexts: 

(i) r is part of rt , r Ç r', if every declaration x : A in r is also in r'. 

(ii) Cis part of Ct, C Ç Ct, if C =:= r1 IQJ • •• llJI r n and C' =:= r~ IQJ •• • !QJ r~ forsomen E lN 
and \t'i(l ~ i ~ n)(ri Ç ri) as under (i) . 

(iii) Cis an initia/ part of Ct, C ~ Ct, if C =:= f 1 ~ ... IQ! r m and ct =:= r~ IQI • • • IQJ r~ for 
some n, m E lN, where m ~ n and \t'i(l ~ i ~ m)(ri Ç r i). 

For C Ç Ct, we require C and C' to be of the same 'modal depth'; this subset relation 
for generalized contexts can be seen as taking the sum of the subset relation over all pairs of 
corresponding 'simple' contextsin C and Ct. Note that the part of-relationis a special case of 
the intialpart of-relation (for n = m the definitions are equivalent), that has no' counterpart 
in PTSs. 
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3.1.5. DEFINITlON. Modai Pure Type Systems 
A Modal Pure Type System with ,8-conversion MPTS13 is given by a setS of sorts containing 
Prop,Set, and Type, a set A Type CS x Softyping axioms, a set ALogic CC x Tof logica! 

axioms and a set R CS x S x Sof rules. The MPTS that is given by S, A and Ris denoted 
by D.X13 (S,A, R) and is the typed À-calculus with the following deduction rules1: 

ê 1- c : A : Prop if c : A E A Logjc 

GI-A:s 
(start) G, x :A 1- x: A 

GI-A:B GI-C:s 
( weakening) 

G, x: C 1- A: B 

( ) G 1- A : s1 G, x : A 1- B : sz 
product 

G 1- (IIx : A.B) : s3 

( l . . ) G 1- F : (IIx: A.B) G 1- a: A 
app zcatwn G 1- Fa : B[x := a] 

( ) G, x : A 1- b : B G 1- (IIx : A.B) : s 
abstraction 

G 1- (.XX : A.b) : (IIx : A.B) 

G 1- B': s GI-A:B 
( conversion) 

G 1- A: B' 

G 1- A: Prop 
( boxing) 

G 1- DA: Prop 

GI-A:s 
( transfeTI) G 1- A 

IQ} ê : s 

G 1- A:B:Type 
(transfe1'2) G llil ê 1- A: B 

G 1- A: B: Set 
(transjer3) G IQ] ê 1- A : B 

G 1- c : A : Prop 
(transfer ax) 

Gllile 1- c:A 

(K . ) G 1- A : DB : Prop 
zmport _ 

G llil e 1- kA: B 

(K ) G llil e 1- A : B : Prop 
export , 

G 1- kA: DB 

B=13 B' 

where s ranges over the set of sorts S, c over the set of constants C, x ranges over variables, 
and it is assumed that in the rules (start) and ( weakening) the newly declared variabie x is 
always fresh, that is, it has not yet been declared in G. 

1 Again using the notational convention (cf. chapter 1) that G 1- A : B : C stands for G 1- A : B and 
G 1- B: C. 
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MPTSs can have various import and export rules, but they have to have the K -import 
and K -export rule, since these rules hold for all normal modal operators. In this chapter we 
add all of the additional import and export rules introduced in chapter 1.3 to the MPTSs: 

G I- A : DB : Prop G I- A : ·DB : Prop G I- A : B : Prop 
4 import • 5 import • B import • 

G IQ é I- 4A : DB G IQJ é I- 5A: -,OB G l!:ll é I- bA : ...,o...,B 

D G IQJ é I- A : B : Prop 
export _ 

G I- dA: ..,o..,B 
T G IQJ é I- A : B : Prop 

export _ 
G I- tA : B 

This allows us to prove at once the meta theoretica! properties of all MPTSs that have a 
subset of these import and export rules. 

3.1.6. DEFINITION. Modal Logic Cube 
The cube of modal logica/ typed lambda calculi consists of the following eight MPTStls. Each 
of them has 

S ={Prop, Set, TypeP, Type'} 

A Type = Prop : TypeP, Set : Type 5 • 

ALogic = c: (Vx: Prop.((x :::> J.) :::> .l) :::>x) 

The rules of the systems are given by the following list: 

>..OP ROP (Prop, Prop) 

>..DPROP2 (Prop, Prop) , ( TypeP, Prop) 

>..DPROPw (Prop, Prop), ( TypeP, TypeP) 

>..DPROPw (Prop, Prop), ( TypeP, Prop), ( TypeP, TypeP) 

>..DPRED 

>..DPRED2 

>..DPREDw 

>..DPREDw 

(Prop, Prop), (Set, Set), (Set, Prop), (Set , TypeP ) 

(Prop, Prop), (Set, Set), (Set , Prop), (Set, TypeP) , 

( TypeP, Prop) 

(Prop,Prop), (Set,Set) , (Set , Prop), (Set, TypeP) , 

(TypeP, Set) , (TypeP, TypeP) 

(Prop , Prop), (Set, Set) , (Set , Prop), (Set, T-ypeP), 

( TypeP, Set), ( TypeP, TypeP), ( TypeP, Prop) 
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.>.DPROPw _______ __,_ ..\DPREDw 

/ / 
..\DPROP2----------~..\DPRED2 

..\DPROPw ---- ----..\DPREDw 

/ / 
..\DPROP --------..\DPRED 

3.2. Preliminaries 

In this section we prove a few of the standard lemmas from the meta theory of PTSs for the 
rnadal system. We start with some terminology that is to he used in later proofs. 

3.2.1. DEFINITION. Terminology 
Let G be a generalized pseudo-context and A be a pseudo-term. 

(i) G is called legal if 3P, Q ET G 1- P : Q. 

(ii) A is called a G-term if3B ET( G 1- A : B or G I- B: A). 

(iii) A is called a G-type if :Js E S( G I- A : s ). 

(iv) If G I- A : s then A is called a G-type of sort s. 

(v) A is called a G-element if :JB E T:ls E S( G 1- A : B : s ). 

(vi) If G I- A: B : s then A is called a G-element of type B and of sort s. 

(vii) A ET is called legal if 3G, B( G 1- A: B or G 1- B : A). 

(viii) A ET is called typable in ..\(S, A, 'R.) if 3G( G 1- A : B or G 1- B :A) forsome B . 

(ix) A E T is called typable in G for G a !ega! generalized context and A a term, 
if G 1- A : B or G 1- B : A for some B. 

First we show that generalized contexts are not that different from the usual pseudocon
texts, by proving a Free Variabie Lemma, Start Lemma, and Substitution Lemma. 

3.2.2. LEMMA. Free Variabie Lemma 
Let G = XI : Al, ... IQ! ••• IQ! ••• ) Xn An (or rl IQ! ••• IQ! r m) be a legal context, say 
G 1- A : B, then the following hold: 
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{i) The x1, ... , Xn are all distinct 

{ii) FV(A), FV(B) Ç {x1, ... xn} 

{iii) FV(A;) Ç {x1, ... ,x;_t} for 1::; i::; n 

PROOF. 1'roof of (i), (ii), and (iii). By induction on the derivation of G 1- A: B 

Proof of (i). For the non-modal cases the induction is straightforward. Note that the axiom 
cases are trivia! because of the empty context, and that the variables introduced by the start 
and weakening rules are fresh and hence distinct from the variables already present in the 
context. 

For the transfer-, import- and export-cases we need the observation that FV ( G IQJ E) = 

FV( G), e. g. : 

Transfer1 G 1- A: B is G' IQI E 1- C: s where G:: G' IQJ E, an immediate consequence 
of G' 1- C : s. By IH the x1, ... , Xn in G' are all distinct, and since (by definition) 
FV( G'IQJ t:) = FV( G'), the variables in Gare all distinct. 

Proof of (ii). The interesting cases are the modal cases and those for axiom and abstraction. 
Note that all typing axioms as welllogical axioms have no free variables. The abstraction-case 
uses part (i) of the Free Variabie Lemma: 

Abstraction G 1- A: Bis G 1- (>.x : C.d) : (ITx : C.D), an immediate consequence of 
(1) G, x : C 1- d : D and (2) G 1- (IIx: C.D) : s. By lH (on (1)) 
FV(d),FV(D) ç FV(G,x: C) and (on (2)) FV(ITx: C.D),FV(s) ç FV(G,x: C). 
Hence FV( C) Ç FV( G) and FV(Àx : C.d) Ç FV( G) since by definition FV(Àx : 
C.d) = FV(C) u (FV(d)- {x}) (FV(ITx : C.D) = FV(C) u (FV(D)- {x})). 
Notice that by Free Variabie Lemma (i) and (1), x (/: FV(G). Therefore FV(>.x : 
C.d),FV(ITx: C.D) Ç FV(G). 

The transfer, import and export-cases again use the Free Variabie definition FV( G IQ] t:) = 
FV( G). 

Proof of (iii). The cases forstart and weakening use the part (ii) of the Free Variabie Lemma, 
we do the case for start: 

Start G 1- A: Bis G', x : C 1- x : Ca direct consequence of G' 1- C : s. By lH for all A; in 
G', FV(A;) Ç {x1, ... , x;_t}. We have to prove that FV( C) Ç { x1, ... , xi} = FV( G'). 
But si nee G' 1- C : s, we have FV ( C) Ç F V ( G') by the previous clause (i i) of the Free 
Variabie Lemma, hence FV(Ai) Ç {x1, ... , x;_ I} for all A; in G. 

For the transfer, import and export-cases we need the simple observation that A; in G are 
the A; in G IQl E 

3.2.3. LEMMA. Start Lemma 
Let G be a legal generalized context. Then 

{i) IJ s1 : s2 is a typing axiom {E A Ty1>e ), G 1- s1 : s2 
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{ii} IJ c : A is a logica/ axiom, (E ALogi<: ), G f-- c : A : Prop 

{iii} Ij (x : A) E r in G' tQJ r {where G ::: G' IQ! r }, then G' IQ! r f-- x : A 

PROOF. Proof of (i),(ii) and (iii) . By assumption of G f-- A: B forsome A: B. The result 
follows by induction on the derivation of G 1- A : B. 

Proof of (i). The cases for transfer and import all use the transfeTJ.-rule: 

Transfer2 G f-- A: B is G' tQJ t: f- C : D where G = G'IQJ t:, an immediate consequence 
of G' f- C : D : Type. By IH G' f-- SI : s2, but then by transfer1 G' IQJ E f- SJ : s2. 
Hence G f- SJ : s2, for SJ : s2 E A Type . 

For the export-cases we have look further back in the derivation in applying the IH, we show 
the case for K -export: 

K -export G f-- A : B is G f-- kC : DD an immediate consequence of G tQJ E f- C : D : 
Prop. Applying the IH to the last step in the derivation does not work bere, however 
since all derivations start from the context t:; e we can go up in the derivation tree to 
find the place where the IQ) was introduced going from G to G IQJ e for the first time. 
This means sarnething must have been derivable on G before, and since this derivation 
is shorter, IH gives that G f-- SJ : s2, for SJ : s2 E A Type. 

The proof of (ii) is completely analogous. 

Proof of (iii). The proof is straightforward for non-modal cases, and trivia! for the transfer 
and import-rules: 

Transfer1 G f- A : B is G'IQJ t: f-- C : s where G = G'IQJ e, animmedia te consequence of 
G' f-- C : s. Note that this cannot occur when G is 'non-blocked' ( G = r). Therefore 
we treat the case of the 'complex' context G' IQJ e. Since r = e, it contains no variables, 
and so trivially G f-- x : C if (x : C) Er. 

For the export-cases we use an argument similar to the one given above in the proof of (i). 

Given the following definitions of substitution on, and concatenation of generalized con
texts, a Substition Lemma can be proved: 

3.2.4. DEFINITION. Subtitution, concatenation 

On a generalized context 1::. = !::.1 ~ ... IQI l::.n, the substitution of a term D fora variabie 
x yields !::.[x :=DJ = t:.t[x := D]IQJ . .. IQ! l::.n[x :=Dj. 

Given two generalized contexts G ::: f 1 IQJ . .. IQJ r m and t:. = 1::.1 IQJ ••• IQJ l::.n, their 
concatenation G, t:. = f1 IQJ ••• IQJ r m, !::.1 IQJ ••• IQJ l::.n . 

3.2.5. LEMMA. Substitution Lemma 
Assume (1) G, x : C, 1::. 1- A : B and (2) G 1- D : C, where G and 1::. are generalized 
pseudo-contexts. Then G, !::.[x:= Dj f-- A[x := D]: B[x :=DJ . 
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PROOF. Proof. By induction on (the lengthof the) derivation of (1), where M* is used as an 
abbreviation for M[x := DJ. 

The non-modal cases are analogous to those in the proof of the Substitution Lemma for 
PTS's. The modal cases require some calculations with the definitions for substitution, e.g. : 

K-export G,x: C,/1 1- A : Bis G,x: C, 1- kE: OF an immediate consequence of 
G,x: C,/1 li:lle 1- E: F: Prop. By lH G,(/1 li:lle)* 1- E*: F*(: Prop). By definition 
(!1 fQJ e)* = !1* 101 e* = !1* 101 E, since E* = E. Hence G, (!1 [QJ E)> = G, f1• [QJ E, and so 
G, !1* fQJ E 1- E*: F*(: Prop). Therefore by K-export G, !1* 1- kE*: D(F*), and since 
(kE*) := (kE)* (FV(kE) = FV(E)) and D(F*) := (DF)*, G, !1* 1- (kE)*: (DF)*. 

The proof of a Thinning Lemma is not completely straightforward. The transfer and 
import-rules are formulated in such a way that they yield a new generalized context of the 
iorm G fQJ e. However, to prove Thinning we have to show that there are derived versionsof 
these rules that yield generalized contexts G fQJ r, for an arbitrary 'non-blocked' context r. 

To prove this, the following lemma is needed: 

3.2.6. LEMMA. Legality Lemma 
Ij G fQJ f 1 , x : C is leg al then G lQl f 1 r C : s. 

PROOF. By induction on the length of the derivation of G fQJ T1, x : C 1- A : B . Except for 
the axiom cases which cannot occur (since G fQJ f 1, x : C t;. e) and start and weakening which 
are immediate, the non-madal cases are regular. The transfer and import-cases cannot occur: 

Transfer1 G 19 f 1, x : C 1- A : B is G IQJ E 1- D : s , an immediate consequence of 
G 1- D : s. This case cannot occur: G IQJ f 1, x : C '1. G fQJ e. 

and the export-cases require some additional reasoning: 

K -export G fQJ f 1, x : C 1- A : B is G 1- kD : DE an immediate consequence of 
G 101 f 1 , x : c 101 E: 1- D : E : Prop. Since all derivations start from E and are finite, 
we can go up in the tree to find the place where the 101 was introduced, going from 
G IQI f 1 , x : C, to G IJ f 1, x : C 101 e for the first time. This means that sarnething must 
have been derivable on G ~ f 1 , x : C before, and since this denvation is shorter IH gives 
us that G lQl r-' 1- C : s. 

3.2.7. LEMMA. Derived Rules Lemma 
The following are derived rules in an MPTS: 

1 GI-A :s 
Transfer1 G r A 

IQI 1- : s 

Tra , 1 G 1- A : B : Set 
ns,er3 G 101 r 1- A : B 

K . 1 G 1- A : DB: Prop tmport _ 
· G IQI r 1- kA: B 

. I G r A: -.OB: Prop 
5 tmport • 

G lQl r 1- SA : -.DB 

T 11 GI-A:B:Type 
rans,er2 G !QJ r 1- A : B 

Th :j 1 G 1- c : A : Prop 
ans er ax G fQJ r 1- c : A 

1 G 1- A : DB : Prop 
4 import • 

G 101 r 1- 4A : DB 

B . 1 G 1- A : B : Prop 
tmport 

G !QJ r 1- bA : -.o-.B 
where r is a {non-blocked) pseudocontext such that G IQ! r is legal. 
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Given the original rules of Transfer and Import, proving the following is sufficient: 

1 IfGIQJe 1- A : s then G !dl r 1- A : s . 

2 IfGIQJe 1- A : B(: Type) then G IQJ r 1- A: B. 

3 IfGIQJe 1- A: B(: Set) then G l!:ll r 1- A: B. 

4 IfGIQJe 1- c: A(: Prop) then G IQJ r 1- c: A. 

5 IfGIQJe 1- kA : B then G IQJ r 1- kA : B 

6 IfGIQJe 1- 4A : DB then G !bil r 1- 4A : DB 

7 lfGIQJe 1- SA : -.OB then G IQJ r 1- SA : -.OB 

8 IfGIQJe 1- bA : -,0-,B then G IQJ r 1- bA : -,0-,B 

PROOF. By induction on the lengthof f . 
The basic case for r =: e is immediate by the above. The induction case where r =: f', x : C 
is the same for all cases, we show 1: 

1 By lH G IQI r' 1- A : s, and by the Legality Lemma ( G IQJ r' is legal) G IQJ r' 1- C : s, 
hence weakening yields G IQI f', x : C 1- A : s and G IQJ r f- A: s. 

Now we can prove a Thinning Lemma for the modal systems, using the 'subset relation' 
for generalized contexts defined earlier. 

3.2.8. LEMMA. Thinning Lemma 
Let G and /::;. be leg al generalized pseudocontexts such that G Ç /::;.. Th en if G 1- A : B, 
ó. 1- A: B. 

PROOF. By induction on the lengthof the derivation of G 1- A : B. The cases for transfer 
and import require the derived forms of the these rules from the derived rules lemma. We 
show the case for K -import: 

K-import G 1- A : B is G' !bil e 1- kc : D where G = G' IQI e, an immediate 
consequence of G' 1- C : DD : Prop. Since G = G' IQJ e and G Ç ó., it must be the 
case that ó. = ö.' IQJ r forsome r (since for all r, e Ç r) and G' Ç ó.'. Hence by lH 
ö.' 1- C: DD: Prop , so by the derived rule K-import ' I::;.' IQ! r 1- kC: D and therefore 
~::;. 1- kc: n. 

In the Export-cases we have to show that /::;. is legal before the IH can be applied: 

K -export G 1- A : B is G 1- kC : DD an immedia te consequence of G lbll e 1- C : D : 
Prop. Since G Ç /::;. and e Ç e, by definition G IQJ e Ç /::;.IQJ e. Furthermore ó.lbll eis !ega!: 
/::;. is legal, hence by the Start Lemma (i) /::;. f- s1 : s2 for s1 : s2 E A Type (note that 
A Type f= 0), and by trans j eT}, /::;. IQJ e 1- s1 : s2. Therefore by lH /::;. IQJ e 1- C : D : Prop, 
andsoó. 1- kC:DD . 
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3.2.9. COROLLARY. Strong Thinning 

For terms {A) that are not proofs {nat A : B : Prop), we can prove a stronger result (jor 
cases where G is an intialpart of t:.) by combining Thinning with the transfer rule. 

Let G and t:. be /ega/ generalized pseudocontexts such that G ~ t:.. Th en 

(i) ij G 1- A : sI t:. 1- A : s. 

{ii) ij G 1- A : B : Type, t:. 1- A : B : Type. 

{iii) ij G 1- A : B : Set, t:. 1- A : B :Set. 

PROOF. Proof of (i), (ii), and (iii). By construction of t:. from G while preserving the 
derivability of A : s . We do the proof of (ii): 

Suppose that G 1- A : B : Type for some terms A and B: 

(1) f1 IQ! ••• ~ r m 1- A : B : Type 

Since 'v'i(1 ~i ~ m)(f; Ç r~), we can conclude by Thinning 

(2) r~ !':ll ••. !':ll r~ 1- A : B : Type 

Now the transfer2 rule can be applied to obtain 

r~ IQJ • • • l!:ll r~ IQI f 1- A : B 

and by transfer1 we have 

r~~CJ ... Ii:!lr~~f 1- B:Type 

hence 

(3) r~ ~CJ •• • l!:ll r~ fQJ f 1- A : B : Type 

Since ë Ç r~+l, Thinning can yield 

( 4) r~ D ... li:!l r~ IQ! r~+l 1- A : s 

By repeating these last two steps, transfer2 and transfer1 to introduce a new IQJ and Thinning 
to expand ë into the respecti:ve fj ( m + 1 ~ j ~ n ), we obtain 

(5) r~ IQ! •• • Ik! r~ IQl • • • IQ! r~ 1- A : B : Type 

And thereby we have shown that A : B : Type is derivable on the generalized context t:.: 

(6) t:. 1- A : B : Type 
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3.3. The Stripping Lemma 

Befere we can state and prove a sufliciently streng Stripping Lemma for the MPTS's, we have 
to show that for 'non-proof-terms' (terms A for which there is no context G and a term B 
such that G 1- A: B: Prop) it is 'business as usual'. That is to say that if such a term can 
be constructed in a context, it can also be constructed in a subcontext of that context and 
vice versa. We do this by showing that in derivations of non proof terms, !:lB can be inserted 
in and deleted from the context. 

Proving lnsertion and Deletien requires that a subterm of a term that is not a proof term 
is itself not a proof term (Subterm Lemma). This is a property of the PTSs in the logic 
cube, and we can prove that it holds for the logica! MPTSs by means of a simple mapping of 
MPTS-terms on PTS-terms. Here is a sketch of the proof route: 

Definition of the proof terms and non proofs terms in PTSs 

Pro of of the Subterm Lemma for PTSs 

Proof of the Subterm Lemma for MPTSs using the mapping '11' 

Proof of the Insertion Lemma 

Proof of the Deletien Lemma 

3.3.1. DEFINITJON. Following [Barendregt 1992], the terms of the PTSs in the Logic Cube 
can be divided into: 

A is a set-kind: 3r[r 1- A : Type•] 

n A is a prop-kind: 3r[r 1- A: TypePI 

m A is a set-constructor: 3r, B[r 1- A: B : Type'] 

w A is a prop-constructor: 3r, B[r 1- A : B : TypePJ 

v A is a set: 3r[r 1- A : Set] 

vi A is a proposition: 3r[r 1- A : Prop J 

vu A is an element: 3r, B[r 1- A: B : Set] 

viii A is a proof term: 3r, B[r 1- A: B : Prop] 

Hence A is not a proof term in cases i - vii, and A is a proof term in case viii . 

In the following we need that the sets of non-proof terms (i - vii) are disjunct from the set 
of proof terms (viii). This can be established using sorne results frorn [Geuvers 1993]. In his 
forrnulation of PTSps, there are no constants ( c E C) inhabiting the logica! axiorns, but the 
following results and their proofs can easily be seen to go through for our formulation ( the 
constants behave as a subset of the Prop-variables, VarP"'P) . 
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3.3.2. DEFINITION. (Geuvers) s-Term, s-Elt 

For r a context, s a sort and A a term, A is an s-term in r ( notation A E s-Term(r)) 
if r 1- A : s, 

For r a context, s a sort and A a term, A is an s-element in r (nota.tion A E s-Elt(r)) 
if r 1- A : B : s for some term B. 

Given these notions, Geuvers goes on to show that for injective PTSes, with sorted variables, 
the following holds. 

3.3.3. LEMMA. (Geuvers) Classification Lemma for injective systems 
For s, s' sorts and s ;t s' 

1 s-Term () s1-Term = 0 

2 s-Elt n s'-Elt = 0 

By 1, we immediate1y have that the sets (i), (ii), (v), and (vi) are all disjoint. Likewise, by 
2, ( iii), ( iv ), ( vii), and ( viii) are all disjoint. Therefore what remains to be shown is that 
the set of proof terms, ( viii), is disjoint from (i), (ii), ( v ), and ( vi). To do this, we require a 
further notion. 

3.3.4. DEFINITION. (Geuvers) Heart of a pseudoterm 
The heart of a pseudoterm A, h(A), is defined by induction on the structure of terms as 
follows. 

h(8) .- s, for 8 ES, 

h(x) .- x, for x E Var , 

h(IIx: B.C) .- h(C), 

h(>.x : B.M) .- h(M), 

h(MN) . - h(M) . 

For the hearts of s-Terms and s-Elts, the following holds. 

3.3.5. LEMMA. ( Geuvers) 
For an injective PTSp with all rules of the form (s1, s2) we have 

M E s-Elt Ç} h(M) : x E Var' V 

h(M) : s" with s" : s' and s' : saE A 1YPe for some s' E S 

MEs-Term =? h(M): x E Var•' with 8: s' E AT!n>e V 

h(M) = s' with s': sE A Type_ 

3.3.6. PROPOSITION. For the PTSps in the Logic Cube, the set of proof terms is disjoint from 
the sets of non-proof terms. 
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PROOF. By the Cla.ssification Lemma we have that the set of proof terms, ( viii), is disjoint 
from the non-proof termsets (iii), (iv), and (vii). Hence what remains to be shownis that 
( viii) is disjoint from (i), ( ii), ( v ), and ( vi). 

Suppose that this is not true (towards a contradiction). Then there exists a proof term 
M(: A: Prop), that is both an s-Elt and an s-Term. Hence by the last lemma and the fact 
that M is an s-Elt we have (1) h(M) = x E VarProp. By the fact that M is an s-Term, 
either (2) h(M) E Var•' with s' E A Type, or (3) h(M) = s' where s' : s E A Type. Since by 
(1) x E VarProp, it cannot be the case that h(M) = s' for any s' E S. It is also impossible 
that h(M) = x E Var•' with s : s' E A Type, since A Type does not contain a typing axiom of 
the form s : Prop. Both (2) and (3) are in contradiction with (1), hence there cannot exist 
a proofterm that is an s-Elt as wellas an s-Term. Therefore (viii) is disjoint from (i), (ii), 
(v), and (vi). 

For PTSs in the Logic Cube the definition of subexpressions is an extension of the usual 
definition for PTSs: M sub A iff NE Sub( A), where Sub( A), thesetof subexpressions of A, 
is defined as follows. 

Sub(A) ={A}, if A is one ofthe constauts (sorts) or variables 

Sub(A) = {A} U Sub(P) U Sub( Q), if A is of the form IIx: P.Q, Àx: P.Q or PQ 

3.3.7. LEMMA. Subterm Lemma for the Logic Cube 
Ij A is a PTS-term and A is not a proof term, then ij B is subterm of A, B is not a proof -
term. 

PROOF. By induction on the structure of A. 

A = s(s ES) and A is nota proof term. Since Sub(A) = Sub(s) = {s} ={A}, we are 
clone. 

A = x(x E Var) and A is nota proof, that is x E Var' fors= Set, Type', TypeP. 
Since Sub(A) = Sub(x) ={x}= {A}, we are clone. 

A = IIx : C .D and A is not a proof. Since A is not a proof term it is typeable, and hence 
by the Stripping Lemma there exists a context r such that r f- (IIx : C.D) : sa and 
(1) r f- C: s1 and (2) r, x : C f- D : s2 for some-s1, s2, s ES and, s =sa, (s1, s2 , sa) E 
R. But then from (1) : 3f'[f' f- C : s1] (r' = r) and s1 E S, hence by definition 
(using the partitioning of the terms) Cisnota proof. And from (2) : 3f'[f' f- D : s2] 

(f' = f,x: C) and s2 ES, hence by definition (using the partitioning ofthe terms) D 
is not a proof. 

A = À x : M .N and A is nota pro of. Since A is not a proof term it is typeable, and hence by. 
the Stripping Lemma there exists a context r such that r f- (.XX: M.N) : (IIx : M. C), 
and 
(1) r f- (IIx : M.C) : sa and (2) r, x : M f- N : C. From (1) we obtain by the 
Stripping Lemma that (3) r r- M : s1 and ( 4) r, x : M f- C : s2 • Since we know 
that (.Xx : M.N) is not a proof, sa =f Prop .. But then, by inspeetion of the rules in R, 
s1 =f Prop and s2 =f Prop, hence by (3) M is not a proof termand by (2) and (4) N is 
not a proof term. 
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A = MN and A is not a proof. Since A is not a proof term it is typeable, and hence by 
the Stripping Lemma there exists a context r such that (1} r f- MN: D[x := NJ and · 
(2} r f- M: (Ilx : C.D) and (3) r f- N: C. From Stripping on (2} we have 
(4)r f- C:st,(5)r,x : C f- D:s2 and(6}r f- (Ilx:C.D):s3 forst.s2,s3 ES 
and (st, 82, 83) E 'R. But then we have by the Substitution Lemma on (3) and (5} that 
(7) r f- D[x := NJ : s2 . Since we know that MN is not a proof term, s2 =1- Prop. 
Inspeetion of the rules in 'R shows that for all rules where s2 =1- Prop, St =1- Prop, and 
s3 =1- Prop. Hence combining, (3} and (4), Nisnota proof term and, by (2} and (6), 
M is not a proof term. 

Note that the case that M E c for some logica! axiom constant c could not occur, since by 
definitions given above c : A : Prop is always a proof term. 

3.3.8. DEFINITION. Erasure Mapping 
Let I I be a mapping of MPTS-terms to PTS-terms, which 'erases' the modal terms: 

i IDAI = lAl , I·D·AI = lAl 

ii IAtA21 = IAdiA2I, l.h : A.bl =>.x : IAI .Ibl, lllx: A.BI = Ilx: IAI-IBI 

iii 1r,x: Al= lfl, lx: Al, IG ai'I = IGI, 1r1 

iv IA: BI = lAl : IBI, lel = e, lxl =x (forx E Var), lsl = s (fors ES) 

V lkAI =lAl, lbAI =lAl, 14AI = lAl, ISAI =lAl, 
IÜI = lAl, ldAI = lAl, ltAI = lAl. 

This mapping reduces MPTSs to PTSs by simply erasing everything that is 'modal' about 
them. It preserves typeability and ,8-reductions in MPTS-terms, which shows that 'erasing' 
a derivation in a certain MPTS in the Modal Logic Cube, will yield a correct derivation in 
the corresponding PTS in the Logic Cuhe. 

3.3.9. LEMMA. Preservation of Substitution 
I I preserves substitutions: 
Jor MPTS-terms A and B IAI[x := IBIJ = IA[x := B]l. 

PROOF. By induction on the structure of the term A. 

3.3.10. LEMMA. Preservation of ,8-reduction 
I I preserves ,8-reductions: Jor MPTS-terms A, M and N 

la IJ (>.x : A.M}N --+p M[x := Nj then l(>.x: A.M)NI-+p IM[x := N]l. 

lb IJ IMI --+p IN I, then 

1 IZNI --+p IZMI 

2 INZI --+p IMZI 

3 l>.x.NI --+p l>.x.MI 
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PROOF. la ](>.x : A .M)N] = ](>.x : A.M)]]N] = (>.x : JAI-JM])]N] -+p ]M][x := INIJ, by 
the Substitution Preservation Lemma ]M][x := ]N]] = ]M[x := N]]. 

lb If ]M] -+p ]N], then 

1 ]ZM] =;; ]Z] ]M]-+p ]ZIJN]=;; IZN] 

2 ]MZ] =;; ]M]]Z] -+p ]N]]Z] =;; ]NZ] 

3 ]>.x : A.M] =;;>.x : JA].]M] -+p >.x : ]A].]N] =;; ]>.x : A.N] 

3.3.11. LEMMA. Preservation of Typeability 
]] preserves typeability: G 1- A: B => ]G] 1- JA]: ]B]. 

PROOF. By induction on the derivation of G 1- A: B 

Using the erasure map we can distinguish between proof-terros and non-proofterms in 
MPTSs. 

3.3.12. DEFINITION. The t erros of the MPTSs in the Logic Cube can be divided into the same 
subsets as those of the PTSs, by mapping them to PTS-terms: 

A is a set-kind: 3r[r 1- ]A] : Type'] 

ii A is a prop-kind: 3f[r 1- ]A] : Type"] 

iii A is a set-constructor: 3f, B[r 1- ]A] : B : Type•] 

tv A is a prop-constructor: 3f, B]r 1- ]A] : B: Type~'] 

v A is a set: 3r[r 1- JA] : Set] 

vi A is a proposition: 3r[r 1- ]A] : Prop] 

vu A is an element: 3f, B[r 1- JA] : B : Set] 

vm A is a proof term: 3r, B[r 1- IA] : B : Prop] 

Hence A is not a proof term in cases i - vii, and A is a proof term in case viii. 

3.3.13. DEFINITION. Subexpressions 
For MPTS the definit ion of subexpressions is an extension of the definition for P T Ss given 
above with the clause 

Sub(A ) = {A} u Sub(P) , if A is of the form DP, kP, 4P , SP , bP, or kP, dP , t P. 

'D','k', 'k', and the like are not terms, and hence they cannot he subterms. 

3.3.14. LEMMA. IJ B is a subterm of A {A and B MPTS terms) then ]B] is a subterm of ]A]. 

PROOF. By induction on the structure of the term A. 

Given the Subterm Lemma for PTSs we can easily prove it for MPTSs 
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3.3.15. LEMMA. Subterm Lemma for the Modal Logic Cube 
IJ A is a MPTS-term and A is not a proof term, then if B is subterm of A, B is not a proof 
term. 

PROOF. (towa.rds a. contra.diction). Suppose tha.t 

(1) A is nota proof: -,:Jf, C [r 1- lAl : C :Prop] 

(2) B is a. subterm of A 

(3) B is a proof: 3f, C [f 1- lAl : C : Prop] 

Then since B is a subterm of A, IBI is a subterm of lAl (Lemma.). But then by the Subterm 
Lemma for PTS-terms IBI is nota proof: -,:Jf, C [I' 1- lAl : C : Prop] . This contradiets (3), 
hence if A is not a. proof term and B is a. subterm of A, B is not a. proof. 

With the help of the Subterm Lemma we ca.n show tha.t for the derivability of non-proof 
terms, the 'blocks' in the generalized contexts are of no interest: they ca.n be removed or 
inserted at will. 

3.3.16. LEMMA. Block Insertion Lemma 
IJ G and G' are generalized contexts (jor n ~ 0) and G = f 1 IQJ ... @ r(n-1), r n, 
G' = f 1 @ ... IQl r (n-1) IQl r n, then: ij G 1- A: B and A is nota prooj, then G' 1- A": B . 

PROOF. By induction on the derivation of G 1- A : B. The non-moda.l cases are easy 
(use transfer in the axiom cases), with the exception of the application and abstraction case. 
These depend completely on the Subterm Lemma, we do the abstraction-ca.se: 

Abstraction G r A: Bis f 1 1QJ • • • 1Qlf(n-1J,f n 1- (>.x: C.d): (Tix: C.D), a.n immedi
a.teconsequenceof(l)fl@ ... @f(n-l)•fn,X: c r d: D,a.nd(2) fl@ . .. IQJf(n-l)>rn 
1- (Tix : C .D) : s. Since (by hypothesis) (>.x : C.d) is nota proof term, we have by the 
Subterm Lemma that dis nota. proofterm. Hence by IH on (1), f11Ql ... iQJf(n- l) @f n 1 x: 

C 1- d: D. By definition (Tix: C.D) is nota proofterm (G 1- (ITx: C .D) : s), and 
so by IH on (2) 
f1 IQl • • . IQl f(n- l ) IQl f n 1- (Tix : C.D) : s. Therefore 
f1 IQl ••• IQl f (n-l) IQl r n 1- (>.x : C.d) : (llx : C.D), and so 
G' 1- (>.x : C.d) : (ITx : C.D). 

Note tha.t in the cases for the transfer-rules, we insert a block into an empty context e, 
which subsequently splits into two empty contexts separa.ted by a block: 

Transfer1 G 1- A : B is f1 lblJ • • • IQl f(n- 2) ~ e r C : s (where f n-1 =: f n = t:), 
an immediate consequence of f1 IQJ ••• IQJ f(n-2) 1- C : s. But then by consecutive 
a.pplications of transfer!, f1 @ .. . !!:)) f(n-2) IQ] ê i- C : s , and f1 l1'iJ ••. @ f (n-2) l1'iJ E l1'iJ ê I
C : s. Hence f1 IQI ••• l1'il f(n-2) ll:il f n-1 lblJ f n r C : s, and so G' 1- C : s. 

The induction cases for the import- and export-rules are trivia!, these cases cam1ot occur 
since import- and export-terms are proof terms. However, we have to show this using the 
erasure mapping: 
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K-import G 1-- A: Bis ft lQI ••• IQJ r(n-t} IQJ t: 1-- kC: D (where fn = t:), an 
immediate consequence of (1) ft fQI •• • ~ r(n-t) 1-- C: DD : Prop, and kC is nota 

proof term. This case cannot occur, kC is a proof term: from ft©l . .. IQI f(n-t) IQJ t: I-

kC : D by Preservation of Typability (2) !ft !bil •.. lQI f(n-t) ©l t:J 1-- JkCJ: !DJ. Since 
!ft IQJ ... IQI f(n-1} IQJ t:l =;;; lfl IQI •• • IQJ f(n-l),t:l = !ft IQJ ••• IQJ r(n-1)1, we have 
(3) lftiQJ ... IQif(n-1}1 1-- JkCJ: JDJ. F\trthermore, from (1) ftiQJ ... IQJf(n-1} 1-- DD: 
Prop, and hence 
(4) !ft IQJ ... IQJ f(n-t}l 1-- JDDI: IProp J. Since JDDI =;!Dl and !PropJ =;v Prop, 
(5) lftiQJ ... ~ f(n-t}l 1-- IDI: Prop, which combined with (4) yields 

lf1~ ... ll:llf(n-1}1 1-- lkCI: IDI: Prop. Hence 3f,B[f 1-- JkCI: B: Prop) 

(f = !ft IQJ ••• 1!:!1 f(n-t} I =;;; lft. ... , f (n-t} I and B = I Dl), and so kc is a proof term. 

