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Summary

Quality of life can be improved if a diseased heart valve is replaced by a prosthetic
device. Although diseases of any of the heart valves can compromise health, diseases
of the aortic valve occur most frequently and result in more dire consequences, which
therefore puts greater importance on the function of this valve. The natural aortic valve
is unique in its accomplishment, since no prosthetic device yet can serve the function
with the same efficiency and durability. Studies on medical complications in currently
used substitutes involve many expensive and time-consuming experiments. Moreover,
the development of improved prostheses or new concepts is still largely based on em-
pirical knowledge and understanding. The application of numerical techniques in valve
modeling has mainly been focused on the valve structure rather than considering the
fluid-structure interaction. This complex interaction between the blood and the valve
leaflets, aortic root and wall is essential in the response of the system to its physiolog-
ical loading. Consequently, clinical assessment of a valve prosthesis requires that both
mechanical and hemodynamical aspects need to be evaluated.

A fluid-structure interaction model, based on the Galerkin finite element method, is
developed which is used to study the effect of fluid-structure interaction, leaflet fiber-
reinforcement and aortic root compliance on the systolic aortic valve functioning. In
general, the model can be used to resolve problems associated with failure and medical
complications of diseased valves and currently used prosthetic devices.

Modeling of such a fluid-structure interaction system is complicated by the large
but finite motion of the thin leaflets through the computational fluid domain. The
mathematical formulation of the equation of motion for the fluid is most conveniently
described with respect to an Eulerian reference frame. This is, however, incompati-
ble with the Lagrangian formulation, which is more appropriate to describe the struc-
ture. Conventional mesh update strategies (e.g. remeshing and arbitrary Lagrange-
Euler techniques) to accommodate the fluid domain for the leaflet motion are, for their
limitations, not adopted in this study. Instead, a Lagrange multiplier based fictitious
domain method is used to describe the interaction with the valve leaflets. With this
method, the different mathematical descriptions for the fluid and structure can be main-
tained, allowing convenient classical formulations for each of these phases. Moreover,
the fluid mesh is not altered or interrupted by the presence of the immersed domain,
which therefore preserves its quality. This method is validated experimentally for the
two-dimensional case and has proven to be applicable for describing the blood-leaflet
interaction. The interaction between the blood and the compliant aortic root and wall
is, on the other hand, described with the commonly adopted arbitrary Lagrange-Euler
method, for which a proper fluid mesh quality is maintained throughout the analysis.

ix



x Summary

The geometrical properties of the valve model are taken from available literature on
the natural valve and synthetic prototype valve prostheses. The fluid is modeled as a
Newtonian fluid with blood analog characteristics. The non-linear, anisotropic material
behaviour of the leaflets is incorporated by applying fiber-reinforcement resulting in a
stress-strain relation, which is physiologically representative. The material behaviour of
the aortic root and wall is assumed to be linear elastic and isotropic. Flow and pressure
variables are used to feed the model, giving a characteristic Reynolds and Strouhal
number of 1500 and 0.12, respectively.

The system is solved in a fully coupled manner leading to a simultaneously obtained
solution of the fluid and structure unknowns. Consequently, these unknowns are di-
rectly in equilibrium obviating the need for additional iteration schemes to couple the
two phases. The fluid mesh is accommodated explicitly for the moving aortic root and
wall and a Newton-Raphson iteration process is used to arrive at an equilibrium state of
the total, non-linear system, i.e. blood, leaflets and aortic root and wall. The BiCGStab
iterative solver is adopted to solve the linearized equations using an appropriate pre-
conditioning matrix based on an incomplete LU factorization.

The application of leaflet fiber-reinforcement substantially improves the mechanical
properties of the structure, while the fluid dynamical performance is preserved. Aortic
root compliance appears to be important for the valve opening configurations and signif-
icantly reduces leaflet bending deformations. The combination of the fictitious domain
method for blood-leaflet interaction and arbitrary Lagrange-Euler method for blood-
wall interaction successfully describes systolic valve functioning. Applying the adopted
method to the diastolic phase remains a problem as the number of blood-leaflet cou-
pling constraints must be increased to prevent flow through the leaflet structure. This
involves application of additional Lagrange multipliers, which affects the solvability
of the system matrix. However, since the fluid dynamics are less significantly present
during this phase, the diastolic valve mechanics can be analyzed with appropriate, pre-
viously developed, structural models.

In conclusion the model presented in this thesis is useful as an analysis tool to im-
prove existing valve prosthesis and to develop new prosthetic valve concepts. Moreover,
within the clinical practice the model can, in the near future, serve as a possible diagnos-
tic tool giving additional input for choosing the time and type of surgical intervention
in the diseased aortic valve system.
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Chapter 1

General Introduction

The study on improved aortic valve prostheses that are able to adopt the physiological per-
formance and durability of the healthy natural valve requires knowledge of the interaction
between the valve and the blood. A short introduction is given on the morphology and
functioning of the natural aortic valve system. The mechanical and hemodynamical com-
plications of currently used substitute valves are summarized, expressing the strong need
for numerical fluid-structure interaction models that are applicable to predict the function-
ing of existing and new prosthetic designs or to analyze the performance of diseased valves.
The objective of this study is given followed by the outline of the thesis.

1



2 Chapter 1

1.1 Introduction

The aortic valve is one of the four valves which control the blood flow through the
heart. It is situated at the outlet of the left ventricle just prior to the ascending aorta
(Figure 1.1). This valve opens with minimal resistance to allow blood to flow into the
aorta, and closes to prevent non-trivial back flow into the ventricle. Although diseases
of any of the heart valves can compromise health, diseases of the aortic valve occur most
frequently and result in more dire consequences (Schoen et al., 1999), which therefore
puts greater importance on the function of this valve. There are several ways by which
the aortic valve can become diseased, however, all diseased valves present themselves
as being stenotic, incompetent, or both (Thubrikar, 1990).

left ventricle

aortic valve

aorta

Figure 1.1: Schematic sagittal cross section of the heart showing the aortic valve.

Aortic stenosis offers significant obstruction to the forward blood flow. Common
causes for pure aortic stenosis are calcification and cuspid fibrosis (Passik et al., 1987;
Subramanian et al., 1984). Incompetent aortic valves allow blood to flow back into
the left ventricle, thereby reducing the net forward flow. This insufficiency has been
observed to occur either by itself or in association with aortic stenosis. Common causes
for pure aortic insufficiency are rheumatic heart disease, permanent aortic root dila-
tion and congenital effects (e.g. bicuspid or quadricuspid valves) (Olson et al., 1984;
Thubrikar, 1990).

Some degree of valve stenosis or incompetence can be tolerated without compro-
mising health. In many cases, however, valve replacement is desired using a prosthetic
device. Although currently used prosthetic valves perform the same task, the natural
aortic valve is unique in its accomplishments, since no prosthetic device, to date, can
serve that function with the same efficiency and durability. Hence, there is still a need
for design improvement of existing valves and/or development of new concepts.

1.2 The natural aortic valve

1.2.1 Morphology

The natural valve consists of three highly flexible leaflets and three sinus cavities (’si-
nuses of Valsalva’), see Figure 1.2. Two functional areas can be distinguished in each
leaflet. The area near the free edge is known as the coaptive area and is called the
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ot

aortacommissure

aortic ring

(a)

sinus

leaflets
(b)

commissure

sinus

free edge

(c)

Figure 1.2: Schematic representation of the aortic valve: (a) side view of the complete valve, (b)
after dissection of one leaflet with corresponding sinus wall and, (c) aortic view.

lunulea because of its semilunar shape. When the valve is closed the outlet orifice of the
left ventricle is sealed because the lunulea of adjacent leaflets are coincident with each
other. In the middle of the free edge of each lunulea a structural thickening (’nodulus of
Arantius’) is located, which is believed to permit a significant reduction in the height of
the lunulea without causing central regurgitation during a closed valve configuration.

The remaining, non-coaptive area of the leaflet surface is referred to as the load
bearing portion. This part constitutes a fiber-reinforced composite texture of elastin,
but mainly collagen, fibers embedded in a matrix of endothelial cells. More precisely,
this texture has a three-layered structure containing elastin and collagen fibers at the
ventricular surface (ventricularis), acid mucopolysaccharides and some collagen fibers
in the central layer (spongiosa) and a dense network of collagen fibers near the aortic
surface (fibrosa). A similar layered structure is present in the lunulea, however, the
arrangement of the fibers may be very irregular.

The dense collagen network in the fibrosa is essential for the mechanical behaviour
of the leaflets. Originating at the commissures these collagen fibers run circumferential
like the free edge and spread out over the whole leaflet as shown in Figure 1.3. In addi-
tion to these commissural fibers, discrete macroscopically visible bundles perpendicular
to the attachment line, which is referred to as annulus fibrosis or aortic ring, anchor the

c
c

free edge

attachment edge

Figure 1.3: Typical fiber structure in the aortic valve leaflets (from Sauren (1981), with permis-
sion). The commissural points are denoted by ’c’.
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hs

ra

hc

rv ds

hl

tl

rv
ds

tw

Figure 1.4: Definition of relevant dimensions, which are frequently used to describe the geometry
of the aortic valve: rv denotes the ventricular valve radius, ra the aortic valve radius,
ds the sinus depth, hs the sinus height, hc the commissural height, hl the coaptation
height of the lunulea, tl the leaflet thickness and tw the aortic wall thickness.

middle portion of the leaflet to the aortic wall (Sauren, 1981). This line of attachment
of each leaflet forms a U-shaped arch, which also bounds the sinus behind the leaflet.
The top of the arches where the lunulea of adjacent leaflets merge into the aortic ring,
are called commissures.

The sinuses are dilated pouches of the aortic root (Figure 1.2(a)), which are thinner
than the aortic wall. The wall texture contains mainly circumferential arranged smooth
muscular tissue embedded in a network of arbitrarily oriented elastin fibers with scat-
tered small collagen fibers.

The term ”aortic valve” will be taken to apply to the part of the aortic root consisting
of the leaflets and the sinus walls, bounded at the ventricular or inflow side by the aortic
ring and at the aortic or outflow side by the circle that is obtained by the intersection
of the transversal plane through the sinus tops and the aortic wall (Sauren, 1981). This
definition includes the portions of the aortic wall, that are bounded by this circle and
the aortic ring (Figure 1.2(a)).

The difficulty in describing the geometry of the aortic valve is illustrated by the
paucity of available data. Various dimensions of the aortic valve have been measured
using different techniques in several mammalian species (Reid et al., 1970; Sands et al.,
1969; Swanson et al., 1974). The dynamical behaviour of the valve is attended with
variation of these dimensions (Van Renterghem, 1983). Figure 1.4 shows some defini-
tions of relevant dimensions that have frequently been used to describe the geometry
of the valve and Table 1.1 summarizes typical values measured in adult humans. Al-

rv ra ds hs hc hl tl tw

Dimension [mm] 12.0 11.4 5.52 20.9 17.5 4.08 0.20 1.03

Authors [1] [1] [1] [1] [1] [1] [2] [3]

Table 1.1: Typical dimensions of the unloaded human aortic valve measured by [1] Swanson et
al. (1974), [2] Clark et al. (1974) and [3] Shunk et al. (2001).
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though, the three leaflets are not precisely identical, it is assumed that they are similar
enough to permit a general description of a valve with trileaflet symmetry.

The morphological description of blood is confined to a concentrated suspension of
red blood cells (erythrocytes), white blood cells (leucocytes) and platelets in plasma.
Plasma is the continuous liquid medium in which the blood cells are suspended. It
is an aqueous saline solution containing proteins. The deformable red blood cells oc-
cupy 45% of the blood volume and dominate the rheological behaviour of blood. They
aggregate when brought in contact with each other at low shear rates, emphasizing
the importance of blood wash-out in potential stagnant flow regions, such as the si-
nus cavities. The far less numerous white blood cells are of minor importance if their
relation to the rheological characteristics of blood is considered. Platelets are much
smaller constituents of blood, which exhibit a considerably higher rigidity. In contact
with adenosine diphosphate (ADP) they tend to aggregate and can form a thrombus; a
phenomenon which is frequently observed in stenotic valves. The composition of blood
as described above, as well as the properties of the constituents, lead to a complex
rheological behaviour, which shows shear thinning and viscoelasticity.

A study on valve and blood morphology would far exceed the scope of this thesis.
The interested reader is referred to Thubrikar (1990) and Caro et al. (1978) for a more
complete description of the aortic valve and blood.

1.2.2 Functioning

The cardiac cycle can be divided into a systolic and diastolic interval, see Figure 1.5.
During systole an isovolumic contraction of the left ventricle is followed by the ejection
of blood into the aorta. The aortic valve remains open during this interval. At diastole
an isovolumic relaxation precedes a filling of the left ventricle with blood from the atria.
During this interval the aortic valve remains closed. Both mechanical and kinematical
aspects are involved in valve functioning and differ in importance during the course of
the cardiac cycle.

In one cardiac cycle three main phases can be distinguished in valve performance:
the opening and closing phases during systole and the closed phase during diastole

0 1
0

P
[k

Pa
]

diastole diastolesystole

Pao

Plv

t[s]

16

AO

Q

0

AC

Q
[m

l/
s]

750

Figure 1.5: Sketch of the aortic (Pao: dashed line) and left ventricular (Plv: solid line) pressure
curves during the cardiac cycle. The associated flow curve is also given (Q: dotted
line). AO denotes the onset of valve opening and AC the moment of complete closure.
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(Sauren, 1981). In the normal situation valve opening is very fast (25 to 35 [ms]).
The leaflets start to bulge towards the aorta just before ventricular ejection begins. The
valve is completely open when the peak flow in the ascending aorta has reached 75%
of its maximum (Van Steenhoven et al., 1981). Although the Reynolds number1 reaches
up to 4500 at peak flow, it appears that in the case of properly working heart valves,
the fluid flow remains laminar (Nerem et al., 1972). Only when a valve exhibits a
malfunctioning, some turbulence might be expected.

As to valve closing two phases can be distinguished. The first is the gradual closing
of the valve that starts during the deceleration of the aortic flow, resulting in about
80% valve closure at the moment of zero flow in the ascending aorta at the end of the
systole (Thubrikar, 1990). The flow phenomena during this phase are rather complex
and can be characterized by the Strouhal number1 (Sr ≈ 0.06). In this phase vortices
are initiated in the sinus cavities, which are thought to instigate early valve closure.
Followed by the adverse pressure gradient during flow deceleration, a small reverse flow
finally completes closure. Similar findings were reported by Van Steenhoven (1979)
and Van Steenhoven et al. (1981) in in vivo experiments. Moreover, they observed that
the valve has already closed by about 10% at the onset of flow deceleration and that
complete closure coincides with maximum back flow in the ascending aorta.

Being thin and highly flexible membrane-like structures, the valve leaflets cannot
withstand any significant pressure difference during the opening and first closing phase.
During these phases the leaflets may be expected to move with the fluid in an essentially
kinematical process governed by the fluid motion. In the course of diastole the leaflets
have to withstand a slowly varying but nonetheless considerable pressure load (Figure
1.5). Numerical modeling of the valve behaviour during systole is complex, but chal-
lenging, because of its highly dynamical character, and important as it provides insight
in system responses, which are difficult to obtain experimentally.

The aortic valve has been generally thought of as a passive structure where all of its
mobile components move only as a result of blood flow. It has been shown, however,
that the commissures move outward in a passive response to pressure resulting in an
increase of the aortic valve radius (ra in Figure 1.4) (Brewer et al., 1976). Moreover, the
ventricular valve radius (rv) decreases in an active response to myocardial contraction
in systole (Thubrikar et al., 1980). Commissural movement is made possible because of
the elasticity of the sinus walls. When the aortic root is not dilated, valve function and
geometry become abnormal and high leaflet deformations occur that initiate calcifica-
tion and/or tearing, ultimately leading to a diseased valve (Fisher, 1995).

1.3 Prosthetic heart valves

Quality of life can be improved if a diseased heart valve is replaced by a prosthetic de-
vice. There are several types of substitutes for replacement of the aortic valve. The most
commonly used devices are mechanical and bioprosthetic valves. More than 170,000
patients receive a prosthesis worldwide each year. Of the valves used, 50 to 55% are
mechanical and the remaining are bioprostheses. The clinical performance of the pros-

1Flow phenomena are frequently characterized by the Reynolds number (Re), defining the ratio of sta-
tionary inertia and viscous forces, Strouhal number (Sr) defining the ratio of instationary and stationary
inertia forces or Womersly number (α) defining the ratio of instationary inertia and viscous forces.
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(a) (b)

Figure 1.6: Heart valve prostheses: (a) St. Jude Medical bileaflet prosthesis, (b) Hancock porcine
bioprosthesis.

thesis is evaluated by its hemodynamics, e.g. obstruction to forward flow, and durability,
which for both valve types differ significantly. Within 10 years postoperative complica-
tions necessitate re-operation or cause death in 50 to 60% of the patients having either
prosthetic type (Schoen et al., 1999). Moreover, the failure rate is nearly 100% in 5
years for patients with a biological substitute that are younger than 35 years old.

Mechanical valves are available in different designs of which the ball and cage (e.g.
Starr-Edwards ball valve) or tilting disc (e.g. Bjork-Shiley tilting disc valve or St. Jude
Medical bileaflet valve (Figure 1.6(a)) types are most frequently used (Morse et al.,
1985). In designing a mechanical valve several aspects should be considered. The
weight of the ball or disc, contact surface, reactivity to blood components, tendency
to cause hemolysis, and flow characteristics are some of the parameters that must be
controlled. These prostheses are characterized by their good durability. However, the
rigid structure also reflects in poor hemodynamical performance, requiring a life-long
pharmaceutical support to prevent thromboembolic complications. If these valves could
be made non-thrombogenic in the future, their use could become a much more desirable
treatment for diseased heart valves in humans.

Bioprosthetic valves are made of chemically treated animal tissue. In particular
porcine aortic valves (e.g. Hancock porcine valve, see Figure 1.6(b)) or bovine peri-
cardium (e.g. Ionescu-Shiley pericardial valve), both treated with buffered gluteralde-
hyde, are used. The treatment of gluteraldehyde prevents tissue digestion by enzymes
or bacteria, preserves the tissue, and eliminates tissue rejection (Schoen, 1987). How-
ever, this treatment also stiffens the tissue, although unintentionally. Flexible, trileaflet,
biological tissue valves mimic their natural counterparts more closely than do mechani-
cal valves. Their central flow characteristics enhance hemodynamic efficiency and their
biological surface enhances thromboresistance as compared to mechanical prostheses.
However, most bioprostheses fail by calcific degeneration and/or tissue degeneration
caused by mechanical stress. Research towards improved bioprostheses is therefore
mainly focused on increasing the tissue strength and thus its durability.

Besides these commercially available prosthetic types there is a growing interest in
the development of synthetic valves. They allow more freedom in optimizing the design
in terms of durability and valve hemodynamics. Most synthetic prostheses are stented
flexible trileaflet valves of polyurethane. In vitro tests show, however, that durability is
up to now not significantly improved to use these valves for implantation. The concept
of fiber-reinforcement has been used by Cacciola (1998) to strengthen the valve leaflets
preserving its flexibility, and thus its hemodynamics. Numerical studies by De Hart et



8 Chapter 1

al. (1998) and Cacciola (2000) have shown that leaflet fiber-reinforcement significantly
reduces peak stresses at areas that are susceptible to degeneration. These prototype
valve prostheses require further investigation on their applicability for implantation.

Particularly exciting in concept, yet early in practice are tissue engineered heart
valves. Recently, there is considerable activity in basic research and clinical investiga-
tion to develop this technique in which an anatomically appropriate construct contain-
ing cells seeded on a resorbable scaffold is fabricated in vitro. Stimulated and guided
by appropriate mechanical and chemical signals, biological remodeling is intended to
recapitulate normal function architecture (Hoerstrup et al., 2000; Sodian et al., 2000).
Moreover, remodeling of the tissue is inclined to proceed after implantation of the con-
struct. Possibly, these features make tissue-engineered valves desired substitutes in the
future.

1.4 Objective and outline of this study

From the previous section it is clear that there is a strong need for an aortic valve
prosthesis that can mimic the function of the natural valve with such an efficiency and
durability that postoperative medical treatment becomes redundant. At this time the
development of improved prostheses involves many expensive and time-consuming ex-
periments to gain knowledge and understanding of such a complex system. The delicate
interaction between the valve and the surrounding blood requires that in these experi-
ments both the mechanical and hemodynamical aspects of the valve must be considered.
It should be emphasized that this strong interaction is essential for the response of the
system to its physiological loading.

The application of numerical models enhances the development of improved valve
prostheses by significantly reducing the number of experiments required and giving
insight in system responses that cannot or hardly be obtained experimentally. How-
ever, the models currently used lack the capacity to analyze the systolic mechanical and
hemodynamical valve behaviour for physiological conditions. The objective of this study
is to develop a numerical model to investigate the effect of fluid-structure interaction,
leaflet fiber-reinforcement and aortic root compliance on systolic aortic valve function-
ing. In general, this model could be used to resolve the problems associated with the
failure and medical complications of diseased valves and currently used prosthetic de-
vices.

To enhance clinical relevance a three-dimensional finite element model is developed
to perform analyses that closely resemble the physiological conditions under which the
aortic valve system operates. Realistic material characteristics are adopted to incorpo-
rate the fiber-reinforced leaflet structure. The model is based on a set of geometrical
parameters, material parameters and appropriate boundary conditions, such that it can
be used to analyze different valve designs under various loading conditions. Hence, the
model can possibly be used as a numerical design tool for valve prostheses as well as
a diagnostic tool for clinical purposes in the near future. Moreover, the methods used
in this model can generally be applied to study blood-tissue interaction within other
cardiovascular subsystems, such as flow in large arteries, carotid artery bifurcation or
coronary arteries.

Based on the fictitious domain method a new fluid-structure interaction algorithm is
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developed, which allows for finite motion of flexible structures such as the valve leaflets.
This algorithm is experimentally validated for a ’quasi’ two-dimensional situation that
mimics the aortic valve system (Chapter 2). To study the effect of fluid-structure inter-
action on the behaviour of the leaflets a three-dimensional representation is required.
To this end, the fictitious domain method is extended for three-dimensional situations
and applied to a stented aortic valve (Chapter 3). Biological and synthetic prostheses
tend to fail due to material degeneration induced by high stresses. These stresses are
assumed to be reduced by applying fiber-reinforcement to strengthen the leaflets. The
impact of fiber-reinforcement on the mechanical and hemodynamical performance of
a stented valve during the systolic phase is investigated using the three-dimensional
model (Chapter 4). The effect of the compliance of the aortic root on the kinematics
of the valve is investigated next for non-reinforced and reinforced valve types (Chap-
ter 5). For this purpose the fictitious domain method and the arbitrary Lagrange-Euler
method are combined to incorporate interaction of the fluid with the leaflets, aortic
root and wall. Finally, a discussion of the presented techniques and results precedes the
conclusions, which completes this thesis (Chapter 6).

The contents of Chapters 2 to 5 are based on separate articles, i.e. De Hart et al.
(2000), De Hart et al. (2001a), De Hart et al. (2001b) and De Hart et al. (2002), which
are published or have been submitted for publication. Hence, recurrence and overlap
of methods and modeling descriptions occurs between these chapters.
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Chapter 2

A Fictitious Domain Method for
Fluid-Structure Interaction in the

Aortic Heart Valve1

The dynamic interaction of the aortic valve with the surrounding fluid is essential for the
local deformations and stresses in the structure. A detailed analysis of the valve’s kinemat-
ics and hemodynamics benefits from numerical modeling of this interaction. However, the
large differences in material properties of the fluid and structure and the finite motion of the
leaflets complicate blood-valve interaction modeling. This has impeded numerical analyses
of valves operating under physiological conditions. A Lagrange multiplier based fictitious
domain method is used to develop a new fluid-structure interaction algorithm, which al-
lows for deformation of flexible structures such as the valve leaflets. The applicability is
investigated for a two-dimensional representation that mimics the aortic valve system. The
algorithm is validated experimentally using Laser Doppler anemometry to measure fluid
flow phenomena and digitized High Speed video recordings to visualize the leaflet motion
in corresponding geometries. Results show that the applied numerical techniques can be
used to describe both the fluid and leaflet behaviour for different leaflet thicknesses.

1The contents of this chapter are published in the Journal of Biomechanics, 33(9), 1079-1088, 2000:

A two-dimensional fluid-structure interaction model of the aortic valve
De Hart, J., Peters, G.W.M., Schreurs, P.J.G., Baaijens, F.P.T.
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2.1 Introduction

Three-dimensional numerical models of artificial fiber-reinforced prototype valves have
been developed by De Hart et al. (1998) and Cacciola (1998). In these models the
physiological situation was simplified by applying the diastolic pressure difference over
the valve, neglecting the interaction with the surrounding fluid. In reality, the opening
and closing behaviour of the valve is a delicate interaction between blood flow, aorta
and the heart valve leaflets. Numerical analysis of the opening and closing behaviour
is complicated by the large three-dimensional motion of the highly flexible leaflets in
a compliant system of fluid and structure. Fluid-structure interaction models of the
heart valve have been developed before, e.g. see Peskin and McQueen (1994); Horsten
(1990). However, none of these models represents the physiological conditions under
which the valve functions because of numerical problems regarding the stability and
solvability of the system.

In modeling fluid-structure interaction, the fluid is most conveniently described with
respect to an Eulerian reference frame (material moves through the computational do-
main) while a Lagrangian formulation (computational domain moves with the material)
is more appropriate for the structure. However, these formulations are incompatible. A
solution to this problem is the use of an arbitrary Lagrange-Euler (ALE) formulation.
This method involves a continuous adaptation of the mesh without modifying the mesh
topology. ALE techniques are most commonly used in the aerospace field, where solid
structures are subjected to complex airflows, e.g. see Farhat et al. (1998). In heart
valves, however, the large deformation of the thin leaflets within the computational
fluid domain complicates mesh adaptation without changing the topology, while pre-
serving a proper mesh quality.

Alternatively, remeshing can be performed, either continuously or in conjunction
with an ALE formulation, where remeshing is performed if the mesh quality has de-
generated too much. Remeshing, however, not only introduces artificial diffusivity, it
also may be difficult to perform with sufficient robustness and accuracy for three di-
mensional problems. To resolve this a fictitious domain method (Glowinski et al., 1994;
Bertrand et al., 1997) is used where the fluid is described in an Eulerian setting, and the
structure in a Lagrangian setting, allowing the use of the classical finite element method
(FEM) with available software.

The method is based on the imposition of velocity constraints associated with mov-
ing internal boundaries by means of Lagrange multipliers. It has similarity with the
so-called immersed boundary technique of Peskin and McQueen (1994) in which at a
number of control points tension forces are imposed and distributed to neighbouring
nodes. Numerical instabilities, however, limited Peskin and McQueen to analyze phys-
iological flows. The method described in this chapter allows coupling of domains with
dissimilar element distributions and/or interpolation order using Lagrange multipliers
on a fictitious boundary representing the actual structure, see Baaijens (2001). The
current implementation will be described for the two-dimensional case, is validated
experimentally.

First, the fluid and structural problems are defined and the equations governing
these problems are given. Next, the fluid-structure coupling, using Lagrange multipliers,
is discussed. A description is given of the adopted solution techniques to solve the
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resulting set of equations associated with a two-dimensional model of a flexible leaflet
in a pulsatile flow. The experimental techniques to measure the physical quantities,
which are used to validate the numerical model, are outlined. Finally, the numerical
results are compared with the data obtained from the experiments for both the leaflet
motion and fluid flow.