3.3.17. LEMMA. Block Deletion Lemma 
IJ G and G' are generalized contexts (for n ~ 2} and G =ft IQJ ... IQJ f(n-l) IQl f "' 
G':: ft~ ... ~ f(n-t}• f "' then: ij G 1-- A : B and A is nota prooj term, then G' 1-- A : B. 

PROOF. By iRduction on the derivation of G 1-- A: B. 
The proof is similar to that of the Block Insertion Lemma. The Subterm Lemma is again 
needed for the application and the abstraction-case, this time we do the application case: 

Application G 1-- A : B is ft ©l . . . IQ! r(n-l) lQI f n 1-- FN : D[x := N ), an 
immediate consequence of (1) f1 IQl . • • IQI f(n-l) IQJ f n 1-- F : (ITx : C.D) , and 
(2) ft ~ .. . f!:ll f(n-t) ll:ll f n 1-- N : C. Since (by hypothesis) FN is not a proof term, 
we have by the Subterm Lemma that F is not a proof term and N is not a proof term. 
Hence by IH on (1) and (2), 
f11QJ ... IQif(n-t},rn 1-- F: (llx: C.D), and ft IQ! ••• lQif(n-l},f,. 1-- N: C. 
Therefore ft IQl •.. IQ! f(n-l),f n 1-- FN: D[x := N), and so G' 1-- FN : D[x := N). 

For the transfer-cases we need that f , E = f. The axiom-cases cannot occur since by the 
assumptions of the Lemma G contains at least one block and hence cannot he E:. Showing 
that the import and export-cases cannot occur, is again done by means of the erasure map. 

3.3.18. COROLLARY. Refsnart 
Given the lemma it is easy to see that the following 'inversions' of the transfer rules are 
derived rules in the MPTSs: 

G IQJt: 1-- A: s 
refsnartt -G,...---1--__ _ 

A : s 

r GIQJt:l-- A:B : Type 
re1snart2 G 1-- A : B 

fs G l!:il c 1-- A : B : Set 
re nart3 G 1-- A : B 

PROOF. 

Refsnartt If G lQI t: 1-- A : s, then by Block Deletion G, t: 1-- A : s, hence G 1-- A : s. 
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Refsnart2 If G IQ! é f- A B Type, then by Block Deletion G, é f- A : B, hence 
G f- A: B. 

Refsnart3 If G IQ! é f- A B Set, then by Block Deletion G,é f- A B, hence 
G f- A: B . 

The Block Insertion and Deletion Lemmas show that non-proof terms can really 'travel 
freely' through generalized contexts. For these terms we can disregard whether they are 
derivable on a prefix or a subcontext of the generalized context in which we are carrying out 
our derivation, since they can always be made available in that context. This allows for a 
Stripping Lemma that is camparabie in strength to that for MPTS13. 

3.3.19. LEMMA. Stripping Lemma 
For G and G' generalized pseudocontexts, r a 'non-blocked' pseudocontext, and M, N and R 
terms, we have the following: 

(i) G f- s:R,(sES) =? R=s'withs:s'EA1YP•jorsomes'ES. 
G f- c: R, (c E C) => R = A forsome term A with c: A E ALogic . 

(ii) G f- x: R, {x E Var) => R =A with (x: A) EG forsome term A. 

(iii) G f- IIx : M .N : R =? G f- M : s1, G, x : M f- N : s2 and R 
(si> S2, SJ) En forsome sl, S2, SJ ES. 

SJ with 

{iv) G f- >.x : M .N : R =? G f- IIx : M .B : s, G, x : M f- N : B and R = IIx : M.B 
for some term B and s E S . 

(v) G 1- MN : R => G 1- M : (IIx : A.B), G 1- N : A with R = B [x := NJ jor some 
terms A and B. 

{vi) G f- ON : R => G 1- N : Prop and R =Prop. 

{vii) G 1- kM : R => G = G' IQ! r, and G' 1- M : OA : Prop forsome term A, and 
R= A. 

{ix) G 1- 4M : R => G := G' IQJ r, and G' 1- M : DA : Prop forsome term A, and 
R= OA. 

(x) G 1- SM : R => G := G' IQJ r , and G' f- M : ·OA : Prop jor some term A, and 
R = ·OA. 

(xi) G f- bM R => G = G' IQ! r, and G' f- M A Prop for some term A, and 
R = •O•A. 

{xii) G f- kM: R => G IQJ é f- M : A: Propforsome term A, and R = OA. 

{xiii) G f- dM: R => G l1ll é f- M : A :Prop forsome ter A and R = -,0-,A. 

{xiv) G f- tM : R => G IQ! é f- M : A : Prop for some term A, and R = A. 
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PROOF. By induction on the derivation of G I- P : R. The cases of G I- P : R are 
distinguished according to the form of P. 

The proof is mainly a lot of work, the only cases where the difficulties with transfer really 
come into play are those for abstraction and application, we do the application case: 

P = MN G I- MN : R. Then P could only have been derived using (1) application, (2) 
weakening, (3) conversion, ( 4) transfer as final rule. 

(1) In this case G I- M : (ITx : A.B). G I- N : A with R = B[x := N] for some 
terms A and B. 
Since '=' implies '=', R = B[x := NJ, and so G I- M : (ITx : A.B), G I- N : A 
with R = B[x := N] forsome terms A and B. 

(2) In this case G = G1, y : C forsome term C where G1 I- C : s forsome s E S, and 
G1 I- MN : R. By IH G1 I- M : (ITx : A .B), G1 I- N : A with R = B[x := N] for 
some terms A and B . In this case we have by Thinning that G I- M: (ITx : A.B), 
respectively G 1- N : A with R = B[x := N] forsome terms A and B. 

(3) In this case G 1- MN: R' where R = R'. By IH, G I- M : (ITx : A.B), G 1- N : A 
with R' = B[x := N] forsome terms A and B . Since R = R', R = B(x := N], and 
so G I- M : (ITx : A.B), G I- N : A with R = B(x := N] for sowe terms A and 
B. 

( 4) In this case the last rule was transfer 1 , transfer 2 , or transfer3 

Transfer1 In this case G = G' IQJ E, and G' I- MN: Rand R = s forsome s ES. By IH 
G' 1- M: (ITx : A.B), G' I- N: A, and R = B[x := N](= s) forsome terms 
A and B. By definition MN is 'nota proof': G' 1- MN: s, hence MandNare 
not proofs ( Subterm Lemma) and therefore we have G'IQJ E I- M : (ITx : A.B) 
and G' fQI E I- N : A from G',E I- M : (ITx : A.B) and G' ,E I- N : A 
by Block lnsertion. Therefore G I- M : (ITx : A.B), G I- N : A with 
R = B[x := N] forsome terms A and B. 

Transfer2 In this case G = G' IQJ E, and G' I- MN : R : Type. By lH G' I- M : 
(ITx : A.B), G' 1- N : A, and R = B[x := N] forsome terms A and B. By 
definition MN is 'nota proof': G' I- MN: R: Type, hence MandNare not 
proofs ( Subterm Lemma) and therefore we have G' fQJ E I- M : (ITx : A.B) and 
G'IQJ E I- N : A from G',E 1- M: (ITx: A.B) and G',E I- N : A by Block 
Insertion. Therefore G I- M : (ITx : A.B), G I-N : A with R = B[x := N] 
for some terms A and B. 

Transfer3 In this case G =: G' fQI E, and G' I- MN : R : Set. By IH G' I- M : (llx : A.B), 
G' I- N : A, and R = B[x := N] forsome terms A and B . By definition 
MN is 'not a proof': G' I- MN : R : Set , hence M and N are not proofs 
(Subterm Lemma) and therefore we have G' @ E I- M : (llx : A.B) and 
G'ICI e I- N: A from G',e I- M: (ITx: A.B) and G', E I- N : A by Block 
Insertion. Therefore G I- M : (ITx : A.B), G I- N : A with R = B(x := N] 
for some terms A and B. 

Hence in all cases: G I- M : (ITx : A.B), G I- N : A with R = B[x := N] for some 
terms A and B . 



110 CHAPTER 3. META THEORY OF MPTSs 

We show one modal case, to give an idea how the import and export-rules interact with 
weakening and conversion. 

P = kM G 1- kM : R. Then P could only have been derived using (1) import, (2) 
weakening, (3) conversion, or ( 4) transfer as fina.l rule. 

(1) In this case G = G' IQJ E, and G' 1- M : DA forsome term A, a.nd R = A. Since 
'=' implies '=' a.nd E is a non-blocked pseudo context, R = A and G = G' IQl r. 
Hence G = G' IQl rand G' 1- M: A forsome term A, and R =A. 

(2) In this case G = (h, y: C forsome term C where G1 1- C : s forsomes ES, and 
G1 1- kM : R. By IH G1 := G' IQJ f', a.nd G' 1- M : DA forsome term A, In this 
case, G := G' ~ r', x : C a.nd since f', x: C is aga.in a. non-blocked pseudo context 
(f), G := G' /!dl rand G' 1- M: DA forsome term A. Therefore G := G'IQJ rand 
G' 1- M: A forsome term A, and R =A. 

(3) In this case G 1- kM : R' where R = R'. By IH, G := G' IQJ r, a.nd G' 1- M : DA 
forsome term A, a.nd R' = A. Since R = R', R = A, .and so G := G' IQJ r and 
G' 1- M : A for some term A, and R = A . 

( 4) In this case G = G' IQl E a.nd G' 1- kC : R. Th is case cannot occur, kC is by 
definition a 'proof', a.nd there is no transfer rule tha.t accepts a proof term as its 
pre mise. 

Hence in all cases: G = G' IQJ r and G' 1- M : A for some term A, and R = A. 

Note that this formulation of the Stripping Lemma treats variables in a uniform wa.y. 
However, keeping in mind the distinction between proofs a.nd non proofs we cduld have been 
more concise in the case of the proof variables (x : A where A is a proposition): pro of variables 
cannot be transported over a '@' by the Transfer rules, and are hence elements of the fina.l 
non-blocked context of G. 

(ii') G 1- x : R, (x E VarProp) =? R = A with x : A E G forsome term A (where G := f 
or G := G' IQJ f). 

PROOF. P = x(x E VarProp) G 1- x : R, (x E VarProp). Then P could only have been 
derived using (1) start, (2) weakening, (3) conversion, or (4) transfer as final rule. 

(1) In this case R :=A with x :A Er forsome term A (where G = r or G := G'IQJ r) . 
Since '=' implies '=', R =A with x : A E r forsome term A. 

(2) In this case G = G1, y : C forsome term C where G1 1- C : s forsomes E S, 
and 
G1 1- x : R. By IH R = A with x : A E f' forsome term A (where G1 = f' or 
G = G' IQJ f'). Hence (x :A) E f for f = f', y : C. 

(3) In this case G 1- x : R' where R = R'. By IH R' = A with x : A E r for some 
term A (where G := r or G := G'IQJ f). Since R = R', R =A. 

( 4) In case the last rule was a transfer rule, x is nota. pro of. Therefore this case cannot 
occur. 

Hence in all cases: R = A with x : A E f forsome term A (where G := f or G := G' IQl f). 
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3.4. Properties of MPTS13 

Now that we have a satisfactory Stripping Lemma, we first keep our promises from the 
previous chapter by proving Strong Permutation and Strengthening. Then we show that the 
standard properties given in [Barendregt and Hemerik 1990] for all PTSs in the Logic Cube 
also hold for the MPTSs in the Modal Logic Cube. 

3.4.1. LEMMA. Correctness of types 
Fora generalized context C, M and A terms, 

C 1-- M : A :::} :Js E S[A : s V C 1-- A: s] 

PROOF. By induction on the derivation of C r M : A. For the non-modal cases the proof is 
exactly like that for PTSs {cf. [Geuvers 1993]) : the only interesting case is application where 
the Substitution Lemma is needed. 

For transfer 2 , transfer3 , and transferax tbe rule transfer 1 comes to the rescue, e. g. : 

Transfer2 C 1-- A: Bis C' IQJ E 1-- C : D where C = C' IQJ E, an immediate consequence 
of C1 1-- C : D : Type. From this by transfer 1 C' IQJ E 1-- D : Type , and hence 
C 1-- D: Type (3s ES[ C 1-- B : s]). 

For the import cases, transfer 1 is also needed: 

K -import C 1-- A : B is C' IQ] E 1-- kC : D where C = C' IQ] E, an immediate consequence 
of C' 1-- C : DD : Prop. From this by transfer1 C' IQ] E 1-- DD : Prop, hence by the 
Stripping Lemma C' IQ] E 1-- D : Prop, and so C 1-- D: Prop (3s E S[C 1-- B: s]). 

This is matebed by the use of refsnart 1 in the export cases: 

K -export C 1-- A : B is C 1-- kC : DD an immedia te consequence of C IQJ E 1-- C : D : 
Prop. From this we obtain that C 1-- D : Prop by the derived rule refsnart 1 , hence by 
boxing C 1-- DD : Prop (3s ES[ C 1-- B : s]). 

In order the prove that Strengtherring is a derived rule for the MPTSs in the Modal Logic 
Cube, we need the following Sublemma: 

3.4.2. LEMMA. Sublemma 
For MPTSf3, iJ C1, x : A, C2 is a generalized context and M and B are terms, then 

PROOF. By induction on the derivation of C1 ,x : A, C2 1-- M : B, distinguishing cases 
according to the last rule. 

3.4.3. LEMMA. Strengthening Lemma 
For Ct, x :A, C2 a generalized context and M and B terms, 
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PROOF. By the Sublemma we find a B' such that B __,.fJ B' and G1, G2 1- M : B By 
Correctness of Types there are two possibilities G1 , x : A, G2 1- B; s or B = s for some 
s E S . In the second case we are clone, in the first case we apply the Sublemma again to 
G1, x :A, G2 1- B : s, to obtain G11 G2 1- B : s. Hence by conversion on G1. G2 1- M : B', 
G1, Gz 1- B: s, and B =p B', we have G1, Gz 1- M: B . 

3.4.4. LEMMA. Strong Permutation Lemma 
For G11 x: A,y: B, Gz a generalized context, M . and C terms with x(/_ FV(B) , 

G1,x:A,y:B,G2 1- M:C::;. G11 y :B,x:A, G2 1- M :C 

PRO OF. The only thing to do is to show G1, y : B, x : A, Gz is a legal context if Gl> x : A, y : 
B, G2 is. Then we are clone by Thinning (G1,x: A,y : B, Gz Ç G1,y: B,x : A, G2). By the 
Legality lemma we know that G1, x : A 1- B : s forsome s E S. By Strengthening we conclude 
that G1 1- B : s, and hence that G1 , y : B is a legal context. So once again by using the 
Legality Lemma and Thinning we derive that G1, y : B , x : A is alegal context. We can repeat 
this operatien of applying Legality and Thinning for all declarations in Gz and finally conclude 
that G1. y : B, x : A, G2 is a legal context. No te that since G2 is a generalized context, we 
sametimes have to 'pass' a block (IQI). In those cases Gl, y : B, x : A, Z} : cl , . .. , Zi-1 : 
Cz-1 [QJ Z; : C;. By Legality we have Gl, y : B, x : A, Zl : cl, ... , Zi-1 : Cz-1 1- C; : s, 
hence by transfer! Gl, y: B, x: A, Z } : cl, ... , Zi-1 : cz-1 [QJ ê 1- C; : s and so by Thinning 
Gl>y: B,x: A,zl: cl,····Zi-1: Cz-IIQiz;: C; 1- C;: s , hence the context islegal. 

3 .4.1. Unicity of Types 

To prove Unicity of Types, we have to refer to the fact that the MPTSs in the Modal Logic 
Cube are 'functional'. 

3.4.5. DEFINITION. A MPTS D>.(S, A Type , R) is functional if the relation A Type is a partial 
function from S x S to S and: 

If s : s1, s : s11 E A Typ•, then s' = s11 • 

3.4.6. THEOREM. Let D>.S be a functional MPTS. 
Then: ij G f- A : B1 and G f- A : B2, B1 = p B2. 

PROOF. By induction on the structure of A, assuming G f- A : B; for 1, 2 =i . 

The functionality is needed in the case for II: 

A = IIx : M .N is a product. By the Stripping Lemma we have: 

G 1- M: s1. G,x: M 1- N: Sz and B1 =13 s3 with (st,sz,s3) ER 
for some s1. s2, s3 E S, and 
G 1- M: sL G,x: M 1- N: s~ and Bz = 13 s3 with (s{,s~,sD ER 
forsome sL s~, s3 E S 
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By lH s1 =(3 s~ and 52 =(3 s2, hence s1 = s~ and Sz = s2. Then, by the assumption 
that D>.S is singly sorted s3 = s~, and so B1 =(3 s3 =(3 s~ =(3 B2. 

Some of the modal cases require an observation on ,8-equality: 

A = kM is an import term. By the Stripping Lemma we have that for G = G' IQJ r, 
G' f- M: DC1 and C1 =f3 B1, and 
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G' f- M : DC2 and Cz =f3 Bz. By IH DC1 =f3 DC2, but then C1 =f3 Cz, hence 
B1 =f3 C1 =f3 Cz =f3 Bz. 

Likewise we need that if C1 =fJ Cz, then DC1 =fJ DCz for K-export, and that C1 =fJ Cz 
implies -,D-,C1 =(J ·D·C2 for B-import. 

3.4.2. Subject Rednetion 

3.4.7. THEOREM. IJ G 1- A : Band A -+fJ A', then G f- A': B. 

PROOF. By simultaneous induction on 

(i) G f- A : B &A -+fJ A' =} G f- A' : B 

{ii) G f- A:B&G-+fJ G' =} G' f- A:B 

distinguishing cases according to the last applied rule, where G -+ (J G' iff G = x1 : A1 . . . IQJ • .• , 

Xn : An, G' = x{ : A~ ... IQJ ••• , x~ : A~ and for some i one has A, ->(J A', and Aj = Aj for 
all j =f. i {1 <S, j <S, n ). 

Proof of (i). All cases but application are straightforward. For the product and abstraction 
cases, the 'other' induction hypotheses (ii) is needed. 

Application G f- A : B is G f- FN : D[x := N], an immediate consequence of 
{1) G f- F: {IIx: C.D) and (2) G f- N: C. Two cases: 

A = F' N' =A' the reduction takes place inside F (F -+(J F') or inside N (N ->(J N'). 
By lH on (1) and {2), G f- F' : (IIx : C.D) if F---> F', or G f- N': C if N---> N'. 
Hence G 1- (FN)': D[x := N] since (FN)' =: F' N or (FN)' =: FN'. 

A =(>.x: F1.Fz)N =:A' FN is the redex. Then G f- A: Bis G f- (>.x: F1.Fz)N: 
D[x := N], an immediate consequence of {1) G f- >.x: F1.Fz: (IIx: C.D) and 
(2) G f- N : C. We have to show that G f- Fz[x := N] : D[x := N]. 
By applying the Stripping Lemma to (1) we find (3) G f- F1 : s1 and {4) G, x : 
C f- Fz : D' forsome D' ---> D. Applying Stripping to G f- (IIx : F1.Fz) : s 
yields (5) G, x : C f- D : sz and F1 =(J C. From this and (2) and (3), we have 
by conversion that (6) G f- N : F1. By the Substitution Lemma and (2) we have 
{7) G f- Fz[x := Nj : D'[x := N] Using this lemma and {5) and {2) we can also 
conclude {8) G f- D[x := N] : Sz from (5) and {2). 
Since D'[x := N] =(J D[x := N], conversion on (7) and {8) yields the desired 
condusion G f- Fz[x := N] : D[x := N] . 

Proof of ii. Here the cases where the 'other hypothesis' (i) is used are those were start and 
weakening are the last applied rule . The cases for transfer, import, and export-rules are no 
problem since there can be no ,8-redexes in empty subordinate contexts: 
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Transfer1 G 1- A : B is G1 IQl e 1- C : s where G = G1 IQl e, an immediate consequence 
of G1 1- C: s. Since there are no redexes in e, G~ can only be G~ 19 e (the redex is in 
G1), hence by IH Gf 1- C : s . Therefore Gf IQJ e 1- C: s and so G' 1- C : s . 

3.4.8. COROLLARY. IJ G 1- A: B and B -{3 B', then G 1- A: B'. 

PROOF. Immediate, using Correctnessof Types. 

3.4.3. Strong normalisation 

Using theerasure mapping 'I I' defined earlier, which preserves ,6-redexes and typeability, we 
can proveStrong Normalisation for MPTS13 directly from the Strong Normalis~tion of PTS13 
([Geuvers and Nederhof 1991]). 

3.4.9. DEFINITION. Let ( be an MPTS, M E Term((), n E lN. 

• i n is an upperbound to the reductions starting from M iff 
'r/M1, M2, . . . , MmE Term(().[M -> M1-+ ... -+ Mm-1-> Mm =? m::; n], 

• ii M is strongly normalizable, or SN(M), iff 3n E lN. [n is an upperbound to the 
reductions starting from M], 

• iii ( satisfies the strong normalization property, or ( f= SN, iff'r/M E Term((). SN(M). 

3.4.10. THEOREM. ( F SN. 

PROOF. The erasure map, I I, preserves all ,6-redexes in M. Hence if there is an infinite 
reduction starting from some MPTS-term M, there is an infinite reduction starting from IMI 
in the corresponding PTS. But this contradiets the fact that v f= SN for all v a PTS. Hence 
VM E Term(().SN(M); ( f= SN. 

3.4.4. Church-Rosser for MPTS13 

The Church Rosser property of PTSs can straightforwardly be transferred to MPTSs. 

3.4.11. THEOREM. MPTS13 has the Church Rosser property. 

PROOF. By the observatiou that substituting fresh variables for the occurrences of k, 4, 5, b 
and k, d, t in MPTS-terms, does nat change their behaviour with respect to ,6-reduction. 
This substitution operation turns MPTS terros into PTS terros and for these the Church 
Rosser property holds. 

3.5. Properties of rnadal reductions 

In this section we show that the annihilation rul es are well-behaved. Ad ding the pairs of rules 
for k&k, 4&t, and S&t to MPTS13 , results in systems MPTS/3,annih for which we can prove 
Subject Reduction, Strong Normalisation and Church Rosser. 
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3.5.1. Subject Reduction 

The proof of Subject reduction for the annihilation rules is sim pier than that for ,6-reduction, 
since we cannot have redexes for these rules appearing in the context. 

3.5.1. THEOREM. 

(i) Ij G f- A: B and A ->u A', then G f- A':B. 

(ii)IJG f- A: B and A ->u A', then G f- A':B. 

( iii) Ij G f- A: B and A ->i4 A', then G f- A':B. 

(iv) Ij G f- A: B and A __,4î A', then G f- A':B. 

(v) Ij G f- A : B and A ->is A', then G f- A' : B . 

( vi) Ij G f- A: B and A ->si A', then G f- A':B. 

PROOF. By induction on the derivation. 
There are only few interesting cases: for (i), ( iii), and ( v ), the case of the corresponding 

export rule, and for (i i), ( iv ), and ( vi), the case of the corresponding import rule. We show 
this for the k&k-rules. 

Pro of of (i), case for K -export 

K -export G f- A : B is G f- kC : DD an immediate consequence of 
G IQ! E f- C : D : Prop. Two cases: 

C ->u C' the Ü-redex is in C. By lH G IQl E f- C': D : Prop , hence G IQ! E f- k( C') : DD. 

Since k(C') =(kC)', the redex is in C , G f- (kC)': DD. 

C = kC1 the export term is the redex: G f- k(kCl) : DD an immediate consequence of 
(1) G IQl t: f- fcC1 : D : Prop By the Stripping on (1) , (2) G f- C1 : D(D') : Prop 
forsome term D' =fJ D. But if D' ={3 D, then (3) D(D') ={3 DD. From (1) we 
have that G IQ! E: f- D : Prop , hence by refsnart~, G f- D : Prop and by boxing 
(4) G f- DD: Prop hence (2),(3),(4), and conversion yield G f- C1 : DD and so 
G f- C': DD. 

Proof of ( ii), case for K -import 

K-import G f- A : B is G1 IQJ E f- lee : D where G = G1 IQl E , an immediate 
consequence of G1 f- C : DD :Prop. Two cases: 

C ->u C' the H -redex is in C. By lH G1 f- C' : DD: Prop, hence G1 IQl E f- ic(C'): D. 

Since k(C') =(kC)', the redex is in C, G f- (kC)': DD. 

C =: k C1 the import term is the red ex: G1 IQJ t: f- k ( k C1) : D an immediate consequence 
of (l)G1 f- kC1 : DD: Prop. By Stripping on (1), (2) G11Ql t: f- C1 : D': Prop 
forsome term (3) D' ={3 D . From (1), we have that (4) G1 f- DD : Prop, and 
hence by Transjer1 that (5) G1 IQ! E f- DD : Prop . Applying Stripping then yields 
(6) G1 IQl t: f- D : Prop. By conversion on (2),(3),(6), G1 IQ! t: f- C1 : D and so 
G f- C': D. 
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3.5.2. Strong Norrnalisation 

The idea in proving Strong Normalisation for the modal reductions is to map the annihilation
reductions of the MPTS-terms to {J-reductions in the corresponding PTS-terms. In this way 
any infinite reduction path starting from a MPTS-term, be it a {J-, annihilation-, or mixed 
chain, will be mapped to an infinite chain of {J-reductions from the conesponding PTS term. 
The proof uses a variation on theerasure mapping defined earlier, where the 'hat' and 'check' 
functions are mapped to identity. 

3.5.2. DEFINITION. Erasure mapping 
Let I I be a mapping of MPTS-terms to PTS-terms, which erases the modal terms: 

IDA! = !A! , I·D·AI = !A! 

11 !ArA2! = !Ari!A2!, j>.x : A.b! =.>.x: !A!.!b!, IITx : A.B! = ITx: IA!.IBI 

iii lf, x :A! = lfl, !x : Al, I G IQJI'I = I Gl, lfl 

IV !A : BI = !A! : !B!, IEl = é, !x ! = x (for x E Var), !s! = s (for s ES) 

v IÜI = (.>.x: !B! .x)!A!, !bA!= (.>.x : !B!.x)!A!, !4A! =(.>.x: IBI.x)!AI, 
!5A! =(.>.x: !B!.x)!A!, where Bis a type of A, and x rf_ FV(A U B). 
!kA!= (Àx: !B!.x)!A!, ldA! =(.>.x: !B!.x)!A!, !tA! =(.>.x: !B!.x)!A! 
where B is a type of A, and x rf_ FV(A U B) . 

For this mapping we can prove that it preserves {J-reduction and typeability in the same 
way as before. 

3.5.3. LEMMA. Preservation of substitution 
I I preserves substitutions: for MPTS-terms A and B !A! [x :=!BIJ= !A[x := BJI . 

PROOF. By induction on the structure of the term A. 

3.5.4. LEMMA. Preservation of {J-reduction 
I I preserves {J-reductions: for MPTS-terms A, M and N, if (.>.x : A.M)N ---+[J M[x := N] 
then 
!(.>.x : A.M)N! ---+{3 !M[x :=NI! . 

PROOF. !(.>.x : A.M)N! = !(.>.x : A.M)!!N! = (.>.x : IA!.IMI)INI ---+{3 !MI[x := IN!], by the 
Substitution Preservation Lemma !M I[x := INIJ = IM[x := NJI. 

3.5.5. LEMMA. Preservation of typeability 
I I preserves typeability: 
G I- A:B =>!Gil- IAI:IBI. 

PROOF. By induction on the derivation of G I- A: B . 

The crucial part of the proof is to show that if a term M reduces to M' in one annihilation 
step, !MI reduces to !M'! in one or more steps of {J-reduction (---+>{3) · 
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3.5.6. LEMMA. Preservation of annihilations I I preserves annihilation redv.ctions. 

(i) IJ kkA -+i4 A, then IÜAI--++!3 lAl, 
IJ t4A --+14 A, then lî4AI --++13 lAl, 
IJ tsA -+is A, then ltSAI --++13 lAl. 

(ii) IJ ÜA -->41 A, then IÜAI-++f31AI 
IJ 4tA -+4i A, then 14tAI _"/3 lAl 
IJ StA -+si A, then IStAI --++13 lAl 

PROOF. (i) M := ÜA or M := t4A or M := tSA 
IÜAI =(>.x: IB I.x)lkAI =(o) (>.x: IBI.x)((>.y : IBI.y)IAI) , 
1t4AI =(>.x: IB I.x)I4AI =(o) (>.x: IBI.x)((>.y: IBI.y)IA I), 
ltsAI =(>.x: IB I.x)ISAI =(o) (>.x: IB I.x)((>.y: IBI.y)IAI). 
In all cases M =(>.x: IBI .x)((>.y: IB I.y)IAI), this term 
can be reduced in two ways: 

(>.x: IBI.x)((>.y: IBI .y)IAI) -+13 (>.y : IBI.y)IAI-+!3 1AI 

(>.x: IBI.x)((>.y: IBI.y)IAI) -->13 (>.x: IBI.x)IA I --+{3 lAl 

In all cases IÜAI, 1t4AI and ltsAI reduce to lAl= IM'I · 

(ii) M = ÜAJ or M := 4tA or M :=StA 
IÜAI =(>.x: IBI .x)lkAI =(o) (>.x: IBI .x)((>.y: IBI.y)IAI), 
14tAI =(>.x: IBI.x)ltAI = (o) (>.x: IBI.x)((>.y: IBI.y)IAI), 
IStAI =(>.x: IBI.x)ltAI =(o) (>.x: IB I.x)((>.y: IBI.y)IAI) . 
In all cases M =(>.x: IBI.x)((>.y : IBI.y)IAI), this term 
can be reduced in two ways: 

(>.x: IBI.x)((>.y: IBI.y)IAI) -+13 (>.y: IBI.y)IAI -+13IAI 

(>.x: IBI.x)((>.y: IBI.y)IAI) -+{3 (>.x: IBI.x)IAI -+fJ IAI 

In all cases IÜAI, 14tAI and IStAI reduce to lAl = IM'I· 

Now we can prove Strong Normalisation using the sameargument as for MPTS13. 

3.5. 7. THEOREM. Let ( be an MPTS/3 ,o.nnih, then: 

( F SN 
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PRO OF. The erasure map, I I, preserves all /3- and annihilation redexes in M . Hence if there 
is an infinite reduction starting from some MPTS-term M, there is an infinite (/3)-reduction 
starting from IMI in the corresponding PTS. But this contradiets the fact that v f= SN for 
all va PTS ([Geuvers and Nederhof 1991]). Herree VM E Term(().SN(M); ( f= SN. 
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3.5.3. Church-Rosser 

We prove Church Rosser for MPTSp,Qnnih by showing the Church Rosser property for each of 
the combinations of /3-reduction with an annihilation pair separately. From this we can prove 
Church Rosser for the entire systems with all annihilation rules by arguing that there are no 
'critica! pairs'. 

3.5.8. THEOREM. 

MPTS{J,k&k has the Church Rosser property 

MPTSp,4.&i has the Church Rosser property 

MPTS{J,S&i has the Church Rosser property 

We show the pro of for (i), the other cases are similar. To prove CR for MPTS with fJ and 
kk, H-reductions, we use a Martin-Löf-Tait-type proof as in [Hindley and Seldin 1986]. We 
first give a sketch of the proof: 

Give a definition of residuals and minimal complete development (mcd) that includes 
kk and kf-reduction steps. 

Lemma 1: If M >mcd M' and N >mcd N' then M [x := N] >mcd M'[x := N'] 

Lemma 2: P > mcd A and P >mcd B then 3T: A >mcd T, B >mcd T 

From Lemma 2 by induction on the number of /3 - kk - kk-steps P > mcd M and 
P > f3,k&k N then 3T : M > fJ,k&k T, N > mcd T. 

Given the observation that a single /3-, kk-, or kk- step is an >mcd-step we have 

P > 1(f3,k&k) M and P > p,k&k N then 3T: M > fJ,k&k T , N > fJ,k&ic T . 

Hence by induction on the number of /3-, k- &k-steps from P to N: P > {3 ,k&k M and 
P > fJ.k&k N then 3T : M > fJ ,k&k T, N > fJ.i:&k T . 

3.5.9. ÜEFINITION. Substitution 
For any M, N, x, define M[x := N] to betheresult of substituting N for every free occurrence 
of x in M, and changing bound variables to avoid clashes. The definition is by induction on 
M. 

(a) x[x := N] = N 

(b) a[x := N] = a 

(c) PQ[x := N] := (P[x := N]Q(x := N]) 

(d) >.x.P[x := NJ := >..x.P 

(e) (>..y.P)[x := N] = >..y.(P[x := N]) if y of. x and y (j. FV(N) or x (j. FV(P) 

(f) (>..y.P)[x := N] := >..z .(P[x := N][z := y]) if y of. x and y E FV(N) or x E FV(P) 
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(g) (kP)[x := N] = k(P[x := N]), (4P) [x := N] = 4(P[x := N]), 
(SP)[x := N] = S(P[x := N]), (bP)[x := N] = b(P[x := N]), 
(kP)[x := N] = k(P[x := N]), (dP)[x := N] =: d(P[x := N]), 
{tP)[x := N] = t(P[x := N]) . 

In {f), z is chosen to be the fi.rst variabie (/. FV(NP) 

3.5.10. DEFINITION. Contractions and Reductions 
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Contract ion: an ordered triple < X, Y, R > where X is a term, R is an occurrence of 
a red ex in X and Y is the result of contrading R in X. 

X >R Y 

Reduction: p is a fini te or infinite series of contractions of the form X1 > R, X2 > R2 

X3 >R3 . . . . 

Length: of p is the number of its contractions, (finite or infinite) . If lenght(p) is finite , 
say n, then Xn+l is called the terminus of p. 

3.5.11. DEFINITION. Rednetion rules 

a-reduction: is the change of a single bound variable. Let a term P contain an occur
rence of Àx.M, and let y (/. FV(M). The act of replacing this Àx.M by Ày.Mx := y] is 
called 'a change of bound variable' in P. 

,6-reduction: any term of the form (À x.M)N is called a ,6 -redex and the corresponding 
term M[x := N] is called its contract urn. If a term P contains an occurrence of (Àx.M)N 
and we replace that occurrence by M[x := N] and the result is P', we say that we have 
'contracted' the redex-occurrence in P, or P >13 P'. We say P ,6-reduces to Q, or 
P > f3 Q iff Q is obtained from P by a fini te (perhaps empty) series of ,6-contractions 
and changes of bound variables. 

kk-reduction: any term of the form k(kM) is called a kk-redex and Mis its contraction. 

kk-reduction: Any term ofthe form k(kM) is called a kk-redex and Mis its contraction. 

The first step in proving CR for combined ,6- and k&k- reductions is to extend the defi
nition of residuals and mcd's. The definition of residuals describes what happens to a redex 
S in a term P when another redex R in P is contracted. (Of its cases only 1,2, are actually 
needed in the proof {these are the simple cases); but 4 is aften used elsewhere in rednetion 
theory, so it is included here). 

3.5.12. DEFINITION. Residuals 
Let R, S he ,6-,kk-, kk-redexes in an MPTS-term P . When R is contracted, let P change 
to P'. The residuals of S with respect to R are redexes in P' defined as follows 

Case 1: R, S are non-overlappingpartsof P. Then contrading R leaves S unchanged. 
This unchanged Sin P' is called the residual of S. 
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Case 2: R = S. Then contrading R is the same as contrading S. We say S has no 
residual in P'. 

Case 3: R is part of S and R t S . Then S has form 

(>.x .M)N and Ris in Mor in N. Contrading R changes M to M' and N toN' 
and S to (Àx.M')N or (Àx.M)N' in P', this is the residual of S. 

k(k.M) and Ris in M. Contrading R changes M to M' and S to k(i:M') in P', 
this is the residual of S. 

k(kM) and Ris in M. Contrading R changes M to M' and S to k(kM') in P', 
this is the residual of S . 

Case 4: S is part of R and S t R. Then S has form 

(>.x.M)N and Ris in Mor in N. Contrading R changes (Àx.M)N to M[x := N]. 

S is in M When M[x := N] is formed from M, then S is changed to a redex 
S' with one of the forms S[x := N), ... , S[x := N][yl := z1] ... [Yn := znJ, S, 
depending on how many times clause (f) is used in determining M[x := N] 
and whether S is in the scope of a Àx in M . This S' is called the residual of 
S (it is clearly a .8-redex) 

S is in N When M[x := N] is formed, there is an occurrence of S in each 
substituted N. These are called the residuals of S. 

k(kM) ~nd Ris in M. Contracting R changes k(kM) to M. When Mis formed 
from k(kM), S does nat change. HenceS is called the residual of S. 

k(kM) and Ris in M. Contrading R changes k(kM to M . When Mis formed 
from k(kM, S does not change. Hence S is called the residual of S . 

Note that except in the subcase of 4 where S is in lvf, S has at most one residual. 