2.2 Problem definition and governing equations

A two-dimensional representation of the valve is shown in Figure 2.1, where a flexible
leaflet is immersed in a pulsatile flow within, for this case, a rigid channel. The channel
has height h and length 6h and contains a sinus cavity in the middle at the top wall with
radius r. A flexible leaflet with length l and thickness tl is attached to the top wall, just
before the sinus cavity, at an angle α. The fluid domain is denoted by Ω f and structural
domain by Ωs. The fluid-structure interface boundary is denoted by γ.

In this system a laminar flow is assumed of a fluid which behaves isothermal, incom-
pressible and Newtonian. The momentum and continuity equations, which govern the
mathematical formulation of the fluid domain Ω f , are given by

ρ f
∂�v f

∂t
+ ρ f�v f · �∇�v f = �∇ · (−pf III + τττ f), (2.1)

�∇ ·�v f = 0, (2.2)

where ρ f denotes the density, t the time, �v f the velocity, pf the pressure, τττ f the extra
stress tensor and �∇ the gradient operator. For Newtonian fluids the extra stress tensor
τττ f can be written as a function of the rate of deformation tensor DDDf = 1

2(�∇�v f +(�∇�v f)T):

τττ f = 2ηDDDf , (2.3)

where η denotes the dynamic viscosity of the fluid. The well-known Navier-Stokes
equation results from substitution of (2.3) into (2.1).

Scaling spatial coordinates with a characteristic length, e.g. the channel height h,
velocities with a characteristic velocity, e.g. the peak velocity V of the mainstream and
time with a characteristic time, e.g. the flow deceleration time τ , the dimensionless (∗)
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Figure 2.1: Two-dimensional representation of the aortic valve.
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representation of the Navier-Stokes equation is given by

Sr
∂�v∗f
∂t∗

+�v∗f · �∇∗�v∗f = −�∇∗p∗
f +

1
Re

2�∇∗ · DDD∗
f , (2.4)

where the Strouhal number Sr and the Reynolds number Re are defined as

Sr =
h
τV
, Re =

ρ fVh
η

. (2.5)

The density of the leaflet material is taken equal to the fluid density, so that buoyancy
forces can be neglected. Moreover, the contribution of the leaflet’s inertia is not taken
into account, since the leaflet mass is negligible with respect to the considered fluid
mass. In absence of any body forces the momentum equation for the structural domain
Ωs thus yields

�∇ · σσσs =�0, (2.6)

where σσσs is the structural Cauchy stress tensor. The large rotations of the nearly incom-
pressible, isotropic leaflet are accompanied by small strains. For this reason the leaflet
is assumed to behave linear elastic according to Hooke’s law:

σσσs = 4CCC : εεεs; εεεs =
1
2

(
�∇�us + (�∇�us)T)

, (2.7)

where 4CCC represents the fourth-order Hookean elasticity tensor, εεεs the elastic strain
tensor and �us the structural displacement field. The material properties of this structure
are fully determined by the Young’s modulus E and the Poisson’s ratio ν.

There is a distinct difference between Equation (2.1) and (2.6) that in the momen-
tum equation of the fluid the domain is known and fixed in space (Eulerian), while the
position of the structural domain is not known a priori. As a consequence the gradient
operator in (2.6) depends on the solution, i.e. the leaflet position, while the gradient
operator in (2.1) is independent of the velocity field �v f . This situation changes when-
ever the computational domain of the fluid is adapted to the computed velocity field,
for instance to follow the motion of the immersed structure. In the method described
here the fluid domain is fixed in space.

The above set of equations will be complemented with appropriate coupling and
boundary conditions, which will be discussed next.

2.3 Fluid-structure coupling and implementation

In the Lagrange formulation of the structure the displacement field �us, defined as the
difference in position at two successive time points tn and tn+1, is the unknown. The
structural velocity �vs during time interval tn → tn+1 is taken to be related to the struc-
tural displacement �us by the following first-order approximation:

�vs =
�us

∆t
, (2.8)
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Figure 2.2: Alignment of interface γ with the structure, which is positioned arbitrarily in the fluid
mesh.

with time step ∆t = tn+1 − tn. Coupling between the fluid and structure is achieved by
enforcing the velocity constraint

�vs −�v f =�0, (2.9)

along the fluid-structure interface γ.
Straightforward coupling of the fluid and structural domain requires that their bound-

aries and nodal points coincide along the interface, which implies equal order finite el-
ements for both domains. Coincident boundaries with non-conforming discretizations
can be realized by using Lagrange multipliers. The Lagrange multiplier �λ weakly en-
forces the constraint (2.9) along the interface γ:∫

γ

�λ · (�vs −�v f)dγ = 0. (2.10)

The above equation is added to the total system of equations and implicitly introduces
a surface force (�λ) exerted on the fluid and structure along γ to maintain the coupling
between the two phases.

The approach used here is based on the fictitious domain method, described by
Glowinski (Glowinski et al., 1994). An essential feature of this method is that the fluid
mesh is not altered or interrupted in any way by the presence of the immersed struc-
ture. The surface γ lies fictitious within the computational fluid domain and thus, does
not necessarily have to be aligned with element boundaries of the fluid domain. It is
convenient that it coincides with the boundary of the structural domain, although even
this is not necessary. A typical example is given in Figure 2.2. Clearly, the interface γ
intersects the fluid domain in an arbitrary way. In practice, the position of this bound-
ary with respect to the fluid computational domain needs to be determined for every
new deformed state of the structure to be able to define new coupling constraints. The
method is described in detail by Baaijens (2001).

Temporal discretization of the Navier-Stokes equation (2.4) is achieved using an
implicit backward-Euler scheme. Newton’s method is used to linearize the non-linear
convective term �v f · �∇�v f . Spatial discretization is obtained using 202 Crouzeix-Raviart
elements (Figure 2.3) based on a mixed velocity-pressure formulation with bi-quadratic
interpolation for the velocity and a linear, discontinuous interpolation for the pressure.

For the structure spatial discretization is obtained using 8 quadratic beam elements
with two displacements and one rotation as degrees of freedom. Beam elements, which
are in fact line elements, are suitable for the analysis of slender structures where the
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Figure 2.3: Fluid and structure mesh. Boundary conditions are given for the fluid velocity at the
inlet, outlet and walls and for the structural displacements and rotations at the leaflet
fixation point.

thickness is very small compared to the other dimensions. The bending stiffness of the
structure, however, is incorporated in these elements.

The discretization of the Lagrange multiplier�λ has been chosen linear, discontinuous
and spatially coincident with element boundaries of the structural domain, i.e. along
each element boundary of the structural domain that coincides with γ (which is always
true for beam elements). The integral in Equation (2.10) along γ is computed using a
Gaussian integration rule.

At the top and bottom wall of the channel no-slip boundary conditions are applied
(Figure 2.3). The fluid outlet is assumed to be stress free and the inlet is fed with a
pulsatile flow taken from corresponding experiments discussed further on. The leaflet is
attached at the top wall just before the sinus cavity and the displacements and rotation
at this fixation point are suppressed. The no-slip condition along the fluid-structure
boundary is implicitly implemented by the coupling constraints of Equation (2.10).

The values of the geometric parameters, i.e. h, r, l, tl, α, and material parameters,
i.e. E, ν, η, ρ f , are given in Table 2.1. The results will be shown for two different leaflet
thicknesses to illustrate the influence on the flow phenomena.

The total system of equations is solved directly with an updated Lagrange procedure
for large displacement analyses. Consequently, both the fluid and structure unknowns
are solved simultaneously. The Newton-Raphson iteration method is used to obtain
a converged solution. Additional coupling constraints defined by Equation (2.10) are
added to the system at each Newton iteration using the most recently computed location
of the boundary γ. This degrades the quadratic convergence rate of the Newton scheme,
but has proven to give satisfactory results.

Geometrical parameters Material parameters

h, r [mm] 20 E [N/m2] 1.5·106

l [mm] 26 ν [−] 0.49

tl [mm] 0.16; 0.3 η [kg/(m·s)] 4.3· 10-3

α [o] 45 ρ f [kg/m3] 1·103

Table 2.1: Geometric and material parameters of the analyzed system.
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Figure 2.4: Schematic drawing of the pulse duplicator. P: piston; D: diffuser; MS: measurement
section; R1, R2: reservoirs; SP: steady pump; fm: flow meter; pt: pressure transducer.

2.4 Validating experiments

The two-dimensional valve model is validated for the computed leaflet motion and al-
tered fluid flow, since these quantities are a direct result of the fluid-structure interac-
tion. To this end, a pulse duplicator is adopted to perform experiments in corresponding
geometries, which are constructed from Plexiglas. Laser Doppler anemometry (LDA) is
used to investigate the fluid velocity field and high speed video recordings to detect the
leaflet positions. A schematic drawing of the experimental setup is given in Figure 2.4.

The setup is composed of rigid elements, i.e. a piston, a steady pump, a diffuser, a
measurement section, and additionally, a resistance and reservoirs. The piston moves
within a closed cylinder and is connected to a control card from which it receives a
cosinusoidal signal with a frequency of 1 [Hz]. The steady pump is used to superpose a
stationary flow on the pulsatile one such that only a forward flow results. The diffuser
is composed of networks to break down the vortices induced by the piston motion, and
to generate a fully developed laminar flow just before the entrance to the measurement
section. The measurement section is shown in more detail in Figure 2.5. The inlet
and outlet channels have a rectangular shaped cross section of height h = 20 [mm]
and width w = 120 [mm]. The height/width ratio is such that approximately a two-
dimensional situation is created, as will be shown below. The radius of the sinus is also
taken conform the numerical model discussed before (r = h). The internal pressure
in the system is increased using a closed reservoir (R1) at the outlet, resulting in a
smoother motion of both fluid and leaflet. This reservoir is completely filled, such to
prevent the introduction of additional compliance to the system. Hence, the pressure
gradient inside the system is not affected by the reservoir.

A glycerol solution (36% glycerol solved in water) is used giving the fluid a density of
ρ f = 1001 [kg/m3] and a viscosity of η = 4.3 · 10-3 [kg/m·s]. The solution approximates
the density and viscosity of blood. The rubber sheet simulating the leaflet is made of
EPDM rubber (ethylene-propylene-diene-monomer) having a density of 890 [kg/m3]
and a low swell-grade in the fluid. It is assumed to behave nearly incompressible,
isotropic and linear elastic with a Young’s modulus E ≈ 1.5 [MPa]. Leaflets with a
length l = 26 [mm] are analyzed for different thicknesses.
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Figure 2.5: Schematic drawing of the measurement section with leaflet.

LDA equipment (Dantec type 60X11) is used to measure the fluid velocities two-
dimensionally. The method is based on the dual beam backward-scattered principle
(Goldstein, 1983) and is suitable to detect high speed flow velocities. PMMA particles
(poly-methyl-met-acrylate) of 10 [µm] diameter were added to the solution as a seed-
ing to scatter back the laser light generated by the LDA system. A high speed video
camera (Kodak Ektapro HS 4540) is used to record the leaflet motion at a frequency of
100 frames per second with a spatial resolution of 256 × 256 pixels. The video images
are digitized such that the leaflet profile is tracked to get an approximated position at
a sufficient number of discrete points in time. The flow is measured with an electro-
magnetic flow probe (Skalar, type EC18-9044) with a capacity of 20 [l/min] for which
a small amount of sodium chloride is added to the solution. The addition of PMMA and
sodium chloride particles does not affect the fluid viscosity, which was measured with
a Rheometrics RFS-II Couette viscosimeter. Finally, a pressure transducer (Gould, type
P50) is used to measure the pressure. Specifications of the accuracy of the experimental
techniques are given by Papa (1999).

2.5 Results

The first experiments are carried out to investigate the two-dimensional character of
the system for two different thicknesses of the leaflet (tl = 0.16 [mm] and 0.3 [mm]).
Figure 2.6 shows the tangential and axial velocity components as a function of time
and the position along the channel width measured at 30 [mm] upstream and 80 [mm]
downstream the leaflet fixation point, respectively. For all cases, a two-dimensional flow
field is observed of which the tangential velocity component is much smaller than the
axial one. Three-dimensional effects occur at the channel walls, as expected, because
of the no-slip conditions along these walls.

The velocity profiles measured at 50 [mm] before the leaflet fixation point are used
as input for the numerical model. The LDA measurements are performed at half the
width the channel where three-dimensional effects are supposed to balance because of
the symmetry of the channel. The relevant experimental variables for the different cases
are given in Table 2.2. The numerical parameters were already given in Table 2.1. The
flow is characterized by the Reynolds number, Re ≈ 800, and the Strouhal number, Sr ≈
0.19, which are approximately the same for all analyzed leaflets.

The computed leaflet positions are compared to the tracked leaflet motion obtained
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Figure 2.6: Axial and tangential velocity components measured upstream (top) and downstream
(bottom) the leaflet for tl = 0.16 mm (a) and tl = 0.3 mm (b).

Leaflet number 1 2

tl [mm] 0.16 0.3

l [mm] 26 26

w (leaflet) [mm] 117 117

stationary flow [l/min] 8.8 8.8

maximum flow [l/min] 22.46 23.44

minimum flow [l/min] -0.78 1.16

σ of axial velocity [m/s] 2.6·10-3 2.5·10-3

σ of tang. velocity [m/s] 0.89·10-3 1.2·10-3

peak pressure [kPa] 42 42

Re [−] 795 813

Sr [−] 0.192 0.184

Table 2.2: Relevant experimental variables
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with the digitized high speed recordings. The results of the thin leaflet (tl = 0.16
[mm]) are shown in Figure 2.7(a). The experimentally observed motion of this leaflet
is not perfectly two-dimensional. Instead, it slightly bends in the third dimension at
the side edges because of its high flexibility, as illustrated in Figure 2.5. This is due to
the fact that the fluid passes through the narrow space between the leaflet edges and
the channel wall, which prevents the leaflet from slipping along the side walls. For this
reason the upper and lower leaflet profiles have been tracked and are represented with
the dashed lines in Figure 2.7(a).

The solid line represents the computed position of the leaflet at the same instant in
time. The associated measured flow pulse is also shown to give the corresponding time
points in the cycle. The motion of the thicker leaflet is more two-dimensional because of
its larger thickness resulting in a higher bending stiffness. The results of this leaflet are
shown in Figure 2.7(b) for identical points in time as used for the thin leaflet. Although
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Figure 2.7: Numerical (solid) and experimental (dashed) leaflet positions at successive time points
for tl = 0.16 [mm] (a) and tl =0.3 [mm] (b). The flow pulse is given in the middle.
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maximum and minimum flow slightly differ between both leaflets (Table 2.2), the pulse
shape shown in this figure can be used in both cases. These figures demonstrate that
the numerical leaflet position lags behind the experimental leaflet position. Probable
cause is the difference in fluid and leaflet density, which results in a buoyancy force
acting on the leaflet. As mentioned before this force has not been taken into account
in the numerical model. This phenomenon is negligible for the highly flexible leaflet,
since this leaflet easily follows the fluid flow.

The axial velocity profiles at different cross sections along the center of the channel
are analyzed for different points in time. Figure 2.8(a) shows the situation for the thin
leaflet and Figure 2.8(b) for the thicker leaflet. Again, the dashed lines represent the
measured profiles, whereas the solid lines are the computed profiles. Scattering and
moving particles are required for LDA measurements to produce data. Obviously, at
the position of the leaflet in the channel no such particles are present. Moreover, the
light path of the laser is blocked by the semi-transparent leaflet. For the thinner leaflet,
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Figure 2.8: Numerical (solid) and experimental (dashed) axial velocity profiles at successive time
points for tl = 0.16 [mm] (a) and tl =0.3 [mm] (b). The flow pulse is given in the
middle.
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which bends at the channel walls in the direction of its width, this results in a large area
of non-detectable fluid velocities. These areas are shown in Figure 2.8(a) as straight,
vertical (zero velocity) line-segments of the profiles close to the tip of the leaflet. For
the thicker leaflet, these areas are much smaller, as can be seen in Figure 2.8(b). In this
figure a difference in fluid velocity is observed near the left sinus wall. A small vortex is
present in the simulations near the leaflet fixation point (solid line). This vortex could
not be detected in the LDA experiments with the applied settings.

Finally, vector plots associated with the thin leaflet are given in Figure 2.9 for a
global assessment of the flow phenomena. The leaflet positions are included in these
figures. Although the grid density of the numerical model is much higher, velocity
vectors are given only for a selective number of points such that the numerical grid
corresponds better to the experimental grid which is used for the LDA measurements.
As the flow starts to decelerate, pressure at the leaflet tip exceeds the pressure in the
sinus cavity, resulting in a vortex which develops at the leaflet tip moving towards the
center of the sinus. Next, the leaflet starts a downward motion at a still forward flow.
When the fluid has reached a minimum flow and the leaflet is in its lowest position
a second vortex develops at the bottom wall downstream of the leaflet followed by a
weaker vortex at the top wall downstream of the sinus. These vortices vanish when
the flow accelerates again at the beginning of a new cycle and the procedure repeats.
The flow phenomena observed here are typical for an instationary viscous flow in such
a geometry with a flexible leaflet (Van Steenhoven, 1979) and are present for both
leaflets.

Discussion on detailed observations for these two-dimensional analyses and on the
results considering the comparison between both cases of different leaflets is beyond
the scope of this chapter. Instead, validation of the numerical methods, applied to a
representative problem, is discussed and the most important observations are given in
the next section.

2.6 Discussion

A two-dimensional fluid-structure interaction model of the aortic valve is developed,
which is based on the finite element method. The fictitious domain technique is used
to couple the fluid and the structure phases. The features of the presented approach
are: 1. the fluid computation is done on a fixed, Eulerian grid, and the structure com-
putation is done on a Lagrangian grid, 2. both grids are independent of each other,
3. coupling of the fluid and structure is done by additional velocity constraints using
Lagrange multipliers, 4. The fluid and structure unknowns are solved simultaneously.

Features 1 and 2 are particularly interesting when analyzing geometries that are
complicated because of immersed complex bodies. The independence of the fluid and
structure mesh allows the use of well-established computational software developed for
fluid and structural problems. Feature 3 has proven to be suitable to couple the two
phases. Alternatively, a penalty function or an augmented Lagrange multiplier method
can be used. However, these methods affect the matrix condition, such that numerical
problems may arise. The system is solved in a direct, fully coupled manner which
implies that both fluid and structure unknowns are solved simultaneously (feature 4).
Although the condition of the system matrix is degenerated because fluid and structure
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Figure 2.9: Velocity vector plots of experimental (a) and computational (b) data for leaflet thick-
ness tl = 0.16 [mm].

entries differ several orders of magnitude and additional Lagrange multipliers alter the
matrix structure, no numerical problems occurred for solving the two-dimensional case.

A staggered approach can be used to solve the system uncoupled, (Farhat et al.,
1998). One way to do this is to solve the structural problem, extracting the structural
velocities and apply those to the fluid system. Next, advance the fluid system and en-
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force the fluid pressure to the structure. Numerical tests, however, have shown that
in the case of conditions typical for flow through the heart valve, instability problems
occur, which are instigated by the high flexibility of the structure (Appendix D). Pe-
skin’s approach (see the introduction) appears to be more suitable in solving the system
uncoupled.

The model has been validated with experiments on corresponding geometries using
LDA measurements and digitized high speed video recordings. Both the leaflet motion
and the altered fluid flow are used for comparison, since these quantities are a direct re-
sult of the fluid-leaflet interaction. Leaflet motion is predicted within the experimental
error. Most of the details of the complicated transient flow, such as the moving vortex
in the sinus cavity, the vortices downstream the leaflet and the magnitudes of the ve-
locities, are reproduced numerically. From the results it is concluded that the fictitious
domain method can be used to describe the fluid-leaflet interaction. The presence of
buoyancy forces, acting on the structure, probably results in a discrepancy between the
computed and measured leaflet position, during the diastolic phase. Tests have shown
that the effect of this force vanishes with decreasing bending stiffness of the leaflet. A
difference in velocity profiles is observed near the sinus wall close to the leaflet fixation
point. The numerical model predicts a small secondary vortex near the leaflet fixation
point, preventing the large vortex to fully develop over the complete sinus area. This
secondary vortex has not been observed in the experiments. LDA experiments focused
on this area should reveal that this is an inaccuracy of the measurement rather than an
incorrectness in the computed velocity field.

The applied methods are described for the two-dimensional case. The natural aortic
valve consists of three flexible leaflets of thickness in the order of 0.2 [mm], which come
in contact with each other during the closing phase, and three sinus cavities, which are
constituted within the compliant aortic root (Thubrikar, 1990). Moreover, the flow
conditions used here result in a Reynolds number Re ≈ 800 and a Strouhal number
Sr ≈ 0.19, which are different from the physiological numbers, i.e. 4500 and 0.06,
respectively. The two-dimensional representation described in this chapter is therefore
not realistic to analyze the physiological situation. However, the model is used to test
the applied methods for predicting the interacting behaviour of such systems as a first
step towards full three-dimensional numerical models of fluid-structure interaction in
heart valves. The presented theory will be extended to three-dimensional cases by
taking also into account the third dimension in Equations (2.1) to (2.10). However, such
analyses require much more memory and CPU-time. Furthermore, contact between two
adjacent leaflets and compliance of the aorta applied to three-dimensional test models
need to be considered. These extensions will be elaborated in the next chapters.
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Chapter 3

Three-Dimensional Analysis of
Fluid-Structure Interaction in the

Aortic Heart Valve1

Numerical analysis of the aortic valve has mainly been focused on the closing behaviour
during the diastolic phase rather than the kinematic opening and closing behaviour during
the systolic phase of the cardiac cycle. Moreover, the fluid-structure interaction in the aortic
valve system is most frequently ignored in numerical modeling. The effect of this interaction
on the valve’s behaviour during systolic functioning is investigated. The large differences in
material properties of fluid and structure and the finite motion of the leaflets complicate
blood-valve interaction modeling. This has impeded numerical analyses of valves operating
under physiological conditions. A numerical method, known as the Lagrange multiplier
based fictitious domain method, is used to describe the large leaflet motion within the
computational fluid domain. This method is applied to a three-dimensional finite element
model of a stented aortic valve. The model provides both the mechanical behaviour of the
valve and the blood flow through it. Results show that during systole the leaflets of the
stented valve appear to be moving with the fluid in an essentially kinematical process gov-
erned by the fluid motion.

1The contents of this chapter are submitted to the Journal of Biomechanics, under the title:

A three-dimensional computational analysis of fluid-structure interaction in the aortic heart valve
De Hart, J., Peters, G.W.M., Schreurs, P.J.G., Baaijens, F.P.T.
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3.1 Introduction

Many numerical structural models have been developed that describe the behaviour of
the aortic valve ignoring its interaction with the blood, e.g. see Black et al. (1991);
Chandran et al. (1991); Krucinski et al. (1993); De Hart et al. (1998); Cacciola (2000).
The opening and closing behaviour of this valve during systole involves, however, a
strong interaction between blood and the surrounding tissue. Several attempts have
been made to analyze the valve kinematics using numerical fluid-structure interaction
models. Horsten (1990) modeled the interaction of a two-dimensional leaflet with a
rigid channel flow. Peskin and McQueen (1995) developed a three-dimensional model
including the surrounding vessel walls. However, these models used simplified descrip-
tions for the structures and were only applicable for relatively low, non-physiological
Reynolds numbers. Fluid-structure simulation of bioprosthetic aortic valve function-
ing is performed by Makhijani et al. (1997), where the leaflet structure has a much
higher resistance to bending compared to the natural leaflets. A physiological realistic
fluid-structure interaction model of the natural valve, accounting for the phenomena
occurring during systolic phase, has not been developed to date.

Modeling of such a fluid-structure interaction system is complicated due to the large
motion of the thin leaflets through the computational fluid domain. The mathematical
formulation of the equation of motion for a fluid is most conveniently described with re-
spect to an Eulerian reference frame. However, this is incompatible with the Lagrangian
formulation which is more appropriate to describe a structural phase. The arbitrary
Lagrangian-Eulerian (ALE) method, first proposed by Donea et al. (1982), effectively
combines the two different formulations and is frequently used in fluid-structure in-
teraction analyses. Applied to the fluid phase, the ALE method requires a continuous
adaptation of the fluid mesh without modification of the topology.

In heart valves, it is difficult to adapt the fluid mesh in such a way that a proper mesh
quality is maintained without changing the topology, see Baaijens (2001). Alternatively,
remeshing of the fluid domain may be performed in conjunction with an ALE method,
where remeshing is only performed if the mesh has degenerated too much. The change
in topology during remeshing requires the use of interpolation techniques to recover
state variables on the newly generated mesh. This not only introduces artificial diffusiv-
ity, but it is also difficult and/or time-consuming to perform with sufficient robustness
and accuracy for three-dimensional problems. This method is therefore not adopted in
this work.

To resolve the limitations of these mesh update strategies we use a fictitious domain
method to describe the interaction of the valve leaflets with the surrounding fluid. In
this method, the different mathematical descriptions of the equations of motion of the
fluid and structure can be maintained, allowing convenient classical formulations for
each of these subsystems. Moreover, the fluid mesh is not altered or interrupted by the
presence of the immersed domain, and therefore preserves its original quality. Ficti-
tious domain related methods were first applied by Hyman (1952) among others. Later
Saul’ev (1963) introduced the term ”fictitious domain”. To date many applications of
fictitious domain related techniques have been reported, e.g. see Perng et al. (1993);
Rai (1985); Glowinski et al. (1994); Sheehy et al. (1994). Within the same concept, Pe-
skin (1977) devised the immersed interface method, to carry out simulations of blood
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flow in the heart. In this method a fixed mesh is used and the moving bodies (the mus-
cular heart walls and valve leaflets) are approximated by a series of control points at
which tension forces are not known a priori. A variant to this technique, known as the
immersed interface method, was presented by LeVeque and Li (1997).

More recently a new class of fictitious domain methods has been developed, which
is based on the explicit use of Lagrange multipliers for the treatment of the internal
parts of the geometry (Glowinski et al., 1998). These parts, which may be moving,
are not meshed as such. Instead, they are taken into account by means of a set of
pointwise kinematical constraints that are coupled with the equations of motion using
a Lagrangian method. Although similar to Peskin and McQueens’s approach in as much
as it is based upon control points for the characterization of the internal parts, this type
of fictitious domain method does not resort to empirical forces. Velocity constraints
are imposed on the control points through Lagrange multipliers so that only kinemat-
ics of the internal part must be known a priori, see Sheehy et al. (1994); Glowinski et
al. (1998). A similar approach described in Bertrand et al. (1997) is the basis for the
method adopted in this work. It is extended for finite element applications where the
motion of a deformable internal part is not known a priori but depends on the surround-
ing fluid flow. Experimental validation of this method applied to a two-dimensional
aortic valve is demonstrated in Chapter 2 and by De Hart et al. (2000). The application
to a three-dimensional model is described in this chapter. This model is used to study
the effect of fluid-structure interaction on the valve behaviour.

First, the problem definition and governing equations are given for the fluid and
structure computations. Next, the coupling between these two phases is described and
a fictitious domain formulation is derived. The discretization of each of the subproblems
is discussed followed by a description of the solution procedure. Finally, the application
to the aortic valve is analyzed and the presented results are discussed.