3.5.13. DEFINITION. MCD's 
Let R1 , ... , Rn (n ~ 0) be redexes in a term P. An R; is called minimal iff it properly 

contains no other Rj. We say 

P >mcd Q 

iff Q is obtained fromP by the following process called a minimal complete development (mcd) 
of the set {Rb . . . , Rn} · First contract any minimal R; (say i = 1 for convenience) . By the 
note above, this leaves at most n-1 residuals R2, . . . , R~ of R2, ... , Rn. Contract any minimal 
Rj. This leaves at most n- 2 residuals. repeat this until no residuals are left. Then make as 
many a-contractions as you like. (This process is not unique.) 

3.5.14. FACTS. 

(a) In any non-empty set of redexes, there is always a minimal member. 

(b) If n = 0, an mcd is perhaps just a empty series of a-steps. 

(c) A single /3-, kk-, or kk- contraction is a mcd of a one-member set. 
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(d) Non-med's exist; for example the reduction 

(.h.xy)(>.z .z) >1tl (Àz.z)y >113 y. 

(e) The relation >mcd is not transitive; e.g. in (d) there is clearly no mcd from (>.x.xy)(>.z.z) 
to y. 

(f) If M >mcd M' and N >mcd N', then MN >mcd M'N'. 

(g) It is fairly easy to show that, module congruence. Q is determined uniquely by the set 
{R~, . . . Rn}· (this fact will not be needed here, however.) 

3.5.15. LEMMA. IJ P >mcd Q and P =oP* , then P* >mcd Q. 

PROOF. For just .8-reduction this is proven in [Hindley and Seldin 1986] by 'a boring induction 
on the number of .8-steps from P to Q'. To show that the possible aceurenee of k&k-reductions 
will nat really complicate the pro of, the following observation suffices: If P =o p• and P > kk 
Q (P >u Q) ,then P = k(kM) forsome term M. Hence if P =oP*, p• = kkM*(k(kM*)), 
for some M* ::0 M. Sirree M* = Q in p• > u Q and M = Q in P >u Q, we can 
obtain the original Q (M) by an mcd from the a-reduced p•, by simply executing the reverse 
a-contraction from M* to M. 

3.5.16. LEMMA. IJ M >mcd M' and N >mcd N' then M[x := N] >mcd M'[x := N']. 

PROOF. by the previous lemma and the the fact that a-equivalence is preserved under substi
tution, we may assume that novariabie bound in Mis free in xM, and that the given roed's 
have no a-steps. We preeeed by induction on M. Let R1, ... , Rn be the redexes developed 
in the given mcd of M. 

3.5.17. LEMMA. IJ P >mcd A and P >mcd B then 3T(A >mcd T,B >mcd T . 

PROOF. By induction on (the structure of) P, where we may assume that the given roed's 
have no a-steps because of lemma 3.5.14. 

3.5.18. THEOREM. CR holds Jor MPTS-terms and > tl,k&i:. . 

PROOF. Let P >tl,k&Ï:. Mand P >tJ,k&k N . We must find a T such that M >tl ,k&k Tand 

N >tl,k&k T. 
By induction on the lengthof the reduction from P to M , it is enough to prove 

(1) If P >1/3,k&k Mand P >tl,k&k N, then :J T: (M >/3,Îc&k T, N >/3,k&k T). 

Given that a single .8-, kk-, or kk- step is a > mcd-step, 91) fellows from 

(2) If P >mcd Mand P >tJ,i:.&k N, then 3T: M >/3,i:.&k T , N >mcd T . 

But (2) comes from lemma 3.5.16. by induction on the number of .8 - kk - kk-steps. 

3.5.19. COROLLARY. MPTS/3,annih has the Church Rosser property. 
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PROOF. By the theorem above and the observation that an MPTS{3,ir.&k, .'i&î, ii&î can have 
only 'trivial' critica! pairs: there can be terms which are reducable by different annihila
tion rules, but all reductions lead to the same term in one step. These (sub )terms are 
k(k(kM)), 4(t(4M)), 5(t(5M)), and k(k(kM)), t(4(tM)), t(5(tM)). We show the 'trivial
ity' of k(k(kM)) and k(k(kM)), the other cases are completely analogous. 

k(k(kM)) can be reduced by applying H-reduction, as wel! as Ü-reduction (the redexes 
are underlined): 

k(k(kM)) -->kk kM 

k(k(kM)) ->u kM 

Hence both reductions lead to the same term. 

k(k(kM)) can be reduced by applying Ü-reduction, as wel! as Ü -reduction (the redexes 
are underlined): 

k(k(kM)) ->u kM 

k(k(kM)) -+u kM 

Hence both reductions lead to the same term. 

Note that the only potential critica! pairs that are not trivia!, 4(t(5M)) and 5(t(4M)), 
are not typeable in any MPTSp. 



Chapter 4 

More agents, more rnadalities 

In the previous chapters we have considered intensionallogics with one rnadal operator used 
by one reasoning agent. However, from the perspective of (information) dialogues intensional 
logic will have to deal with at least two agents and have more than one rnadal operator, 
reflecting different levels of faith an agent may have in his information. 

This chapter examines the technica! possibilities for extensions of the systems treated 
befare in these directions, based on the work of Wiebe van der Hoek ([Van der Hoek 1992]) 
on the system KB cv orginally proposed by Kraus and Lehmann ([Kraus and Lehmann 1986]). 
We wil! investigate if and how his, modeltheoretic, approach transfers to Fitch-style natura! 
deduction and from there to MPTS's. 

4.1. Natural deduction 

In the system KB cv the modal operator 0 is interpreted 'epistemically', it has operators 
for 'knowledge' and 'belief': Ka'P meaning 'Agent a knows that t.p' and Ba'P meaning 'Agent 
a believes t.p'. Besides these individual notions the system also deals with knowledge and 
belief concerning the group as a whole, Ct.p meaning 'It is Common Knowledge that r.p' and 
Dt.p representing 'It is Common Belief that t.p'. The properties of these operators and their 
interactions are captured in the following axiomatization (where operators E and F stand for 
respectively 'everybody knows' and 'everybody believes'): 

AO) Any axiomatization of the propositional calculus. 

RO) r t.p, 'P :::> 7/J '* 7/J 

Al) Ka('P :::> 7/J) :::> (Ka'P :::> Ka7/J) 

A2) Ka'P :::> t.p 

A3) •Ka'P :::> Ka • Ka'P 

A4) C(t.p :::> 7/J) :::> ( Ct.p :::> C?jJ) 

A5) Ct.p :::> Et.p 

A6) Cr.p :::> ECt.p 

A7) C(t.p :::> Et.p) :::> ('P :::> Ct.p) 
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Rl) 1- t.p => 1- Ct.p 

A8) Ba('P:::) "Ij;):::> (Bat.p :::> Ba1/J) 

A9) •Ba.l 

AlO) D(t.p :::> 1/;) :::> (Dt.p :::> D"lj;) 

All) Dt.p :::> Ft.p 

A12) Dt.p :::> FD<.p 

A13) D(t.p :::> Ft.p) :::> (Ft.p :::) Dt.p) 

Al4) Kat.p :::> Bat.p 

A15) Bat.p :::> KaBat.p 

Al6) Ct.p :::> D<.p 

CHAPTER 4. MORE AGENTS, MORE MODALITIES 

In the following sections different partsof this system wil! be used to study different aspects 
of multi-modal multi-agent systems. First we look into generalizing the Fitch-style deduction 
to multi-agent and multi-modal systems concentrating on reasoning about knowledge (Ka) 
and belief (Ba) for a group of agents. Then we investigate interaction between modalities 
(and agents) using the axioms relating knowledge and belief. Finally group modalities are 
considered by means of Common knowledge and Common Belief. 

4.1.1. Multi-agent Multi-modal logic 

To formulate modallogic for groups of agents, we introduce an index set 'People' = { 1, ... , m}, 
following [Van der Hoek 1992]. Each of these agents has his own 'copy ' of the modal operator: 
D1, ... , Dm. A modallogic for m agentsis considered normalifit is closedunder the following 
indexed normality rule: 

(t.pJI\ ... 1\t.pn):::>"lj; ( ) 
Normality for a = 1, .. . m n 2: 1 

(Dat.pl 1\ ... 1\ Dat.pn) :::> Da1/J 

The smallest normal logic K(m)> has just this rule. It can alternatively be characterized as 
the set of propositions derivable by means of: 

• all propositional tautologies 

• axiom: Da('P :::> 1/;) :::> (Da t.p :::> D 4 1j;) for a = 1, .. . m 

• rules: 
t.p t.p :::> "Ij; 

Modus Ponens 1/; 

Generalization: ij t.p is a thesis, then D 4 t.p is a thesis (a = 1, ... , m) 

Like before we consider normal systems resulting from the extension of K(m) now with 
'indexed' versions of the familiar axiom(schema)s: 
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D o .. cp :::> -.04 -.cp (a= 1, ... m) 

T o .. cp:::>cp(a=1, . .. m) 

E cp :::> o .. -.o .. -.cp (a= 1, ... m) 

4 o .. cp :::> o .. o .. cp (a= 1, ... m) 

5 : -.o .. cp :::> o .. -.o .. cp (a= 1, . .. m) 

The following convention wil! be used in referring to the normal extensions of K(m) : 

(KS1 ... Sn)(m) = the smallest normal system of modallogic for m agents containing (every 
instanee of) the schemas S1 ... Sn. 

Of course the above formulation of the modal logies already suggests how we can extend 
the natura] deduction system to more agents, but we wil! develop this idea in the setting of 
the system KEen-

In epistemic logic the moelal operator D is read as a 'knowledge' operator K, meaning 'it 
is known that ... ', or in a logic with more agents Ka 'agent a knows that ... ' . Using this 
operator principles of reasoning about knowledge can be expressed formally. KEen has the 
following: 

Ka(IP :::> 'Ij;) :::> (K .. cp :::> Ka.'if;) (Al), which means that a reasoner knows the logica] 
consequences of his knowledge 

Kacp :::> cp (A2), 'veridicality': if an agent knows cp, then cp is the case. 

K .. cp :J Ka.Kacp (consequence of Al , A2 and A3), 'posit ive introspection' : if an agent 
knows cp he knows that he knows cp. 

-.Ka.cp :::l K .. --.K .. cp (A3) 'negative introspection' : if an agent does not know cp, he knows 
that he does not know cp. 

Hence each of the agents has a KT45 logic for his particular knowledge operator, for which 
we could give a natura] deduction system. 

We can unite the structurally identical deduction systems for all individual knowledge 
operators in a more general formulation of the usual deduction rules. Each agent a has his 
own operator, that is introduced or eliminated by means of the subordinate K4 -proofs. The 
import and export rules now only apply if the index of the subordinate K -proof and the 
agent-index operator are identical. For instanee for the basic import rule we have to demand 
that only formulas of the general form K 4 cp where a is the index of the K -subordinate pro of 
may b e imported: 
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I. 
I. 

K -import K -export 
Likewise a condusion ('P) from a strict categorical subordinateKa-proof may only be brought 
back to the main proof under the knowledge operator with index a. 

In terms of Kripke semantics the condition that index of the operator and the strict subor
dinate proof match prohibits that the epistemic alternatives of different agents are 'confused'. 
Each of the knowledge operators K,. corresponds to an accessibility relation Ra which has 
as its extension all the epistemic alternatives of agent a (all the descriptions of the world 
that are still possible with respect toagent a's knowledge) . Given the analogy between strict 
subordinate proofs and possible worlds, a strict subordinateKa-proof corresponds to an arbi
trary epistemic alternative of agent a. Therefore one has to make sure that only propositions 
that are known by a (and hence hold in each of his epistemic alternatives) are imported. A 
condusion derived in a categorical strict subordinate Ka-proof is derivable in all epistemic 
alternatives of a, and hence should be exported as knowledge of a. 

By 'indexing' the additional import and export rules in the same way, we obtain a natura! 
deduction system for KT45(m)· This simple system already fulfills the basic requirements for 
reasoning about knowledge of other agents as can be seen from the following example. 

4.1.1. EXAMPLE. 

3. Ka<p 

I Îal<p 

'P (K3<p) 

<p (Ka<p K2'P K2Ka<p) 

4. 

5. 

6. 

7. 'P (Ka<p K2'P K2Ka<p K1'/! K1K2<p K1K3<p K1K2Ka<p) 

(K-import 2) 

(K-import 3) 

(TI K -export 4) 

(TIK -export 5) 

(TI K -export 6) 

Suppose that one has the information that K1K2Ka<p: 'Agent 1 knows that agent 2 knows 
that agent 3 knows that <p' . From this it should follow that <p is the case by the 'veridicality' 
of knowledge. We can indeed reach this condusion by using the newly defined import and 
export rules. Given the formula KrK2Ka<p we are allowed to start a K1 subordinate proof 
where K2Ka<p holds by K-import. Intuitively this means switching the perspective of the 
deduction to an arbitrary epistemic alternative of agent 1. There 'pretending to be agent 1' 
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we find that K2K3cp holds (agent 1 knows this). In this way we can proceed by opening a 
strict subordinate K2-proof, and then a subordinate K3-proof where we find that cp. This 
condusion can then be brought back through the subordinate proofs by the T-export rule 
(there are no assumptions involved). 

The example shows that using only combinations of K - and T -rul es all 'projections' out 
of a row of knowledge operators can be obtained: &om K1 .. . Kn'P one can conclude the 
fact ( cp), knowledge of this fact of all agents involved (Ka cp a E { 1, ... , n}), and all nestings 
(substrings) which respect the order of the original row: first 'strip' the formula cp of all modal 
operators, and then add the wanted operators (Ka) back on by using K-export out of the 
corresponding (a) subordinate proof, and T-export (leaving the formula unchanged) in the 
other cases. Note that these modal rules do not allow us to 'switch operators': we cannot 
derive K1K3K2'P· 

Multi-modal logic 

In epistemic logic the motivation for a multi-modallogic is usually that one wants to be able 
to express different 'degrees of certainty' with respect to one's propositions, or in terms of 
multi-agent logies allow agents to have different levels of ' faith' in their information. 

Knowledge represents one extreme on the scale of certainty: if an agents knows that 
something is the case in reality, this is expressed in the 'veridicality axiom' Ka <p :::J cp. There
fore this notion is often contrasted with that of 'belief' which is fundamentally weaker in 
the sense that believing something does not imply that it is true. For belief we demand no 
more than 'consistency' : you can not believe a proposition and its negation at the same time 

Ba'P :::J •Ba''P· 
Given the consistency demand, a lot of intuitively plausible axiomatizations for the belief 

operator remain possible, however we wil! not go into the interesting discussion as to which 
is the right one. Instead we will follow the system KB cD in adopting the logic (KD45)(m) for 
belief, hence for each agent a ( E People) the following axiom(scheme)s hold: 

K Ba('P :::J 1/!) :::J (Ba'P :::J Ba1f!) 'logica! consequence' 

D Ba<p :::J • Ba -.cp ' consistency of belief' 

4 Ba'P :::J BaBa<p 'positive introspection' 

5 •Ba'P :::J Ba•Ba<p 'negative introspection' 

Deductively this means that we now add strict subordinate B 11-proofs and import and 
export rules for formulas containing B 11-operators. Instead of having separate definitions of 
the rules for knowledge and the rules for belief, we unify the multi-agent logies notationally 
by introducing an additional 'modality-index' on the operators and the subordinate proofs. 

Fitch-style deduction for multi-agent multi-modal systems 

A < I d fi •t• f h d d . DPROPPeople Modalities r d 1 10rma e DI Ion o t e e uctwn system fitch ' 10r more agents an moda -
ities is obtained from the definition of DPROPfitch by giving each of the agents (E People) 
and operators ( E Modalities ) their own strict subordinate proofs and corresponding import 
and export rules. 
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4.1.2. DEFINITION. Proof tigure 
A proof figure D is a mathematica! structure consisting of: 

1 a closed interval D = [1, n], where D C IN, 

2 a function F : D--> PROP, and 

3 a collection I of subintervals of D, such that for each interval [i,j] E J., i :::; j, and 
such that for each pair of (different) intervals [i ,j], [k, I] EI we have i < k < l:::; j, or 
k < i < j :::; I or [i,j] n [k, I] = 0. The collection I of subintervals is the union of two 
disjoint subcollections H and M: 

H the hypothesis intervals of the proof figure. If D !/. H, tben D is called the 0-th 
interval. If [k, I] E H than the formula Fk is called the hypothesis of [k, IJ. 

M the modal intervals of the proof figure, this set is the union of all sets M~ where 
o E M odalities, the set of operator indices ( M odalities = { 1, . .. , n} for some 
n E JN) and a E P eople , thesetof operator indices (People = {1 , . . . , n} forsome 
n E IN) . D may not he an element of M . 

4.1.3. DEFINITION. Deduction rules 
The rules for the propositional connectives are as hefore, the rnadal rules have to be formulated 
with respect to the agent and operator index. 

D~A D~A ...,o~A A 

~~ I ~~A I ~D~A I ~o~ ...,A 
K-impört 4-import 5-import B-import 

IA IA I A 
D~A ...,o~--.A A 

K-export D-export T-export 

4.1.4 . DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1, n], formulas F1 , ... , Fn and intervals I. A 
formula E is the result of an application of deduction rule R , if E is the conclusion of R , the 
premisses of R preeede E , and one of the following conditions is met for the modal rules: 

6 R = K import . 
If the premiss D~A lies in interval I E I where o E Modalities, a E P eople and the 
condusion E = A lies in the interval J E M~ , then it has to he the case that the 
interval J lies in the interval I. 
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7 R = 4 import. 
Ifthe premiss O~A lies in interval IE I where oE 04import(Ç Modalities), a E People 
and the condusion E = D~A lies in the interval J E M~, then it has to be the case that 
the interval J lies in the interval I. 

8 R = 5 import. 
Ifthe premiss -,O~A lies in interval IE I where oE Os import(<;;; Modalities), a E People 
and the condusion E = ·D~A lies in the interval J E M~, then it has to be the case 
that the interval J lies in the interval I. 

9 R = B import. 
If the premiss A lies in interval IE I where oE OB import(<;;; Modalities), a E People 
and the condusion E = -,Q~-,A lies in the interval J E M~ , then it has to be the case 
that the interval J lies in the interval I. 

10 R = K export. 
If the premiss A lies in interval I E M~ where o E Modalities, a E People and the 
condusion E = D~A lies in the interval J E I, then it has to be the case that the 
interval I lies in the interval J . 

11 R = D export. 
Ifthe premiss A lies in interval IE M~ where oE Ovexport(Ç Modalities) , a E People 
and the condusion E = ·D~·A lies in the interval J E I, then it has to be the case 
that the interval I lies in the interval J. 

12 R = T export. 
If the premiss A lies in interval IE M~ where oE Or export(Ç Modalities), a E People 
and the condusion E = A lies in the interval J E I, then it has to be the case that the 
interval I lies in the interval J. 

Note that for the K -rules we only demand that the agent-index and the operator-index of 
the modality match that of the modal subordinate proof. For the other rules we also demand 
that the operator-index o is an element of the set of operators Orule for which the rule is to 
hold. For the K-rules this conditon is vacuous, OK = Modalities, since these rules hold for 
all normal modal operators. 

The combined system for knowledge and belief, where we have the logic KT45(m) for 
knowledge (operators Ka) and the logic KD45(m) for belief (operators Ba), can now be defined 
as a Fitch-style deduction system in the following way. Taking knowledge operators Ka to 
have operator-index 1 (Ka = D~) and belief operators Ba to have index 2 (Ba = 0~), we 
define the ORule as: OKimport = OKexport = 04import = Osimport = {1,2}, Ov export = {2} 
and Orexport = {1} (OB import = 0). 

4.1.2. Interacting modalities 

In combining a logic for knowledge with one for belief, we have achieved a (multi-agent) multi
modal deduction system where strict subordinate proofs for different operators may be used 
in one proof figure. However, the modalities still lead separate lives inside the derivations 
each with its own strict subordinate proofs and import and export rules. 



130 CHAPTER 4. MORE AGENTS, MORE MODALITIES 

In this section we investigate whether interactions between the modalities can be ex
pressed deductively, starting from the remaining part of the system KB (KB en without the 
axioms involving Common Knowledge and Common Belief) by looking at the axioms relating 
knowledge and belief. From there we move to more general deductive interaction patterns. 

Interaction between Knowledge and Belief 

By combining the machinery for reasoning about knowledge and a bout belief we get a system 
with Ka. as wel! as B4 -subordinate proofs, where the interesting question is how these two 
notions interact. There are several intuitively plausible interactions between the knowledge 
and the beliefs of an agent. The system KB has two, formalized in the axioms Ka.'P ::> 
Ba'P (A15) and Ba'P ::> KaBa'P (A16). Deductively these axioms correspond to variations on 
an import rule. 

The first axiom, Ka'P ::> B4 <p, states 'ifyou know something, you believe it': since belief is 
less certain than knowledge, being sure enough to know something implies that you are sure 
enough to believe it. In model theoretica! terms, every world that is still possible according 
to your knowledge (epistemic alternative), should also be possible according to your beliefs 
(boulomaic alternative). Deductively this means that every strict subordinate Ka-proof is 
also a strict subordinate B4 -proof, propositions that are known by some agent may be used 
when reasoning in a 'belief'-strict subordinate proof of this agent. 

To achieve tbis, a kind of import rule has to 'force' the import of a proposition that is 
'known' into a 'belief-strict subordinate proof': 

Since this rule looks very much Jike the K-import rule, we shall call it 'FK-import' for 
'forced K-import' . Given the normality of the knowledge and belief operators, it is easy to 
see that the axiom can be derived by the rule and that the rule is derivable in the presence 
of the axiom. 

1. Ka'P 

CfJ'P 
Ka'P 

2. (FK-import,l) Ka'P ::> Ba'P (axiom) 
Ba'P 

3. Ba'P ( K -export,2) 

I. 4. Ka<p ::> Ba'P 

(K-import) 

From rule to axiom From axiom to rule 

The axiom Ba'P ::> KaBa'P is a further etaboration of the dependency between knowledge 
and belief: if you believe something, you know that you believe it. This means that beliefs 
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are 'conscious' in the sense that an agent knows he has them. In adopting this axiom Kraus 
and Lehman chose a very explicit notion of belief, others argue that agent can have beliefs 
they are less 'aware' of, leading to various weakenings of the traditional boulomaic logic. 

Model theoretically the axiom says that if an agent believes something, he will still believe 
it in all his epistemic alternatives. In terrus of deduction, a ' belief-formula' (Ba<P) of an agent 
may be used when reasoning in a' knowiedge-strict subordinate pro of of that agent. To achieve 
this an import rule has to 'force' the import of formulas of the form Ba<P into a Ka-subordinate 
proof: 

We shall call it 'F4-import' for 'forced 4-import'. Given the normality of the knowledge 
and belief operators the axiom can be derived by the rule and the rule is derivable in the 
presence of the axiom. 

1. 

2. 

3. 

4. 

C!fJBa<P (F4-import,1) 

KaBa<P (K-export,2) 

Ba.<P :::> KaBa<P 

From rule to axiom 

(axiom) 

(K-import) 

From axiom to rule 

These rules can be formulated in a more general way in the system DPROP%t":t•·Modalities , 
by taking the sets OFK and Op4 to be elements of Modalities x Modalities . Th.is is useful, 
since we will encounter other pairs of operators which are structurally related in the same 
way. 

4.1.5. DEFINITION. Deduction rules 
These interactions can be brought into the deduction-system by adding the following rules: 

D~A D~A 

T~ T D~A 

FK-import F4-import 
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4.1.6. DEFINITION. Application of deduction rules 
Given a proof figure D, with interval D = [1, n], formulas F1, ... , Fn and intervals I. A 
formula E is the result of an application of deduction rule R, if E is the condusion of R, the 
premisses of R preeede E, and one of the following conditions is met for the modal rules: 

13 R = FK import. 
If the premiss D~A lies in interval I E I a E People and the condusio~ E = A lies in 
the interval JE M~' where (o, o') E OFK(Ç Moda/ities x Modalities) , then it has to be 
the case that the interval J lies in the interval I. 

14 R = F4 import. 
If the premiss D~A lies in interval I E I a E People and the condusion E = D~A lies 
in the interval JE M~' where (o, o') E Op4(Ç Modalities x Modalities) , then it has to 
be the case that the interval J lies in the interval I. 

Under the indexing convention for the operators used previously, the forced import rules for 
knowledge and belief are the cases wbere OFK = {1, 2} and Op4 = {2, 1}. 

Equivalence of K and B 

Adding axioms relating knowledge and belief is not without danger, axioms that are intu
itively plausible can cause the 'collapse' of knowledge and belief: Ka'P <-+ Ba'P becomes a 
theorem of the system. An example of such a principle is Ba'P :J BaKa'P, expressing 'believed 
consciousness': an agent believes that his beliefs are conscious (knowledge) . 

It is easy enough to find the deduction rule corresponding to this axiom ('be-import') : 

with the usual relation between the axiom and the rule: 

1. Ba'P 

~ 
Ba'P 

2. (be-import 1) 
Ba'P :J BaKa'P (axiom) 

Ka'P 
BaKa'P 

3. BaKa'P (K -export 2) 

I 4. Ba'P :J BaKa'P 

~a'P (K-import) 

From rule to axiom From axiom to rule 

However, this rule gives rise to the collapse of Ka into Ba since it allows tbe derivation of 
Ba'P :J Ka'P in combination with the KB-rules for knowledge and belief (Ka'P :J Ba'P is an 
axiom): 
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1. Bal{> 

2. ~ Kacp (be-import 1) 

3. BaK al{> (K-export 2) 
4. •Kacp 

5. ~ •Kacp (5-import 4) 

6. Ka•Kal{> (K-export 5) 
7. BaKacp (reiteration 3) 

8. ~ •Ka'P (FK -import 6) 

9. •Ba ''Kacp ( D-export 8) 
10. 'BaKa'P 

11. ''Ka cp 
12. Kalf> 

13. Bacp :J Kacp 

Deriving Bacp :J Ka'P depends on the following rulesforKa and Ba, besides the basic K-rules 
and the be-import rule: 

FK-import for (K,B), corresponding to Ka'P :J Bacp, 

5-import, negative introspeetion for knowledge (-,K. cp :J Ka'Ka<p), 

D-export, consistency of belief (Ba lP :J -,Ba''P)· 

This squares with the analysis of van der Hoek that one of these three principles is to he 
given up if the axiom Bacp :J BaKacp is to be added consistently. 

A veiding the collapse of the knowledge into belief is not a trivia! matter. In [Van der 
Hoek 1992] it is shown that system KB is saturated in the sense that adding any axiom (of 
a certain general ferm) relating knowledge and belief will cause a collapse. We shall not 
repeat his discussion for the natura! deduction case, but rather look at the general forrns for 
interaction axioms resulting from his investigations to see if they have deductive counterparts. 

General interaction patterns 

Earlier we gave a general formulation of the FK-rule for pairs of modal operators, allowing for 
the derivation of the axiom D~ cp :J o~' <p for any pair ( o, o') E 0 FK. If we concentrate on the 
rnadalities by using X, Y, . . . for the different epstemic operators { and forgetting about the 
agent index for the moment), this yields interaction axioms of the form X cp :J Y cp. Axioms of 
this form express an 'ordering' of two modalities, X is 'stronger' than Y: whenever sarnething 
is an 'X -streng' belief it is also a 'Y -streng' belief. 

In the same way the F4-import rule corresponds to axioms of the form X cp :J YX cp. This 
turns out to he an instantiation of one of the following general forms of interactions between 
modal operators defined in [Van der Hoek 1992]. Let X, Y, Z range over epistem ie operators. 
Then, formulas of the form 
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a) Xcp:) YZ<p are called positive introspeetion (pi.-) formulas 

b) -,X <p :) Y ,z <p are called negative introspeetion ( ni. -) formulas 

c) XY<p:) Z<p are called positive extraspeetion (pe. -) formulas 

d) X-, Y <p :) -,z <p are called negative extraspeetion (ne. -) formulas 

e) X ( Y <p :::> <p) are called trust formulas 

Instantiations of a) - d) are colleetively referred to as inspeetion formulas. 
Given only that X, Y, and Z are normal operators, the introspeetion formulas correspond 

to import rules and the extraspeetion formulas to export rules: 

positive introspeetion negative introspeetion 

positive introspeetion If the premiss X <p lies in the interval I E I and the condusion 
E = Z <p lies in the interval 1 E M Y, then it has to be the case that the interval J lies 
in the interval I . 

negative introspeetion If the premiss -,X <p lies in the interval I E I and the condusion 
E = -,z <p lies in the interval J E M Y, then it has to be the case that the interval J lies 
in the interval I. 

Zcp · Zcp 

. positive extraspeetion negative extraspeetion 

positive extraspeetion If the premiss Y <p lies in interval I E M x and the condusion 
E = Z <p lies in the interval J E I , then it has to be the case that the interval I lies in 
the interval J. 

negative extraspeetion If the premiss • Y <p lies in interval I E M X and the condusion 
E = •Z<p lies in the interval J E I, then it has to be the case that the interval I lies in 
the interval J. 



4.1. NATURAL DEDUCTION 135 

We have already encountered cases of introspeet ion: the 4 and 5-import rules are the simplest 
possible cases of positive and negative introspeetion (X = Y = Z) and F4-import is also 
an instanee of positive introspeetion (X = Z). An example of positive extraspeetion is 
KB rp :) B rp ( Y = Z), w hich holds for all agents in KB. However, si nee this already follows 
by the reflexivity of the K -operator ( T -export), the corresponding rule is not needed. 

The general reading of trust formulas X ( Y rp :) rp) is that an agent believes with X
certainty that his Y-believes are true. An instanee of this is Ba(Barp:) rp) which is theorem 
of KB , showing that agents in this system strongly trust their beliefs. It is difficult to find a 
general deduction rule for trust formulas X ( Y rp :) rp). They are of course trivially derivable if 
the Y -modality is reflexive ( e. g. B ( K rp :) rp)), but this condition need not hold si nee we only 
know that Y is normaL Therefore a general deduction rule has to ensure that rp is derivable 
from Y rp inside X -subordinate proofs. Th is dependency does not fit the format of the rules 
for inspeetion formulas. However given certain inspeetion formulas for a pair of modalities 
the trust formula for these modalities is derivable. 

7 P A f l X( Y ) · d · b/ . PROPPeople Modalitities J 4.1. . ROPOSITION. trust ormu a rp :) rp ts enva e m 0 fitch ' or 
l d l X d Y j OPROPPeople Modalitities h FK . d F 5 . norma mo a operators an , t fitch ' as -tmpoTt an -tmport 

for (X, Y) {negative introspeetion where X = Z ). 

PROOF. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

YrpV-.Yrp 
Yrp 

CfJ :Y•v• 
I Yrp::lrp 

X(Yrp:) rp) 

-, Yrp 

lf"l:~:v. 
I Yrp:)rp 

X(Yrp:)rp) 

X(Yrp:) rp) 

(propositionallogic) 

(FK-import 2) 
(V-intro 3) 
(prop log 4) 

(K-export 5) 

(F5-import 7) 
(V-intro 8) 
(prop log 9) 

(K -export 10) 

(V-elim 1,6,11) 

In the above we have read X, Y, and Z as different modal operators, tacitly assuming that 
they had the same agent index. They could equally well be read as expressing dependencies 
between different 'copies' of the same operator and hence as principles for the interactions 
between (beliefs of) agents. Under this interpretation the FK-rule corresponds to axioms like 
K1 rp :) K2rp, ordering agents according to their information states: agent 2 knows (at least) 
everything that agent 1 knows. 

Hence in their most general form interaction rules could vary both operator and agent 
. d" I th c t f DPROPPeople Modalities th" ld . h I . h m 1ces. n e torma o fit ch ' IS wou mean statmg t e ru es wit respect 
to two sets: 
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Orute E Modalities x Modalities 

Arute E People x People 

In this way hîgly specific interactions can be expressed like -.El <.p :::> K2-.K3<.p: 'If it is not the 
case that agent 1 believes that <.p, then agent 2 knows that agent 3 does not know <.p. 

4.1.3. Group rnadalities 

So far we have been lookîng at multi-agent logîc as an aggregation of one-agent epistemîc 
logies: each agent bas his own operators for knowledge and belief, but there are rnadalities 
which depend on more than one agent. In this section we investigate notions of knowledge 
and belief that belang to a group of agents. 

Everybody knows and Common Knowledge 

A very simple group modality is 'Everybody knows ' that cp, which can be formalized by the 
definable operator 'E', where E<.p = K1<.p 1\ . . . I\ Km'P (People = {1, ... ,m}). Using this 
operator we eau express the much more complex notion of 'Common Knowledge ' . Sarnething 
is common knowledge of a group of agents if it is not only known by all memhers of the group, 
but it is also known by all memhers that it is known by all members, which in turn is also 
known by all memhers ... and so on. Hence C<.p =de/ E <.pl\ EE<.pl\ . . . , an infinite conjunction. 

Still, it can be axiomatized and these axioms have familiar farms. That C is a normal 
operator is expressed by A4) C(<.p :::> 'if;) :::> (C<.p :::> C'if;) (and Rl f- <.p =? f- Ccp), hence we 
have the K-rules for C. The axioms relating C and E also look familiar: A5) C<.p :::l E<.p and 
A6) C<.p :::l EC<.p. They correspond to the FK- and F4-import rule for ( C, E). 

However, since Eis a definable modality we have nat yet added it to our deduction system, 
there arenoE-strict subordinate proofs or import and export rules for this operator. We don't 
need them: adopting the FK- and F4-import rules for the pair (C,Ka) (corresponding to 
the weaker axioms C<.p :::> Ka'P and C<.p :::> K4 Ccp) is sufficient. The axioms relating Common 
Knowledge and Everybody's Knowledge now follow from the rules for C and '/\' , and the 
definition of E: 
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C<p 

Kn'P 

(FK-import) 

(K-export) 

(K-import) 

Kt <pA Kz<p (t,-intro) 

K1'P A . . . A Kn'P 
E<p (definition) 

C<p :) E<p 

C~.p 

KnC'P 

(F4-import) 

(K-export) 

(FK-import) 

KtC<pAKzC'P (A-intro) 

Kt C<p A . . . A KnC'P 
EC<p (definition) 

C<p:) EC<p 
(Vertical dots indicate a 'repetition of moves' for other agent indices.) 
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4.1.8. EXAMPLE. Given the rules relating C and Ka it is also easier to see how, for a given 
proposition <p, any (finite) prefix of operators Ka, . . . , Ka' can be derived from C<p. 

7. 'P 

8. K3<p 

9. KzK3'P 

10. KsKzK3'P 

11. KzKsKzK3'P 

12. C<p:) KzKsKzK3'P 

( T -export 6) 

(K-export 7) 

(K -export 8) 

( K -export 9) 

(K-export 10) 

T he strategy is to set up a chain of strict subordinate proofs indexed Ka, . . . , Ka' and using the 
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F4-import rule to propagate the formula Cr.p. From Cr.p in the Ka•-subordinate proof a final 
(Ka•)-subordinate proof is started, importing Cr.p as r.p using the FK-import rule. Ordinary 
T-export then yields r.p in the original Ka' subordinate proof. Now all subordinate proofs 
can he closed successively by means of K -export, yielding the formula Ka ... Ka' r.p . Hence a 
satisfactory deductive account of the eliminatien of the C can he given. Discussion of the 
introduetion of the C operator as recorded in the so-called 'induction' axiom A7) C(r.p :::J 

Er.p) :::J (r.p :::J Cr.p) is postponed until we can treat it jointly withits belief counterpart A13. 

Common Belief and Everybody believes 

In analogy to the group rnadalities for knowledge we have the notions 'Everyone believes' , 
Fr.p = B1 r.p 1\ ... 1\ Bmr.p (People = {1, ... , m}) and 'Common Belief' Dr.p = Fr.p 1\ FFr.p 1\ . . . . 

Since the first three axioms for D and F exactly match those for C and E, we have K -import 
and exportforD (AIO) and FK- and F4-import for the pair (D, Ba) ((All), (Al2)). 

The difference in strength between the two 'common operators' is expressed in the ax
iom A16) Cr.p :::J Dr.p, if something is Common Knowledge it is also Common Belief, which 
corresponds to an instantiation of the F K -import rule for ( C, D). 

Up to this point it has been straightforward to give a Fitch-style deduction account of 
the system KBcv using only generalized versions of our original monological rules and two 
new interaction rules. Unfortunately this format does not extend to cover the two remaining 
axioms of KB cD· Just like Common Knowledge, Common Belief is introduced by means of 
an induction axiom A13) D(r.p :::J F r.p) :::J (Fr.p :::J Dr.p). It is an open question whether there is a 
deductive counterpart ofthis axiom (or A7) C(r.p :::J Er.p) :::J (r.p :::> Cr.p)) . However, the situation 
can he saved ungracefully by simply adding the 'induction axioms' to DPROPJce;:,ple,Modalities 
as axioms. 

ImpHeit Knowledge 

Not all group rnadalities refer to situations where knowledge or belief of a proposition is 
shared by all memhers of the group. An interesting modality contrasting with Common 
Knowledge and Everbody's Knowledge in this respect is ' implicit knowledge' , the knowledge 
that is implicitly available within a group: everything that can he derived from the comhined 
knowledge of the agents. 