3.2 Problem definition and governing equations

The objective is to analyze the three-dimensional fluid-structure interaction in the aortic
valve, as sketched two-dimensionally in Figure 3.1. The analysis is confined to a stented
aortic valve of which the geometrical properties, material properties and boundary con-
ditions are given in the application section. The mathematical formulations describing
the fluid and structure are presented first.

leaflet

leaflet

sinus
sinus

aortic root

fluid

aortic wall

Figure 3.1: Two-dimensional sketch of the aortic valve.
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3.2.1 Fluid domain

The blood flow is considered to be isothermal and incompressible. The equation of
motion and continuity equation within the fluid domain Ω f bounded by Γ f = Γ v

f ∪ Γ t
f

are, in absence of body forces

ρ f(
∂�v f

∂t
+�v f · �∇�v f) = �∇ · σσσ f in Ω f , (3.1)

�∇ ·�v f = 0 in Ω f , (3.2)

where ρ f denotes the density, t the time, �v f is the velocity, σσσ f the Cauchy stress tensor
and �∇ the gradient operator with respect to the current configuration. The Dirichlet
and Neumann boundary conditions at Γ v

f and Γ t
f , respectively, read for this set:

�v f =�v p
f on Γ v

f , (3.3)

σσσ f ·�n =�t p
f on Γ t

f , (3.4)

where�n denotes the outward normal of Γ t
f and�v p

f ,�t p
f denote the prescribed velocity and

surface traction. The constitutive behaviour of the blood is assumed to be Newtonian
(Caro et al., 1978), hence

σσσ f = −pf III + 2ηDDDf , (3.5)

with pf the pressure, III the second-order unit tensor, η the dynamic viscosity of the fluid
and DDDf the rate-of-deformation tensor defined as DDDf = 1

2(�∇�v f + (�∇�v f )T). Substitut-
ing this constitutive relation into Equation (3.1) yields the well-known Navier-Stokes
equation:

ρ f(
∂�v f

∂t
+�v f · �∇�v f) = −�∇pf + �∇ · 2ηDDDf in Ω f . (3.6)

Within the framework of the finite element method (FEM) the weak form of the
Navier-Stokes and continuity equation can be written as:∫

Ω f

(
�wf · (ρ f

∂�v f

∂t
+ ρ f�v f · �∇�v f) + (�∇�wf)T : 2ηDDDf

)
dΩ f−∫

Ω f

(�∇ · �wf) pf dΩ f =
∫

Γ f

�wf ·�t f dΓ f ,∫
Ω f

q f (�∇ ·�v f ) dΩ f = 0,

(3.7)

which must hold for all admissible weighting functions �wf and qf .

3.2.2 Structural domain

In absence of body forces and with inertia terms neglected, the equation of motion and
the continuity equation for the incompressible structural domain Ωs, i.e. the leaflets,
bounded by Γs = Γ u

s ∪ Γ t
s read:

�∇ · σσσs =�0 in Ωs, (3.8)
det(FFF) = 1 in Ωs, (3.9)
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where σσσs is the Cauchy stress tensor. The deformation tensor is defined as FFF = (�∇0�xs)T ,
with �∇0 the gradient operator with respect to the initial configuration and �xs the field
of structural material points. This set of equations is completed with suitable Dirichlet
conditions similar to Equation (3.3).

The aortic valve leaflets are assumed to behave linear elastic and isotropic according
to a Neo-Hookean constitutive law:

σσσs = −psIII + τττ s ; τττ s = G(BBB − III), (3.10)

where ps denotes the hydrostatic pressure, and τττ s the extra stress tensor. The definition
of τττ s represents an isotropic hyperelastic behaviour with G the shear modulus and BBB the
Finger or left Cauchy-Green strain tensor, defined as BBB = FFF · FFFT .

For the structural domain an updated Lagrange formulation is used to describe the
deformation throughout the analysis. Let FFFn denote the deformation tensor from the
initial configuration to the configuration at t = tn and FFF∆ the deformation tensor from
t = tn to t = tn+1, then the tensor defining the deformation from the initial state to the
current state (t = tn+1) is

FFFn+1 = FFF∆ · FFFn. (3.11)

The extra stress tensor at the current time t can now be written as

τττ s = FFF∆∆∆ · τττ n
s · (FFF∆)T + G(FFF∆ · (FFF∆)T − III), (3.12)

where τττ n
s refers to the extra stress at time t = tn. Hence, the weak form of the structural

problem, assuming absence of externally applied surfaces loads, yields:∫
Ωs

(�∇�ws)T :
(

FFF∆ · τττn
s · (FFF∆)T + G(FFF∆ · (FFF∆)T − III)

)
dΩs−∫

Ωs

(�∇ · �ws) psdΩs = 0,∫
Ωs

qs

(
det(FFF∆) − 1

)
dΩs = 0,

(3.13)

which must hold for all admissible weighting functions �ws and qs.
In the Lagrange formulation it is customary to take the displacement field �us as the

unknown. During a time interval tn → tn+1 this field is defined as

�us = �x n+1
s −�x n

s , (3.14)

where �x n
s and �x n+1

s denote the position of a material point at time t = tn and t = tn+1

respectively. In view of the fluid-structure interaction the structural velocity field is
considered rather than the displacement field. Hence, the velocity during time step
∆t = tn+1 − tn is defined as

�vs =
1
∆t

(�x n+1
s −�x n

s ) =
�us

∆t
, (3.15)

which represents a first-order approximation for the structural velocity field.
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3.3 Fluid-structure interaction

In this analysis the fluid-structure interaction is considered between the fluid domain
(blood) and the immersed structures, i.e. the valve leaflets, while assuming the aortic
root to be rigid (Figure 3.1). The fluid-structure coupling is straightforward if equal-
order discretization of the fluid and structural domain is used and nodes and element
boundaries coincide along the fluid-structure interface. To allow independence between
the fluid and structural discretizations a fictitious domain method is adopted here.

Consider the domain Ωi
s, with fluid-structure interface boundary γ, to be the part of

Ωs immersed in Ω f , see Figure 3.2. Then fluid-structure coupling is realized by enforcing
the (no-slip) constraint

�v f −�vs =�0 on γ. (3.16)

Physically Ω f and Ωi
s cannot occupy the same domain in space; interaction occurs only

at the interface γ. Thus, a new definition for the fluid domain would hold: Ω∗
f =

Ω f\Ωi
s. In fluid-structure interaction analyses the set of (3.7) and (3.13) and the no-slip

constraint (3.16) are most commonly adopted with the fluid domain defined as Ω f\Ωi
s

using for example an ALE technique. The basic idea of the fictitious domain method is
to extend the fluid problem defined in Ω f\Ωi

s to a problem defined in all of Ω f , while
still forcing the solution to satisfy (3.16). However, the fluid contents enclosed by Ωi

s
may not affect the structural deformation, since it is physically not present. On the
other hand, the enclosed fluid contents must move according to the inner structural
deformation, to preserve conservation of fluid mass. For thin-walled structures, such
as the heart valve leaflets, the complications arising from enclosing a part of the fluid
domain may be neglected, since the inner fluid volume is much smaller than the outside
volume. Moreover, assuming the thickness to be negligible as far as the interaction
with the fluid is considered, alignment of the interface γ with one side of the leaflet
is particularly suitable. Hence, in a fictitious domain formulation of the aortic valve
leaflets the definition Ω f for the entire fluid domain, including the immersed structures,
can be maintained.

The constraint Equation (3.16) must be incorporated into the weak formulations of
the fluid and structural problem (formulation (3.7) and (3.13) respectively). To this
end one of three approaches is commonly pursued: a Lagrange multiplier method, a
penalty method or an augmented Lagrange method (Fortin et al., 1983; Bathe, 1982).

Ωs

Ω f
Ω f

Ωi
sΩi

s

Γs

γγ

Γ f

Figure 3.2: Sample of an immersed domain Ωi
s with boundary γ in Ω f .
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Here the Lagrange multiplier method is adopted to avoid the introduction of the penalty
parameter, which affects the matrix condition due to its large value. In this method the
Lagrange multiplier �λ is used to weakly enforce the coupling constraint on the fluid-
structure interface γ. The resulting set of equations is given by∫

Ω f

�wf · (ρ f
∂�v f

∂t
+ ρ f�v f · �∇�v f) dΩ f +

∫
Ω f

(�∇�wf)T : 2ηDDDf dΩ f−∫
Ω f

(�∇ · �wf)pf dΩ f +
∫
γ

�wf ·�λ dγ =
∫

Γ f

�wf ·�t f dΓ f ,∫
Ω f

q f(�∇ ·�v f ) dΩ f = 0,

(3.17)

∫
Ωs

(�∇�ws)T :
(

FFF∆ · τττ n
s · (FFF∆)T + G(FFF∆ · (FFF∆)T − III)

)
dΩs−∫

Ωs

(�∇ · �ws)ps dΩs−
∫
γ

�ws ·�λ dγ = 0,∫
Ωs

qs(det(FFF∆) − 1) dΩs = 0,

(3.18)

∫
γ

�� · (�v f −�vs) dγ = 0, (3.19)

where �� denotes the weighting function associated with Equation (3.19). In this formu-
lation�λ may be interpreted as the surface force exerted on the fluid and structure along
γ to maintain the coupling between them.

The appearance of the Lagrange multiplier in (3.17) to (3.19) frequently has been
based on invoking stationarity of the system energy functional to which Equation (3.16)
is imposed using Lagrange multipliers, e.g. see Baaijens (2001); Bertrand et al. (1997);
Glowinski et al. (1998) and Appendix B. A sufficient condition for the existence of
an equivalent energy functional of partial differential equations is that the differential
operators must be linear. However, the application of Lagrange multipliers is most
commonly generalized to hold for non-linear problems to which the classical Galerkin
finite element method is applied (Cuvelier et al., 1986; Bathe, 1982).

3.4 Discretization

The spatial discretizations of the fluid domain Ω f and structural domain Ωs are denoted
by T f and Ts, respectively, and are based on triquadratic hexahedral elements. It is well
established that the mixed velocity/pressure and displacement/pressure formulations
defined above need to satisfy the so-called inf-sup stability condition (Bathe (1982);
Hughes (1987) and references therein). A variety of discretization schemes is available
that satisfy this condition. Here the Crouzeix-Raviart family has been chosen, where
the velocity/displacement field is approximated by a full triquadratic approximation
and the pressure is approximated linearly and is discontinuous.

In combination with the constraint Equation (3.16) applied on an arbitrary location
of the fluid-structure interface γ in the fluid domain Ω f , a discontinuous interpolation of
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the fluid pressure appears to be mandatory, see Baaijens (2001). A continuous interpo-
lation of the fluid pressure, as in the Taylor-Hood family of discretization schemes, pro-
duces unsatisfactory results. Assuming, for example, homogeneous Dirichlet conditions
along an immersed interface aligned with fluid element boundaries, the fluid pressure
will be discontinuous across this interface. Hence, the use of a continuously interpo-
lated pressure leads to erroneous results. Although in the fictitious domain method the
interface γ is not necessarily aligned with element boundaries of the fluid domain, a
discontinuity in the pressure field may be expected.

The discretization of the thin-walled valve leaflets requires that the element aspect
ratio, defined as the ratio between the smallest and largest dimension of an element,
should not exceed 1:7 to simulate a correct bending behaviour. Numerical experiments
showed that larger ratios introduce artificial stiffness leading to incorrect motion of the
leaflets.

The discretizations T f and Ts can be chosen irrespective of each other. Moreover, the
discretization of the Lagrange multipliers, i.e. Tγ, that operate on the fluid-structure
boundary γ can be chosen independently of T f and Ts. This kind of decoupling between
T f , Ts and Tγ makes the fictitious domain approach very attractive for problems with
moving boundaries. However, Tγ has to be chosen such that it does not introduce spu-
rious modes or locking in the other degrees of freedom (Brezzi, 1974), and is therefore
subjected to similar stability considerations as the discretization of the pressure degrees
of freedom in the mixed formulation. So, here we encounter the limitation of the fic-
titious domain method. Stability reasons require for the mesh sizes that hΩ f < hγ and
hΩs < hγ. However, the accuracy with respect to fluid-structure coupling is enhanced by
requiring hΩ f > hγ and hΩs > hγ. As a result it is complicated to generate a discretization
of the (moving) surface on which the Lagrange multiplier is applied.

In De Hart et al. (2000) and Chapter 2, where hΩ f ≈ hΩs was used, this discrepancy
is dealt with by choosing the discretization of�λ, and hence also ��, linear, discontinuous
and spatially coincident with element boundaries of the structural domain: In general,
the interpolation of the Lagrange multiplier field should be chosen at least one order
lower than the interpolation order of the velocity and displacement field, as otherwise
locking in the other degrees of freedom is introduced.

Considering the restrictions of the aspect ratio for Ts the relation between the mesh
sizes hΩ f and hΩs is such that hΩ f > hΩs . Consequently, a discretization as used by De
Hart et al. (2000) and in Chapter 2 is not applied here. Instead, each component of�λ
is approximated with a piecewise constant, making the distance between two points in
Tγ less constrained. Here, N control points, �xλk, k = 1, 2, . . . ,N are introduced on the
boundary γ and positioned in the centers of the structural element sides coinciding with
γ (Figure 3.3). At these control points the fluid-structure coupling (3.16) is enforced. A
similar approach was adopted by Bertrand et al. (1997). Now the approximation of the
weighting function �� h that expresses the local operation of the Lagrange multiplier is a
Dirac function δ(�x), with �x the field of material points, yielding

�� h =
N∑

k=1

��kδ(�x −�xλk). (3.20)

It should be mentioned that many other approaches are possible to define the inter-
polation for the weighting functions of the Lagrange multipliers. The above choice is
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fluid element

structure element

γi

Figure 3.3: Sample of a structural element inside a fluid element. The structural nodal points at
the interface γ are denoted by ◦. The control point at which the Lagrange multiplier
is defined is denoted by .

founded on experiences from numerical experiments.
Time discretization of (3.17) is achieved using an implicit, backward-Euler scheme.