This kind of knowied ge will he denoted by the operator ' I', 'it is implicitly known that 
... ', which is characterized by the following rule: 

I l . . N z· ('PI 1\ 'P2 . . . 1\ 'Pn ) :::> 'Ij; ( I ) mp tc~t orma tty ( ) a, . . . , a E People 
Ka f.P!À ... I\ Ka''Pn :::J J'lj; 

The rule shows that in addition to the knowledge of each of the individual agents (taking 
all knowledge operators to have the same agent-index), implicit knowledge also consists of 
knowledge 'distributed' over a numher of agents, e. g. : 

If agent 1 knows r.p :::> 'Ij; and agent 2 knows r.p then tagether they implicitly know 'Ij; . 
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Implicit knowledge is of interest in conneetion with information dialogues: if we think of 
the dialog participants as agents with information states represented by epistemic formulas, 
then implicit knowledge precisely defines the propositions the participants could conclude to 
during an information dialogue: 

The propositions that are known by one (or more) of the agents before the beginning 
of the dialogue. 

Propositions that are not known to any participant before the dialogue, but that follow 
from combining information of individual agents 

An example of the latter would be a meeting of three mathematicians at a conference, where 
each has proved a different lemma and the combination of the lemmas proves Goldbach's 
Conjecture. After the conversation each of the mathematicians wil] know the proof of the 
(ex-) Conjecture, whereas none of them knew it before1 

Clearly the I-operator is a normal operator, so we start its deductive characterization 
by introducing I-strict subordinate proofs and adopting K-rules for it . To obtain implicit 
normality, we add FK -import for the pair (Ka, I): 

Using this rule formulas of the form Kaep occuring in the main proof may be reiterated as 
ep in the I-strict subordinate proof, regardless of the agent index a. In this way propositions 
known by different agents can be imported and combined in a single subordinate proof: 

1. K1ep 1\ K2(ep:) 1/J) 

2. K1ep 
3. K2(cp:) 'ljJ ) 

4. I ~J· (FK-import 2) 

5. (FK-import 3) 
6. 

7. N 

Implicit knowledge is of model theoretic interest as noted in ([Van der Hoek 1992]) because 
interpreting it in the most straightforward way, with RI ranging over the worlds in the 
intersection of R1, ... Rn, leads to peculiarities. The Kripke models obtained in this way are 

1 J.J.Ch.Meyer gives this example for Fermat's Last Theorem ([Meyer 1994]) , but we have modilied it slightly 
in the light of recent developments in mathematics. 



140 CHAPTER 4. MORE AGENTS, MORE MODALITIES 

sound and complete with respect to the implicit normality-rule, but also with respect to the 
epistemic logies extended with the axiom(schema) 

a={l, . .. ,m}. 

Clearly the logic with the axiom is weaker than the logic with the rule, since the farmer rules 
out that implicit knowledge could be derived from the knowledge of a group of agents. For 
the logic with the axiom we have K1 tp V . .. V Km tp +-+ I tp, for the logic with the rule only half 
of this equivalence holds: K1 tp V .. . V Km tp ::J I tp. 

Deductively the 'weak' implicit knowledge corresponding to the axiomschema puts a re
striction on the FK-import of Ka-formulas into I-strict subordinate proofs: all knowledge 
formulas that are imported have to be of the same agent index. Since this applies for each 
agent, this means operationally that once a strict 1-proof is started from a formula Katp only 
formulas of agent-index a may be imported in this I-strict proof. The conclusions I"ljJ of such 
subordinate proofs wil! be known by the particular agent a (they are consequences of his 
knowledge) and hence I~.p ::J K1'P V ... V Km'P is satisfied. 

Although this restricition, which still needs to be formulated formally, prevents the direct 
derivation of 'distributed conclusions', these can still be derived indirectly: 

1. K1(1P ::J 1/J) A Kztp 

2. K1('P ::J 1/J) 
3. Kz'P 

4. ~({J ::J"I/J (FK-import foragent-index 1) 

5. I(({! ::J 1/J) 

6. ~V' (FK-import foragent-index 2) 

7. I~.p 

8. ~~ ~· (K -import 5) 
9. ( K -import 7) 

10. 

11. N 
12. (Kl(IP ::J 1/J) A KzV') :::> N 

The idea is to derive distributed knowledge by first turning the premisses (Ka <pi, .. . , Ka'IPn) 
known by the agents involved into implicit knowledge (I 'Pl, . . . , I <pn). This is done separately 
for each agent, using the FK -rule with the condition. After that, we use the normality of I 
to start an additional subordinate I-proof, into which each of these I-formulas is imported 
using K-import. In this way the desired 'distributed conclusion' (11/J) can be obtained after 
all. 

Hence a weak implicit knowledge operator cannot be normal, it has only the K -export 
rule, combined with the conditional F4-rule. The problem of formulating the condition in 
h fr k f PROP People Modalities . S" JJ . t e amewor o 0 fitch ' remams. mee a the Import rules are defined for 

individual formulas, there does not seem to be a natura! way to ensure that once a I-strict 
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subordinate proof is started from a formula with operator Ka , all other imported formulas 
are of that index. 

There is a way of formulating Fitch-style modal deduction system, that does allow for a 
natura! expression of the conditional F4 rule. In [Wansing 1995], Heinrich Wansing gives an 
inductive definition of the Fitch-style modal deduction system. Expressions are of the form 
PN(III, A, ~), to be read as 'Il is a proof in natura! deduction of A from the finite set of 
assumptions ~. A natura! deduction proof (figure) can then be build up starting from the 
basic clause PN(IA, A, {A}), using rul es like (::>-elim): 

PN(III1, A, ~1), PN(Ill2, A:::> B, ~2) => 

The basic modal rule is 

PN(III, A, ~) => 

rr1 
Ilz 

PN ( B B, ~1 U ~2 ) 

cr rr 
DA DA, D~) 

acting as K -import and K -export at once, this rule allows you to turn a proposit ional deduc
tion proof II of A from hypotheses ~ into a strict subordinate proof of DA from D~ . The 
important diEferenee is that the assumptions in ~ are treated as a set. Instead of individually 
importing each of the rnadal assumptions, the rule simultaneously prefixes all assumptions in 
~ with a D (~ => D~). 

In this setting the weak implicit knowledge operator corresponds naturally to the following 
rule: 

PN(IIT, A, ~) => 

9n 
PN ( IA IA, Ka~ ) 

A proof I1 of A from ~. may be turned into an I-strict subordinate proof yielding IA from 
Ka~ for some agent index a. Since the assumptions of the proof are modalized as a set, all 
assumptions will be propositions known by one particular agent a . 

In the inductive system it would be difficult to formulate a rule expressing directly the 
derivation of a distributed conclusion, but the strong notion of implicit knowledge can be 
obtained by adding the normality rule for I-proofs: 

PN(IIT, A, ~) => 

9rr 
IA IA, I fl ) 
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Distributed conclusions are then derivable in the indirect way described earlier. 

4.2. Type theory 

Based on the earlier work for monological modal system we can straightforwardly transfer the 
multi-agent and multi-rnadal extensions of the Fitch-style natura! deduction to the MPTS's. 
When that has been clone, we review the modal deduction rules defined earlier from the 
perspective of the multi-agent multi-modal system. 

4.2.1. MPTS with multiple agents and rnadalities 

I I . h OPROPPeople Modalities l" h MPTS' h l . 1 . n ana ogy Wit fitch ' we genera 1ze t e s to t e mu tl-agent mu ti-
modal case by ' indexing everything' with respect to the set of agents People , and the set of 
operators Modalities: rnadal operators (0~), generalized contexts (IQJ~) and proof functions 
(k- o k. o ) H th d fi "t" c MPTSPeople,Modalities a , a , . . . . ere are e e m 10ns 10r f3 : 

4 .2 .1. DEFINITION. Pseudoterms 
Theset of pseudoterms Tover S, People (for all a E People) and Modalities (for all 
o E M odalities) is: 

4.2.2. DEFINITION. Contexts 
In generalized contexts each separator is now indexed with an a E People and an 
o E Modalities: 

(i) A declamtion is a judgement of the form x : A, where x is a variabie and A a pseudo term. 

(ii) A pseudo-context is a finite ordered sequence of declarations (x : A), all with distinct 
subjects: XI : AI, ... , Xn : An· 

(iii) A generalized pseudo-context is a fini te ordered sequence of pseudo-contexts and indexed 
separators: G = fi ~ . .. ~; f n with a, ... , a' E People, o, ... , o' E Modalities. 

4.2.3. DEFINITION. Multi-agent multi-modal Modal Pure Type Systems 
A It · t [t · d [ p T S t · h {3 · MPTSPeople Modalities . . mu 2-agen mu t-mo a ure ype ys em w2t -converswn, f3 ' , IS g1ven 

by a setS of sorts containing Prop,Set, and Type, a set A Type C S x Softyping axioms, a set 
A Logic C C x T of logica/ axioms, and a set R C S x S x S of ru/es. The MPTS that is given 
by S, A and Ris denoted by O..\f3(S,A, R) and is the typed ..\-calculus with the following 
deduction rules: 

( axioms) c f-- SI : s2 if si : s2 E A Type c f-- c : A : Prop if c : A E A Logic 

G f-- A : s 
(start) G, x : A f-- x : A 
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Gf-A:B Gf-C : s 
( weakening) 

G, x: C f- A: B 

G f- A : s1 G , x : A f- B : sz ( ) 
(product) ij s1, s2, s3 E R 

G f- (Ilx : A.B) : s3 

( . . ) G f- F : (Ilx : A.B) G f- a : A 
appltcatwn G f- Fa: B[x := a] 

) G , x : A f- b : B G f- (Ilx : A.B) : s 
( abstraction 

G f- (.XX : A .b) : (Ilx: A. B) 

Gf-A : B 
( conversion) 

G f- B' : s 

G f-A: B' 

B=f3 B' 

G f- A: Prop 
(boxing) G f- A P (Vo E Modalities, Va E People) 

0~ : rop 

(transfer!) 
Gf-A : s 

(Vo E Modalities , Va E People) 

G f- A:B : o 
(transferz) (Vo E Modalities, Va E People ) 

GIQlgt: f- A:B 

G f- A: B: Set 
(transjer3) G IQlg E f- A: B (Vo E Modalities,Va E People) 

G f- c : A : Prop 
(transferax) (Vo E Modalities ,Va E P eople, c: A E ALogic ) 

G@gt: f- c : A 

(K . ) G f- A : D~B : Prop 
tmport • 

G IQ]~ E f- kg A : B 
(Vo E Modalities, Va E P eople) 

G IQ]~ E f- A : B : Prop 
(K export) 

Gf-kgA : DgB 
(Vo E Modalities, Va E P eople ) 

(4 import) 

(5 import) 

(B import) 

G f- A : D~B : Prop 

c ~ t: r- 4~A : ogs 

G f- A : -.D~B : Prop 

G IQ]~ t: r- 5~A : -.ogs 

G f- A : B : Prop 

(Vo E 04 import(Ç Modalities), Va E P eople) 

(Vo E Osimport (Ç Modalities) ,Va E P eople) 

(Vo E OBimport(Ç Modali ties), Va E P eople) 

G IQ]~ E f- A : B : P rop 
(D export) (Vo E Ovexport(Ç Modalities ),Va E People) 

G f- dg A: -.og..,B 

143 
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( ) G IQJ~ e: f- A : B : Prop 
T export , 

G f- tg A: B 
(Vo E OT export(Ç Modalities), Va E Peop/e) 

s ranges over the S the set of sorts, x ranges over variables, c over coostants, o ranges over 
the set Modalities of operator indices, a ranges over the set People of agent indices, and it 
is assurned that in the rul es (start) and ( weakening), the new ly declared variabie is always 
fresh. 

Cornpared with the definition of MPTS13 the noo-rnoclal rules upto Conversion are un
changed. The Boxing rule and the Transfer rules oow have quantification over all agent 
indices aod all modal operators. Hence Boxing enables us to rnodalize a proposition with 
any rnadal operator 0~ allowed by Peop/e and Moda/ities. For the Transfer rules the quan
tification means that oon-proof statements and (logica!) axiorns may he transferred into any 
subcontext, over every separator IQJ~ regardless of the operator- and agent-index. 

Since the K -rules are supposed to hold for all normal rnadal operators, they only require 
that the indices o and a of the rnadal operator, the subordinate context, and the pro of function 
match. The other import and export rules may not hold for all operators in Modalities, hence 
they are pararnetrized with respect to a subset Orule of Moda/ities. 

Given the correspondence between modal natura! deduction and MPTS's discussed earlier, 
it is evident that we have to index the separators 'IQJ', in the generalized contexts. These 
indicate the subordinate cootexts that are the analogons of the strict subordinate proofs in 
rnadal natura! deduction. Hence if we discern subordinate proofs for different agents and 
rnadalities in natura! deduction we should do likewise with subordinate contexts in type 
theory by indexing the separators. 

The indexing of the pro of functions ( k:, ... ) deserves some discussion. Let 's start with the 
agent-index by looking at the logic KT45m for knowledge as an instantiation of the general 
system above (writing Ka in stead of 0~): 

G f- M : KaA : Prop 
(K import) 

G fQJa e: f- kaM : A 

( ) G f- M : KaA : Prop 
4 import 

G IQJa <: f- 4aM : KaA 

G IQJa e: f- M : A : Prop 
(K export) 

G f- kaM: KaA 

G 1- M : ..,KaA : Prop 
(5 import) 

G IQ]a E: f- SaM : ..,KaA 

( T ) G IQJa<: f- M : A : Prop 
export , 

G f- taM: A 

In indexing the proof fundions with respect to the agents, we emphasize the structural simi
larity between the rnadal rules for the different copies of the knowledge operator. 

In terms of Kripke-semantics, these functions change the proofs of epistemic formulas 
an agent has in the current world into proofs of a related formula in that agents epistemic 
alternatives and vice versa. Viewed in this way, using indexed versions of the proof-object 
transfarmers k , k for the K 4 -operators corresponds to the idea that all agents adress their 
epistemic alternatives in the same way (although epistemic alternatives may differ in content 
across agents) . Having indexed versions of k and k is in step with the 'propositions-as-types' 
ideology: we retain the property that the entire proof can he reconstructed from the term, 
without the indices we would have to refer to the type or the context during reconstruction. 
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Along the same lines as for knowledge we can formulate a KD45m system for belief. But 
if we want to use the structural similarity between the rules for knowledge and the rules 
r b )" f d"d )" . DPROPPeople Modalities h t . d th t . h 10r e Je , as we 1 ear 1er m fitch ' , we ave o m ex e separa ors w1t 
respect to the modal operator allowing us to discern between 'belief'-subordinate contexts 
and knowledge'-subordinate contexts: 

(K import) 
G f- M: BaA: Prop 

(K export) 
G IQI~e f- M : A: Prop 

G ~ e f- k!M: A G f- k!M: BaA 

G f- M: BaA: Prop G f- M : ...,BaA : Prop 
( 4 import) 

G IQI~ e f- 4.~ M : Ba A 
(5 import) 

G IQI~ e f- S~M: -,BaA 

(D ) G ~ e f- M : A : Prop 
export • 

G f- d! M : •Ba ·A 

This holds for the proof functions as wel!: kaM : A indicates that a proof of Da of agent 
a has been changed into a proof of A in an alternative of agent a. But this holds for the 
'knowledge' (Ka)- as wel! as the 'belief (Ba)'-interpretation of the box. We do nat want to 
confuse the epistemic alternatives of agents a with his boulomaic alternatives: all the worlds 
possible according to his knowledge with all the worlds possible according to his beliefs. 
Hence indexing the proof functions for rnadal operators corresponds to the idea that an agent 
accesses alternatives related to different rnadalities in different ways. 

For the type theoretica! properties one is traditionally interested in, the generalization to 
more agents and rnadalities makes no difference. 

4.2.4. THEOREM. For Às a MPTS:eople,Modalities from the Modal Logic Cube, we have: 

Às has Unicity of Types 

>..s is Strongly NoTmalizing 

Às has the Church RosseT property 

Às enjoys Subject Reduction 

PROOF. By redoing the proofs of these properties from chapter 3. This is straightforward, 
the agent- and operator-index do nat in any way interfere with the proofs given before. 

4.2.2. lnteracting Modalities 

The typetheoretical version of the rules relating knowledge and belief of an agent should 
allow the import of statements of type Ka'P into Ba-subordinate contexts, and the import of 
statements of type Ba'P in Ka-subordinate contexts respectively. 

(FK import) 

(F4 import) 

G f- M : KaA: Prop 

G~ ê f- JJK,B)M: A 

G f- M: BaA: Prop 

G IQ{ ê !JiB,K) M :Ba A 
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The only aspect of these rules that cao not be settled by looking at their natura! deduction 
counterparts is the treatment of the pro of objects. Although we named these rules on the basis 
of their similarity to the K- and 4-import rules, they do present structurally new interactions: 
the modal operator of the formula that is to be imported no Jonger has to match the operator 
index of the strict subordinate proof. 

We therefore propose to adopt new import pro of functions for these rules, j for F K
import a.nd g for F4-import. They are indexed with respect to agents (a) and a pair of 
modalities. The first operator index records the modality of the formula that was imported. 
In this way we remember where a formula originally came frorn, for instanee ~hat a forrnula 
in a B.,-subordinate proof was originally a K.,-formula (FK-import) . This ;is trivia! in a 
systern with only two modalities, but can be r:ecessary in systems with more modalities. The 
same considerations about generality lead to the recording of the modality in the subordinate 
proof in the second operator-index. From terms representing modal proofs in KB we would 
be able to infer this modality by means of the export step used to close the Ka- or Ba
subordinate contexts. However, in general a system could have rules for extraspeetion as wel! 
as introspeetion and then we may need the second operator-index to reconstJ,"uct the proof 
from the term. Therefore we add the interaction rules to the type theoretical 1system in the 
following general form: 

G 1- M: D~A: Prop 
(FK import) 'V(o, o') E OFK(Ç Modalities) , 'Va E People 

G IQJ~' t: 1- jio,o') M: A 

(F4 import) 
G 1- M : D~A : Prop 

'V(o , o') E OFK(Ç Modalities),'Va E People 

Since all desirabie type theoretica! properties are preserved under the addition of these 
two interaction rules, we now have the equipment to express (the rest of) the system KDcD 

MPTS People Modalities B r • h d )" · h J as an fJ ' . e10re movmg to t e group mo a 1hes we return to t e genera 
interaction forms discussed earlier. 

positive introspeetion negative introspeetion 

G 1- M : X <p : Prop 
pos in trospee ti on -..,---::..,.---- -:-:7'-:-:--=---"-.,--

G I!;)JY E: 1- p(X,Y,Z): Z<p 
G 1- M : ....,x <p : Prop 

neg introspeetion - --:..,.--- -..,..,..,--o7-=--=-
G I!;)JY e 1- n<X,Y,z): ....,z'P 
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Ztp ..,z'P 
positive extraspeetion neg<1tive extraspeetion 

G fi:if r:: 1- M : Y tp : Prop 
pos extraspeetion --:::---:---:-~-;-;--;;-;-::--:---:::--~ 

G 1- jJ(X,Y,Z)M: Ztp 
G fi:if E 1- M : .., Y tp : Prop 

neg extraspeetion ----.,...,.,.-=--=--.:...._ _ ____:_ c 1- ntx,v,z)M: ..,z'P 

For these general forms we have to specify triples of modalities, the inspeetion rules hold for 
all (o, o', o") E Orule Ç (Modalities x Modalities x Modalities), for all a E People . In order to 
record the complete pro of in the term, the pro of fundions (p, p, ii., n) are indexed with these 
triples (X, Y, Z). No te that the full triple is not always needed, the F4-rule defined above is 
an instanee of positive introspeetion where (X = Z). 

4.2.3. Group modalities 

Group modalities can now be handled in the same way as in the natura! deduction system. 
The E and F operators are again definable ( using the second order definition of 'A') and so 
we have the following rules for Common Knowledge and Common Belief: 

The K -import and export rule for C and D 

The FK- and F4-import rules for (C,Ka) 

The FK- and F4-import rules for (D, Ba) 

The FK-import rule for (C,D) 

In the previous section we saw that there are no deductive counterparts to the induction 
axioms in our Fitch-style framework. Give the greater computational potentia.l of typed 
>.-calculus, one could hope tha.t some kind of 'recursive' cha.ra.cteriza.tion of C and D is 
possible. However, prelimina.ry investigations using the powerful extension of (M)PTSs with 
so-called inductive types (see [Pfennig and Paulin 1990]) did not result in a (co-)inductive 
chara.cterization of these operators. Hence we adopt the solution given earlier to add the 
induction axioms as axioms. Taking two fresh constauts from C, we add c2 :'<la : Prop.( C(a ::J 
Ea) ::J (a ::J Ca)) and c3 :'<la : Prop.(D(a ::J Fa) ::J (Fa ::J Da)) to ALogic as done earlier 
for the double negation axiom. 

For (strong) implicit know)edge we have the K -rules fortheI-operator and the FK -import 
rule for (Ka, I): 

( ) G 1- M : KaA : Prop 
FK import 

G rgy E 1- JaK ,l M : A 

4.2.4. Modal reductions 

In this section we investigate modal reduction in the framework of the multi-agent multi
moda.l system. We start from the monological annihilations and distributions defined earlier, 
and then look for new reduction possibilities. 
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By indexing the pro of functions, the possibility to reconstruct the complete pro of of a type 
from its term was preserved. Therefore a natura! generalization of the monological rnadal 
reduction rules would take the indices into account. When the annihilation rules are indexed 
with respect to agents, a detour in a pro of consisting of K -import immediately followed by 
K-export (or vice versa) can only be eliminated if both rules pertain to the same agent: 

kakaM => M kakaM => M (Va E People) 

That this is intuitively correct can be seen using the deduction example from the previous 
section. 

1. G f- M : K1K2K3<p 
2. G IQq E f- klM : K2K3'P (K-import 1) 
3. G IQq E ~ E f- k2(k1M) : K3'P (K-import 2) 

4. G IQq E ~ E IQJa E f- k3(k2(k1M)) : 'P (K-import 3) 

5. G IQq E ~ E f- k3(k3(k2(k1M))) : K3'P (K -export 4) 

6. G IQq E f- k2(k3(k3(k2(k1M)))) : K2K3<p (K-export 5) 

7. G f- t1(k2(k3(k3(k2(~M))))): K2Kl'P ( T -export 6) 

This derivation is the type theoretica! analogon to (one of the proofs in) the example in the 
previous section, first the proposition 'P is stripped of all knowledge operators by applying 
K-import, yielding a proof (object) k3(k2(k1M)) for <pin a subordinate K3-context. Then the 
desired knowledge operators are put back on in reverse order, by applying K-export whenever 
the operator with the index of the subordinate context is needed, and T-export when it is 
not. 

However, this is not the most efficient proof of K2K3<p, and the kaka-reduction rule can be 
used to simplify it: h(k2(k3(k3(k2(k1M))))) => t1(k2(k2(k1M))) => t1(k1M). The resulting 
proof object corresponds to a proof where instead of first stripping off K1, K2 and K3 and 
then putting all but K1 back on again, only one subordinate proof is used: 

1. G f- M: K1K2K3'P 1. K1K2K3'P 
2. G IQq E f- klM: K2K3'P (K-import 1) 

~ 3. G f- Î1(k1M): K2K3'P ( T -export 2) 2. (K-import 1) K2K3<p 

3. K2K3<p (T-export 2) 

After switching to an epistemic alternative of agent 1 (K-import), one already sees that 
K2K3<p. Hence using the veridicality of knowledge ( T-export) suffices to obtain a proo( of 
K2K3<p. As in the mono logica! case, the k k-rule minimalizes the rnadal depth of the proof: the 
K2- and K3-strict subordinate proofs that are not necessary to derive the desired condusion 
are eliminated. 

The above does not yet show that indexing the reduction rules is necessary: in a multi 
agent mono-modal system, where we have just the K -rules for the rnadal operator, the an
nihilations rules for k and k are also sound when the indices are disregarded. However, if 
we strengthen this system with T and 4 and disregard the agent indices, annihilation is not 
sound. 



4.2. TYPE THEORY 

1. 

2. 

3. 

4. 

G 1- M : K1K2rp 

G IQh E 1- klM : K2rp 

G 1- t1(k1M): K2rp 

G ~ E 1- ih(t1(k1M)): K2rp 

( K -import 1) 

( T -export 2) 

( 4-import 3) 

4'2(t;(k1M)) => k1M 

(t4-reduction) 
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If the agent-index is disregarded the proofterm 42({1(~M)) for K2rp 4t-reduces to k1M, and 
should therefore prove K2rp in context G ~ E. However, that this cannot be the case follows 
from the different agent indices of the separator and the proof function: they indicate that a 
K1-formula was K-imported into a K2-subordinate proof: 

1. K1K2rp 1. K1K2'P 

2. ~ K2rp (K-import 1) 2. ~ K2 rp ( K -import 1 ?) 

3. K2rp ( T -export 2) 

4. ~ K2rp ( 4-import 3) 

Hence a term representing (part of) a correct. natura] deduction proof is turned into a term 
representing an incorrect proof. 

Similar considerations make it evident that the modal reduction rules should also respect 
the operator-index. For the annihilation reductions formulat ed with respect to the indices, 
h 1 r d j " MPTSPeople Modalities t e resu ts 10un ear 1er carry over to (J ' • 

4.2.5. THEOREM. Por all Às in the Modal Logic Cu.be of MPTS;eople,Modalities with added 

reduction rules: 

k~k~M => M for all a E P eople, o E Modalities 

k~k~M => M for all a E P eople, o E M odalities 

4~t~M => M for all a E People , o E Modalities 

t:4~M => M for all a E People, oE Modalities 

5~t~M => M for all a E P eople , o E Modalities 

t~5~M => M for all a E People , o E Modalities 

( and congruence ru/es) we have: 

>..s is Strongly Normalizing 

>..s has the Church Rosser property 

Às enjoys the Subject Reduction property 
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PROOF. By repeating the proofs from chapter 3, the indexing does not interfere with the 
original rules. 

The multi-agent multi-modal system also offers new possibilities for making detours in 
proofs and eliminating them. A first indication of this is that the two forced import rules 
descrihing the interaction in CDKB are not completly independent. In a system where F4 
holds for the pair of operators (o, o') and T-export for o, the FK-ru!e for (o, o') is derivable: 

G f- M: D~<p G f- M : D~<p 

G IQ]~ E f- J: M : 'P ' ' G IQ]~ E f- g~·0 M : D~<p 

FK-import 

G IQ]~' E ~ E f- k~(!J~'01 M) : <p 

G IQ]~' E f- t~(k~(!J~'01 M)): <p 

as a derived rule 

In these circumstances a new detour in proofs becomes possible: 

G f- M : D~<p 

G IQ]~' E f- !Jio,o') M : D~<p (F4-import) 

G f- t~'(!Jio,o')M): D~<p (T-export) 

To eliminate this detour, a new annihilation rule could be added: 

I 

(F4-import) 

(K-import) 

( T-export) 

t~(!J~·o M) =} M 'ia E People, 'i(o, o') E Op4 Ç (Modalities x Modalities) 

In KEen this rule would remove combinations of FK-import of a B 4 -formula into a Ka-strict 
subordinate proofs immediately foliowed by T -export. In terros of inspeetion formulas we can 
think of this detour as eaused by the presence of both positive introspeetion (Ba'P :J KaBa'P) 
and positive extraspeetion (KaBa 'P :J Ba'P) for Ka and B4 • 

Th is observation ean be extended to the format of general inspeetion prineiples. Wh enever 
a system has pairs of positive introspeetion and extraspeetion principles XY <p :J Z <p and 
YZ<p :J X<p, or negative introspeetion and extraspeetion prineiples x..,y'P :J ..,z'P and 
Y ..,z <p :J ..,x <p, new de tours beeome possible: 
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zn zv 

Although these detours can involve up to three different modal operators, they can be 
eliminated using rul es of a familiar format . Assuming for the moment that X, Y and Z have 
the same agent-index, we define the following annihilations for pairs of positive introspec
tion/extraspection and negative introspection/extraspection rules: 

p(X, Y,Z)(p(Y,Z ,X)M) =>M \::IX, Y, ZE Modalities 

zz p(X, Y,Z)(p(Y,Z,X ) M) =>M V X, Y, Z E Modalities 

zzz n.(X' y ,Z)( n.< y ;Z.X) M) =>M \::IX, Y, ZE Modalities 

zv n.(X, Y,Z)(n.(Y, Z,X) M) =>M \::IX, Y, ZE Modalities 
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Chapter 5 

Modal predicate logic 

Besides the strengthening of the modal rules, the expressive power of modallogic can also be 
strengthened by building it on a richer underlying language: predicate logic. This allows us 
to talk about individuals, their properties and relations. 

However, modal predicate logic (MPL) is not simply 'modallogic with added quantifi.ers', 
there are a great number of choices to be made with respect to the behaviour of t he quantifiers, 
identity, predicates and terms across possible worlds. All these choices yield different systems 
of MPL which have been charted and stuclied in model theoretica! semantics (see for instanee 
[Garson 1984]). The state of the art in natura! deduction for MPL is definitely less impressive, 
for many systems of MPL no deductive counterparts are known. 

In this chapter we first show how the construction for interpreting modal propositional 
logic can be extended to modal predicate logic. Then we concentrate on some of the well
known problems regarding the interaction between the modal operators, quantifiers and iden
tity in the setting of MPTSs. 

5.1. The interpretation 

In this section we wil! indicate how the interpretation of modal propositional logic given 
earlier can be repeated for modal predicate logic. As before we wil! start by defining a typed 
system (AL) as close as possible to the original logic (L) and then showing that this system 
is equivalent to the system (ÀL) in the 'Modal Logic Cube'. 

To accommodate the underlying classica/ first order predicate logic wc wil! start the map· 
ping by reformulating our modallogic as asecondorder intuitionistic predicate logic DPRED2 
and then indicate how the path: 

DPRED2 ~ ADPRED2 ~ ÀDPRED2 

to the MPTS ÀDPRED2 through the intermediate system ADPROP2 could be followed. 

An additional difficulty compared to propositional logic is that for predicate logies the 
typed lambda calculus style of presentation is rather different from the usuallogical presenta
tion: functions and predicates are formed by À-abstraction. However, PRED2 is conservative 
over the system PRED- fr which has constauts for functions and predicates as first order 
predicate logic in the regular formulation. Hence, the complete picture of the interpretation 
looks like: 

153 
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DPRED2-fr => DPRED2 {:} ADPRED2 {:} >.DPRED2 

where the => is the conservativity of DPRED2 over DPRED2-fr. 

5.1.1. DPRED2 

DPRED2 is based on the second order intuitionistic predicate logic PRED2 from the Logic 
Cube as defined in [Geuvers 1993]. 

The domains are given by 
D ::= B\Prop\('D --+ 'D) , 

where B is a specific set of basic domains. 

Hence DPRED2 is a many sorted logic from the start. 

2 The order of the domain, ord(D) , is defined by 

ord(B) 

ord(Prop) 

ord(D1 --+ ... --+ Dp --+ B) 

ord(D1 --+ .. . --+ Dp --+ Prop) 

1 for BE B 

2 

max{ord(D;)\1 ~i~ p}, if BE B 

max{ord(D;)\1 ~i~ p} + 1 

For DPRED2, ord(D) ~ 2, hence max{ord(D;)\1 ~i~ p} ~ if BE Band 
max{ord(D;)\1 ~ i ~ p} + 1 ~ 2. The second condition shows that domains 'ending' in 
Prop can nothave D; containing (or being) Prop. 

3 The terms of the second order language are described as follows: 

- There are countably many variables of domain D if ord(D) ~ 2, 

- If M E D2, x a variabie of domain D1 and ord(Dr --+ D2) ~ 2, 
then >.x E D1.M E D1 --+ D2, 

- If M E D1 --+ D2, N E D1 , then MN E D2, 

- If <p E Prop, x a variabie of domain D with ord(D) ~ 2, then Vx E D. tp E Prop, 

- If tp E Prop and 'Ij; E Prop, then <p :) 'Ij; E Prop 

- If <p E Prop, then Otp E Prop 

Using the second clause, predicates can be defined by À-abstraction: given a set (domain) 
A and a formula tp, >.x E A .<p is a term in (A --+ PROP), the predicates over A. 

4 On the terms we have definitional equality by ,8-conversion. This equality is denoted 
by =13. Terms tp for which 'P E Prop are formulas, 'Form' denotes the set of formulas. 

The underlying predicate logic of DPRED2 is second order intuitionistic logic. This 
requires a few simple modification of the deduction rules given for DPROP2: the V
rules and hold for the variables of all domains D not just Prop, likewise the term rule 
deals wit h all terms t E D. All other rules are the same. 
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5 For cp and 1/J formulas of the second order language the Fitch-style deduction rules of 
DPRED2 are: 

:>-intro ::>-elim 

~ cp::>'I/J 

cp 
cp=>'I/J 

1/J 

V'-intro V'-elim 

IF 
V'x E D.cp 

t E D 

V'x E D.cp 
cp[ tI x l 

K-import 4-import 

Dip Dep 

D D 
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5-import B-import 

0 0 

K-export D-export T-export 

T. T. T. 
Dep 

reiteration 

term axwm conversion 

tE D Vx E Prop .((x :J .l) :J .l) :J x 

T he only rule that is new compared to the deduction rules for DPROP2 is the conversion 
rule (conv ), which is applied in the following way. 

5.1.1. DEFINITION. Application of deduction rules 

R = conv . 
The premiss P and the condusion E have to !ie in the sameinterval and P =13 E . 
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The role of conversion in the logic PRED2 is twofold: 

Function application: in PRED2 we can construct functions (and predicates) by .X
abstraction, e.g. (Àx E D1.t) E D1 -> D2. In working with these functions, one wants 
to be able to exchange a function-argument pair occuring in a formula (<p((Àx E D.t)q)) 
with the calculated result (<p(t[qfx])). This can be clone by means of conversion, since 
the pair and the result are ;3-equal (<p((Àx E D.t)q) =o <p( t[qjx])). 

Comprehension: the property that given any formula 'P (with free variables x) that 
describes a certain part of the domain, there exists an n-ary predicate xx that does the 
same. This property is often expressed in the form of an axiom: 

Comprehension is derivable in PRED2. Given a formula, say '1/J with free variables 
x E D and y : D', we can easily construct the predicate by means of À-abstract ion: 
Àx E DÀy E D'.'I/J . Conversion ensures that the equivalence between <pand xx stated 
in the axiom holds ('1/J =!3 (Àx E DÀy E D'.'I/J)xy). 

Connectives 

Like DPROP2, DPRED2 is a second order system. Hence we again define all the usual 
connectives in terms of V and ::l, the existential quantifier is defined as follows (let <p be a 
formula) : 

:JxD .<p := Va E Prop.(Vx E D .<p ::l a) ::l a. 

As before we add the double negation axiom to obtain classica! predicate logic. 

Extensionality 

In DPRED2, terms of domain D -> Prop are to be understood as predicates on D or as 
subsets of D. Hence from a set theoretica! point of view we would want to identify predicates 
that are extensionally equal: 

(Vx.fx ::J 9x !\ vx.gx ::J fx) ::J J =n g 

In general it is not possible to express extensionality in the logic, hence Geuvers adds a 
schematic rule of extensionality: 

(EXT) j x ::l gx 9x ::J Jx 
<p(g) 

where (for DPRED2) f and g are arbitrary terms of the same domain D ((*) signifies 
the restrietion that variables of x may not occur free in a non-discharged assumption of the 
derivations in the premisses of the rule) . E-PRED2 is the system PRED2 extended with 
(EXT). 

It is an open question whether adding the schema (EXT ) to (D)PRED2 to obtain E
(D)PRED2 actually strengthens (D)PRED2. Obviously E-(D) PRED2 is conservative over 
(D)PRED2, simply do not use the EXT-rule. The question is whether there is conservativity 
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in the other direction: E-(D)PRED2 * (D)PRED2. The conjecture is that conservativity 
holds. Counterexamples usually involve pairs of formulas like Q(>.a : Prop.a :::> a) and 
Q(>.a : Prop.a :::> ••a), where EXT is used to derive one from the other, whereas this is 
impossible in the non-extensional system. However, in this counterexample the order of the 
formulas is 2: 3 and hence it can nat be used as a counterexample for the conservativity of 
E-PRED2 over PRED2. Probably this argument can be generalized to any application of 
EXT in E-PRED2: 

rp(P1) Prx :::> P2x P2x :::> Prx 
rp(P2) 

In order for rp(P1 ) (or (rp(P2))) to be of order :S 2, P1 has to be in 'fully applicative farm', 
which means that all argument places in Pr have to be filled (it is quantor free). In that 
case rp(P2) can already be derived farm rp(PI) in PRED2. If this argument is correct all 
counterexamples fail and hence we have E-PRED2 <o} PRED2. 

DPRED2-fr 

The definition of the underlying predicate logic of DPRED2 is rather different from the 
traditional presentation of (first order) predicate logic: predicates as well as functions are 
defined using .X-abstraction. In [Geuvers 1993] a system PRED- fr is defined with constauts 
for predicates and functions is given, which is proved to be conservative over the first order 
minimal predicate logic PRED. 