Consider the time interval tn → tn+1, with time step ∆t = tn+1 − tn, then

∂�v f

∂t
≈
�v n+1

f −�v n
f

∆t
. (3.21)

This choice leads to a scheme that is first-order accurate in time.
All integrals appearing in the formulations (3.17) to (3.19) are computed by means

of a Gaussian quadrature integration rule, except for the integrals defined on γ, which
are, with the above choice for the weighting functions, reduced to piecewise constants.
For each control point at which the Lagrange multiplier related constant is computed,
the structural velocity is obtained trivially since the spatial location of the control point
coincides with the center of the associated structural element side along γ (Figure 3.3).
However, the interpolation of the fluid velocity to the control points must be computed.
This requires identification of the fluid element and the isoparametric coordinates of
the fluid particle coincident with the spatial location of the control point. Once these
coordinates are known, the fluid velocity at the control point can be expressed in terms
of the nodal fluid velocities.

After discretization the finite element equations can be derived. Detail on the fi-
nite element implementation of the fluid-structure interaction problem can be found in
Appendix A.

3.5 Solution procedure

The problem defined by (3.17) to (3.19) renders a non-linear system of algebraic equa-
tions which is linearized using Newton’s method. The procedure used in this work
to solve this coupled problem is based on a fully coupled approach (Appendix D) us-
ing a BiCGStab iterative solver with a preconditioner according to an incomplete LU
factorization (Saad, 1996). Hence, the fluid and structure unknowns are solved simul-
taneously based on the integrated method (Cuvelier et al., 1986). Within each time



38 Chapter 3

step a Newton-Raphson iterative procedure is adopted to obtain a converged solution
with respect to the fluid and structural velocity fields, the pressure fields and Lagrange
multipliers. At each iteration the velocity field of the structure is fully coupled to the
velocity field of the fluid. This obviates the need for an iterative procedure between the
fluid and structural subproblems circumventing numerical instabilities, which will be
discussed briefly hereafter. During the iterative procedure the fluid-structure coupling
through Equation (3.19) is enforced using the location of γ defined at the beginning
of the current time step. Enforcement on the most recently computed location of γ,
as is done in the two-dimensional case (De Hart et al., 2000, and Chapter 2), reduces
the convergence rate of the three-dimensional application leading to a computationally
inefficient procedure.

A weakly coupled strategy (appendix D) to solve the fluid and structural problem
separately, as used in the staggered procedures described by Felippa et al. (1998) and
Lesoinne M. et al. (1998), fails for stability reasons. This strategy involves transport of
surface tractions from the fluid domain to the structural domain and displacement fields
vice versa (Farhat et al., 1998; Rutten, 1998; Wall et al., 1998). During the opening
and closing phase of the aortic valve the leaflets show very low resistance to bending.
Enforcing the surface tractions computed from the fluid problem will result in an over-
estimated displacement field for the leaflet to obtain internal stresses that balance the
tractions. Application of this displacement field to the fluid domain invokes instability
of the system. An alternative strategy involves transport of the computed fluid velocity
field to the structural domain. However, the leaflet structure is designed to bear tensile
stresses rather than compressive stresses. Consequently, application of the computed
fluid velocity field to the leaflet structure may introduce unrealistic internal stresses,
which would lead to erroneous results initiating instability when coupled back to the
fluid. Attempts to make these, from a computational point of view, efficient procedures
successful, using for example underrelaxation schemes, unfortunately failed.

3.6 Application to the aortic valve

The motion of a stented aortic valve and the blood flow through it are analyzed. In this
section, the results are presented in terms of the computed fluid velocities, structural
displacements and structural stresses. First, the model properties, such as geometrical
and material properties are given, followed by the appropriate boundary conditions
required for this system. A discussion on these results is given in the last subsection.

3.6.1 Model properties

The aortic valve consists of three highly flexible leaflets, which are attached to the
aortic root from one commissural point along a doubly curved line (aortic ring) towards
a second commissural point, see Figure 3.4(a) to (c). Behind each leaflet the aortic
root bulbs into a sinus cavity to form the beginning of the ascending aorta. Figure
3.5 shows the relevant dimensions, which have frequently been used to describe the
valve’s geometry. The values of these dimensions, based on the geometry of previously
developed prototype valves (Cacciola, 1998; De Hart et al., 1998), are summarized in
Table 3.1. The adopted values of the material parameters are also given in this table.
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Figure 3.4: Sketches of the aortic valve: side view of the complete valve (a), after dissection of one
leaflet with corresponding sinus wall (b), and top view.

Although in reality the three leaflets are not precisely identical, it is assumed that
they are similar enough to permit a general description of a valve with trileaflet sym-
metry. Hence, only 1

6 of the valve is considered in the model (Figure 3.6(b)), which
contains approximately 20,000 fluid and 6,500 structural degrees of freedom. The con-
figuration shown in this figure is taken as the initial, stress free condition of the model.
The model is bounded in circumferential direction by the symmetry surface, which in-
tersects through half of one leaflet, and by the contact surface, at which two adjacent
leaflets come into contact during the closing phase (Figure 3.6(a)). In axial direction
the model is bounded by the ventricular (inflow) and aortic (outflow) plane (Figure
3.6(c)), and obviously, in radial direction by the aortic wall, which is assumed to be
rigid to mimic a stented valve. The leaflet is fixed to the aortic wall using homogeneous
Dirichlet conditions imposed over the full thickness of the valve. Moreover, homoge-
neous Dirichlet conditions are imposed to suppress out of plane motion for the fluid
and leaflet at the symmetry surface and for the fluid only at the contact surface. No-slip
conditions are enforced at the fluid-wall surface. The fluid-structure coupling at the
contact surface prevents the leaflet from penetrating this surface for sufficiently small
time steps. The model is loaded during the systolic phase by ventricular and aortic
pressure curves (Figure 3.7), to demonstrate the applicability of the presented method.
The pressures are applied to the fluid domain at the inflow and outflow surfaces in 100
successive time steps for this time span.

Geometric properties Material properties

r [mm] ds [mm] hs [mm] hc [mm] tl [µm] η f [Pa·s] ρ f [ kg
m3 ] G [MPa]

12.0 5.75 21.0 10.5 200.0 4.0·10-3 1.0·103 3.0·10-2

Table 3.1: Geometrical and material properties of the valve model .
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r
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r

Figure 3.5: Definition of relevant dimensions, which are used to describe the geometry of the
model: r denotes the valve radius, ds the sinus depth, hs the sinus height, hc the
commissural height and tl the leaflet thickness.

3.6.2 Results

To obtain a global assessment of the system response to the applied load, 6 successive
configurations of the valve with the corresponding fluid velocity vector field are shown
in Figure 3.8. The opening behaviour is typical for stented valves (Cacciola, 1998)
showing high curvatures of the free edge (Figure 3.8(b)). The Reynolds number, defined
as Re = ρ fVr

η f
, reaches a value of 900 at peak systolic mainstream velocity, i.e. V = 300

[mm/s] at t = 0.065 [s]. However, the moment of complete opening corresponds to
Figure 3.8(c), i.e. at t = 0.0875 [s]. The Strouhal number, defined as Sr = r

Vτ , with τ(≈
0.12) the time span from maximum systolic flow to the onset of flow reversal (Figure
3.8(f)), is approximately 0.3. The physiological values of these numbers, however, read
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Figure 3.6: Three-dimensional FEM model of the stented aortic valve: (a) part of the valve used
for the computation, (b) structure mesh and (c) fluid mesh.
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Figure 3.7: Aortic (Pao: dashed line) and left ventricular (Plv: solid line) pressure curves during
the cardiac cycle. The applied systolic pressures are given on the right hand side.

Re ≈ 4500 and Sr ≈ 0.06. The application of these values is not feasible in view of
the rather coarse fluid mesh, which is chosen such that both memory and CPU time
are reasonable to demonstrate the proposed numerical method. On the other hand, the
Womersly number α ≈ 16.4 is in fair agreement with the physiological value (15−16),
yielding that the instationary inertia forces dominate the viscous forces.

In Figure 3.9 the maximum principle Cauchy stresses are given. The stress scale is
given in kPa and the maximum principle stresses vary from -50 [kPa] to 60 [kPa]. In the
diastolic phase stress values in the order of MPa have been reported, e.g. see Black et al.
(1991); Cacciola (1998); Chandran et al. (1991); De Hart et al. (1998); Krucinski et al.
(1993). During the opening of the valve (Figure 3.9(a) and (b)) tensile stresses in the
middle of the leaflets are more dominant on the aortic side of the leaflets, whereas com-
pressive stresses are present at the ventricular side. This can clearly be observed in the
left hand side figures and is caused by the high curvature in the symmetry plane, which
intersects through half of the leaflets. Similar configurations have been measured by
Gao et al. (2000) monitoring the leaflet motion in bioprosthetic heart valves with dual
camera stereo photogrammetry. Near the fixation edge, however, tensile stresses appear
on the ventricular side and compressive stresses on the aortic side. The stress distribu-
tion is rather inhomogeneous during this phase. The middle frame represents the initial
phase of valve closing, which shows significant stresses in the middle of the leaflet. For
this configuration the compressive stresses appear on the aortic side, whereas tensile
stresses are more dominant on the ventricular side. This phenomenon shows a cyclic
loading pattern of the aortic leaflets, which is believed to be important in the analysis
of fatigue behaviour. The last two frames are taken at the end of the systolic phase,
where a rapid closure of the valve occurs. The stresses in the leaflets are significantly
increasing in this phase as they have to bear the increasing pressure gradient across the
valve. As stated before, the simulation does not include the diastolic phase. Moreover,
with the applied material parameters, the leaflet would undergo excessive deformations
to balance the diastolic pressure gradient. In reality, the natural valve shows a complex
fiber-reinforced composite texture to be able to bear diastolic pressures.

The velocity vector field near the leaflets is given in Figure 3.10(a) to (f). In frame
(a) the valve is shown in its initial (stress free) configuration, which corresponds to a
closed position. During the acceleration phase (frame (b)) a forward flow is observed
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(a) t = 0.0 [s] (b) t = 0.05 [s] (c) t = 0.0875 [s]

(d) t = 0.125 [s] (e) t = 0.175 [s] (f) t = 0.2125 [s]

Figure 3.8: Configurations of the stented valve taken at 6 successive points in time during the
systolic phase. The fluid velocity vector field is also shown.

for every point of the fluid domain, including in the sinus cavity (i.e. wash-out). For the
fully opened valve (frame (c)) the flow is more central and very little flow in the sinus
cavity is observed. At the moment of complete valve opening, however, the flow has
started to decelerate already. During the deceleration phase recirculation at the leaflet
free edge precedes vortex development in the sinus cavity and the valve is driven to a
closed position (frames (d) and (e)). Similar results were found by Van Steenhoven et
al. (1982) for in vivo experiments with approximately the same peak systolic velocity. A
completely closed valve is obtained after reversal of the pressure gradient, leading to a
little amount of back flow (frame (f)). This last phase of the leaflets motion results in a
quick final closure of the valve. In conclusion the leaflets of the stented valve appear to
be moving in an essentially kinematical process governed by the fluid flow.
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(a) t = 0.05 [s]

(b) t = 0.0875 [s]

(c) t = 0.175 [s]

(d) t = 0.2125 [s]

(e) t = 0.25 [s]

Figure 3.9: Maximum principle Cauchy stresses in the leaflets during the systolic phase of the
cardiac cycle. The stress scale is given in [kPa].



44 Chapter 3

(a) t = 0.0 [s] (b) t = 0.05 [s] (c) t = 0.0875 [s]

(d) t = 0.125 [s] (e) t = 0.175 [s] (f) t = 0.2125 [s]

Figure 3.10: Velocity vector field for 6 successive points in time.

3.7 Discussion

A three-dimensional fictitious domain method is applied to model fluid-structure in-
teraction in the aortic valve. The method is based on the imposition of kinematical
constraints, using Lagrange multipliers, which represent the no-slip conditions along
the fluid-structure interface. The implementation of this numerical technique is per-
formed within the framework of the finite element method encoded in the SEPRAN
software package (Segal, 2000). The essential feature of this approach is that inde-
pendent discretizations of the computational domains are allowed. This yields that
the fluid finite element mesh is not altered or interrupted in any way by the presence
of submerged structures. Conventional mesh update strategies, such as remeshing or
arbitrary Lagrange-Euler techniques, consequently are superfluous.

The set of discretized linear algebraic equations is solved in a fully coupled manner.
This leads to a solution procedure in which the fluid and structure unknowns are solved
simultaneously, circumventing the judicious choice of the state variables to be trans-
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ported from one system to the other, which is common practice in staggered procedures.
However, the condition of the finite element matrix of the total system is affected, since
the matrix entries display large variations caused by the difference in magnitude of the
material parameters that describe the fluid and structure. Moreover, the solvability ap-
pears to be highly influenced by the number of additional Lagrange multipliers with
respect to the number of fluid unknowns. For the application presented in this chapter,
the number of coupling constraints is chosen such that a BiCGStab iterative solver with a
preconditioner based on an incomplete LU factorization using extra fill-in (Saad, 1996)
is still feasible for reasonable amounts of both memory and CPU time. The convergence
criterion for the BiCGStab iteration process is based on the maximum residual norm
for which the tolerance is set to 10−4. In the Newton-Raphson iteration process the
convergence criterion is based on the norm of the change of the state variables in two
successive iterations relative to the norm computed from the last converged solution
with the tolerance set to 10−5. These settings appeared to be sufficient for obtaining a
solution indifferent to sharper tolerances.

The system is solved on a 64-bit Alpha 21264DP platform with a 667 MHz processor
and an applicable memory allocation of 4 GB of which 20% is used. The ILU factor-
ization takes 90% of the computation time and, in practice, must be performed after
two time steps on average, since the changing position of the structure in the fluid do-
main involves a different mapping of the matrix entries associated with the Lagrange
multipliers. For the valve model, having approximately 26,500 degrees of freedom,
this resulted in a computation time of 35 minutes per time step to obtain a converged
solution.

The fictitious domain method is applied to simulate the response of a stented aortic
valve to externally applied ventricular and aortic pressures. Results show that during
systole the valve leaflets are moving with the fluid in an essentially kinematical process
governed by the fluid motion. The maximum pressure difference is taken such that
the Reynolds and Strouhal number approximate 900 and 0.3, respectively. An analysis
with the physiological Reynolds number (Re = 4500) and Strouhal number (Sr = 0.06)
would lead to commonly expected numerical instabilities for a mesh coarseness as used
in this model. Moreover, in this chapter we focus on the three-dimensional application
of the numerical method to investigate the importance of fluid-structure interaction
rather than on the approximation of the physiological situation.

Contact between two adjacent leaflets has not been implemented in the applied
computer code. Instead, it is expected that penetration of the leaflets is circumvented
implicitly by using the fictitious domain method, since at the contact surface fluid ve-
locities in the direction normal to this surface are suppressed. From Figures 3.9(d) and
(e) this is observed at the free edges of the leaflets. However, in Figure 3.9(a) some
penetration is seen, which is caused by the relative large displacement of the free edge
within one time step. A decrease in time step size or an increase in the density Tγ near
this area, i.e. adding more coupling constraints, would prevent penetration.

Although the model parameters are not such that a physiological correct behaviour
is attained, the adopted methods appear to be applicable in the three-dimensional fluid-
structure interaction analysis of the aortic valve. Valve models that more closely resem-
ble the physiological situation in terms of anisotropic material behaviour, compliant
aortic root and high Reynolds number flow, are elaborated in Chapter 4 and 5.
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Chapter 4

Computational Analysis of a
Fiber-Reinforced Stented Aortic Valve1

Calcification and/or tissue degeneration are failure mechanisms that are often observed
in aortic valve bioprostheses, synthetic prostheses and diseased natural valves. The physical
effect on cardiac performance can be expressed in clinical terms of e.g. cardiac output, car-
diac work and pressure drop over the valve. Leaflet fiber-reinforcement is a natural stress
reducing mechanism that contributes to a life-long functioning of the valve. However, the
actual effect on the mechanical and hemodynamical performance is difficult to study both
’in vivo’ and ’in vitro’. To this end a numerical model of a fiber-reinforced stented valve is
developed, which is based on a fictitious domain formulation using Lagrange multipliers to
describe the interaction between the blood and the leaflets. This numerical technique is in-
tegrated within the finite element framework and demonstrated for high Reynolds number
flows and physiologically realistic material characteristics. Both structural mechanical and
fluid dynamical aspect are analyzed during the systolic phase of the cardiac cycle. Results
show that fiber-reinforcement significantly improves the mechanical behaviour of the valve,
while the fluid dynamical performance is preserved.

1The contents of this chapter are submitted to the Journal of Biomechanics, under the title:

A computational fluid-structure interaction analysis of a fiber-reinforced stented aortic valve
De Hart, J., Peters, G.W.M., Schreurs, P.J.G., Baaijens, F.P.T.
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4.1 Introduction

Disfunctional heart valves are increasingly replaced by prosthetic devices. Commercially
available prostheses are, up to now, either mechanical or biological. However, throm-
boembolic complications and tissue degeneration are still injurious for these substitutes.
Attempts to make fully synthetic prostheses have not been very successful either, i.e.
they are not reliable for long-term applications. The failure mechanisms observed in
bioprosthetic devices are similar to those reported in synthetic prostheses (Bernacca
et al., 1995; Wheatly et al., 1987). Regions of high bending and shear stresses in the
leaflets during opening and closing have been suggested to cause tissue degeneration
leading to calcification and ultimately failure of the valve. Fiber-reinforcement of the
leaflets efficiently reduces critical stresses in the delicate components of the leaflet tissue
(De Hart et al., 1998; Cacciola, 1998). This mechanism is essential for the long-term
performance of natural valves. Since stresses are difficult to measure experimentally,
computational modeling can enhance the development of improved prosthetic devices.

In the computational analysis of the aortic valve system most frequently structural
models have been considered, see Black et al. (1991); Cacciola (1998); Chandran et al.
(1991); Krucinski et al. (1993) and many others. However, the clinical performance of
a valve is measured by both its mechanical and hemodynamical characteristics. Hence,
the interaction of the valve with the blood is essential in evaluating its functioning. To
carry out such fluid-structure interaction analyses we adopt a fictitious domain tech-
nique which is elaborated in De Hart et al. (2001a) and Chapter 3.

In the fictitious domain formulation the different mathematical representations of
the fluid and structure balance equations can be maintained, allowing convenient classi-
cal descriptions for each of these subsystems. Fictitious domain methods provide a way
to circumvent fluid mesh update strategies to accommodate for the large leaflet motion
within the computational fluid domain. Instead, dissimilar and independent fluid and
structural discretizations are allowed, such that the fluid mesh is not altered or inter-
rupted by the presence of valve leaflets. Here, fluid-structure coupling is realized by a
set of kinematical constraints (the no-slip conditions along the fluid-structure interface),
which are enforced through Lagrange multipliers (Bertrand et al., 1997; Glowinski et
al., 1998; LeVeque and Li, 1997; Patankar et al., 2000; Singh et al., 2000). Although
fictitious domain methods are generally used to describe the motion (usually known a
priori) of rigid structures immersed in fluid, the method presented by Baaijens (2001),
De Hart et al. (2001a) and in Chapter 3 is applicable to problems with deformable struc-
tures of which the motion is not known a priori but depends on the surrounding fluid
flow. Experimental validation of this method, applied to a two-dimensional aortic valve,
is demonstrated in Chapter 2 and by De Hart et al. (2000).

In this chapter the application of leaflet fiber-reinforcement to a stented aortic valve
is analyzed. The physiological condition under which the valve operates is, within the
numerical applicability, adopted to obtain clinical relevance from the computational
results. First, the problem definition and governing equations for the fluid and structural
phase are summarized. Next, the coupling between these two phases is briefly described
and a fictitious domain formulation is given. The results are presented in terms of
structural displacements, stresses, and fluid velocities, fluid wash-out and pressures.
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Moreover, the findings for the fiber-reinforced model will be compared to a similar
isotropic variant.

4.2 Problem definition and governing equations

Computational analysis of a stented aortic valve requires mathematical descriptions of
the valve leaflets and the blood. Blood is a concentrated suspension of blood cells in
plasma. Its rheological behaviour is dominated by the red blood cells. Assuming homo-
geneity of the concentration a macroscopic continuum model can be used to describe
the blood flow. In our models the blood flow is considered to be isothermal and incom-
pressible. It appears that in the case of properly working heart valves, the fluid flow is
laminar (Nerem et al., 1972). Hence, in absence of body forces, the equation of motion
and the continuity equation, with respect to an Eulerian reference frame, read

ρ f(
∂�v f

∂t
+�v f · �∇�v f) = �∇ · (−pf III + τττ f), (4.1)

�∇ ·�v f = 0, (4.2)

where ρ f denotes the density, t the time, �v f is the velocity, pf the pressure, τττ f the extra
fluid stress tensor and �∇ the gradient operator. Assuming a Newtonian behaviour of
the blood (Caro et al., 1978) the extra stress tensor can be written in terms of the
rate-of-deformation tensor DDDf :

τττ f = 2ηDDDf ; DDDf =
1
2

(
�∇�v f + (�∇�v f )T)

, (4.3)

with η the (constant) dynamic viscosity.
Scaling spatial coordinates with a characteristic length, e.g. the aortic valve radius

ra, velocities with a characteristic velocity, e.g. the peak (inflow) velocity V and time
with a characteristic time, e.g. the flow deceleration time τ (measured from maximum
flow to the onset of flow reversal), the dimensionless (∗) representation of the well-
known Navier-Stokes equation is given by

Sr
∂�v ∗

f

∂t∗
+�v ∗

f · �∇∗�v ∗
f = −�∇∗p∗ +

1
Re

2�∇∗ · DDD∗
f , (4.4)

where the Strouhal number Sr and the Reynolds number Re are defined as

Sr =
ra

τV
; Re =

ρVra

η
. (4.5)

As fluid and structure density are nearly identical (buoyancy forces can be ne-
glected), the contribution of the small leaflet mass to the inertia of the system is as-
sumed to be insignificant. In absence of any body forces the momentum equation for
the incompressible structure yields

�∇ · σσσs =�0, (4.6)
det(FFF) = 1, (4.7)
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where σσσs is the structural Cauchy stress tensor and F the deformation tensor defined as
FFF = (�∇0�xs)T , with �∇0 the gradient operator with respect to the initial configuration and
�xs the field of structural material points. The sets (4.1), (4.2) and (4.6), (4.7) must be
supplemented with appropriate Dirichlet and Neumann conditions which are described
further on.

As mentioned in the introduction the valve leaflets constitute a fiber-reinforced
texture. The fiber/matrix structure renders an orthotropic incompressible composite
(Sauren, 1981), of which the matrix is assumed to obey a Neo-Hookean material law
according to

σσσm = −pmIII + τττm ; τττm = G(BBB − III), (4.8)

where pm denotes the hydrostatic pressure, III the second-order unit tensor and τττm the
extra stress tensor. The definition of τττm represents an isotropic hyperelastic behaviour
with G the shear modulus and BBB = FFF · FFFT the Finger or left Cauchy-Green strain tensor.
The fibers are modeled as a one-dimensional material exerting only tensile stress (σ fb)
in the fiber direction according to

σ fb = c1µ
2
(

ec2(µ2−1) − 1
)
, (4.9)

with c1 and c2 material constants and µ the fiber stretch (Van Oijen et al., 2002). In
terms of the deformation tensor FFF the fiber stretch can be defined as

µ = ‖FFF ·�e0‖, (4.10)

where the unit vector�e0 represents the initial local fiber direction. Since FFF describes the
deformation of the composite, matrix and fiber undergo the same deformation restrict-
ing fiber motion with respect to the matrix material.

The constitutive law for the leaflet composite consisting of N fiber layers can now be
written as

σσσs = −psIII + τττ s ;



τττ s = τττm +

N∑
k=1

[θ fbk (σ fbk −�ek · τττm ·�ek)�ek�ek] , µ ≥ 1,

τττ s = τττm, µ < 1
(4.11)

with ps = pm, �ek the unit vector of the current local fiber direction and θ fbk the volume
fraction of fiber k in the composite (Van Oijen et al., 2002). Relation (4.11) is a con-
tinuum approximation, which states that in the fiber direction �ek the fiber stress and
extra matrix stress contribute to τττ s with fractions θ fb and 1 − θ fb, respectively (rule of
mixtures).

The structural equilibrium equations (4.6) and (4.7) are described in an updated
Lagrange formulation. In this formulation it is customary to take the displacement
field �us as the unknown. During a time interval tn → tn+1, this field is defined as the
difference in the position fields at tn and tn+1. However, for the interaction with the
fluid, the structural velocity field is considered rather than the displacement field. To
this end a first-order approximation for the structural velocity field is used:

�vs =
�us

∆t
(4.12)

with time step ∆t = tn+1 − tn.
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4.3 Fluid-structure interaction

Fluid-structure interaction in a stented aortic valve involves a coupling of the fluid do-
main Ω f (i.e. the blood) with immersed structures Ωs (i.e. the valve leaflets). This cou-
pling is straightforward if equal-order discretization of the fluid and structural domain
is used and nodes and element boundaries coincide along the fluid-structure interface.
However, in (4.1) and (4.2) the fluid domain is fixed in space, while in (4.6) and (4.7)
the position of the structural domain changes and is not known a priori. Consequently,
continuously updating the fluid mesh to accommodate for the motion of the structural
domain requires remeshing or alternatively, an arbitrary Lagrange-Euler (ALE) formu-
lation for the fluid domain. The change in mesh topology during remeshing introduces
artificial diffusivity as history variables must be interpolated to the newly generated
mesh. Moreover, this technique is difficult and/or time-consuming to perform with suf-
ficient robustness and accuracy for three-dimensional problems. The ALE formulation
is restricted to applications where the motion of the structural domain is such that, with
preserved topology, the updated fluid mesh maintains a proper quality. To resolve the
limitations of these mesh update strategies a fictitious domain method is used, which
can deal with the large motion of the valve leaflets within the computational fluid do-
main. The mathematical formulation describing the interaction of the leaflets with the
fluid is elaborated in De Hart et al. (2001a) and summarized here.

The basic idea of fictitious domain methods is to mathematically rewrite the problem
defined on the fluid domain as a problem defined on an extended domain containing
both the fluid and the immersed structure. To describe the presence of the immersed
structure for this new problem we introduce kinematical (no-slip) constraints:

�v f −�vs =�0, (4.13)

along the fluid-structure boundary γ. For the aortic valve leaflets these coupling con-
straints can be enforced along one side of the leaflet only, since their thickness is negligi-
ble as far the interaction with the fluid is considered. The Lagrange multiplier method
(Fortin et al., 1983; Bathe, 1982) is applied to weakly enforce the constraints using
Lagrange multipliers�λ (see Appendix B).