Adopting this idea, we could start the interpretation of rnadal predicate logic from a system 
DPRED2-fr which is much closer to the conventional presentation rnadal predicate logic, and 
which should be conservative over DPRED2. This system is introduced in two stages, first the 
possibility of defining functions by abstraction is removed then that of creating 'abstraction 
predicates'. 

DPRED2 is conservative over DPRED2-f, a version of DPRED2 which has only the 
simplest ('first order') domains for functions. The language of DPRED2-f is defined as 
follows. 

1 The functional domains are given by 

F ::= B --> •.. --> B, 

where B is a specific set of basic domains. (Every functional domain has to be built up 
from at least two basic do rnains) 

2 The domains are given by 

V::= B IPropiV --> ... -->V --> Prop, 

3 The order of the domain, ord(D), is defined by 

ord(B) 

ord(Prop) 

ord(Dr --> ... --> Dp --> B) 

ord( Dr --> •.. --> Dp --> Prop) 

1 for BE B 

2 

max{ord(D;)II :S i :S p}, ij B E B 

max{ord(D;)I1 :Si :S p} + 1 

Note that functional domains all have order 1. 
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4 There are countably many function- constants c{ for every function domaio F E F in 
DPRED2-f. 

5 The terms of the second order language are described as follows: 

There are countably many variables of domaio D if ord(D) :::; 2, 

If c[ is a function constant of domaio F = B1 __, ... __, Bp+l and t; E B; for 
1 :::; i :::; p, then c[ t1, .. . , lp E Bp+ 1, 

If t E D2, x a variabie of domaio D1 and ord(D1 _, D2 ) :::; 2, 
then (.\x E D1.t) E D1 __, D2, 

If t E D1 __, D2, q E D1, then tq E Dz, 

- If <p E Prop , x a variabie of domaio D with ord(D):::; 2, then (Vx E D .<p) E Prop, 

- If <p E Prop and 'Ij; E Prop, then <p :) 'Ij; E Prop 

- If <p E Prop ,then D<p E Prop 

6 T he deduction rules are the same as those of DPRED2, the quantification is restricted 
to (basic) domains sirree we have no variables over function domains. 

The next step is to eliminate the possibility to farm predicates by means of À-abstraction: 
DPRED2-fr is DPRED2-f where the definition of termsis changed to 

• There are countably many variables of domaio D if ord(D) :::; 2, 

• If c[ is a function constant of domaio F = B1 __, ... _, Bp+! and t; E B; for 1 :::; i :::; p, 

then c[ t1. ... , tp E Bp+l> 

• If t E D1 _, . . . _, Dp __, Prop, q; E D; for 1 :::; i :::; p, then tq1 .. . qp E Prop , 

• If cp E Prop , x a variabie of domaio D with ord(D) :::; 2, then Vx E D.<p E Prop, 

• If <p E Prop and 'Ij; E Prop, then <p :l 'Ij; E Prop . 

This definition of the language corresponds to the way in which first order predicate logic 
is usually set up: the terms of the object language are inductively defined from variables and 
constauts by function application, and thesetof formulas is inductively defined from the basic 
formulas by applying connectives (basic formulas are of the form xDt1 .. . tp, with t; termsof 
the object language, and allowing for p = 0). 

Note that in this logic conversion cao no Jonger play a role, we cannot build functions 
or predicates by abstraction and herree it is no Jonger possible to calculate the result of 
applying such a function or predicate to an argument by ,13-convcrsion. For the same reason 
we cannot construct the comprehension relation for an arbitrary universa! formula, the needed 
abstraction is no Jonger allowed. This is what one would expect from a logic close to the 
traditional presentation of first order predicate logic, where conversion is not an inherent 
phenomenon. 



160 CHAPTER 5. MODAL PREDICATE LOGIC 

5.1.2. ADPRED2 

The typed >.-calculus ADPRED2 corresponding to the logic DPRED2 is defined in the same 
way as ADPROP2 in chapter 3. The main difference is that the language of ADPRED2 is 
richer than that of ADPROP2, for which the set of funct ional types was empty and the set 
of predieale types of consisted solely of Prop. 

The set of functional types of ADPRED, Type!, is defined by the following abstract 
syntax. 

Type1 ::= Var1Y[ Type! -+ Type1, 

where Var 1Y is a countable set of type-variables. 

Thesetof predieale types of ADPRED2, TypeP, consistsof the expressions 

0"1 -+ 0"2 -+ ... -+ Prop , 

with n 2: 0 and all a; functional types. 

2 The object-termsof the language of ADPRED2 forma subset of thesetof pseudoterms, 
T, which is generated by the following abstract syntax. 

T ::= Var 0 b[TT[>.x: Typef .T[T ::::J T[V'Varob: Typef.T[V'Varob: TypeP.T[DT, 

with Var 0 b a countable set of object-variables. An object-term is of a certain type only 
under assumption of specific types (functional or predicative) forthefree variables that 
occur in that term. That the object term t is of type A if x; is of type A; for 1 ~ i ~ n, 
is denoted by the judgement 

X1 : A1, ... , Xj : A;; Ó.t IQ] • • • IQ] Xj : Aj, ... , Xn : Ani 1-- t : A. 

Here x1, ... , Xn are different object variables and A1, ... An are types. As befare we 
cal! such a sequence of statements and separators a generalized object context, and we 
let F, F', . .. range over the set of generalized object contexts. These contexts are also 
represented as rl IQJ • •• IQJ r n, where rl, ... , r n range over the set of object contexts 
(sequences of declarations of the form x; : A;, uninterrupted by separators) . The rules 
for deriving judgements a.re the following. 

(var) ij x : A in r n 
ftiQJ . . . IQJ fn 1-- x:A 

(>. abs) F 
F,x:A 1-- t:B 
1-- >.x : A. t : A -+ B ij A a functional or predieale type 

( )FI--q:A-+B Fl--t:A 
app F 1-- qt: B 

( ::::J ) F 1-- <p : Prop F 1-- '1/J : Prop 
F I- <p ::::J '1/J : Prop 

(w) F, x : A 1-- <p : Prop 
v ij A a functional or predieale type 

F 1-- (V'x : A.<p) : Prop 

(D) F 1-- <p : Prop 
F 1-- D<p: Prop 

F 1-- <p: A 
(transfer) ij A a fun ctional or predieale type 

FIQJé 1-- <p : A 
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Note that compared to ADPROP2 we have additional rules (>..abs, (app) ) for the for
mation of fundions and predicates by means of abstraction and application. As before the 
(transfer)-rule allows the use of any noo-proof term derivable on a context G in arbitrary 
(deep) subordinatecontextsof G. 

3 The set of proof-terms is a subset of the set of pseudoproojs, Pr, generated by the 
following abstract syntax. 

Pr ::= VarPriPrPriPrTI-\x: Type.Prl-\x : T.PrlkPr i4Pr i5PrlhPrlkPr ldPr ltPr IC, 

where VarPr is thesetof proof-variables (C, the set of constants) . 

That the proof term M is of type A if Pi is of type 'Pi for 1 .S i .S /, is denoted by 

where the ft , . . . , r n are as in 2, PI. . . . PI are different proof-variables and 

r t IQJ . . . IQJ r n f- 'Pi : Prop jor k .S j .S i, 

We call such a sequence of statements and separators a generalized context and let 
G, G', ... range over thesetof generalized contexts. A proof-context is an uninterrupted 
sequence of declarations with different pro of variables as subject (Pt : 'PI , . .. , Ph : 'Ph)· 
By letting 6.1, Llz, . . . range over the set of proof contexts, generalized contexts can be 
represented as being of the form r 1; Llt IQJ . . . IQJ r n; t. n. 

The rules for deriving judgements are the following. 

( ) G, p : 'P f- M: 'Ijl 
::J intro 

G f- (.>-p : rp.M) : rp ::J 'Ijl 

( l)G f- M: rp::J'I/J G f- N : rp 
:J e zm G f- MN : 'Ijl 

( ) ft; 6.1 IQJ ... IQJ r n, x :A; Lln f- M : rp 
V intro ij x rf. FV(Lln) 

ft; Llt IQJ ... IQJ f ni .0-n f- (-\x: A.M) : V x : A.rp 

(Velim) ft;LltiQJ ··· IQJfn;Lln f- M: (Vx: A.rp ) ft[QJ ... IQJfn f- t : A 
f t; Llt IQJ . .. IQJ f ni Lln f- Mt : <p [t/x] 

( ) ft ; Llt iQJ ... IQJ fn ; Lln f- M : rp ft iQJ . . . IQJ f n f- 'ljJ : Prop 
conv 

ft; 6.1 IQJ • .. IQJ f ni Lln f- M : 1/J 

(K . ) G f- M : D t.p ( : Prop) 
2mport , 

G IQJ E; é f- kM : rp 

( . ) G f- M : D<p (: Prop) 
4 2mport _ 

G IQJ é j E f- 4M : D<p 

(5 . ) G f- M : _,o 'P (:Prop ) 
tmport • 

G IQJ é i é f- 5M : -,orp 
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G 1- M : rp (: Prop) 
( B import) ------:--'--..:....!...

G IQI e; e 1- bM : -,0-,rp 

G IQi e;e: 1- M: rp (: Prop) 
( K export) - - '---- -:::---'---'---"-'-

G 1- kM: Orp 

GIQie:;e 1- M:rp(:Prop) 
(D export) ------"------'--'--~ 

G 1- dM : _,o_,rp 

GIQie;e 1- M:rp(:Prop) 
( T export) -----'----'--;;-:-----'-'------':....:.. 

G 1- tM: rp 

(Doubleneg) e;e 1- c : (Va: Prop.((a :::> .l) :::> .l) :::>a) 

( Tr f ) G 1- c: (Va: Prop .((a :::> .i):::> .i):::> a) 
ans er,, G IQI e· e 1- c :(Va: Prop.((a :::> .l) :::> .l) :::>a) 

Witb respect to the meta.-theoretica.l properties of AOPRED2 tha.t are needed in proving 
the soundness of the interpreta.tion, the only difference with AOPROP2 is tba.t we have to 
take conversion into account when sta.ting Stripping (like in the Stripping Lemma. for the 
Modal Logic Cube): let G 1- M : rp, where G = ft; .ó.t IQI r ni .ó.n (and F = f 1 IQI . . . IQif n) 

be derivable in AOPRED2. 

ft IQI ... IQI r n 1- x : A (x an object variable) => 
A= B with x: BE ri forsome i, 1 ~i~ n 

F 1- x: Prop and x= rp :::> 'ifJ => 
F 1- rp : Prop and F 1- 'ifJ : Prop 

f1 IQI ... IQI ï n 1- Vx : Prop.'ifJ : Prop => 
ï 1 IQI . . . IQI r n, x : Prop 1- 'ifJ : Prop 

F 1- Orp : Prop => F 1- rp : Prop 

Ït; .Ó.t IQI . . . IQI Ï ni .Ó.n 1- p: rp (pa proof variable) => 'ifJ = rp with p: rp E .Ó.n 

ït; .6.1 !QJ ... IQI ï ni b.n 1- >.x : A.M: rp => 
Ïti .6.1 IQI ... IQI ï "'x : A; b.n 1- M: 'ifJ 
with rp = Vx : A."P for some 'ifJ 

ft; .ó.11Q1 . . . IQI ï ni .ó.n 1- >.p: x.M : rp (x a proposition) => 
Ït;b.tiQI . .. IQIÏn,P : x;b.n 1- M: 'ifJ with rp = X:::> 'ifJ forsome 'ifJ 

G 1- MN : rp (N a prooi) => G 1- M: 'ifJ :::>x and G 1- N: 'ifJ 
with <p = x for some "P, x 

Ï ti.Ó.tiQI ... !QJÏni.Ó.n 1- Mt : '{J (t an object) => 
Ït; .6.1 IQI .. . IQJ r ni .ó.n 1- M : Vx: A."P, and Ït IQJ •• . IQJ ï n 1- t: A 
with rp = 'ifJ [t /x], for some "P, rp 

G 1- kM : rp (M a prooi) => G = G' IQI r; .ó. and G' f- M : O"P where 'ifJ = rp 

G 1- 4M: <p (M a prooi) => G = G' IQJ ï; .ó. and G' 1- M : o"p where o"p = tp 
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G r- SM : <p (M a prooi) ~ G = G' IQJ r; b.. and G' r- M : -,O'Ij; where -,O'Ij; = <p 

G r- bM : <p (M a prooi) ~ G = G' IQJ f; b.. and G' f- M : 'Ij; where -.0-.'lj; = <p 

G r- kM : <p (M a prooi) ~ GIQJe:; e: f- M : 'Ij; where 01/J = <p 

G f- dM: <p (M a prooi) ~ GIQJ e:;e: r- M : 'Ij; where -.0-,'lj; = <p 

G r- tM : <p (M a prooi) ~ G IQJ e; e f- M : 'Ij; where 'Ij; = <p 

G f- c: <p ~ <p =Va: Prop.((a :::> l.) :::> l.) :::>a 

5.1.3. Mapping DPRED2 to ADPRED2 

The OK natura! deduction proofs of DPRED2 (a proof B of cp in DPRED2 is an OK proof 
if all reiterated formulas in B are assumptions) are mapped to terms of ADPRED2 using a 
slightly modified version of the mapping '!' defined in chapter 2. 

To an OK-deduction of 'Pl, ... , 'Pn f- 'Ij; in DPRED2 we are going to associate an object
context f and a proof-term M such that f ; PI : 'Pb . .. , Pn : 'Pn f- M : 'Ij; . 

In order to make M a faithful representation of the deduction in DPRED2, f should 
assign types to all the free term-variables in the deduction that are not 'bound by a V' at any 
later stage. 

5.1.2. DEFINITION. Term-contexts 
For every term t of the language of OP RED2 we define a context ft such that r t f- t : D 
(in ADPRED2) if t E D (in DPRED2), as fo!lows 

t = XD ~ ft :=xD: D, 

t =>.x E D.M => ft:= fM/(x: D), 

t::MN ~ ft:= fM urN, 

t ::cp :::>'lj; ~ ft :=f'~'u f"," 

t =Vx E D.cp => ft:= f 'I'/( x: D), 

t =Dep => ft := f'l'. 

This definition is correct in the sense that every term t is derivable on 'its' context ft. 

5.1.3. DEFINITION. '!', the mapping 
The OK-deductions in DPRED2 are mapped toa term context (r) , object/proof-context 

(b..) and a term (M) in ADPRED2 by the following inductively defined mapping '!' (assuming 
that in an OK-deduction all bound variables are chosen to be different in such a way that 
they differ from the free ones). '! ' is the same as for DPROP2, except for the cases that 
involve object variables which can now be variables over an arbitrary domain D instead of 
Prop only: 

var-assumption 
x E Di 

=> 
x; : D e r x; : D 
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V-intro 
x E Di L: 

1/J 

Vx E D.1/> 
=:} 

ft;b.t IQJ • .• [Q]fn;b.n r L:' :1/> 
f1 IQJ ••• IQl f n/(x;: Prop); b.n r Àx;: D .L:! : Vx : D.1/J 

V-elim 

tE D 
L: 

I 

I 
I 

Vx E D.1jJ I 
1/J[tjx] 

=:} 

ft;b. tiQJ ~ .. IQJfn; b.n r L:':Vx:D.t, ft r t:D 
rl u ft ; b.t IQ] • • • IQI r n; b." r L:·t: 1/J[tjx] 

And there is one new clause, since we now have conversion in the logîc: 

conversJOn 
L: 
I 

I 
1/J l(cp ={J V>) 
cp 

=:} 

a r- L:! : 1/J 
a r- L:' : cp 

5.1.4. Mapping ADPRED2 to DPRED2 

In the definition of the mapping '?' from lambda-terms back to natura! deduction proofs we 
have to make some more changes, since in each case the last applied rule in the type derivation 
could have been conversion, which leaves the term unchanged but changes the type to a type 
that is ,8-equal. Therefore we let '?' map the terms of ADPRED2 to (partial) proof figures 
where the final rule is always an application of conversion, which can be vacuous. 
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As before, we start mapping a term after the statements in the rightmost proof context 
(.C:.n) have been turned into hypotheses of the pre-derivation. 

5.1.4. DEFINITION. Proof context mapping 

G'IQJr; p1:'1/Jl, .. . , p;:'l/J; I- M: <p => 

5.1.5. DEFINITION. '?', the mapping 

'l/J1 

M? (on G' lQJ r ;t:) 

For any proof-terms M with G I- M : <.p we define by induction on the structure of 
M a pre-derivation M? of <.p with respect to G as follows (where, for arbitrary n , G _ 
r1 ; .6.1 lQJ .• • lQJ r n; .C:.n, G' = r1 ; .6.1 lQJ • •. lQJ r n-1 ; .C:.n-1> and F := r1 lQJ • • • lQJ r n)· 

proof var 
G I- Pi: <.p 

=> 
'1/Ji 
<.p 

term 
Fl- t :D 

=> 
t E D 

object var 
F l-x;: D 

=> 
x E Di 

axiom constant 
G I- c: Vx : D.((x :::J 1_) :::J 1_) :::>x 

=> 
Vx : Prop.(( x :::> 1_) :::J 1_) :::J x 

proof-abstrac tion 
G I- >.p; : '1/J .N : <.p 

=> 

object-abstraction 
G I- >.x; : D .N : <.p 

=> 
'1/Ji x(E D)i 

'1/J 

Vx E D'l/J 
<p 
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proof application 
G I- MN: <p 

x 

N 7 (on G) 

I 
I 
I 
M 7 (on G) 

K-import 
G IQJ t:; t: I- kM : 1/; 

=} 
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object application 
G I- Nt: <p 

tE D 

Vx E D.'lj; 

1/;[tjx] 
<p 

((on F) 

I 
N 7 (on G) 

4-import 
GIQJt:;t: I- 4M:1/; 

=} 

M? (on G) M? (on G) 

O<p 

0 

O <p 

0 
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5-import 
G IQl t:;t: f-- 5M: "Ij; 

=} 

M? (on G) 

K-export 
G f-- kM:"Ij; 

=} 

0 

0 

M? (on G IQ! t:; t:) 

T-export 
G f-- tM: "Ij; 

=} 

M? (onGI!JJt:;t:) 

B-import 
G IQJt:;t: f-- bM: "Ij; 

=} 

0 

D-export 
G f-- dM:"Ij; 

=} 

DJ 

M? (on G) 
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Given this more general version of '? ' it should be possible to prove the soundness of 
mapping ADPRED2-terms to OK-proofs in DPRED2 in the same way as before. 

Compared to the propositional logic, there are no new ways in which the composition 
of'!' and '?' can transform natura! deduction proofs. The same techniques of cleaning etc. 
that were used for the second order propositional proofs in chapter 2 can b e applied to the 
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rnadal predicate logica! deductions. Hence it should be possible to prove a 'back and forth'
equivalence modulo '=doubles' for the class of A-OK deductions of DPRED2 defined as before: 
a natura! deduction proof 2: of tp is A-OK iff: 

~is OK 

2: is clean 

L: has ordered premises for '11-elim and :J-elim 

2: has no multiple experts 

5.1.5. From ADPRED2 to >.DPRED2 and back 

The last step in mapping rnadal natura! deduction to rnadal pure type systems is to show that 
the system ADPRED2 is equivalent to the MPTS >.DPRED2. In [Geuvers 1993] the proof of 
equivalence of the intermediate and the 'target' type system of the interpretation binges on 
the following basic property of PTSs in the Logic Cube. 

5.1.6. PROPOSITION. In >.PREDw we have the following. 
Ijf r M: A, then I'v , fr,I'p r M: A where 

• fv,fr,I'p is a sound permulation of I' (it is alegal context that is a permulation of 
r), 

• r D only contains declarations of the farm x : Set ' 

• r T only contains declarations of the farm x : A with r D r A : Set I TypeP' 

• r p only contains ( ordered) declarations of the farm x : 'P with r DI r T r 'P : Prop' 

• ijA::SetjTypeP, thenfv r M:A, 

• iff r A: SetjTypeP, then I'v,fr r M : A. 

In the generalized contextsof the MPTS >.DPRED2 we have these properties for each of 
the constituting contexts f 1 , . .. r n of a generalized context G: 

5.1.7. PROPOSITION. In >.DPRED2 we have the following . 
IJ G r- M: A, where G = r1 IQ1 .. . IQ1 fn, then rb , r~ . r~ IQl ... IQI q, ,rr,I'? r- M: A 
where 

• r~. rr. r~ is a permulation ojfi fo r all i : 1 ::; i ::; n and rb. r~. r~ IQ] ... IQ] fl), rr. f], 
is legal, 

• fb only containo~ declarations of the form x : Set , 

• I'r only contains declarations of the farm x : A with 
fb,f~,f~ IQl ... IQJ fb r A : Set j TypeP f or all i: 1 ::; i::; n, 

• I'~ anly contains ( ardered) declaratians of the farm x : tp with 
rb , r~,f~IQI ... 1Qif0 ,r~ r- tp : Prop , 
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• ij A=: TypeP, then fb,r~,f~ fQJ . . . fQJ fb I- M: A, 

• ifflfQJ ... l&:!fn I- A :SetjTypeP, thenfb,r~,f~[Q) ... [Q)fl>,fî· I- M:A. 

Proving equivalence now amounts to showing that we can move back and forth between 
the 'three part'-contexts (fb,f~,fj,) of >..OPRED2 and the ' two part'-contexts (f; ,ll. ;) of 
ADPRED2 while preserving derivability. The proof is analogous to that of the equivalence 
of DPROP2 and >..DPROP2 given in chapter 3, mapping both the fb- and fj.-parts of 
>..DPRED2-contexts to the f;-parts of the generalized contextsin ADPRED2. 

5 .2. Modal choices 

In the previous sections we have outlined a type theoretica) formalism in which modal pred
icate logica! reasoning can be interpreted. Since this system was obtained by combining the 
standard PTS-interpretation of predicate logic with Fitch-style modal deduction, the question 
arises what kind of modal predicate logic we have ended up with. To answer this question 
we will now look at two significant parameters of MPL-systems: the interaction between 
quantification and modality, and the behaviour of identity. 

5.2.1. Quantifier /Box interaction 

All possible interactions between the modal operator and the quantifiers are expressed in the 
following formulas (where cp(x) means that x may appear in cp): 

1 Vx E D.Dcp(x) :> DVx E D.cp(x) 

2 DVx E D.cp(x) :> Vx E D.D<p(x) 

3 3x E D.Dcp(x) :> D3x E D.cp(x) 

4 03x E D.cp(x) :> 3x E D.Dcp(x) 

Formula 1 is known as the Barcan f ormula. lts name derives from Ruth C. Barcan who 
called attention to it, and it has given rise to some philosophical controversy. Under the 
standard interpretation the Barcan formula means that if everything necessarily possesses a 
certain property cp, then it is necessarily the case that everything possesses that property. But 
one could argue that even if everything that exists is necessarily <p, this does not preclude the 
possibility that there might be ( or might have been) some things which are not <p at all - and 
in that case it would not be a necessary truth that everything is <p . Not surprisingly Formula 
2, the converse of formula 1, is also known as the 'Converse Barcan formula' . 

Of the principles invalving 'D ' and ' 3', formula 4 is the contraversial one: the fact that 
there necessarily exists a person who will be prime minister of the country after the next 
elections (D:lx E D.<p(x)), does not imply that there exists a person who necessarily will be 
prime minister after the next elections (3x E D. D<p( x)). Th is principle can only be made 
plausible when dealing with 'intensional objects' such as 'the top card in a pack of cards ' used 
in the description of the rules of a card game, where it is conceived as a single object (even 
though the top card may be e. g. jack of hearts at one moment in the card game and queen 
of diamonds the next) . 
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In this section we investigate the interaction of the rnadal operator and the quantifiers in 
DPRED2 and )..DPRED2 by means of the principles stated above, starting from the standard 
model theoretic account of the Barcan and Converse Barcan formula. 

From the point of view of model theory, the validity of the Barcan Formula is conneeled 
with the question what is to count as a 'possible world'. Given the picture of a 'world' as a 
set of objects with various properties and standing in various relations to one another, what 
states of affairs other than the actual one do we deern possible? We assume that in those 
worlds objects can have properties and relations different from those in the actual world. But 
what do we allow with respect to the 'inventory'? 

a Worlds containing the same objects as the actual world 

b Worlds in which new objects 'appear' 

c Worlds from which objects may have 'disappeared' 

d Worlds in which objects may have 'appeared' as wel! as 'disappeared' 

Each of these answers can be restated in terms of conditions on the relatiön between the 
domain (set of objects) of a world (D;) and the domains of its accessible worlds (Dj): 

a Vwj(w;Rwj => D; =Dj), 'constant domains' 

b \/wj(w;RWj => D; Ç Dj), 'growing domains' 

c \/wj(w;Rwj =>Dj Ç D;), 'shrinking domains ' 

d Vwj ( w; Rwj => D; ? Dj) 'unrelated domains' 

In the cases where domains vary, there is a choice to be made with respect to the valuation 
of atomie formulas ( cp) in a world ( wi) when the formula contains individuál-variables which 
get assigned to objects not present in the domain of that world: 

V(cp, w;) is undefined if the value assigned to any of the individual variables is not in 
D;. This undefinedness then 'percolates upwards' rendering valuations of more com
plex form<Jlas referring to 'disappeared individuals' undefined, as can be seen from the 
valuation clauses for 'V' and 0' : 

V For any wff cp, any individual variable, x, and any world, w; E W, V (Vx cpx, w;) = 1 
iff for every V', which assigns to x any memher of D; and is otherwise the same 
as V , V'(cpx, w;) = 1; and V(Vxcpx, w;) = 0 iff t here is some such V' for which 
V'(cpx, w;) = 0. Otherwise V(Vx cpx, w;) undefined. 

0 For any wff cp, and any w; E W, V(Ocp, w;) = 1 iff for every Wj such that w;Rwj, 
V ( cp, Wj) = 1; and V (Dep) = 0 iff for every such Wj, V ( cp, Wj ) is defined and 
for some such Wj, V ( cp, Wj) = 0 (Thus V (Dep, w;) is undefined iff for some such Wj, 
V ( cp, Wj) is undefined) 

11 V(cp, w;) = 1 or 0 according as the value-wor!d pair (value assigned by V to the 
variable(s) in cp, w;) is in the extension ( V(cp)) of cp or nat. In this way every formula 
has a truth value everywhere. 'V' and ' 0' are evaluated applying the clauses as under i 
without the definedness-proviso. 
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Not all combinations of the answers a, b, c, d and i, ii are well-charted systems of modal 
logic. Traditionally one would choose a valuation as under i and impose 'growing domains' 
(D; Ç Dj) on the semantics, and hencelook only at systems i a and ib . Under valuation 
i, the Barcan formula holds iff the domains are shrinking and Converse Barcan holds iff the 
domains are growing. Hence we have the following possibilities for the i-systems: 

i a Barcan and Converse Barcan 

i b Converse Barcan 

i c Barcan 

i d -

The only well-known formalism using valuation option ii, is the so-called Kripke's semantics 
for MPL ([Kripke 19631). It is a system of type ii d, where the relation between the domains is 
unknown, and both Barcan and Converse Bareau are invalid regardless of the modal strength 
of the system. 

The many sorted modal predicate logic DPRED2 and the MPTS )..DPRED2 offer even 
stranger possibilities: using n-ary predicates 'multiple Barcan formulas' could be investigated: 
for instanee Vx E A.Vy E B.(Dtp(x, y) :::) D(Vx E A.Vy E B .tp(x, y)) in two sorts A and B, 
where the domains of sort A could be shrinking while those of sort B are growing. However, 
we wil! not look into these exotic formulas since it is difficult enough to give a Fitch-style 
deduction account of the 'one-sorted' Barcan and Converse Bareau formulas. 

Converse Barcan 

In DPRED2, the Converse Bareau formula is a theorem. Taking A to be the (basic) domain 
of the logic, it can be proved as follows: 

1. DV'x E A.tp(x) 

2. yEA 

3. DV'x E A .tp(x) ( reiteratien 1) 

4. IV• E A.•(•) (K-import 3) 
5. yEA (term) 
6. tp(y) (V-elim 4,5) 

7. Dtp(y) (K -export 6) 

8. Vy E A.Dtp(y) (V-intro 2-7) 

9. D(Vx E A.tp(x)):::) (Vy E A.Dtp(y)) (:)-intro 1-8) 

The crucial step in this derivation is the use of the term rule in line 6. Since the term rule 
allows us to write any term t E D anywhere in a proof, we can eliminate the quantified 
formula V x E A.tp(x) in the modal subordinate pro of with the variabie y E A assumed in 
the main proof. This means that the term rule allows us to 'reiterate' term variables across 
a modal interval, thus circumventing the restrietion that reiteratien may only take place 
between two intervals of equal modal depth. In Fitch 's original system of modal predicate 
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logica! deduction [Fitch 1952] the rules for universa! quantification are somewhat different, 
but Converse Barcan is also a theorem and it is based on a similar implicit ' free reiteration' 
of variables. 

The derivation of Converse Barcan in >..OPRED2 is completely analogous to the natu
ral deduction proof given above, but the MPTS deals with the 'reiteration' of the variabie 
assumption in a more explicit way: 

1. r, z: 0(\tx: A.<p r z: 0(\tx: A.<p(x)) 
2. r, z: 0(\tx: A.<p(x)), y : A f- z: 0(\tx: A .<p(x)) 
3. f, z : 0(\tx: A.<p(x)),y : A r y: A 

4. r, z : 0(\tx: A.<p(x)), y : A lQJ E: r kz: (\tx : A.<p(x)) (K-import 2) 
5. r,z : 0(\tx: A.<p(x)),y: A lQJE: r y: A (tuansfer3 3) 
6. r, z: 0(\tx: A.1p(x)), y: A lQJ E: f- (kz)y: 'P(Y) 

7. r, z: 0(\tx: A.1p(x)), y: A r k((kz)y): 01p(y) (K-export 7) 

8. r, z: 0(\tx: A.<p(x)) f- >..y : A.(k((kz)y)): (\ty: A.01p(y)) 

9. r f- >..z: 0(\tx: A.1p(x)) .>..y: A.(k((kz)y)): (0\tx: A.(<px)) :J \ty: A.(O'P(Y)) 

In this proof the use of the assumption y : A (Iine 3) in the subordinate context (Iine 5) 
is motivated by an application of the transjer3 rule. Intuitively using the transjer3-rule to 
reiterate a set-variabie in a rnadal subcontext corresponds to having some sart of domain 
inclusion requirement: any variabie ranging over a set(-type) in the main context will he a 
variabie ranging over that set in the subordinate context. 

The transfer3-ru!e is not only sufficient for the derivation of Converse Barcan, it also 
necessary. This can heseen from the following attempt to derive the formula without transjer3 . 
It starts out (Iine 1-4) as above, but we can no Jonger eliminate the universa! quantifier in 
kz: (\tx: A.(Px)) with y: A from Iine 3. There is no way to derive y: A in the subordinate 
context from the fact that y : A is derivable in the main context. 

1. f,z : 0(\tx: A.(Px)) f- z: 0(\tx: A.(Px)) 
2. f ,z: 0(\tx: A.(Px)) , y: A f- z: 0(\tx : A.(Px)) 
3. r,z: 0(\tx: A.(Px)) , y: A r y: A 

4. r, z: 0 (\tx: A.(Px)), y: A lQJ E: r kz: (\tx: A.(Px)) 
5. r,z: 0(\tx: A.(Px)),y: A lQJE: r A: Set 

6. r, z: 0(\tx: A.(Px)), y: A lQJ u: A r kz : (\tx: A.(Px)) 
7. r,z : O(\tx:A.(Px)),y : AlQJu : A r u : A 

8. r, z : 0(\tx: A.(Px)), y: A lQJ u : A r (k z )u : Pu 

(f f- A : Set) 
(weakening) 

(K-import 2) 
( transfer2) 

(weakening 4,5) 
(start 5) 

The quantifier can only he eliminated by means of a variabie of type A created in the sub
ordinate context (Iine (5)-(7)) . But the creation of a variabie u : A automatically leads to 
the creation of the assumption u : A in the subordinate context. Hence this procedure wil! 
never lead to a condusion of the subordinate derivation with a proofterm of the form OPu 
(let alone OPy), since the assumption u : A would have to he discharged from the subordi
nate context befare the K -export rule ( or any other export rule) can he applied. Without 
the transjer3-rule, variables are 'confined' to that part of a generalized context in which they 
are introduced (in this case r). The interaction between the type theoretica! treatment of 
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variables and the modal deduction requirements of the export rule blocks the derivation of 
Converse Barcan. 

Since all meta theoretica! properties of MPTSs proved in the chapter 3 can he shown to 
hold for MPTS's without transjer3, we have a choice between >..DPRED2 without transjer3 
where Converse Barcan is not a theorem, and >..DPRED2 with transjer3 where Converse 
Barcan is a theorem. We will discuss this choice along with other, forthcoming, 'modal 
choices' at the end of this chapter. 

Barcao 

The Barcan formula is not derivable in DPRED2 and in Fitch's system ([Fitch 19521). The 
reasou for this is somewhat obscure. Fitch contends bimself with the following remark: 'It 
is not possible to derive D(x)<px from (x)D<p unless a special rule to that effect is assumed. 
Such a rule would not violate the consistency of the system, and it would seem to be a 
valid principle'. Similarly, Fitting gives matching natura! deduction- and tableau systems for 
various modallogics throughout [Fitting 1983], but without further explanation he resorts to 
tableau systems only for modal predicate logies with varying domains. 

The discussion of Converse Barcan may have created the impression that there is an 
analogy between 'free iteration' in Fitch-style deduction and domain inclusion in model theory. 
However, things are not that simple. The Barcan formula does not become derivable when 
we allow variabie assumptions of a modal subordinate proof to be used in the main proof: 

1. Vx E A.D<p(x) 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

yEA 
D<p(y) 

!.~,) 
DVy E A.<p(y) 

(Vx E A.D<p(x)) :J (DVy E A.<p(y)) 

('backward free reiteration' 4) 
(V-elim 1,2) 

( K -import 3) 

(V-intro 4-5) 

(K -export 6) 

(:J-intro 1-7) 

The free reiteration has to work 'backwards' (from line 4 to line 2) in the proof ligure to prove 
Barcan (note that the occurrence of y E A in line 2 cannot be an application of term, since 
in that case we would have had to choose a variabie different from y for the assumption in 
line 4). 

Apparently the Barcan Formula is not derivable, even ifwe allow free reiteration of variabie 
assumptions. A reason for this is that there is a fundamental asymmetry between subordinate 
proofs that introduce quantifiers and modal subordinate proofs. In order to bring out this 
asymmetry, we use the V-quantor in the original formulation of Fitch ([Fitch 1952]): 
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\tx( ... x ... ) 
( ... a . . . ) (aisaterm) 

(u q elim) 
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\tx ( .. . x . . . ) 

(u q int) 

The elimination rule (u q elim) is the same as before, the occurrences of x in the expression 
( . . . x ... ) are replaced by occurrences of the term a. The difference is in the introduetion rule: 
\tx( . .. x ... ) is a consequence of a categorical subordinate pro of (all assumptions discharged) 
that is general with respect to x and has ( . .. x ... ) as an item. Like in the case of the modal 
operator the introduetion of a universa! quantifier requires a categorical subordinate proof 
with a restricted rule of reiteration: general with respect to x means that only formulas from 
the main proof which do not contain free occurrences of x may be repeated in an x-genera! 
subordinate proof. 

To understand the difference between Fitch-style derivations of Converse Barcan and 
Barcan we look at them as if they were derivations in predicate logic. For this purpose the 0 
is interpreted as a universa) quantification over thesetof (accessible) worlds ( W), and hence 
modal subordinate proofs are treated as 'w-general' proofs. 

\tw E W .\tx E A.rp(x, w) 

x 
\tw E W.\tx E A .rp(x, w) 

T \tw E W.\tx E A.rp(x , w) 
\tx E A.rp(x , w) 
rp(x, w) 

\tw E W.rp(x, w) 

\tx E A.\tw E W .rp(x, w) 

Converse Barcan 

\tx E A .\tw E W.rp(x,w) 

w 
\tx E A.\tw E W.rp(x, w) 

I \tx E A.\tw E W.rp(x, w) 
\tw E W .rp(x, w) 

rp(x ,w) 

\tx E A .rp(x,w) 

\tw E W.\tx E A.rp(x, w) 

Barcan 

In this format proving Barcan and Converse Barcan boils down to 'exchanging \7'-quantifiers' , 
yet the left proof is allowed and the right proof is not. Both the w-general and x-genera! 
proof are categorical, the difference lies in the restrietion on the iteration of formulas into 
these proofs: 

x-genera! proofs: a formula ('I/;) may be reiterated inside an x-genera! proof if x does 
not occur free in it (x (/. FV('if;)) . 

w-general proofs: a formula '1/J may be reiterated inside a w-general proof if it is of 
the form \tw E W'if;'. 

The first restrietion concerns the occurrence of free variables in a formula, the second concerns 
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the general farm of the formula. As a consequence closed formulas with \Iw E W as their 
main connective can always be reiterated in 'quantifier-introducing' subordinate proofs, but 
the reiteration of formulas with V x E A as main connective in modal subordinate proofs is not 
allowed. This asymmetry blocks proofs of Barcan, but does not affect proofs of its converse: 
the proof of Converse Barcan can go through since we are allowed to reiterate a formula of 
the general form \Iw E W.rp inside an x-genera! proof (line 2) as long as x does not occur 
free in it (quod non). The proof of Bareau does not go through since we are not allowed to 
reiterate a formula of the farm Vx E A.rp in a w-general proof (line 2). 

This excursion to a predicate logic does not completely explain why it is impossible to give 
a Fitch-style deduction rule that makes Barcan a theorem. Judging by the derivations above, 
we could obtain both Barcan and Converse Barcan by changing the reiteration condition on 
w-general proofs to: 

w-general proofs: a formula may be reiterated inside a w-general proof if w does not 
occur free in it. 

However, it is completely unclear what Fitch-style import rule corresponds to this condition. 

Even though free iteration of variabie assumptions does not make the Barcan formula 
derivable in DPRED2, we may fare better in ÀDPRED2 since it seerns to offer ways to 
circumvent the strict nesting constraints of Fitch-style natura! deduction. Therefore we add 
a type theoretica! rule for 'backward free reiteration': 

G fQJ r I- y : A : Set 
varuse ---=--,----=----:--

GI-y : A 

In this way the set variables from the subordinate context can he used (but not abstracted 
over) in the main context. This rule looks a lot like the derivable rule rejsnart3 (section 3.3), 

f G fQJ e I- y : A : Set 
resnar~ ----=----:~--,------

GI-y:A 

but the vita! difference is that rejsnart3 demands that the subordinate context is empty. This 
blocks the possibility of brioging set-variables assumed in the subordinate context back to 
the main context. 

With the varuse rule the Barcan formula can be derived similarly to the way it would he 
proved using indexed tableaux for MPL with shrinking domains1 : 

Start a subordinate context and 'create' the variabie y (line 1-3). 

2 'Take a break' from that subordinate proof, go back to the main context and use the y 
from the subordinate context (by the varuse-ru!e) to eliminate the quantifier (line 4-6). 

3 Return to the subcontext with the modal formula just derived on the main context 
(7-9). 

'Cf. [Fitting 1983]. 
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r,z : Vx:A.D(cpx) I- A:Set 
r, z: Vx: A.D(cpx) IQl e I- A: Set 
r, z: Vx: A.D(cpx) IQl y : A I- y: A 
f,z: Vx: A.D(cpx) I- y: A 
f,z: Vx: A.D(cpx) f- z: Vx: A.D(cpx) 
f, z: Vx: A.D(cpx) f- zy: D(cpy) 

r, z: Vx: A.D(cpx) IQl e I- k(zy): cpy 
f,z :Vx :A.D(cpx)IQly :A f- y:A 

f, z: Vx: A.D(cpx) IQl y : A f- k(zy): cpy 

f,z: Vx: A.D(cpx) IQl f- )..y: A.(k(zy)): Vy : A .cpy 

(r I- A : Set) 
( transferr 1) 

(start 2) 

(varuse 3) 

(K -import 6) 

r, z: Vx: A.D(cpx) f- k(>,y: A.(k(zy))): DVy: A.cpy (K-export 10) 

r f- )..z: Vx: A.D(cpx).(k(>.y: A.(k(zy)))): (Vx : A.D(cpx)) ::> D (Vy: A.cpy) 

Obviously 'taking a break' from a modal subordinate proof is impossible in natura! de
duction proofs. The fact that '?' maps the proof term for Barcan to the 'backwards' natura! 
deduction proof above confirms that the varuse-rule takesus out of the Fitch-style framework . 
That adding varuse also takes us outside of the 'MPTS-framework' does not become apparent 
until one tries to prove that the meta theoretica! properties of )..DPRED2 are preserved under 
the addition. 

Already the basic lemmas from the section preliminaries of chapter 3 do not hold. The 
Free Variabie Lemma (ii) says that for legal contexts G, if G f- A: B, then FV(A), FV(B) Ç 

FV( G). In line 4 y : A is derivable on context r, but FV(y) ~ FV(r), since y was introduced 
as a fresh variabie by the application of Start in line 3 FV(y) ~ FV(r IQl e). Hence adding 
varuse is a too expensive way to make the Bareau Formula a theorem of )..OPRED2: we lose 
the Free Variabie Lemma and thereby most of the meta theoretica! properties proven earlier 
for the Modal Logic Cube. 

Another obvious possibility is to add a rule that mirrors transjer3 in another way: 

G, x : A IQl e f- B : C G f- A : Set 
varmove G IQ] x : A I- B : C 

This rule allows that the discharge of a variabie created in the main context takes place in 
the subordinate context, as opposed to transjer3 that allows a variabie created in the main 
context to be used in a subordinate context. 

For the cases in which B is not a proof, varmove is already a derived rule of )..OPRED2 
since it can be viewed as a combination of Block insertion and Block deletion (cf. chapter 3): 

1. 
2. 

3. 

G, x: A IQJ e I- B: C 
G,x:A f-- B:C 
GIQJx:Af--B:C 

(Biock deletion) 
(Block insertion) 

However, for deriving Barcan we typically need B to be a proof and so varmove does add 
sarnething new. Using varmove, Bareau can be derived as follows: 
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1. r, z: (Vx: A.(D(Px))) f- z: Vx : A.(D(Px)) (r f- A: Set) 
2. r,z: (Vx: A.(D(Px))),y: A f- y: A 

3. r,z:(Vx:A.(D(Px))),y:A f- zy : D(Py) 

4. r, z: (Vx : A.(D(Px))), y: A IQJ E f- k(zy): Py (K-import 3) 

5. r,z: (Vx: A.(D(Px))) IQl y: A f- k(zy): Py (varmove 4) 

6. r, z : (Vx : A.(D(Px))) IQJ E f- )...y : A.(k(zy)) : (Vy: A.Py) 

7. r,z: (Vx: A.(D(Px))) f- k()...y: A.(k(zy))): D(Vy: A.Py) (K-export 6) 

8. r f- )...z: (Vx: A.(D(Px))).(k()...y: A.(k(zy)))): (Vx: A.D(Px)) :J D(Vy: A.Py) 

Again it is immediately clear that the extra rule takes us outside the Fitch-style frame
werk, '?' maps the proefterm for Barcan to the 'backward' natura! deduction proof from the 
beginning of this section. 

Unfortunately adding the varmove-ruie also leads to probieros in proving the basic lemma 
of the meta theory of MPTSs. In the proof of the Start-lemma (and elsewhere), the induction 
on the lenght of the derivation for the export cases uses the fact that if G IQ] r f- A : B, there 
must have been a derivable statement C : D such that G f- C : D, since all derivations 
start from the empty context (t:) and at some point in the derivation the fina! IQJ must have 
been introduced by a rule leading from G to G IQJ E for the first time. If we add varmove, this 
inference need no Jonger hold. Looking at lines 5 (or 6) above, it should then be possible to 
move upwards in the derivation to find the place where r, z : (Vx: A.(D(Px))) is turned into 
r, z: ('v'x: A.(D(Px))) IQJ E for the first time, but there is no such line in the entire derivation! 

Although this discussion of the Barcan formula is by no means conclusive, there seems to 
be no intuitive rule which makes Barcan a theorem, neither in DPRED2 nor in )... DPRED2. 
Apparently the analogy between Fitch-style deduction and Barendregt-style type theoretica! 
derivation is strong enough to make )...DPRED2 inherit the impossibility of deriving Barcan 
from DPRED2. Unfortunately the reasons for this impossibility are still not completely 
understood. Hence, if the Barcan formula is to be a theorem of )...DPRED2, there is nothing 
we can do but fellow Fitch's advise and add it as a logica! axiom. 

Existential interaction 

With respect to the interaction between ' D' and '3', the situation is very similar to that for 
Barcan and Converse Barcan. The 'harmless' principle 3x E D. Dcp(x) :J D3x E D.cp(x) is 
a theerem of DPRED2 and of Fitch's original system ([Fitch 19521), whereas the disputed 
D3x E D.cp(x) :J 3x E D.Dcp(x ) is not derivable and can only be added as an axiom. 

Like for Converse Barcan, the derivation of ::lx E D.Dcp(x) :J D3x E D.cp(x) in DPRED2 
depends on 'free reiteration' of variabie assumptions. Due to the second order definition of 
the existential quantifier in DPRED2, we prove that 3x E D. Dcp(x) :J D:lx E D.cp(x ) is a 
theerem by giving a natura! deduction prooffor (Va E Prop.(Vx E A.Dcp :Ja) :Ja) :J D (V(J E 
Prop.(Vy E A.cp(y) :J (J) :J (J): 
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VetE Prop.(Vx E A.D<p ~et) ~et 

D{V(3 E Prop.(Vy E A.<p(y) ~ {3) ~ {3) E Prop {term) 

Vx E A.(D<p(x) ~ (D(Vf3 E Prop.(Vy E A.<p(y) ~ {3) ~ (3))) ~ 
(D(V(3 E Prop.(Vy E A.<p(y) ~ {3) ~ (3)) 

xEA 

(3 E Prop 

(Vy E A.<p(y) ~ (3) 

xEA 
<p(x) ~ (3 
<p(x) 
(3 

(Vy E A.<p(y) ~ {3) ~ {3 

V(3 E Prop .(Vy E A.<p(y) ~ (3) ~ (3 

D(V(3 E Prop.(Vy E A.<p(y) ~ (3) ~ (3 

(free reiteration 4) 

(K -import 5) 

D<p(x) ~ (D(V(3 E Prop.(Vy E A .<p(y) ~ {3) ~ {3)) 

Vx E A.(D<p(x) ~ (D(V(3 E Prop.(Vy E A.<p( y) ~ {3) ~ j1))) 
D(Vf3 E Prop.(Vy E A.<p(y) ~ {3) ~ {3) 

VetE Prop.(Vx E A.D<p :::>et)~ et ~ D(V(3 E Prop.(Vy E A.<p(y) ~ {3) ~ {3) 

The idea of the proof is to substitute the consequent of the desired condusion (line 2) for 
the et in the assumed antecedent Vet E Prop.(Vx E A.D<p ~ et) ~ et (line 1) and then derive 
Vx E A.(Dcp(x) :::> (D(V(3 E Prop.(Vy E A.<p(y) :::> (3) ~ (3))), the antecedent of the implication 
in line 3. The use of free reiteration (line 8) is crucial for proving :3x E D.D<p(x) ~ D:3x E 
D .cp(x), consequently it can only be derived in >.DPRED2 with transjer3. 

The formula D3x E D.<p(x) ~ 3x E D.D<p(x) is even less derivable in DPRED2 than 
Barcan, it cannot even be derived if 'backward free reiteration' is allowed. Hence we close the 
discussion with the remark t hat if desired it can be added to >.DPRED2 as a logica! axiom. 

5.2.2. Identity 

Predicate logicisoften augmented with a primitive dyadic predicate constant'=', representing 
identity between individuals: ' x = y' is to mean that x is the same individual as (identical 
with) y. That two individuals are different can be expressed by •(x = y), usually abbreviated 
as x f y. 

Although the identity predicate looks rather harmless, its properties in combination with 
the modal operator have given rise to considerable discussion. If individuals are interpreted 
as particular objectsin the domain (the same in every possible world) , the following formula 
becomes valid: 

Necessity of Identity: a = b ~ 0( a = b) 

This a controversial principal since it claims that identities which are at first sight accidental, 
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like that of Hespherus and Phosphorus, are actually necessary. One option is to accept this 
condusion as a necessary a posteriori proposition as Kripke did ([Kripke 1972]); to construe 
it as a necessary self-identity. An alternative is to interpret individuals in such a way that 
they may denote different objects in different worlds. 

In this section we show that Necessity of Identity holds for >.DPRED2, but also that it 
does not hold necessarily. In typed À-calculus, individuals are variables in set types: x : A, 
where A : Set. To increase legibility of the following discussion, we will distinguish between 
the various roles played by variables in the MPTS by using a and b for individual variables, 
and P, Q, R for predicate variables. 

Necessary identity 

Necessity of Identity is a theorem of Fitch's original natura! deduction system for modal 
predicate logic ([Fitch 1952]). It is based on very straightforward rules for the introduetion 
and elimination of identity. Identities are introduced in the same way as axioms or terms: for 
any individual a, a = a may be written without further justification at any stage of a pro of. 
The elimination of identity is by substitution: if an interval in a proof figure contains a = b 
and a formula in which a occurs, ( ... a ... ), then ( ... b .. . ) may be written as anitem of that 
interval. 

1. a=b 

2. Ta=a (=-intro) 

a=a a = b 3. D(a =a) 
4. D(a = b) (=-elim) 

5. (a = b) :::> D( a = b) 

( ... a ... ) 
( . .. b . .. ) 

= -intro =-elim N ecessity of Identity 

As shown above, these rul es allow a simpte pro of of a = b :::> 0 (a = b) in any normal modal 
logic. 

Like PTSs, MPTSs do not contain a primitive notion of identity. But since >.DPRED2 
is a second order system, a form of 'Leibniz identity' can be expressed in its language2 due 
to the rule ( TypeP, Prop, Prop) which makes quantification over predicates possible. We shall 
say that a is identical to b iff every predicate P which holds for a also holds for b: 

' ' >.x: A .(>.y: A.(VP: A-> Prop.(Px-> Py))) : (A-> (A-> Prop)) 

Since individuals have set types, a and b wil! be identical if they are of memhers of the same 
set (A: Set), that satisfy the same predicates over that set. Note that in a many-sorted logic 
a definition of Leibniz identity would be needed for each of the domains of individuals, the 
expression above only defines identity with respect to the set A. The proposition that a and 
b are Leibniz-identical is obtained from '= ' by applying a : A and b : A to it (and using 
,8-conversion): 

2This alternative is also mentioned in [Hughes and Cresswell 1972] . 
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'a= b' ('vP: A___. Prop.(Pa---. Pb)) : Prop 

If Leibniz Identity is added to )..OPRED2 as the definition of identity, all properties that 
are usually attributed to identity: reflexivity, transitivity, and symmetry, can be derived using 
the rules of the MPTS. The modal behaviour of the defined equality is very much like that 
of the primitive equality in natura! deduction, we can prove Necessity of Identity via the 
Necessity of Self-Identity. 

1. fl-a:A 
2. r (Q] c I- a : A 
3. f IQJ c I- A : Set 
4. f (Q] c I- Prop : TypeP 
5. f (Q] x : A I- Prop : TypeP 
6. f (Q] c I- A ---+ Prop : TypeP 
7. r (Q] P: A---+ Prop I- a: A 
8. f (Q] P: A -> Prop I- P :A ---.Prop 
9. f (Q] P: A ---> Prop I- Pa : Prop 

10. r (Q] P : A ---> Prop, y : Pa I- y : Pa 

(r 1- A : Set) 
( transfer3) 

( transfer1) 
(type axiom) 
(weakening 3,4) 

(product 4,5) 

(weakening 2,6) 

11. f (Q] P : A---+ Prop I- >.y : Pa.y : (Pa---+ Pa) 
12. r IQ) E I- )..p: A---> Prop.(>.y : Pa.y): ('<:/P: A---+ Prop.( Pa---+ Pa)) 

13. r I- k(>.P: A---+ Prop.(>.y : Pa.y)) : O('r/P : A---+ Prop.(Pa --->Pa)) 

Necessity of Self-Identity is proved by first constructing a proof term for a = a on an empty 
subordinate context, and then exporting it. The derivation in lines 2-12 shows that the 
introduetion rule for '=' in natura! deduction is a derived rule in the presence of Leibniz 
Identity, when A : Set and a : A are present in the context. The presence of a : A in the 
subordinate context depends on transjer3, in a system without this rule a : A would be an 
assumption of the subordinate context and we could at best show that k(>.a : A.(>.P : A -+ 

Prop.(>.y : Pa.y))) is a proof term for O(lla: A.(IIP: A---+ Prop.(Pa---+ Pa) )). 
The secoud step in proving necessity of identity for K , substitution by =-elim, also involves 

more work than its natura! deduction counterpart. Starting from the proof object for 0( a = a) 
as found in line 13 of the above derivation (which we abbreviate by M in the following) and 
the assumption z : (a = b), a proofterm for O(IIP : A -+ Prop.Pa ---> Pb) has to b e found. 
Using the fact that we are in a second order predicate logic, we define the pvedicate ' being 
necessarily identical to a': O(a = x). Starting from this predicate Q =aej Àx : A.O(IIP : 
A---+ Prop.Pa--. Px): TypeP, Qb =(3 0(\IP: A---+ Prop.Pa---+ Pb) can be derived from Qa 
(self-identity of a) and the assumption that a= b: 

1. r,z:(a = b) I- Q: A ---+ Prop (Q =: >. x : AO(IIP: A ---> Prop.Pa ---+ Px)) 
2. r,z:(a = b) I- M: Qa (Qa =!3 O('r/P : A ---+ Prop .Pa---+ Pa)) 
3. r,z:(a=b) I- z :(a=b) (a = b) =aej (''<lP: A---> Prop.Pa ---> Pb) 
4. r ,z:(a =b) I- zQ: (Qa---+ Qb) 
5. r,z:(a=b) I- (zQ)M: Qb (Qb =!3 0(\IP: A---+ Prop.Pa---> Pb)) 
6. r,z:(a=b) I- (zQ)M: O(a = b) (0(\IP: A ---> Prop.Pa---> Pb) =def O(a = b)) 

Given this pro of of (a = b) :::) 0( a = b ), we can also prove the necessity of inequality 
(a# b):::) O(a # b) in a ll systems that are extensions of KB . Since (a = b):::) O(a = b) is a 
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theorem of K, we have by contraposition that -,0( a = b) :) •( a = b) is a theorem and hence 
by Necessitation that 0(-,0(a = b) :) -,(a= b)) is a theorem. The natura! deduction proof 
now runs as follows: 

1. 0(-,0(a = b):) -,(a= b)) (theorem) 
2. -,(a= b) 

3. O•O(a = b) 

4. I "0(' = b) 0 "(' = bI (K-import 1) 
5. ...,o(a = b) (K-import 3) 
6. • ( a = b) 

7. 0-,(a = b) (K-export 5) 

8. O•O(a = b):) O•(a = b) 

9. T ·O(a = b) ( B-irnport ( ..,..,_eJim) 2) 

10. 0-,0(a = b) (K -export 9) 

11. o...,(a = b) 

12. -,(a= b):) o..,(a = b) 

And hence (a ::j:. b) :) 0( a ::j:. b ). If we take N to be the pro of object for the theorem in 
line 1, the corresponding >..OPRED2-term looks like this: >..z : ..,(a = b) .((>..y : O(•O(a = 
b ).k( ( kN)( ky )))( k ( bz) ). 

Contingent identity 

Although Necessity of Identity is reasonable from the point of view of Kripke's theory of rigid 
designation, it can he less reasonable for interpretations of '0' other than the 'ontological' 
one of alethic modallogic. For epistemic interpretations of the modal operator, especially the 
doxastic reading (' belief'), substitution in opaque contexts characteristically fails: 
(1) The Babylonians believed that Hesperusis Hesperus. 
(2) Hesperus is Phosphorus. 
(3) The Babylonians believed that Hesperus is Phosphorus. 
From (1) and (2) we cannot correctly infer (3). For this reason, modal predicate logies have 
been proposed where identity is not necessary, the so-called 'contingent identity logies' . Below 
we investigate how a type theoretica! system with contingent identity can be obtained. 

Note that the possibility to forma 'modal' (second order) predicate Q and to substitute 
it for P in the equality a = b are vita) for the derivation of Necessity of Identity. This 
observation suggests two ways to prohibit that Necessity of Identity becomes a theorem: 

Restriet the formation of predicates in such a way that modal predicates can no Jonger 
he formed. 

Weaken the notion of Leibniz ldentity in such a way that it no Jonger allows substitution 
in modal predicates. 

The first solution is not very attractive: besides the technica! difficulties accompanying the 
introduetion of such restrictions into the standard format of MPTSs, it immediately leads 
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to the undesirable consequence that not even self-identity is derivable anymore. The second 
salution corresponds to a more traditional move, namely restricting substitution to 'non
opaque contexts'. 

As we saw earlier, substitutions of individuals are 'calculated' under Leibniz Identity 
rather than 'performed'. Given individual a with property Q, the condusion that the iden
tical individual b has property Q is reached via a predicate logica! inference: the universa! 
quantification over predicates P is eliminated with Q and then Qb is inferred from Qa and 
Qa :::) Qb. Since Leibniz Identity quantifies over all predicates P, this works for arbitrary 
properties. We can block this inference for 'modal' properties by defin.ing a weaker notion of 
Leibniz Identity: 

Weak Leibniz Identity: 'a= b' ('1:/P: A-+ Prop.(Pa-+ Pb)): Prop, 
where P ranges over predicates over A in which 0 does not occur. 

Using this identity Qb cannot be inferred from Qa and a = b, since the condition on predicates 
P forbids that the universa! quantification over P is eliminated with the predicate Q in which 
0 occurs. 

Weak Leibniz Identity only guarantees 'identity in a world ' ; two individuals are identical 
if they are indiscernible by non-madal predicates. This leaves open the question whether 
the individuals have different properties in other worlds and hence allows the possibility of 
contingent identity. Moving to stronger modal systems will not help to restare Necessity of 
Identity as a theorem, under Weak Leibniz Identity one can at best infer the (necessity of 
the) possibility of an identity: a= b :J ...,o...,(a = b) in KT, and a = b:::) 0-,0-,(a = b) in 
KTB. 

5.2.3. Concluding remarks 

The MPTS )..OPRED2 offers quite a few options known from the model theory of MPL: 

)..OPRED2 without transjer3: 
None of the interaction forroulas is derivable, no identity is necessary. 

)..DPRED2 with transj er3: 
Converse Barcan and :Jx E D .Dep :J D:Jx E D .cp are theorems. 
Other interaction or identity theorems can be obtained by adding: 

axioms: for Barcan and for D:lx E D.cp:::) 3x E D.Dcp 

definitions of equality: Weak Leibniz Identity for Necessity of Self-Identity, 
Leibniz Identity for Necessity of Identity 

From this summary the central role of the transjer3 rule immediately becomes apparent. If 
we think of subordinate contexts as arbitrary accessible worlds, this rule relates the 'inventory' 
(inhabitants of set-types, individuals) of a world with that of the worlds accessible to it: a 
variabie ranging over the domain of the main context is also a variabie ranging over the 
domain of the subordinate context. In this sense the transjer3 rule seems to function like the 
type theoretica! analogon of the growing domains in model theory: without the rule there is 
no relation between the inhabitants of set-types in the main and subordinate contexts, and 
neither Barcan nor Converse Barcan is derivable. This corresponds to Kripke's semant ics3 for 

3 See [Hughes and Cresswell 1972]. 
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modal predicate logic, when no relation is presupposed between the domains of the worlds, 
and neither formula is valid, regardless of the modal strength of the logic. Adding transjer3 
makes Converse Barcan and 3x E D .D<p(x) :::> D3x E D .<p a theorem, just like adopting 
'growing domains' in model theory. 

However, the discussion of the Barcan formula shows that the analogy between model 
theory and type theory is not that simple. Given growing domains, Barcan becomes valid in 
roodels as soon as the accessibility relation is made symmetrical. Adding growing domains in 
both directionsof the symmetrical accessibility relation yields a model with constant domains, 
and this is a degenerate case of a model with 'shrinking domains' on which Barcan holds. 
However, extending the basic modal predicate logic K with the rule for B (or all the way to 
KT45 for that matter) does not make Barcan a theorem of (>,)DPRED2. Also there is no 
rule in Fitch-style deduction or MPTSs that is an obvious analogon for 'shrinking domains' 
in Fitch-style deduction or MPTSs, that could be added to make Barcan a theorem. 

Given the transjer3-rule, and Leibniz identity, Necessity of Identity can he proved in 
>.OPRED2 analogous to the model theoretic case. This analogy continues to hold for Necessity 
of Non-Identity, which only becomes a theorem in (extensions of) KB: model theoretically 
we can only conclude that a f. b implies 0( a f. b) when the do rnains are kept constant ( or 
shrink) . By taking recourse toa weaker form of Leibniz Identity, which preelucles 'substitution 
in the scope of D', we can block the proof of Necessity of Identity and settiefora Contingent 
Identity system, where only self-identity is necessary. 

The main difference between the model theoretic and type theoretic approach to identity 
lies in the fact that type theory uses variables for individuals as opposed to the constauts 
used in model theory. This farces a conneetion between two issues that are unrelated in 
model theory: we cannot have a system with Necessity of Identity, or even Necessity of Self
Identity, without the Converse Barcan formula since both depend on the transjer3 rule. On 
the other hand it allows us to have contingent identity without 0 3 E D.<p(x) :::> 3x E D.O<p(x) 
being a theorem, as under the 'individual concept interpretation' of constauts in model theory 
([Hughes and Cresswell 1972]). 

It is questionable whether the set-variables in an MPTS can play the role of individual 
in the same way as the constauts in model theory. However, we don't seem to have a choice: 
from a type theoretica] point of view constauts are just 'free variables that are never bound'. 
Adding constauts for individuals, like we did for the logica] axioms, would imply that all 
individuals are given befarehand since unlike variables constauts cannot be created on the 
spot. Also (like for the axioms) all constauts would be available in all subordinate contexts, 
unless some sort of 'Existence predicate' is defined in the initia! context that controls which 
constauts are available at a subordinate context of a given modal depth. 

At that point we run into a limitation of the Fitch-style modal deduction, namely that 
a modal subordinate proof represents an 'arbitrary accessible world'. This means that the 
associated domain of individuals must somehow be 'representative' for the domains of all 
worlds that are one step away along the accessibility relation. There can be no 'branching' 
into several accessible worlds each with their own different set of individuals, as is possible 
in models. It is to be expected that this deductive lirnitation, which is inherited by the type 
systems, is the major factor in restricting the expressive power of predicate logica! MPTSs. 

From a type theoretica) perspective, transjer3 is not an essential rule for MPTSs. In the 
proofs of the meta theoretica] properties, it is only needed in cases invalving the rule itself. 
This is different for transjer1 and transjer2, these rules cannot be missed. They guarantee 
that propositions, sets and predicates are 'persistent' throughout the subordinate contexts. 
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Due to the presence of these rules the following 'higher order' Converse Barcan formulas are 
theorems of >.DPRED2: 

transjer1: D('v'a E Prop .<p) ::> ('v'/3 E Prop.D<p) 

transjer2: D('v'P E A-+ Prop.<p) ::> ('v'Q E A-+ Prop.D<p), 

In terms of possible world semantics the first formula expresses that all possible 'statements' 
(propositions regardless of their provability) about a world are also 'statements' in accessible 
worlds of this world (note that this already holds for propositionallogic) . The second formula 
states that all properties (predicates) 'available' in a world are 'available' in worlds accessible 
to that world. 

Together they insure that language is preserved when moving to a next world, in every 
world we can say at least those things that could be said in a previous world ( though different 
propositions may be provable). In this way the rules that preserve well-typedness in the 
MPTSs bring an implicit assumption of modal predicate logic into the formalism, namely 
(the stronger assumption) that the language (the sets of well-formed formulas and terms) 
is the same in every world. In the alethic interpretation where '0' is a necessity operator 
this seems a reasonable enough assumpt ion. However, in other intensional readings of the 
operator it may be less reasonable, for instanee in multi-agent epistemic logic where agents 
can reason about each others knowledge and beliefs: there sarnething which is a proposition 
(has type Prop) to one agent may not be a proposition to another. In the MPTSs we can 
begin to discuss these assumptions about the language formally, by investigating the effects 
of manipulating the transfer of well-typedness information. 



Chapter 6 

. Contexts in dialogue 

According to the preface of this thesis, the MPTSs presented in the previous chapters were 
developed with type theoretica! knowledge representation in mind. This chapter is intended to 
give the reader an impression of how MPTSs fit in with existing ideas on the formalization of 
communication. For lack of a full-grown type theoretica! account of communication, we devise 
our own formalization of one smal! aspect: the 'update' of the information state of a hearer
agent by a declarative utterance of a speaker-agent. This procedure is based on the MPTS 
>.DPRED2 (section 6.1,6.2), and meant merely as a finger exercise in dialogue formalization. 
Although the procedure is a little naïve, it does show that existing work on pragmatics in 
epistemic/doxastic logic ([Thijsse 1992], section 6.4) and on the representation of natura[ 
language ([Kamp 1981], [Ahn and Kolb 1990], section 6.3) can be brought together in the 
MPTS-framework (section 6.5). Besides, it will serve as a guideline for further discussion 
(section 6.6). 

6.1. Contexts as growing information states 

In [Ahn 1992] a type theoretica! approach to user modeHing in man-machine communication is 
proposed. Central to this proposal is the idea that the information state of an agent ( animate 
or inanimate) can be modelled by a type theoretica! context. In this view, the assertions 
that make up an agent's information state are represented as statements, where the type 
of a statement corresponds to an assertion of the agent and the term inhabiting the type 
corresponds to the 'justification' or 'evidence' the agent has for this assertion. In general, the 
information state of an agent will not contain a complete ( or even accurate) description of 
the world: an agent may be uncertain about some propositions and unaware of others. Since 
the information state is incomplete, it may 'grow' as the agent learns more about the world. 
This growth can be modelled by appending statements representing the new information to 
the context representing the agent's information state. 

One souree of growth is communication between agents, and Ahn ([Ahn 1992]) sketches 
a perspective under which dialogue can be viewed type theoretically as an exchange of in
formation between (growing) contexts. It is assumed that the participants in the dialogue 
exchange information only through utterances, like in a telephone conversation. Against the 
background of Ahn's ideas, we construct a procedure for a particular instanee of information 
growth in dialogue: the 'update' of the information state of a hearer-agent by a declarative 
utterance of a speaker-agent. 

185 
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We formulate this update in a simple dialogue situation invalving two agents, a speaker 
(S) and a hearer (H). Since we consider the effect of a single utterance of the speaker, the 
agents have fixed roles: the speaker speaks, and the hearer listens. The information states 
of the speaker and the hearer are represented as (non-blocked) contexts in >.DPRED2. Such 
a context contains declarations of all entities that the agent assumes to exist, and of all 
assertions (along with their proofs) that he holds about the world. 

It also contains statements declaring the 'vocabulary' (predicates, functions, sets) in which 
these assertions are formulated. Assuming that these statements denote concepts that are 
somehow related to words in the language, agents speakîng the same language must share 
a consîderable amount of this vocabulary to make communication possible. f\hn envisions 
a formalization in which this shared vocabulary is represented by a common context which 
can be extended during dialogue, and of which each participant maintains his own version. 
Ideally, these two versions are isomorphic. When large discrepancies exist between them, 
misunderstandings will arise. 

We want to abstract from such misunderstandings, and hence simply make the partici
pants' information states befare the dialogue (their initia! contexts) isomorphic, by assuming 
that they contain the same vocabulary. To make this assumption more precise, we reeall the 
partition of the termsof (M)PTSs in the (Modal) Logic Cube defined in sectio'n 3.3: 

6.1.1. DEFINITION. Partition of pseudoterms 
The terrus of the PTSs in the Logic Cube can be partitioned into: 

A is a set-kind: :Jr[r f- A : 11;pe'] 

n A is a prop-kind: :Jr[r f- A : Type~'] 

m A is a set-constructor: :Jr, B[r f- A: B : Type'] 

zv A is a prop-constructor: :Jr, B[r f- A : B : TypeP] 

v A is a set: :Jr[r f- A : Set] 

m A is a proposition: :Jr[r f- A : Prop] 

vn A is an element: :Jr, B[r f- A: B : Set] 

vm A is a proof term: :Jr, B[r f- A : B : Prop] 

The terms making up the vocabulary, predicates, functions, sets, etc. are all in categories 
i- vi, which allows us to express the assumption that the dialogue participants have the same 
vocabulary as follows: 

The Vocabulary Assumption All agents in People have the same kinds, constructors, 
sets and propositions declared in their initia! context. 

Under this assumption, the initia! context of agents can only differ in the elements and proofs. 
This means that speaker and hearer may be able to prove different propositions, and may 
have different proofs for the same proposition. Simîlarly, they may be familiar with different 
elements of a given set, or differ in the sets that are inhabited for them. 
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In MPTSs, the only way to add a statement to a context is by an application of the start 
or weakening-rule (cf. chapter 3.1). Hence any procedure for adding statements toa context 
'from the outside' should result in a context which looks as if it could have been derived 
from the original context by applications of these two derivation rules. Looking at .start and 
weakening, we can see that this amounts to the following requirements for ad ding a statement 
x : A, representing new inforroation, to a context r, representing the information state of an 
agent: 

(i) r I- A : s, A is well-typed on r, 

(ii) x is T-fresh', it does not yet occur in r. 

Given the discussion above, it will be clear that the well-typedness requirement (i) ensures 
that the agent can 'understand' the new information. The second requirement can beseen as 
the type theoretica! reileetion of a fundamental iropossibility in communication: by an utter
ance, a speaker communicates a certain (propositional) content, but he cannot by the same 
utterance convey his evidence for this content to the hearer. Hence, if we equate the content 
of an utterance with the type of a statement, the proof object is 'lost' in communication. 
The agent that adds the new information to his context reptaces the lost proof object with a 
'dummy' proof object, a fresh variabie that merely signifies that the type is inhabited. 

The types of the statements that we will be adding to the context of the hearer in the 
update operation correspond to terros in the logic DPRED2. Using the definition of term
context (cf. section 2.3) for this logic, the context needed to prove that such a term is 
well-typed can be constructed inductively. 

6 .1.2. DEFINITION. Term-contexts 
For every term t of the language of DP RED2 we define a context r t such that ft I- t : D 
(in )..DPRED2) if t E D (in DPRED2), as follows 

t := XD => ft:= XD: D , 

t:: >.x E D.M => ft := fM/(x : D), 

t::MN => ft:= rM urN, 

t:=rp-:::>7/; => ft :=fcpUf.p, 

t ::\fx E D.rp => ft:= fcp/(x: D), 

t = Drp => ft:=fcp· 

Given this definition, requirement (i) can be rephrased as follows: a statement x : A can be 
added toa )..DPRED2-context rif rA ç r. In that case r I- A : s, and hence the extended 
context r, x : A could have been obtained by an application of start (provided x is f-fresh). 

Note that the Vocabulary Assumption does not guarantee that r 1- A : s for arbitrary 
A on any f representing the information state of an agent in People, since A (and hence fA) 
may contain occurrences of elements or proofs that are not declared in r. 

6.2. Multi-agent modal predicate logic 

In chapter 4, it was shown how reasoning of agents about the knowledge and beliefs of other 
agents can be accommodated in MPTSs by decarating the subordinate contexts, modalities 
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and modal rules with an agent index. By indexing the MPTS )..OPRED2 in this way, a system 
for multi-agent modal predicate logic is obtained. In this multi-agent system, the interaction 
between quantifiers a.nd moda.l operators ca.n be quite complex; not only do we have to deal 
with quantification over a domain in contexts of different modal depth, these contexts may 
also have different agent indices. 

The upshot of the discussion in chapter 5 of the interaction between quantification a.nd 
modal operators is that, for mono-logica! predicate logic, the crucial choice is whether to 
adopt the rule transjer3. This rule guarantees that elements of sets ('objects ', ' individuals') 
remain available when moving to a subordinate context. If transjer3 is adopted, the Converse 
Barcan formula becomes a theorem of )..OPRED2. This is a reasanabie principlefora system 
in which one agent (say agent 2) reasous about his own knowledge or beliefs; given a proof 
z of 02\lx E D.<p(x), agent 2 can derive a proof (>.y : A.(k2((k2z)y))) of \lx E D.02<p(x) 
since all 'D-objects' that he is familiar with remain available in the subordinate context. In 
a multi-agent system another agent, say 1, can make the same inference if his information 
state contains a pro of that 2 knows or believes \I x E D .<p( x). However, the inference made by 
1 turns a proposition which is about the 'D-objects' that 2 is familiar with (02\fx E D.<p(x)) 
into a proposition (\fx E D.02<p(x)) which quantifies over 'D-objects ' that 1 is familiar with, 
since the quant i fier now has the greater scope and the statement is derived on 1 's context. 
Hence in this multi-agent case, Converse Barcan expresses a relation between the inventory 
of the context of 1 and the inventory of the (subordinate) context(s) of 2. So f<).r we have not 
presumed anything about the relation between the various domains of the different agents. 
The fact that transjer3 induces such arelation is an argument for not including it in the multi
agent version of )..OPRED2 but, as wil! become clear from the following examples, there are 
also reasons for adopting it. 

The unproblematic cases are those where an agent, reasoning about t he knowledge or 
beliefs of another agent, derives only universally quantified conclusions in the subordinate 
context. In the following example, the context of agent 1 contains evidence that 2 believes 
that \lx E D.(Px :J Qx) and \lx E D.Px. He can infer that 2 believes that \lx E D.Qx in the 
following way: 

1. r, z: 02(\fx: D.Px :J Qx), u: 02\fx: D.Px r z: 02\fx : D.Px :J Qx (f r D: Set) 
2. f, z : 02(Vx: D.Px :J Qx),u: 02\fx: D.Px r u: 02\fx: D.Px 

3. f, z: 02(\fx : D.Px :J Qx), u : 02\fx: D.Px IQJ.,] e r k2z: \lx: D.Px :J Qx 

4. r, z: 02(Vx: D.Px :J Qx), u: 0 2\fx: D.Px IQJ.,] e 1- k2u: \fx: D.Px 
5. r , z: 02(\fx: D.Px :J Qx), u : 0 2\fx: D.Px ~ e 1- D: Set (transfert) 
6. f,z : 02(\fx: D .Px :J Qx),u: 02Vx: D.Px IQJ.,] y : D r y: D 

7. r, z : 02(Vx: D.Px :J Qx), u: 02\fx : D.Px IQJ.,] y: D r (k2z)y: Py :J Qy 

8. r, z : 02(\fx: D .Px :J Qx),u: 0 2\fx: D.Px IQJ.,] y: D r (k2u)y: Py 

9. f, z : 02(\fx: D.Px :J Qx), u: 02\fx: D.Px IQJ.,] y: D r ((k2 z)y)((k2u)y): Qy 

10. r, z: 02(\fx: D.Px :J Qx), u : 02\fx: D.Px ~ e 1- >.y : D.((k2z)y)((k2u)y): \fy: D.Qy 

11. r, z: 02(\fx: D .Px :J Qx) , u: 02\fx: D.Px r k2(>.y : D .((k2z)y)((k2u)y)) : 0 2\fy: D.Qy 

First agent 1 K -imports the 02-statement into a 2-subordinate context where their types 
appear as universa! formulas quantifying over 2's domain D (lines 3,4}. Then 1 assumes an 
arbitrary element (y) of type D (like 2 could have clone reasoning about his own knowledge), 
to instantiate the universa! formulas and derive a proof of Qy (lines 6-9). Then object 
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assumption is discharged and the condusion Vy E D.Qy (quantifying over 2's domain) is 
brought back to its context in the form 02 Vy E D. Qy. In cases like these, transjer3 does not 
come into play, and there is no 'confusion of domains' . 

Of course not all reasoning in subordinate contexts leads to universa! conclusions. For 
instanee given a context of agent 1 which contains proofs for '2 believes that Vx : D.Px :J Qx' 
and '2 believes that Pa'. In this case it seerns reasonable for 1 to infer that '2 believes that 
Qa', since the fact that 2 believes that Pa indicates that 2 is familiar with the object a. 
However, even with a : D present in 1 's context, 02 Qa cannot he proved. 

1. f,z : 02(Vx : D .Px :J Qx),u : 02Pa,a: D f- z: 02Vx: D .Px :J Qx 
2. r, z : 02(Vx : D .Px :J Qx), u : 02Pa, a: D f- u : 02Pa 
3. r,z: 02(Vx: D.Px :J Qx),u : 02Pa,a: D f- a: D 

4. r, z: 02(Vx: D.Px :J Qx), u : 02Pa, a: D ~ E f- k2z: Vx: D .Px :J Qx 

5. r, z: 02(Vx: D.Px :J Qx), u: 02Pa, a : D lllil E f- k2u: Pa 

The problem is that without transjer3 there is no way to instantiate V x : D .Px :J Qx in the 
2-subordinate context with the a : D from l's context. With transjer3, deriving a proof of 
02 Qa is straight forward. 

6. r, z: 02(Vx: D.Px :J Qx), u: 02Pa, a: D IQh E f- a: D (transfer3 3) 

7. r,z: 02(Vx: D.Px :J Qx) , u : 02Pa,a: D IQh E f- (k2z)a: Pa :J Qa 

8. r, z: 02(Vx: D.Px :J Qx), u: 02Pa, a: D IQh E f- ((k2z)a)(k2u): Qa 

9. r , z: 02(Vx: D.Px :J Qx), u: 02Pa, a: D IQh E f- ((k2z)a)(k2u): Qa 

10. r, z : 02(\lx : D.Px :J Qx), u : 02Pa, a : D f- k2 (((k2z)a)(k2u)) : 02Qa 

As remarked above, transjer3 induces an ioclusion relation between the inventory of the 
2-subordinate context and the context of 1: every element available in 1 's context is available 
in the 2-subordinate context. Sometimes this is desirabie (like in the previous example), 
sometimes it is not. The following example depiets a situation which brings out th.is ambiguity. 
The context of agent 1 contains an object a : D, as wel! as evidence that agent 2 believes 
that Vx : D.Px . By means of transjer3, 1 can use a : D to instantiate Vx : D.Px in the 
2-subordinate context and hence obtain a proof that 2 believes that Pa. 

1. r,u: 02Vx: D .Px , a: D f- u: D2Vx E D.Px 
2. r, u : 02Vx: D.Px, a: D f- a : D 

3. f,u : 02Vx : D .Px , a: D IQh <: f- k2 u : Vx: D.Px 
4. r, u : 02Vx: D.Px, a : D IQh <: f- a: D 

5. r, u: 02Vx: D .Px , a: D IQh E f- (k2u)a : Pa 

6. r, u: 0 2Vx : D.Px, a: D f- k2((k2u)a): 02Pa 

Whether this inference is intuitively correct or not depends on the farniliarity of 2 with the 
individual a. If a is an element of 2's (subordinate context-) domain, the inference is correct. 
If it is not (a : D is just familiar toagent 1), 1 should not be able to derive that 2 belicves 
something about an object that he is not familiar with (that is not in 2's domain). In other 
words, it should only be allowed to bring an object to the 2-subordinate context when this 
object is an element of 2's domain. 
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Refining transfer3 in this way requires that objectsin l's context that are familiar to 2 are 
syntactically discernable from objects that are nat. Hence we propose to index the elements 
(x: D: Set) occurring in the context of an agent with respect to the (other) agents that are 
familiar with these elements. In cases like the above, where we have two agents, this means 
that every element in 1 's context may be labelled with the agent index 2, indicating that 2 
is familiar with this object (according to 1). Once the individuals are indexed with respect 
to agents, we can refine transfer3 in the desired way by requiring that the term (A) of the 
statement (A: B(: Set)) that is to be transferred bas the sameagent index as the subordinate 
context in which it is to be reiterated. 

G f- Aa : B : Set 
transfer; - - --"----

G !i:ïia E f- Aa: B 

Under this rule, the relation between the inventory of a context and its subordinate contexts 
expressed by Converse Barcan only holds for elements that have the same agent index as 
the subordinate context. Hence Converse Barcan is no Jonger a theorem, but it still holds 
'inclividually' for any agent reasoning about his own knowledge or beliefs. 

Of course a lot more would have to be specified about the calculus of agent-indices on 
statements (like how they are created etc.) in relation to transfer;, but for the moment we 
wiJl use the rule as specified above in settings where the labelling is given, and where we 
assume that the labels do not interfere with any other rule. 

Confusion of domains can also be forced by modal means, i.e. the T -export rule. If we go 
back to the first example in this section, and interpret '02' as '2 knows', then 1 could have 
applied T-export insteadof K-export, resulting in the following last line of the derivation: 
11. f,z: 02(Vx: D.Px :> Qx),u: 02Vx : D.Px f- k2(>.y: D.((k2z)y)((k2u)y)): Vy: D.Qy 
Here agent 1 has reached a condusion about his own domain (Vy: D.Qy) by reasoning about 
2's knowledge. It is easy to check that the condusion does not depend on the predicate logica! 
reasoning of 1 in the 2-subordinate context. Agent 1 could have reached the same condusion 
by using only 'propositional steps' with respect to 2's knowledge. By first assuming y : D in 
his own context and then subsequently applying K -import and T -export to both 02-formulas, 
1 can obtain the proof >.y : D.(((tkz))y)((t(ku))y) of Vy : D.Qy1 . Agent l's condusion is 
only valid if the D- elements familiar to him are a subset of the D-elements agent 2 is familiar 
with. Hence the T-export rule presupposes a relation between the domains of the agents, 
independent of transfer3. 

Since the T-axiom is commonly held to express the property that separates knowledge 
from belief, the above observations points in the direction of an asymmetry between pred
icate logica! belief and predicate logica! knowledge: multi-agent doxastic predicate logic is 
compatible with contingent relations between the domains of the agents, multi-agent epis
temic predicate logic is not. 

6.3. Discourse Representation Theory in type theory 

The Discourse Representation Theory (DRT) of Hans Kamp ([Kamp 1981)) is a forma! methad 
for constructing representations for texts (sequences of sentences) in three steps. Starting from 
the sentences in the discourse a 'Discourse Representation Structure' (DRS) is generated, 

1The second t erm proving Vy : D.Q(y) can be obtained from the first by means of Î-reduction(cf. cha.p 
2.6). 
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processing them 'from left to right' by means of 'DRS-construction rules'. These structures 
are then interpreted in a model through a truthful embedding. In this section we shall not go 
into the construction nor into the embedding of DRSs, since our main concern is the relation 
of (already constructed) DRSs to type theory. In [Ahn and Kolb 1990] a forma! translation 
is given from DRSs into type theoretica! contexts: each DRS corresponds to a 'segment' (a 
small pseudo-context). Using this translation, the growth of the information state of an agent 
interpreting a text can be modelled by the extension of the context representing the agent's 
information state with the segment representing the text. 

DRT is focussed on the resolution of anaphoric ambiguities, both within sentences and 
across sentence boundaries. To do this, forma! individuals called 'discourse referents' are 
introduced which may serve as antecedents for pronouns. For example, suppose we want to 
represent the two-sentence discourse 'A farmer owns a donkey. He beats it'. After processing 
the first sentence, the discourse representation looks like this2 . 

U V 

farmer( u) 

donkey( v) 

owns(u, v) 

This representation contains the two forma! individuals (u and v) introduced by the sentence, 
along with the information that the first individual is a farmer, the second a donkey, and the 
fact that the first individual owns the second. In the second senterree of the discourse ('He 
beats it'), both 'he' and 'it' refer back to the first sentence. To incorporate the information 
contained in the second sentence, we first have to decide what these references are. In view 
of the fact that the entire preceding discourse consists of the previous sentence, the natura! 
reading is that in which 'he' refers to the farmer, and 'it' to the donkey. Hence we extend the 
above representation with an entry stating that u beats v. 

U V 

farmer( u) 
donk ey( v) 
owns( u, v) 

beats( u, v) 

Kamp calls figures of this simple kind 'Discourse Structures'(DRs). Besides discourse 
referents and 'simple conditions' (predications over referents), DRs may also contain 'links', 
which equate a discourse referent with a name (or another discourse referent). We change 
the example discourse above to one that involves narnes to illustrate the use of links. The 
discourse 'Pedro is a farmer. Jerry is a donkey. Pedro owns Jerry and beats him' is represented 
as: 

2 We use the 'stripped' format of [Van Eijck 1985], rather than the original format of [Kamp 1981]. 
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U V 

u= Pedro 
farmer( u) 

v = Jerry 
donkey( v) 

owns( v., v) 

beats( u, v) 

As we indicated earlier, DRT is also used for the resolution of anaphora inside sentences. 
As a matter of fact, this was one of its strong points, since it could handle anaphoric de
pendencies that were beyond the scope of theories existing at that time. The most famous 
example of this is the so-called 'donkey-sentence': 'Every farmer who owns a donkey beats 
it'. The problem with this sentence is that 'it' refers to different donkeys, depending on the 
respective farmer who has ownership and perfarms the beating. The construction rule for 
universally quantified sentences assigns the donkey-sentence a representation that consists of 
three DRs. 

U V 

farmer(u) 

donkey(v) 

owns( u, v) 

U V 

beats( u, v) 

Kamp refers to compound representations like this as 'Discourse Representation Structures'. 
The upper (empty) DR is the principa/ DR of the DRS, the DRs below are subordinate to the 
upper one. The lower right DR is in turn subordinate to the lower left DR. The idea expressed 
by these structural dependencies is that a DRS of this form can be truthfully embedded in 
a model iff every truthful embedding in the model of the lower left DR can be extended to 
a truthful embedding of the right DR. In other words, for every pair of entities in the model 
consisting of a farmer and a donkey where the farmer owns the donkey, the model validates 
that the farmer beats the donkey. 

Ahn and Kolb do not give a direct translation of the two-dimensional representations 
into type theoretica! contexts. They use an intermediate sequentia! format in which DRSs 
are written in the following form: r1, . . . , r n, E1, . .. , Em, where ( r1, ... , rn) are the discourse 
referents and the 'entries' E1, . .. , Em are of one of the following three farms: 

• atomie condition, n-ary predicate applied to a number of discourse referents, 

• a complex condition D1 => D2 , where D1 and D2 are DRSs, 

• a link [R = N] or [R = R'], where Rand R' are discourse referents, and N is a name in 
the model. 
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lt wil! be clear that DRs, which consist only of a box with discourse referents, simple 
conditions, and links, can be represented in this format. However, the case for complex con
ditions deserves some explanation. For instance, for the donkey senterree we obtain an entry 
D1 ~ D2 where D1 and D2 correspond to DRs. These separate components are represented 
sequentially as 

D1 : u, v,farmer(u), donkey(v), owns(u, v) 
D2 : u, v,farmer(u), donkey(v), owns(u, v), beats( u, v) . 

To represent the complex condition we only have to look at the entries, since D1 and D2 
have the samediscourse referents. The dependency between the entries is that if farmer( u), 
donkey( v ), and owns( u, v ), then beats( u, v ). Hence we can re present D1 ~ D2 by means of 
the following sequence: 

u, v, (farmer( u), donkey(v), owns(u, v) ~beats( u, v)). 

Since this covers all available constructions, we can use the sequentia! format to represent 
DRSs inthefarm r1, ... , rn, E1, . . . , Em. 

Given such a sequentia! representation of a DRS, Ahn and Kolb propose the following 
translation of DRSs to type theoretica! contexts: a sequence of the general farm r1, . .. , rn, 
E1, ... , Em translates toa 'segment' of the general farm rl : entity, ... , rn : entity , 
YI : E1, ... , Ym : Em. The discourse referents are translated directly into variables. This is in 
line with the intuition that set variables act as 'pointers' , they make an object of a certain 
type available to the reasoner. Since DRT has no typing (properties are attributed to the 
referents via predication), we give all discourse referents the same (neutra!) type 'entity'. 

Entries are translated as terms of type Prop and they get a fresh variabie (Yb ... , Ym) 
assigned as their proof term; the entries represent the content of the discourse, not its jus
tification. The three kinds of entries are accommodated in >.DPRED2 as follows. Atomie 
conditions are an n-ary predicate applied to a number of referents. As in chapter 5, these are 
translated to P( r1, ... , rn) : Prop. Complex conditions are of the form D1 ~ D2 . Roughly 
speaking, they are translated as a (series of) II-abstraction(s) connecting D1 to (part of) 
Dz. We illustrate this by means of the donkey sentence. For this sentence, the segments 
corresponding to D1 and D2 are 

D1: u: entity,v : entity,p1 :farmer(u) , P2: donkey(v),p3: owns(u,v) 
Dz: u: entity,v : entity,p1 :farmer(u),pz: donkey(v),p3: owns(u,v),p4 : beats(u,v) . 

The sequence u , v, (farmer( u), donkey(v), owns(u, v) ~ beats( u, v)) (Dl~ Dz) is translated 
into the statement z : (II u : entity .II v : entity .Ilp1 : farmer( u) .Ilp2 : donkey( v ).IIp3 : 

owns( u , v ). beats( u , v )), where the Ils abstract over the elementsof the segment corresponding 
to D1, and the body of the abstraction is the D2-segment minus the statements that are also in 
the D1-segment ( and z is a fresh variabie). Th is abstraction is the proof theoretica! refiection 
of the semantica! idea that Dt ~ Dz turns any assignment satisfying D1 into an assignment 
satisfying Dz. An interpreter who already has ent i ties (x, y) in his context as wellas pro of tb at 
these entities are respectively a farmer anda donkey (ps : farmer( x), P6 : donkey(y)) and that 
x owns y (p7 : owns(x, y)), can derive a term z(x, y, ps, P6, P7) proving 'x beats y' ( beats(x, y )) 
by applying all this information to the type theoretica! translation of D1 ~ D2 . Links are 
expressions of the form R = R' or R = N, which ' link' a discourse referent R to another 
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discourse referent (R') or a name in the model {N). They can be expressed type theoretically 
by rneans of Leibniz ldentity; y : (R = R')(: Prop) or y : (R = N)(: Prop). The difficulty 
with links of the latter kind is to find the type theoretica! equivalent of proper narnes in the 
model. Ahn and Kolb sirnply use (set-) variables; Pedro : entity, Jerry : entity Although it is 
unclear whether this is satisfactory in the setting of rnodal reasoning, we represent the narnes 
Pedro and Jerry in this way in the following exarnples assurning that these 'narne-variables' 
are sornehow given befarehand (they are declared in the initia! context of every agent). 

If adding a segment r1 : entity, . . . , r n : entity, Yl : E1, ... , Ym : Em to the context of the 
interpreter is to result in a !ega! pseudo context, the following well-typedness constraints have 
to be met (assurning that all variables occurring as subjectsin the segment are fresh). 

• The variables r 1 , ... , r n, representing the discourse referents, are all of type entity. 
Hence all that is required for their well-typedness is that this type is declared in the 
context of the interpreter: r 1- entity : Set. Hence we have 
r, r1 : entity, ... , ri : entity 1- entity : Set for all i : 1 :S i :S n. 

• The well-typedness of the entries has to be settled individually. For the first entry, it 
has to be the case that r , rl : entity, ... 'rn : entity 1- El : Prop. Each of the following 
entries rnay then depend on its predecessors, giving rise to the following general well
typedness requirernent: r, rl : entity, ... 'rn : entity, YL : El, ... ' Yi : Ej 1- E;+L : Prop 
(for j : 1 :S j < m ). 

If these conditions are met, the segment is called a valid extension of the context of the inter
preter. The well-typedness inforrnation already present in this context is sufficient to account 
for the type-variables that occur freely in the entries. Intuitively the above requirernents 
express that the interpreter possesses sufficient linguistic rneans to 'understand' the discourse 
content represented in the segment. If the second condition is not met for one of the entries 
(f, r1 : entity, ... , Tn : entity, YL : E1, ... , Yi : Ej lf Ej+L : Prop ), the discourse contains a 
'concept' (predicate, noun) that is not familiar to the interpreter. 

The 'anchoring' of the discourse representation in the inforrnation state of the interpreter 
can be taken a step further by letting the interpreter replace the 'fresh' referents and proof 
variables in the segment with objects already present in (or derivable on) his context. This 
idea can be taken up in various ways. A grand but illustrative perspective is that of Ranta 
who is particularly interested in the representation of literary texts. In [Ranta 1989], anchar
ing is seen as the process that can account for the fact that every reader of literary work 
has his own interpretation, even though there exists a (DRT-like) canonical type theoretica! 
representation. The difference between the interpretations lies in the way each reader ankers 
characters, locations etc. occurring in the text by substituting them with persons and places 
from his own mental state. On a more technica! level, [Ahn and Kolb 1990] discusses an
choring of a segment in the context of the interpreter as the proof theoretica! analogon of the 
embedding of a DRS in a model. 

6.4. Epistemic pragmatics 

Reasoning about information states of (other) agents plays an important role in comrnuni
cation. For instance, in an information dialogue it is not cooperative to ask your dialogue 
partner sarnething you already know, or to ask him a question you know he cannot answer. 
A farnous attempt to codify 'cooperative' behaviour in dialogue was made by Grice (see for 
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instanee [Grice 1989]). He begins his top-down development of dialogue behaviour rules by 
stating the 

Cooperation principle Make your conversational contribution such as is required, at 
the stage at which it occurs, by the accepted purpose or direction of the talk exchange 
in which you are engaged. 

Starting from this principle, Grice discerns four categories of rules for dialogue behaviour 
('màxims'), each characterized by a 'super maxim': 

Quantity Make your contribution as informative as is required 

Quality Try to make your contribution one that is true 

Relevanee Be relevant 

Manner Be perspicuous 

Although no order is imposed on these categories, Grice does remark that the maxims of 
quality are more important than maxims of the other categories, since the latter can only 
come into play after the maxims of quality have been satisfied. The general advice to 'try to 
make your contribution one that is true' is then specified further in two maxims: 

Belief Do not say what you believe to be false. 

Evidence Do not say sarnething for which you Jack sufficient evidence. 

In [Thijsse 1992], the 'epistemic force' that is attributed to (declarative) utterances through 
the quality maxims is analyzed in terms of epistemic/doxastic logic. This analysis results in 
the following proposal for an 'utterance rule'. 

UTT x : '<p' =? BxKx'P· 

If an agent (x) utters the proposition <p (x :'<p') he should believe to know that <p, <p should be 
a true justified belief of his. An important benchmark in the epistemic analysis of the quality 
maxims are Moore's paradoxes (cf. [Moore 1912]), sentences about self-belief of the kind 

(1) p, but I do not believe that p: p 1\ •B;p 

(2) p, but I believe that not p: p 1\ B;•p 

The puzzling thing about these sentences is that although they are logically consistent ( the 
logica! translations given above have verifying models), they are absurd to utter. In [Hintikka 
1962] a similar example invalving self-knowledge is given 

(3) p, but I do not know whether p: p 1\ •K;p 1\ •K;•p. 

The peculiarity of these 'Moore-sentences' can be formally demonstrated after the applica
tion of UTT to their logica! translations: the resulting formulas are inconsistent in epis
temic / doxastic logic. 

The epistemic/doxastic system used by Thijsse is a multi-modal multi-agent system with 
logic KT4(m) for knowledge and KD4(m) for belief, where knowledge and belief are linked by 
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the axiom K 4 <p :J Ba<{> ( conesponding to the rule FK-import). In this system each of the 
above formulas can be proved to be inconsistent under UTT. As an example we show this 
for '<p but I don't believe that <p' (representing the deictic 'I' by the agent index i) : 

(<p 1\ •B;<p):;, UTT B;K;(<p 1\ •B;<p). 

1. B;K;(<p 1\ •B;<p) 

B; 
2. K; ( <p 1\ •B;<p) (K -import 1) 

3. I (K -import 2} 
4. 

~ 1\ •B;<p 

5. •B;<p 

6. K;<p (K-export 4) 
7. K;-.B;<p (K -export 5) 

K; 
8. ·B;<p (K-import 7) 
9. K;<p ( 4-import 6) 

10. ~<p (FK-import 9) 

11. B;<p (K -export 10) 
12. _l 

13. _l (D'-export 12) 

14. _l (D'-export 13) 

(To shorten this derivation we use a derived rule, D'-export3 , in the last two lines) . The 
example shows how a speaker can derive that uttering a Moore-sentence is inconsistent, given 
UTT and the rules of the epistemic/doxastic logic. 

Moare-sentences are not only strange to utter, they are also strange to hear. The analysis 
of tbe epistemic force of utterances should account for this in terrus of the effects of an 
utterance on the information state of the hearer. In general a hearer need not be convineed 
of what the speaker says, but it seems reasanabie to assume that the hearer is convineed that 
the speaker is convineed of what he says. Thijsse eaUs this effect 'epistemic transfer', and he 
extends his proposal accordingly with t he following rule descrihing this effect öf uttering a 
proposition (<p) by the speaker (x) on the hearer (y) : 

epistemic transfer x: '<p' :;, ByKyBxKx'P 

The combination of modal operators in front of <p shows that the hearer is as sure of the 
utterance of the speaker, BnKn(BsKs<p), as the speaker is of the proposition he utters, 
BsKs(<p). In other words, the rule UTT is available to the hearer and is internalized by bim. 

3 This rule allows falsehood .l (and only t his formula) to be brought unchanged from th~ subordina te to 
the main proof. Deriving it in KD requires the use of 'T' (= def .l ::> .L), t he 'always true' fori:nula, which may 
be written anywhere in a proef without further justification. 
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With respect to the Moore-sentences, the epistemic transfer-ru]e does for the hearer what 
UTT does for the speaker, it Jets the hearer derive that the utterance of these sentences by the 
speaker is inconsistent in the epistemic/doxastic logic (along with some weaker conclusions 
such as the belief that the speaker believes a falsehood (BHBsl_)). More generally, it can 
be shown that the propositions that lead to inconsistency under UTT are inconsistent under 
epistemic transfer and vice versa4 : 

BsKs'P is consistent iff BHKHBsKs'P is consistent. 

Although there is a lot more to be said about the quality maxims (we could for instanee 
go on to analyze the effects of an utterance on the hearer as perceived by the speaker), we 
close the discussion heresirree we got what we came for; a modal formalization of the effects 
of an utterance on the information state of the hearer. The epistemic/doxastic logic in which 
UTT and epistemic transfer 'live' can be accommodated in an MPTS, it is a subsystem of the 
multi-modallogic KBcD discussed in chapter 4. Herree the derivations made by speaker and 
hearer based on these rules have a counterpart in modal type theory. What remains to be 
clone is incorporating the 'modalization' of uttered propositions prescribed by the pragmatic 
rules in a procedure for adding (type theoretica! representations of) utterances to the context 
of the hearer. 

6.5. Adding declarative utterances 

In this section, the ingredients presented separately above are combined into a procedure for 
adding declarative utterances to the information state of the hearer. 

Starting from a declarative utterance of the speaker, a type theoretica! representation 
of its content can be obtained by taking what the speaker says (the senterree used) to be 
a discourse. For this discourse a DRS can be constructed, which is turned into a segment, 
r1 : entity, ... , rn : entity, Yl : ~' ... , Ym : Em, via the 'Ahn and Kolb-translation'. Rather 
than adding this segment directly to the context of the hearer (as insection 6.3}, we propose 
to add it in the 'decorated' form rf : entity , . .. , r~ : entity, Y1 : BH KH BsKsE1, ... , Ym : 
BHKHBsKsEm· The discourse referents r1, .. . , rn are marked with the agent index ofthe 
speaker, to signify that the context of the hearer was extended with these referents to ac
commodate an utterance of the speaker. Since these referents are created on account of the 
speaker, the hearer should be allowed to use them in reasoning about knowledge or beliefs of 
the speaker by means of the transferf-rule. The entries, which represent the propositional 
content of the utterance, are prefixed with the modality BH KH BsKs prescribed by the epis
temic transfer rule to account for the epistemic effect of the utterance on the hearer. In the 
general format of the previous section the rule for adding an utterance 'U' of agent (a) to 
the context (r b) of another agent ( b) looks as follows: 

AddUtt 

a:' U'=> rb, rt: entity, ... , r:: entity, Yl : BbKbBaKaEI, .. . , Ym: BbKbBaKaEm 
where TJ : entity, ... , rn : entity, Yl : E1, ... , Ym : Em is a type theoretica! representation 
of the discourse u, and TJ, ... , rn, Yb ... ' Ym are rb-fresh. 

1 Proof byElias Thijsse (personal communication). The proof suggests an even stronger equivalence: Bs Ks<p 
is consistent iff cr.HBsKs<p is consistent, where cr.H is any positive modality in Bu, KH, and their duals. 
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Before we check this procedure, we must make sure that the rule describes a valid ex
tension; that adding segments of this form to rb wil! result in a correct context. The first 
condition that ha.s to be fulfilled is that all variables occurring as subjects in the extended 
context are different. This is already guaranteed separately for rb and the segment, herree the 
proviso that the subjects of the segment are rb-fresh ensures this for the extended context. 
Secondly, the well-typedness conditions have to be fulfilled, i.e.: 

• rb, rt : entity, ... , rt : entity 1- entity : Set for all i : 1 :::; i :::; n. 

• fb, rt : entity, ... , r: : entity, Yl : BbKbBaKaEb ... , Yi : BbKbBaKaEj 1-
BbKbBaKaEj+l: Prop (for j: 1:::; j < m). 

For the well-typedness of the referents all that is needed is that the type entity(: Set) is 
declared in the context of the hearer, but this is ensured by the Vocabulary Assumption 
(cf. section 6.1). By the same assumption, the context of the bearer contains all the well
typedness information needed to derive for every entry (Ej+l) that it is of type Prop, with 
tbe exception of the well-typedness of elements and proofs occurring in it. However, the only 
elements that can occur in Ej+l are tbe referents rt, ... , r:, which are declared before Ej+l 
in the extended context. Similarly, the only proofs tbat can occur in Ej+l are Yl, ... , Ym, 

the proofs of tbe preceding entries. Since the definition of f 1 (section 6.1) shows that the 
well-typedness information needed for a modalized entry (BbKbBaKaEj+l) is the same as 
for that entry without the modality (Ej+l), we can conclude that the second well-typedness 
condition is also met. Hence the Vocabulary Assumption has the intended effect of preventing 
that the addition of an utterance goes wrong because of a difference in vocabulary between 
the speaker and the hearer. 

To see whether the AddUtt-ruie makes any sense, we start by checkinga simple example 
with respect to the inferences the hearer can make using the information he gets by adding 
an utterance of the speaker. Suppose that the hearer (H) knows that every farmer who owns 
a donkey beats it (the 'donkey-ownership rule'), fH =: f,z: (ITu: entity .ITv : entity.Ilp1: 
jarmer(u).ITp2 : donkey(v).ITpa : owns(u, v).beats(u, v)), and that the speaker (S) makes a 
speech to the effect that Pedro is a farmer, Jerry is a donkey, and that Pedro owns Jerry. 
Under AddUtt the context of tbe hearer wil! be extended with a decorated version of the 
corresponding segment TJ : entity, r2 : entity, 
Y3 : owns( r1, r2), and become: 

fH = f,z: (ITu: entity.ITv: entity.Ilp1: jarmer(u).ITp2: donkey(v).Ilp3: owns(u,v) 
.beats( u, v)), rf : entity, rf: entity, Yl : BHKHBsKs(Pedro = rf), 
Y2: BHKHBsKs(Jerry = rf),Y3: BHKHBsKsowns(r[,ri). 

On this context, the hearer cannot in any way derive that Pedro beats Jerry: he cannot 
conclude tb at he believes this himself, since he is not convineed of the informatiol). provided by 
tbe speaker. Technically, the speaker-modality Bs in front of the entries blocks all applications 
of the general 'donkey-ownership rule' known by the hearer to the information about Pedro 
and Jerry. It is also impossible for the hearer to prove that the speaker believes that Pedro 
beats Jerry, since the context contains no evidence that the speaker is aware of the donkey
ownership rule. Hence in this example the AddUtt-rule seerns cautious enough. 

Although the episternic transfer rule in [Thijsse 1992] was not intended for epistemic 
predicate logic, and the fragment of DRT covered so far does not have a construction rule for 
intensional verbs like 'to believe' or 'to know', we now try to find out what happens to the 



6.5. ADDING DECLARATIVE UTTERANCES 199 

Moare-sentences under AddUtt. As in the logica! translation of these sentences, we assume 
that the intensional verbs are represented as modal operators, i.e. in a segment representing 
'I believe that <p' the entries representing the propositional content of <p will be prefixed 
with the modal operator B; (entries are now formulas in modal predicate logic, cf. DPRED2, 
section 5.1). If a sentence like '<p, but I don't believe that <p' represented in this way is added 
to the context of the hearer using AddUtt, the hearer is able to derive the inconsistency using 
a derivation very si mi lar to the natura! deduction pro of in the previous section. Besides these 
'mono-logica!' Moore sentences, there are also variants invalving more than one person, for 
instance: 

( 4) He knows that <p but I don't believe it: Kx<p 1\ •B;<pj Kx<p 1\ •B;KxiP· 

This sentence has two readings, depending on the reference of 'it', bath of which are incon
sistent under UTT and epistemic transfer. It may seem less aberrant than the pragmatically 
anomalous sentences we have encountered before, but Thijsse remarks that a felicitous utter
ance of this sentence would involve an ironie intonation of 'know'5 . 

To see whether this analysis carries over to the predicate logica! case, we look at a variant of 
(4) where the 'he' is replaced by 'you' (the hearer), the first occurrence of <p by a universally 
quantified formula, and its second occurrence by an instantiated version of this quantified 
formula: 

(5) You know that Vx.<p(x) but I don't believe <p(a). 

In line with our previous agricultural examples, we shall take Vx<p( x) to stand for the donkey
ownership rule and add the sentence 

(6) You know that every farmer who owns a donkey beats it, but I don't believe that Pedro 
beats J erry. 

to the context of the hearer under AddUtt. Of course this can only lead to inconsistency if it 
is clearly understood by speaker and hearer that Pedro is a farmer, Jerry is a donkey, and that 
Pedro owns Jerry. Hence we assume that the speaker has said all this just befare he uttered 
(6), and add the following segment to the context of the hearer: r1 : entity, r2 : entity, Yl : 
(Pedro = TI),Y2: (Jerry = r2),y3 :farmer(TI),y4: donkey(r2),y5: owns(r1,r2),y6: KH(Ilu: 
entity.Ilv: entity.Ilp1: farmer(u).Ilp2: donkey(v).Ilp3: owns(u, v).beats(u, v)), 
Y7: •Bsbeats(rl, r2), where the latter two entries represent the propositional content of (6). 
After the application of UttAdd to this representation the context of the hearer looks like 
this: 

fH = f, rf: entity,rf: entity, 
Yl: BHKHBsKs(Pedro = rf), Y2: BHKHBsKs(Jerry = rf), 
Y3: BHKHBsKsKHfarmer(rf),Y4: BHKHBsKsdonkey(rl), 
Ys :BH KHBsKs·Bsowns(rf, rf), Y6 : BHKHBsKsKH(ITu : entity.Ilv : entity. 
Ilp1: farmer(u).Ilp2: donkey(v) .Ilp3: QWns(u, v}.beats(u, v)), 
Y7: BHKHBsKs•Bsbeats(rf,rf) . 

On this context the inconsistency of uttering (6) can be derived in much the same way as 
for the utterance of (4) (in the first reading) under epistemic transfer in epistemic/doxastic 

5 If the irony where made explicit, the utterance would he something like 'He thinks that he knows (believes 
to know) that rp but I don't believe it', which is a pragmatica.lly unproblematic sentence. 
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propositional logic. Since the derivation is both too long and too wide to reproduce in full, 
we show only the crucial middle part and use a few abbreviations. In the beginning of the 
derivation each of the statements added to r except Yl : BnKHBsKs(Pedro = rf) and 
Y2: BHKHBsKs(Jerry = rf), is brought toa'~ E ~ e IQJ~ E ~'-subordinate context by 4 
subsequent applications of K -import ( rf and rf by transferf ). In this way the modalities are 
stripped from the types and a situation arises in which there is proof that rf is a farmer, rf is 
a donkey, rf owns rf, and that the speaker does not believe that rf beats rf and the hearer 
knows the donkey-ownership rule (lines 1-7). The proof objects M3-M7 are abbreviations, 
where M; = kff(kf(kfj(k}jy;))) for iE {3,4,5,6, 7}. In the derivation we omit the agent
and operator indices of the import- and export functions. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

f H IQ)~ E IQ)~ E ~ E ~ é 1- rf : entity 
r H ~ e IQJ~ e ~ E ~ E 1- rf : entity 

f H ~ E ~ E ~ E ~ E 1- M3 : farmer( rf) 
f H IQ)~ E ~ E ~ E ~ E 1- M4 : donkey( rf) 

rH ~ E ~ e ~ E ~ E 1- Ms: owns(rf, rf) 

rH ~ é ~ E ~ E ~ E 1- M7 : ·Bsbeats(r!5 , rf) 
rH ~ E ~ E ~ E ~ E 1- M6: KH(ITu.ITv. ITp! .IIP2·ITP3·beats(u, v) ) 

fn ~ E ~ E ~ E ~ E ~ E 1- kM6: (ITu.ITv.IIpl.ITP2·IIP3·beats(u, v)) 

rH ~ é ~ E ~ E ~ E 1- t(kM6): (ITu.ITv.IIpl.ITP2·IIP3·beats(u , v)) 

rH lfliZ E ~ E ~ E ~ E 1- t(kM6)rf: (ITv.IIpl .IIP2·ITP3·beats(rf , v)) 

rH ~ E ~ E ~ é ~ E 1- t(kM6)rfrf: (IIpl .IIP2·IIP3·beats(rf , rf)) 
B =I< -R =I< • - S S S S fn [Q)H E lb!rJÏ E ~ E ib!r§ E 1- t(kM6h r2 M3: (IIp2 .IIP3·beats(r1 , r2 )) 

rH~ é~ E~ é~ é 1- t(kM6)rfrfM3M4 : (IIp3.beats(rf,rf)) 

fn~E~E~E~E 1- t(kM6)rfrfM3M4Ms:beats(rf,rf) 

rH ~ E ~ é ~ E f- k(t(kM6)rfrf M3M4Ms) : Ksbeats(rf, rf) 

rH ~ E ~ E ~ E ~ E f- 4(k(t(kM6)rfrf M3M4M5)): Ksbeats(rf, rf) 

17. fn IQJ~ é ~ E ~ é ~ é ~ E 1- ](4(k(t(kM6)rfrf M3M4Ms))): beats(rf, rf) 

rH ~ E ~ E ~ E ~ ê 1- k(](4(k(t(kM6)rfrfM3M4Ms)))): Bsbea.ts(rf,rf) 

rH IQ)~ é IQ)~ ê ~ E ~ é 1- k(](4(k(t(kM6)rfrf M3M4Ms))))M7: l_ 

18. 

19. 

From the hearer's knowledge of the donkey-ownership rule it follows that this rule holds 
(line 7-9) . Hence the rule can be used in combination with the information about Pedro 
and Jerry supplied by the speaker, to obtain a proof of beats( rf, rf) (line 9-14). Since 
this is derived inside a categorical Ks-subordinate proof, it follows by positive introspeetion 
(Ks<p :::J KsKsrp) that the speaker knows that rf beats rf (line 14-16). Knowledge implies 
belief (line 16-18), and so the hearer has pro of in the ~ E ~ e ~ E ~-subordinate context 
tha.t the speaker both believes and disbelieves that rf beats rf, a. contradiction. From· this 
contradiction the hearer can derive a number of epistemic/doxastic conclusions ranging from 
BHKnBsKsl_ (the hearer is convineed that the speaker is convineed of a contradiction) , 
through BHKHBsl_, BHBsKsl_, and BH_l_ to l_ (the information state of the hearer is 
inconsistent), depending on the combination of K-, D-, and T-export used tobringit back 
to fn. 
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6.6. Discussion 

From the last example, it may appear that AddUtt forces the hearer to be too cooperative: 
he has to add the segment corresponding to the speakers utterance even though this makes 
his context inconsistent. Of course a truly cooperative speaker would not utter a Moore
sentence ((6) is also inconsistent under UTT), but the example does point out a general 
problem. Even adding a consistent segment to a consistent hearer-context may result in an 
inconsistent context. One way to deal with this would be to add the condition to AddUtt 
that the segment may not be added if the resulting context will be inconsistent. Aside from 
technica! difficulties relating to this condition, one can imagine dialogue situations in which 
the hearer would prefer to add the segment and change his own (initia!) context to restare 
consistency (for instanee when the speaker is an expert on the topic of conversation). In the 
current MPTSs, a forma! procedure for this 'belief revision' cannot be defined, but it should 
be remarked that the propositions-as-types interpretation offers interesting prospects for such 
a formalization. 

If an agent can derive that his context is inconsistent, he will possess a proof object 
inhabiting '.i'. This term contains t he proof objects of the propositions that are jointly 
inconsistent: the 'culprits'. By removing these culprits from the context, this particular 
inconsistency will no longer be derivable. Repeating the procedure for (possible) other proofs 
of inconsistency will eventually result in a consistent context. In this procedure, identification 
and remaval of culprits is straightforward, but selection is very coarse. In general the agent 
will want to remave a set of culprits that is 'minima!' or 'optima!' in some way, rather 
than simply throw all of them out of the context. However, it is questionable whether a 
forma! procedure for belief revision should compute such a minimal choice without further 
information: it stands to reason that the hearer will invoke the help of the speaker if he has 
to revise his information state due to an utterance of the speaker. 

In another respect, the update procedure does not allow the hearer to act as 'cooperative' 
as he should. Under AddUtt every utterance of the speaker is represented type theoretically 
via a DRS. Consequently the hearer will have to add new referents to his context with every 
ut terance of the speaker, even if 'conversationally' no new referents have been introduced. 
Even though AddUtt was meant to capture the effect of a single utterance by the speaker, it 
should be possible for the hearer to identify referents 'across utterances'. In )..DPRED2 this 
identification is possible but only for referents connected to names. If a speaker mentions 
the same name in several utterances, the context of the hearer wil! contain multiple referents 
' linked' to this name. Suppose that the speaker has mentioned Pedro and Jerry separately 
to the hearer in earlier utterances, then the context of the hearer will contain entries to this 
effect and look like this: 

rH = r , ri;, Yl5 : BHKHBs Ks(Pedro = ri;), r', rfs, Yl 9 : BH KHBsKs(Jerry = rfs), r" 

If the speaker now says 'Pedro owns Jerry', the hearer will add the segment r/s, 
Y33 : BHKHBsKs(Pedro = r/s), rfs, Y34: BHKHBsKs(Jerry = rfs ), 
Y35: BHKHBsKs(owns(r/s,r/eJ ), which results in a context that has two referents linked to 
Pedro (ri; , r/5 ) and to Jerry ( rfs, rfs) . However, he can derive the identity of the 'old' and 
the 'new' referents by the properties of the (Weak) Leibniz Identity: from 
YI5 : BHKH BsKs(Pedro = ri;) and Y33 :BH KH BsKs(Pedro = r/s), a proof object (M1 ) can 
be constructed for BHKH BsKs(ri; = r/s). Similarly, YI9 : BHKHBsKs(Jerry = rf8 ) and 
Y34: BHKHBsKs(Jerry = rfs) suffice to construct an inhabitant (M2) of BHKHBsKs(rfs = 
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rl6). Since M1 and M2 prove that the old referents for Pedro and Jerry are identical to the 
new referents, the hearer can interpret the information provided by the last utterance of the 
speaker as applying to the old referents: BHKHBsKs(owns(r~,rf8)). 

Due to the interpretation of narnes as set-variables and links through Leibniz Identity, 
)..DPRED2 is able to represent the identification of referents linked to the same name. In a 
similar manner as for names, several referents for an indeterminate expression like 'a farmer' 
could be introduced into the hearer's context by a series of speaker utterances, but MPTSs 
have no forma! means to express the identification of such referents. It would require the 
substitutions of referents from the hearer-context for referents in the segment, as well as the 
substitution ofproofs (occurring in, or derivable on the hearers context) for the proofvariables 
in the segment (cf. [Ahn and Kolb 1990]). 

More in gener al, this form of ancboring is likely to he of importance in formalizing the effect 
of other speech acts, like questions, on the information state of the hearer. In the propositions
as-types perspective, a natura! view of questions is to see them as requests for the hearer to 
provide (part of) a proof object for a type given by the speaker. What information the hearer 
has to supply about this proof object depends on the type of question: fora 'Yes/No'-question 
he would have to check whether an inhabitant of the given type can he derived on his context, 
whereas for a 'Why'-question, he would have to coromunicate the entire proof object (within 
the limitsof what is cooperative). 

Finally, a serieus dialogue formalization should include a natura! language representation 
that makes better use of the expressivity of type theory. We have used DRT in combination 
with the Ahn and Kolb-translation because it provides us with ready-made representations of 
the kind we need, but for all its merits, DRT has one important drawback: it is untyped. The 
universe of discourse is totally unstructured; allinformation a bout referents must he expressed 
via predication. If the discourse calls for the introduetion of, say, a donkey, the translation 
wil! yield a segment containing the statements r; : entity,yj : donkey(r;), whereas type 
theoretically we could have expressed this more directly by means of the set-type 'donkey': 
r; : donkey . Using the expressivity of type theory, a more direct correspondence between 
type theoretica! representation and syntactic structure of natura! language sentences can be 
achieved, e.g. representing nouns by set-types and adjectives as predicates over these types. 

Given such a typed discourse representation, the indexing of the referents with the agent
index of the speaker by AddUtt is of more importance than it has been up to now. In view 
of the discussion of the transjer3-rule in section 6.1, the reader may have expected to see 
examples in which the hearer instantiates a universa! proposition uttered by the speaker 
(BHKHBsKs'Vx.<p(x)) with a referent (r;) that is not familiar to the speaker, incorrectly 
obtaining a proof of BHKHBsKs<p(r;). However, due to the untyped referentsof DRT, most 
universa! quantifications in the segments are of the form BH KH BsKs(Vx.<p(x) ::> 'if! (x )), where 
the predicate <p selects the entities that are donkeys, farmers , etc. For such entries the hearer 
cannot derive that BHKHBsKs'if!(r;) without a proof of BHKHBsKs<p(r;), in the preserree 
of which it would be difficult to maintain that the speaker is not familiar with r;. 



Chapter 7 

Con.cluding remarks 

In this final chapter we summarize our results, comment on some related work and indicate 
directions for future research. 

7.1. Results 

In the preface of this monograph, we argued that type theoretica! contexts are suitable for the 
representation of information states, but that type theory suffers from 'rigidity' (all informa
tion represented in a context has the same degree of certainty) and 'loneliness' (it represents 
the epistemic progress of a sole agent) . Our stated aim was to do sarnething about this 
by incorporating intensional reasoning in type theory, through a propositions-as-types in
terpretation of rnadal logic. We have succeeded in giving a general formulation of modal 
type systems, and in the interpretation of various rnadal logies in these systems. The results 
are listed below, divided between the two main ingredients of the interpretation: Fitch-style 
natura] deduction and Modal Pure Type Systems. 

Fitch-style modal deduction 

Fitch-style rnadal deduction makes use of strict subordinate proofs, in which only formulas 
of a certain form may be 'imported', and from which formulas may only be 'exported' under 
certain conditions. The natura! deduction system for the basic modallogic K (DPROPfitch, 
section 1.3.3) can trivially be extended to accommodate any stronger rnadal logic by simply 
allowing the additional modal axioms to be written anywhere in a natura! deduction proof 
without further justification ('extension by axioms') . A more interesting way of strengthelling 
the system is to vary the rules for the import and export of formulas into and out of a strict 
subordinate pro of ( 'extension by niles') . For each of the standard rood al axioms 4, 5, B , D , 
and T, a single import or export rule is given that characterizes it. These rules are used to 
extend the deduction system for K with any combination of 4, 5, B, D, and Tin a modular 
way (section 1.1.4). 

Although the general scope of the extension by rules is unknown ( cf. the discussion in 
section 1.1.5), this methad can successfully be applied to logies with multiple agents and 
multiple rnadalities by indexing the subordinate proofs with respect to agents and rnadal 
operators. In chapter 4, we give a natura! deduction system for a logic KBcD of [Kraus 
and Lehmann 1986]. This system combines a logic for knowledge (KT45) with a logic for 
belief (KD45), and the 'group modalities' 'common knowledge' ( Ccp) and 'common belief' 

203 
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(D<p). The interaction between knowledge and belief is given by the axioms Ka'P :::) Ba'P 
and Ba'P :::) KaBa<p; similar interactions exist between common knowledge and knowledge, 
and between common belief and belief. Apart from indexing the rules mentioned above, the 
deductive characterization of this logic requires two additional import rules to deal with the 
interactions (section 4.1.2). The only aspect of KBcv that cannot be captured by 'rules' 
is the introduetion of the group modalities as expressed in the 'induction axioms'. This is 
not surprising, since both modalities are an abbreviation of an infinite conjunction of modal 
statements (e.g. C<p =def E<p 1\ EE<p 1\ EEE<p 1\ .. . , where E<p means 'every agent knows 
<p'). Nevertheless, this extension to multi-agent and multi-modal deduction is satisfactory: 
by generalizing the additional import rules to cases with three modal operators, we find a 
deductive characterization of the classes of 'inspection formulas' given model theoretically in 
[Van der Hoek 1992]. 

In modal predicate logic, there is less conformity between Fitch-style deduction and model 
theory. The standard model theoretica! account of the interaction between modality ('D') and 
quantification ('V') in terms of the relation between the domains of a world and its accessible 
worlds (cf. section 5.2.1), doesnotcarry over to natura! deduction: an extension by rules can 
only be found for one of the two axioms expressing this interaction. This so-called 'Converse 
Barcan Formula'(D\:ix E D.<p(x) :::) Vx E D.D<p(x)) becomes provable when variables that 
are declared in the main proof may be used in the strict subordinate proof, a rule which is 
already used (implicitly) in [Fitch 1952]. In the type system corresponding to the natura! 
deduction system DPRED2 (section 5.1.1), this rule fortheuse of variables falls out naturally 
as 'transjer3'. The other interaction principle, the 'Barcan formula' (\ix E D.D<p(x) :J 0\:ix E 
D.<p(x)), can only bedealt with through 'extension by axiom', both in the natura! deduction 
system and the type system. 

Modal Pure Type Systems 

The Modal Pure Type Systems presented in this thesis are a generalization of the well-known 
Pure Type Systems, for which the propositions-as-types interpretation is well-understood. 
The 'Logic Cube' is a group of PTSs specially proposed for this purpose, in which propositional 
and predicate logies ranging from minimal propositional logic to higher order intuitionistic 
predicate logic can be interpreted. In analogy wedefine a 'Modal Logic Cube' (section 1.2.4), 
and prove that the MPTSs in this cube retain the desirabie meta theoretica! properties of 
PTSs: Unicity of Types, Subject Reduction, Strong Normalization, and Church Rosser (chap
ter 3). In chapter 2, we give a detailed account of the interpretation of the (second order) 
propositional modallogic DPROP2 in the MPTS )..DPROP2 along the lines of [Geuvers 1993]. 
Mappings are defined both from natura! deduction proofs to lambda terms (the '!'-mapping), 
and vice versa (the '?'-mapping). We prove the soundnessof these mappings (section 2.3 and 
2.4 respectively), and show that the terms are invariant under composition of the mappings 
((M7)! = M). For the natura! deduction proofs, invariance is proved for a subclass of the 
proofs of DPROP2, modulo some innocent duplication of formulas: for an A-OK proof ~' 
(~!f =doubles ~. These mappings and the proofs of their propertiescan easily be adaptèd to 
cope with the multi-agent multi-modallogics in chapter 4. In section 5.1, we indicate what 
has to be clone to interpret the modal predicate logic DPRED2 in )..DPRED2. 

Since these results imply partial isomorphism between natura! deduction proofs and 
lambda terms, 'modal' proof reductions can be formalized in )..DPROP2. In scction 2.6, we 
define a number of annihilation-rules which remave certain combinations of modal functions 
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occurring in terms (like kk, 4t, and ts). The effect of these rules is the remaval of 'detours' 
(consisting of pointless combinations of import and export steps) from a rnadal deduction 
proof. In section 3.5, these annihilations are shown to be well-behaved in combination with 
,13-reduction; Subject Reduction, Strong Normalization, and Churcb Rosser are proved. 

In chapter 6, we did a finger exercise in the type theoretica! formalization of commu
nication to show how MPTSs fit in with existing ideas on this subject, like tbose in [Ahn 
1992]. The rule AddUtt was proposed, giving a procedure for the 'update' of the information 
state of a hearer-agent by a declarative utterance of a speaker-agent, in the MPTS >.DPRED2. 
Although the proposed ruleis too naïve, it does show that existing work in epistemic pragmat
ics (i.e. [Thijsse 1992]) can be brought to type theory using the developed modal framework. 
The discussion of this rule (section 6.6) indicates that a more serious type theoretica! account 
of communication may require further technica! development of the non-modal part of the 
MPTSs. 

Our results show that intensional reasoning can be incorporated in type theory. The for
ma! rigour of the propositions-as-types interpretation guarantees that intensional intuitions 
formalized in modal logies are transferred reliably to the MPTS, and the meta-theoretical 
properties ensure that reasoning in these systems is 'safe'. However, intheir present farmu
lation MPTSs may not be very practical for otber purposes than proving meta theoretica! 
properties. Readers that are not type theoreticians have probably already been frightened by 
the amount of syntax needed for even the simplest of examples in this thesis. They may rest 
assured: now that the theoretica! foundations have been laid, all kinds of 'sugaring' (abbrevi
ations, derived rules etc.) can be introduced to make MPTSs easier to handle for particular 
applications. 

7.2. Related work 

Naturally our work was influenced by that of many others, but since we have accounted for 
these influences in the pertinent places throughout the thesis, we want to use this section to 
comment on some recent work on the interpretation of modallogics in typed calculi. 

An approach completely different from ours can be found in [De Queiroz and Gabbay 
1995], where a functional Curry-Howard interpretation of modallogics in Labelled Deduction 
Systems1 is proposed. The basic idea is to regard the modal operator 'O' as a second order 
universa! quantification: DA = liW.A( W). Different notionsof modality (modallogics) are 
then characterised by variations in the natura! deduction rule for V( W)-introduction, which 
translate in the Labelled Deductive Systems as conditions on lambda abstraction over world 
variables. These variations in 'labelling discipline' should function as the proof-theoretical 
counterpart to the various properties of the accessibility relation in modal model theory. The 
examples giving labelled versionsof standard rnadallogies (K, KT, KD, KB, KT4, KT5) 
show that the labelling disciplines are not exact counterparts of the accessibility relation, e.g. 
for the logic KT the charaderistic axiom D(DA :::l A) insteadof (DA :::l A) is obtained. Still 
the view presented in this paper is an interesting one, it promises a uniform perspective for 
the treatment of a wide range of modal logies, both normal and non-normaL 

In [Martini and Masini 1993], a typed À-calculus for the positive (0, /\, :::l) fragments 
of K, KT, K4, and KT4, is obtained by means of so-called '2-sequent calculi' for these 
logies. 2-sequents are a two dimensional generalization of Gentzen-sequents, allowing formulas 

1See [Gabbay 1993]. 
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(sequents) to occur at different 'levels'. The function of these levels is comparable to that 
of modal subordinate proofs in Fitch-style deduction: formulas can only change their level 
by means of the 'modal rules', 0-introduction and 0-elimination. By adding terms to the 
formulas in the 2-sequent calculus, Martini and Masini define a typed >.-calculus for the 
positive fragment of KT4. In this calculus, the operations on the terms are as usual for ':J' 
(>.-abstraction and application) and '/\' (pairing and projection), and D-introduction and -
elimination respectively apply functions gen (for generalization) and ungen to the terms. The 
D-introduction rule and gen correspond to K-export and k in MPTSs. The 0-elimination 
rule and ungen function as K-import a.nd k, 4-import and 4, or a combination of K-import 
foliowed by T-export and t(k .. . ), dependent on the 'level-conditions'. For this calculus they 
prove Church-Rosser and Strong Normalization under combined ,8-reduction and ungen(gen)
reduction, which is an annihilation like kk-reduction. 

The only work we are aware of in which the interpretation of modal logic is approached 
via Fitch-style modal natura! deduction, was clone by A lex Simpson. In an unpublished paper 
(personal communication 1991), he independently proposes a propositions-as-types interpre
tation for the positive fragment of intuitionistic K . Given the similarity of our approaches, 
it is not surprising that bis typed calculus looks a lot like ours, with gener<).lized contexts, 
import and export functions, and equivalents of kk- and kk-reduction. ' 

7.3. Directions for future research 

Once two forma! frameworks have been connected, like modal logic and type theory in this 
thesis, a lot of further work immediately suggests itself in asking in one framework ( a.nalogons 
of) questions living in the other. We concentrate bere on two 'lines of questioning' that are of 
interest for type theoretica! knowledge representation: weaker modallogics, and temporality. 

Weaker modal logies 

All modal systems that we have treated thus far are classica/ propositional or predicate logies, 
extended with a variety of modal rul es and axioms. Modal systems basedon weaker underlying 
logies are currently being explored in the setting of knowledge representation, giving rise 
to formalisms like partial modal logic ([Thijsse 1992]) and constructive partial modal logic 
([Jaspars 1994)). The main motivation for this move is that the epistemic properties of agents 
that arise from classica] modal logic are not always realistic in view of human reasoning. 
Although rood al type theory is insome respects less sensitive to these mismatches than modal 
model theory, it could benefit from the richer spectrum of epistemic modalities in these weaker 
logies. The so-called 'substructural' modallogics are basedon fragments of intuitionistic logic. 
Their interpretation in modal type theory would be of interest with respect to applications in 
linguistics, i.e. categorial grammar (see [Van Benthem 1991b], [Morill 1990], [Morill 1992]). 

In MPTSs the 'logic rules' are the original PTS-rules, acting on generaiized contexts. 
These rules can he varied independently of the import/export-rules and the transfer-mies, 
and it is this variation that creates the Modal Logic Cube. Further variations might allow us 
to interpret intuitionistic and substructural modal logics in MPTSs, as can he seen from the 
following overview. 

Like the PTSs in the Logic Cube, MPTSs are basically intuitionistic systems: we had to 
add the axiom of double negation elimina tion to interpret the standard normal modallogics. 
Hence by removing the logica! axiom(s) (along with the transferax-rule) , we ·should obtain 
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rnadal type systems in which intuitionistic modallogics can be interpreted. Unfortunately, this 
is only half the story. >-.DPROP2 without the logica! axioms corresponds to the intuitionistic 
logic HKD ([Bozié and Dosen 1984]). This logic is a true subsystem of the logic K, and 
bas only one rnadal operator: '0'. In intuitionistic modallogic, the operator ' <>' can not be 
defined in termsof 'D'. Possibility bas to bedealt with independently, [Bozié and Dosen 1984] 
gives separate axiomatizations and mode is for an intuitionistic <>-logic ( HK <>) and a system 
with both rnadalities (HK<>D). Interpreting these logies requires a (preferably Fitch-style) 
natmal deduction account of intuitionistic possibility, which in spite of recent developments2 

does not seem to be available at the moment. 
There exist epistemically interesting intuitionistic logies in wh.ich the modal operators are 

duals (cf. [Jaspars 1994]). In these so-called 'Nelson logies', duality between 'O ' and '<>' is 
restored by introducing an extra negation in intuitionistic logic, under which the operators 
are interdefinable. However, for these logies there are currently also no natura! deduction 
systems that would make their interpretation straightforward. 

In the PTS-framework, little work bas been done on the interpretation of substructural 
logies. Nevertheless, there is quite a lot of work on lambda calculi and term calculi for these 
logies. Some of the ideas developed therein may be applicable to (M)PTSs. In [De Queiroz 
and Gabbay 1992] an extension of the propositions-as-types interpretation to substructural 
logies is proposed, based on conditions on lambda abstraction. Abstraction corresponds to :)
intro, and in substructurallogics there are various restrictions on this operation. For instanee 
in relevance-logic ([Anderson and Belnap 1975]), a :::)-introduction may not be 'vacuous'; the 
hypothesis of a subordinate proof must be used in that subordinate proof befare it may be 
discharged. The corresponding condition on lambda abstraction is that the abstracted variabie 
must occur in the body of the abstraction. In (M)PTSs, this restrietion would become a side 
condition on the abstraction rule: 

r, x :A 1- b: B r 1- (IIx : A.B) : s .ff (b) 
---'-----..,-------,--~~----.,.---'-- I x E F V 

r 1- (>-.x: A.b) : (IIx: A.B) 

Other substructural logies can be characterized by similar restrictions on abstraction. Al
though a number of side conditions given in [De Queiroz and Gabbay 1992] are not particu
larly new to lambda calculus (for the relevanee condition see [Church 1951]), their effect bas 
yet to be stuclied systematically in the PTS-framework. 

Another approach is taken in [Wansing 1993], where a propositions-as-types interpreta
tion via sequent calculi is given for a whole family of substructural logies that are part of 
intuitionistic propositional logic. At the core of this family of logies lies a 'split ' notion of 
implication: a distinction is made between ' left-searching' and ' right-searching' implication. 
These implications can only look for their argument on one side in the sequents in which they 
occur (A/B,A =:? B but A,A/B #- B). In the propositions-as-types interpretation, these 
directed implications are matebed by 'left-looking' and 'right-looking' larnbclas (>-. 1, )..r). 

Temporality 

Another direction in which the MPTS-framework should be extended has to do with tem
porality. In the information state of an agent reasoning about a changing domain, beliefs 
that were initially correct can become false, and vice versa. It is difficult to deal with such 

2In !Simpson 1993] proof systems are given for a family of intuitionistic modallogics, but these are hybrid 
systems: in the proofs both formulas and relational conditions on worlds (like 'xRy') can occur as items. 
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(non-monotonie) phenomena without some type theoretica! notion of time. The same holds 
for the type theoretica! representation of 'tense and aspect ' in natura! language. 

In the current MPTSs, we can interpret the simple Tense Logic of [Prior 1967]. This logic 
has operators G (it is always Going to be the case tha.t), H (it a.lways Has been the case 
that), P (somewhere in the Past, it was the case that), and F (somewhere in the Future, it 
will be the case that). It cao basically be handled as a 'doubled version' of the normal modal 
logic K with two copies of the 'D'- and '<>'-operators (with one copy looking forward, and 
the other backward in time) . 

Clearly, this is not suflicient for the applications we are interested in. One possibility to 
increase the potential for temporal reasoning in MPTSs would be to try to accommodate 
(some of the) more sophisticated temporal operators that have been developed since [Prior 
1967] ( cf. [Van Benthem 1983]). A more intrinsically type theoretica! approach would be to 
'decorate' pro of objects with temporal information, hence giving proofs a 'limited shelf life' . 
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Summary 

Typed lambda calculi are currently finding an application in knowledge representation. Cen
tral to this application is the idea that the information state of an agent (animate or inani
mate) can be modelled by means of a type theoretica! context. In this view, the assertions 
about the world that make up an agent's information state are represented as type theoretica! 
statements (A : B), where the type (B) of a statement corresponds to an assertion of the 
agent and the term (A) inhabiting the type corresponds to the 'justification' or 'evidence' the 
agent has for this assertion. The development of an agent's information state is modelled by 
the sequentia! construction of a context. 

However, type theory has basic limitations that have to bedealt with wheli we apply it to 
knowledge representation. It is too 'rigid' in the sense that all represented information is of the 
same certainty; we cannot, for instance, discern between things an agent 'knows' and things 
he merely 'believes'. Moreover, type theory is too 'lonely'; it Jets us represent the evolving 
information state of a single agent, but not the (joint) development of the information states 
of a group of agents or the reasoning of agents about the information states of other agents. 

In logic, these limitations have been 'overcome' by the development of modal logic. The 
various 'epistemic attitudes' an agent can have towards a proposition (such ·as knowing it , 
or believing it) are dealt with by extending the language with modal operators. Using this 
extended language, logies can he formulated which formalize the reasoning of agents about 
their own information state as wel! as the information states of others. It is the goal of this 
thesis to extend type theory in accordance with this approach to intensional reasoning, by 
providing a class of 'modal' type systems in which a ' propositions-as-types'-interpretation of 
these modal logies can he given. 

The framework of our research is formed by the so-called Pure Type Systems (PTSs) 
(see [Barendregt 1992]), a large class of uniformly described type systems whose relation 
to non-modal logic is well-understood. We generalize a number of these systems to 'Modal 
Pure Type Systems' (MPTSs), by extending the PTS-language with rnadal operators, adding 
structure to the contexts, and providing rules that use this additional structure to handle 
modal operators ( chapter 1). 

To show that these systems can indeed aceomadate intensional reasoning, we give a de
tailed account of the propositions-as-types interpretation of a family of normal rnadal logies 
in the MPTS >..DPROP2. Mappings are defined from the Fitch-style natura! deduction proofs 
in these logies to termsin >..DPROP2 and vice versa. We prove soundness forthese mappings 
as wel! as some invariance results fortheir composition (chapter 2). That the MPTSs them
selves are well-behaved, is shown by proving that they inherit all desirabie meta theoretica! 
properties of the PTSs ( chapter 3). 

After settling these foundational issues for some standard logies with one agent and one 
modality, we demonstrate how MPTSs can be extended to deal with multiple agents and 
multiple (related) modalities, using the logic KEen of [Kraus and Lehmann 1986] as an 
example (chapter 4). In addition we investigate another strengthening: the interpretation of 
rnadal predicate logies in the MPTS >..DPRED2 (chapter 5) . Finally, we indicate how the 
rnadal type systems could be put to work in the formalization of communication, presenting 
a finger exercise which brings tagether existing work on the type theoretica! representation of 
naturallanguage ([Ahn and Kolb 1990]) with existing workon epistemic pragmatics ([Thijsse 
1992]) inside the MPTS-framework (chapter 6). 

216 



Samenvatting 

Momenteel beginnen getypeerde >.-calculi toepassing te vinden in de kennisrepresentatie. Cen
traal in deze toepassing staat het idee dat de informatietoestand van een agent (mens of ma
chine) gemodelleerd kan worden met behulp van een typentheoretische context. De asserties 
over de wereld waaruit de informatietoestand bestaat worden in deze optiek gerepresenteerd 
als typentheoretische uitspraken (A : B) , waarvan het type (B) carespondeert met een as
sertie van de agent en de bijbehorende term (A) met de "evidentie" die de agent voor deze 
assertie heeft. De ontwikkeling van de informatietoestand van een agent wordt opgevat als 
de (sequentiële) constructie van een context. 

Typentheorie heeft echter een aantal inherente beperkingen die moeten worden opgeheven 
als we die willen toepassen voor kennisrepresentatie. Typentheorie is te 'star' in de zin dat 
alle gerepresenteerde informatie dezelfde zekerheidsgraad heeft. Zo is het bijvoorbeeld niet 
mogelijk om onderscheid te maken tussen dingen die de agent weet en dingen die hij slechts 
gelooft. Verder is typentheorie te "eenzaam" ; het is mogelijk om de ontwikkeling van de 
informatietoestand van één agent te representeren, maar niet de (gezamenlijke) ontwikkeling 
van de informatietoestanden van een groep van agenten, of het redeneren van agenten over 
de informatietoestanden van andere agenten. 

In de logica zijn deze beperkingen "opgeheven" door de ontwikkeling van de modale log
ica. De verschillende epistemische attitudes die een agent kan hebben ten opzichte van een 
propositie (zoals "weten" of" geloven"), worden uitgedrukt met behulp van modale opera
toren. In de aldus uitgebreide taal kunnen logica's geformuleerd worden die het redeneren 
van agenten over hun eigen informatietoestand en die van anderen formaliseren. Doel van dit 
proefschrift is om typentheorie uit te breiden met deze benadering van intensioneel redeneren, 
door een klasse van "modale" getypeerde >.-calculi te ontwikkelen waarin deze modale logica's 
op een "propositions-as-types" -manier geïnterpreteerd kunnen worden. 

Het raamwerk van ons onderzoek wordt gevormd door de zogeheten "Pure Type Systems" 
(PTS-en), zie [Barendregt 1992], een grote klasse van uniform te beschrijven getypeerde >.
calculi waarvan de relatie tot niet-modale logica goed begrepen is. Wij generaliseren een aantal 
van deze systemen tot "Modal Pure Type Systems" (MPTSs), door de taal van deze PTS-en 
uit te breiden met modale operatoren, hun contexten van meer structuur te voorzien en het 
gebruik van de operatoren te beregelen met behulp van deze extra structuur (hoofdstuk 1) . 

Om te laten zien dat deze systemen inderdaad intensioneel redeneren aankunnen, geven we 
een gedetailleerde uiteenzetting van de propositions-as-types-interpretatie van een familie van 
normale modale logica's in het MPTS >.DPROP2. Er worden afbeeldingen gedefinieerd van 
de natuurlijke-deductiebewijzen (in Fitch-stijl) in deze logica's naar de termen van >.DPROP2 
en vice versa. We bewijzen de gezondheid van deze afbeeldingen alsmede enige invariantiere
sultaten voor hun compositie (hoofdstuk 2). Dat de MPTSen zelf nette formalismen zijn, 
wordt aangetoond door te bewijzen dat ze alle wenselijke meta-theoretische eigenschappen 
van PTSen behouden. 

Nadat aldus een formeel fundament is gelegd voor een aantal standaardlogica's met één 
agent en één modale operator, laten we zien hoe MPTSs uitgebreid kunnen worden voor sys
temen met meer agenten en meer (gerelateerde) modaliteiten (hoofdstuk 4). Hierbij wordt 
de logica KBcv uit [Kraus and Lehmann 1986] als voorbeeld gebruikt. Daarnaast onder
zoeken we een andere versterking: de interpretatie van modale predikaatlogica in het MPTS 
>.DPRED2 {hoofdstuk 5). Tenslotte geven we aan hoe MPTSen gebruikt kunnen worden 
in het formaliseren van communicatie door, bij wijze van vingeroefening, bestaand werk op 
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het gebied van de interpretatie van natuurlijke taal in typentheorie ([Ahn and Kolb 1990]) 
samen te brengen in het MPTS-raamwerk met bestaand werk op het gebied van epistemische 
pragmatiek ([Thijsse 1992]). 
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Stellingen 
behorende bij het proefschrift 

Coming to Terms with Modal Logic 
van 

Tijn Borghuis 

1. Een "propositions-as-types"-interpretatie van modale logica in getypeerde .X-calculus 
via de predikaatlogische vertaling van de modale operator '0' (Op= Vv(wRv _, Pv)) 
is technisch mogelijk, maar leidt tot een complex formalisme dat geen verder inzicht 
verschaft in modale bewijzen. 

2. Thssen de in [1] beschreven klassen van 'inspcction formulas' en 'trust formulas' bestaat 
een verband (zie sectie 4.1.2. van dit proefschrift). 

[1] Van der Hoek, Wiebe, Modalities foT nn.wming about knowledge and quantities, 
Ph.D. thesis, Free University of Amsterdam, Amsterdam. 

3. De regel voor "epistemische overdracht", gegeven in [1], die uitdrukt dat de hoorder 
overtuigd is dat spreker overtuigd is van wat. hij zegt, geformaliseerd als BhJ(hBsKscp, 
garandeert tevens dat hoorder en spreker "wederzijds overtuigd" zijn van wat de spreker 
zegt, wat geformaliseerd kan worden als: (B,.K,.B,K.tcp 1\ B.K.(BhJ(hBsl<,)mcp geldt 
voor allen, mE IN waarbij m ~ 0 en n ~ 1 (met dank aan Elias Thijsse) . 

[1] Thijsse, Elias G.C., Partiallogic and knowledge representation. Ph.D. thesis, Til
burg University, Eburon, Delft 1992. 

4. De in dit proefschrift (hoofdstuk 4) beschreven technieken voor de generalisatie van 
modale natuurlijke-deductiesystemen naar meer agenten en modaliteiten kunnen wor
den toegepast om de in [1] beschreven sequentcalculi voor normale modale logica's ge
schikt te maken voor systemen met meer agenten en modaliteiten. Daartoe dient men 
het structureel connectief "•", dat in deze calculi de rol vervult van de stricte subbe
wijzen in Fiteh-stijl modale natuurlijke-deduct.icbcwijzen ([2]), te indiceren naar agent 
respectievelijk operator. 

[1] Wansing, Heinrich, Sequent calculi jo1· nonna! modn/ logies . Institute for Logic, 
Language and Information (ILLC), ILLC Pn'Jlltblicat.ion Series LP-92-12, Amster
dam 1992. 

[2] Wansing, Heinrich, A full-circle thcorem for simple tense logic. In Advances in 
intensional /ogic, De Rijke, Maarten (cd.), Klmver Academie Publishers 1995. 

5. Het is geen toeval dat in [1] de consequent volgehouden dubbele formulering van logica's 
met behulp van semantische tableaus en Fit.ch-st.ijl natumlijke deductie ophoudt bij 
de modale predikaatlogica's met veranderende domeinen: er bestaat geen acceptabele 
natuurlijke-deductieregel voor de 13arcan-forrnule (zie IIOofdstuk 5 van dit proefschrift), 
terwijl er wel een tableauregel voor is. 



[1] Fitting, Melvin, Proof methods for modal and intuitionistic logies . Reidel Publis
hing Company, Dordrecht 1983. 

6. Of natuurlijke deductiesystemen met bewijzen in boomvorm (Prawitz-stijl) te _prefereren 
zijn boven natuurlijke deductie systemen met lineaire bewijzen (Fitch-stijl) hangt af van 
de beoogde toepassing: lineaire systemen zijn geschikter voor het leveren van bewijzen 
in het systeem, boombewijzen voor het leveren van bewijzen over het systeem. 

7. Het in [1] beschreven deontisch-modaal-temporele systeem beschrijft het verband tussen 
"moeten" (deontische operator 0) en "kunnen" (modale operator <>) nièt fijnmazig 
genoeg voor het representeren van de in de praktijk gehanteerde redeneerwijze: "Als 
het niet kan zoals het moet, dan moet het maar zoals het kan". 

[1] Van Eek, J .A. A system of temporally rclat.ive rnadal and deontic predicate logic 
and its philosophical applications. In Log·ique et Analyse 100, 1982. 

8. Daar een muziekstuk zijn voleinding vindt in de stilte na de laatste noot, dient de huidige 
applauspraktijk in de klassieke muziek (een staande ovatie tijdens het slotakkoord) 
stante pede gewijzigd. te worden. 

9. Uit het werk van de grote strategen Carl von Clausewitz ([1]) en Rinus Miehels ([2]) 
volgt logischerwijs de stelling: 

Voetbal is de voortzetting van politiek met andere middelen . 

[1] Clausewitz, C. von, Vom Kriege, 1846. 

[2] Zie het lemma "Michels, Marinus Hendrikus Jacobus" in de Gmte Winkier Prins 
Encyclopedie, 9e geheel herziene druk, Els<~vi<'r Hl!JO . 

10. Gezien het tempo waarin men in het house-grmc de popgeschiedenis opnieuw doorloopt 
op zoek naar samples, kan het nooit lang meer duren voor de eerste plaat uitkomt die 
gebaseerd is op een sample van zichzelf. 

11 . Een ernstige omissie in gidsjes Nederlands voor op reis (zoals [1]) en cursusboeken 
Nederlands voor anderstaligen (zoals [2]) is (l;.tt, gcm aandacht wordt geschonken aan de 
vraag: "Wilt. u zegeltjes?" . 

[1] Collins Dutch Phrase Finder, Harper Collins 1994. 

[2] Gilbert, Lesley and Quist, Gerdi, Teach Yourself Dutch, a complete course for 
beginners, Hadder & Stoughton, London 1994. 
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