Without going into detail we present the fictitious domain formulation describing
the fluid-structure interaction problem (De Hart et al., 2001a):

∫
Ω f

�wf ·
(
ρ f
∂�v f

∂t
+ ρ f �v f · �∇�v f

)
dΩ f +

∫
Ω f

(�∇�wf)T : 2ηDDDf dΩ f−∫
Ω f

(�∇ · �wf)pf dΩ f +
∫
γ

�wf ·�λ dγ =
∫

Γ f

�wf ·�t f dΓ f ,∫
Ω f

q f(�∇ ·�v f ) dΩ f = 0,

(4.14)

∫
Ωs

(�∇�ws)T : τττ s dΩs −
∫

Ωs

(�∇ · �ws)ps dΩs −
∫
γ

�ws ·�λ dγ = 0,∫
Ωs

qs

(
det(FFF) − 1

)
dΩs = 0,

(4.15)
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∫
γ

�� · (�v f −�vs) dγ = 0, (4.16)

which must hold for all admissible weighting functions �wf , qf , �ws, qs and ��. The variable
�t f = (−pf III+2ηDDDf)·�n in Equation (4.14) denotes the externally applied surface tractions
on Γ f . In the structural equation (4.15) these tractions are neglected. The Lagrange
multipliers �λ in Equation (4.14) and (4.15) may be interpreted as the surfaces force
exerted on the fluid and structure respectively to ensure coupling as defined by Equation
(4.16).

The formulation presented above allows dissimilar and independent discretizations
for the fluid and structural domain, which makes the fictitious domain method very
appealing for fluid-structure interaction problems involving large structural motions.
For the spatial discretization of these equations we adopt the Galerkin finite element
method (FEM), which is discussed in De Hart et al. (2001a) and Chapter 3 and briefly
described in the next section (see Appendix A for more details on the implementation).

4.4 Model properties

The aortic valve consists of three highly flexible leaflets, which are attached to the aortic
root from one commissural point along a doubly curved line (aortic ring) towards a
second commissural point, as illustrated in Figure 4.1(a) to (c). Behind each leaflet the
aortic root bulbs into a sinus cavity to form the beginning of the ascending aorta. Figure
4.2 shows some relevant dimensions that have frequently been used to describe the
geometry of the valve. The values of these dimensions (and typical anatomical values
measured in human specimens (Thubrikar, 1990; Clark et al., 1974; Sauren, 1981))
are: rv = 12.0 (12.0) [mm], ra = 12.0 (11.4) [mm], ds = 5.75 (5.52) [mm], hs = 21.0
(20.9) [mm], hc = 10.5 (17.5) [mm] and tl = 0.20 (0.20) [mm]. The commissural
height hc used in the model is based on the geometry of synthetic stented prostheses
developed by Cacciola (1998).

The valve leaflets constitute a fiber-reinforced composite texture. More precisely,

ao
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aortic ring
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commissure

sinus

free edge

(c)

Figure 4.1: Sketches of the aortic valve: side view of the complete valve (a), after dissection of one
leaflet with corresponding sinus wall (b), and top view.
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hs

ra

hc

rv ds

tl

rv
ds

Figure 4.2: Definition of dimensions, which are used to describe the geometry of the stented aortic
valve: rv denotes the ventricular valve radius, ra the aortic valve radius, ds the sinus
depth, hs the sinus height, hc the commissural height and tl the leaflet thickness.

this texture consists of elastin and collagen fibers (mainly concentrated at the aortic
leaflet side) embedded in a matrix of endothelial cells. Originating at the commissures
collagen fibers run circumferential and spread out over the whole leaflet, see Figure
4.3(a). In addition to these commissural fibers, discrete macroscopically visible bundles,
perpendicular to the attachment line, anchor the middle portion of the leaflet to the
aortic wall (Sauren, 1981). This collagen leaflet reinforcement is implemented into the
model as two distinct layers (Figure 4.3(b)).

The stress-strain relation of the leaflet composite texture has been measured by
Sauren (1981) for different human specimens. For the circumferential direction, this
relation is given in Figure 4.4 and shows for each leaflet two main phases, which are fre-
quently denoted as the elastin or low strain phase and the collagen or high strain phase.
The low strain phase is encountered during initial opening and closing of the valve and
is dominated by the characteristics of the elastin fibers in the leaflets. At higher strains,
e.g. when the leaflets are pushed towards the sinus cavities during midsystole or the
valve has to withstand the diastolic pressure gradient, the collagen fibers dominate the
material behaviour of the texture. To simulate this behaviour the matrix shear modu-

(a)

fiber layer 1

fiber layer 2

(b)

Figure 4.3: Typical fiber structure in the aortic valve leaflets: (a) natural leaflet (from Sauren
(1981), with permission), (b) numerical model.
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Figure 4.4: Cauchy stress (σ) versus Green-Lagrange strain (ε) of two different circumferential
aortic leaflet specimens reported by Sauren (1981) (dashed and dotted lines). The
stress-strain relation in a single fiber direction of the composite used in the numerical
model is shown as a solid line.

lus and fiber parameters in the model composite are chosen such that the low strain
phase is determined by the matrix and the high strain phase by the fiber. The resulting
stress-strain behaviour is also shown in Figure 4.4 and corresponding parameter values
are given in Table 4.1. In this table the low strain modulus in circumferential direction
of the human leaflet (Sauren, 1981) and physiological viscosity and density values for
human blood (Caro et al., 1978) are presented as well. For the non-reinforced stented
model the constitutive behaviour of the complete structural phase is described by (4.8).

Although the three leaflets are not completely identical, it is assumed that they
are similar enough to permit a general description of a valve with trileaflet symmetry.
Hence, only 1

6 of the valve will be considered as shown in Figure 4.5. The configuration
given in this figure is taken as the initial, stress free condition. The model is bounded
in circumferential direction by the symmetry surface, which intersects through half of
one leaflet, and by the contact surface, at which two adjacent leaflets come into contact
during the closing phase (Figure 4.5(a)). In axial direction the model is bounded by the
ventricular (inflow) and aortic (outflow) plane (Figure 4.5(c)), and obviously, in radial
direction by the aortic wall, at which homogeneous Dirichlet conditions are applied to

η f ρ f G∗ c1 c2 θ N

Dimension [Pa·s] [kg/m3] [MPa] [−]

Model 3.8·10-3 1.0·103 3.0·10-2 1.0·10-3 50.0 0.1 2

Human 3.8·10-3 1.0·103 2.0·10-2 − − − −

Table 4.1: Material model properties and corresponding physiological values. ∗The value for G of
the human leaflet is measured at low strains and represents the shear modulus in the
elastin phase of the leaflet material.
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Figure 4.5: Three-dimensional FEM model of the stented aortic valve: (a) part of the valve used
for the computation, (b) structure mesh and (c) fluid mesh.

fix the leaflet. Moreover, homogeneous Dirichlet conditions are imposed to suppress
out of plane motion for the fluid and leaflet at the symmetry surface and for the fluid
only at the contact surface. The fluid-structure coupling at the contact surface prevents
the leaflet from penetrating this surface for sufficiently small time steps. No-slip condi-
tions are enforced at the fluid-wall surface. Although in reality the valve is positioned
right after the left ventricle, the fluid inflow conduct is used here for numerical stabil-
ity reasons. The model is at the inflow plane fed with a time dependent uniform axial
velocity distribution (plug flow) as shown in Figure 4.6. The corresponding maximum
flow reaches 230 [ml/s], which is approximately half of the maximum physiological
flow. A higher flow would instigate numerical instabilities for the applied mesh resolu-
tion described below. However, the shape of the velocity curve is typical for the aortic
valve system. The associated Reynolds (Re) and Strouhal (Sr) number respectively read
1500 and 0.12. At the outflow plane the system is loaded by a physiological aortic pres-
sure curve taken from Van Renterghem (1983) (Figure 4.6). Although for the stented
case the leaflet motion is essentially determined by the transvalvular pressure gradient,
the absolute pressure is computed here to obtain realistic internal pressures. A cycle
independent solution is reached by performing the analysis for two successive cardiac
cycles.

The fluid domain is discretized using 650 hexahedral (Crouzeix-Raviart) elements
based on the so-called mixed (velocity/pressure) formulation with a quadratic inter-
polation of the velocity field and a linear interpolation of the pressure field, which is
discontinuous throughout the mesh. The discontinuous interpolation for the pressure
appears to be mandatory as demonstrated in Baaijens (2001). For the discretization of
the structure identical finite elements are used, based here on a displacement/pressure
formulation. The Dirichlet conditions applied to the structure are, with this choice of
finite elements, imposed over the full leaflet thickness. Given the quadratic interpola-
tion field for the displacement, the bending behaviour of the structure can be modeled
using only 1 element across the thickness. However, the element aspect ratio must be
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Figure 4.6: Velocity curve (bottom frame) and aortic pressure curve (top frame) applied to the in-
and outflow plane, respectively.

restricted to achieve a correct bending behaviour. These findings led to a discretization
consisting of 210 structural elements.

The Lagrange multipliers are approximated with piecewise constants. Each constant
is positioned in the center of a structural element side that coincides with the fluid-
structure boundary γ. At these so-called control points Equation (4.13) is enforced
locally. This choice requires the leaflet mesh density to be higher than the local fluid
mesh density to obtain a satisfying coupling (De Hart et al., 2001a). Many other dis-
cretization strategies are possible, however, the above choice is founded on experiences
from numerical experiments.

Finally, temporal discretization is achieved using an implicit, backward-Euler scheme
which is first-order accurate in time. A time step size of 0.0025 [s] appeared to be
sufficiently small for this analysis.

The total system renders a set of non-linear equations, which are linearized using
Newton’s method (Appendix A). A fully coupled solution strategy is adopted to simul-
taneously solve the fluid and structure unknowns. Within each time step the Newton-
Raphson iterative procedure is applied to ensure convergence for the velocity fields,
pressure fields and Lagrange multipliers. At each Newton iteration the set defined by
(4.14) to (4.16) is solved with a BiCGStab iterative solver using an ILU preconditioner,
which shows satisfying convergence properties due to the applied extra fill-in for the
computed lower and upper triangular matrices (Saad, 1996). For more details on the
solution strategy the reader is referred to De Hart et al. (2001a) and Appendix D.

4.5 Results

The fluid dynamical and structural mechanical performance of the stented valve model
is presented in terms of the fluid velocity field, structural displacement field and struc-
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tural stresses. With respect to the clinical performance, the transvalvular pressure gra-
dient and blood wash-out during the course of two successive cardiac cycles will be
shown.

The velocity vector field is given for the reinforced model only, since the non-reinfor-
ced model shows a nearly identical fluid dynamical performance. In Figure 4.7 this
vector field is given for 6 successive points in time of the cardiac cycle. For these time
points the axial velocity distribution is given at transversal cross-sections taken just up-
stream of the valve, at the maximum sinus depth, and downstream of the valve. Frame
(a) represents the end diastolic situation, i.e. just prior to forward flow. Very little vor-
tical flow is observed in the sinus cavities. Frame (b) represents the configuration just

(a) t = 0.0 [s] (b) t = 0.0625 [s] (c) t = 0.085 [s]

(d) t = 0.1125 [s] (e) t = 0.30 [s] (f) t = 0.525 [s]

Figure 4.7: Velocity vector field for 6 successive points in time. The axial velocity distributions are
shown at different transversal cross-sections.
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before complete valve opening, which is shown in frame (c). In view of the maximum
flow reached with the applied velocity curve (i.e. 230 [ml/s] at the maximum inlet
velocity of 500 [mm/s]), the moment of complete opening (85 [ms]) is attained at a
later stage in the cardiac cycle when compared with the physiological situation (30-40
[ms], Thubrikar (1990)). This fully open configuration precedes the moment of maxi-
mum forward flow (see Figure 4.6), which is also observed for physiological flows (Van
Steenhoven et al., 1981) but is different for low flow conditions, as has been demon-
strated experimentally by Van Steenhoven et al. (1982) and numerically by De Hart et
al. (2001a) and in Chapter 3. Frame (d) shows the onset of valve closure, at which the
maximum velocity is still increasing. At this point vortical flow starts to develop in the
ascending aorta, descending towards the sinus cavity as valve closing evolves (frames
(e) and (f)).

The mechanical performance of the fiber-reinforced model differs significantly from
the non-reinforced model. In Figure 4.8 the different configurations during the sys-
tolic phase are shown for the reinforced model (left and top leaflets) and for the non-
reinforced model (right leaflet). The maximum principle Cauchy stresses in the matrix
material of the fiber-reinforced leaflets are compared with those in the non-reinforced
leaflet. Higher stresses and a much more inhomogeneous stress distribution are im-
mediately discernible for the non-reinforced leaflet throughout the systolic phase. The
stresses in the fiber-reinforced leaflets are reduced up to 83% (frame (c)) when com-
pared with the non-reinforced leaflet. However, comparison of the stress states per
time point is rather awkward for dissimilar reinforced and non-reinforced leaflet con-
figurations. If the maximum stresses attained during the complete systolic phase are
compared, a reduction of 63% is obtained.

The reinforced leaflet shows a smooth opening and closing behaviour, whereas the
non-reinforced leaflet flutters in the main stream during midsystolic phase (frames (e)
to (g)). Leaflet fluttering is accompanied by a cyclic loading pattern, which is believed to
stimulate tissue fatigue and ultimately calcification and/or tearing. This phenomenon
is much less significantly present in the reinforced leaflets. Another remarkable ob-
servation is the difference in closing configurations between the reinforced and non-
reinforced valve (frame (g) to (j)). As closing configurations similar to the opening con-
figurations (e.g. frame (b)) are observed for the reinforced valve, the non-reinforced
valve shows an opposite deformation pattern near the free edge, which enforces stress
reversal during systole.

The contribution of leaflet fiber-reinforcement to stress reduction in the delicate
tissue components has been demonstrated numerically by De Hart et al. (1998) and
Cacciola (1998) in a quasi-static structural analysis of the valve. However, the effect
on stresses and valve kinematics during systole has never been investigated before in a
fluid-structural dynamical analysis.

The performance of the aortic valve is in clinical practice often evaluated by the
transvalvular pressure gradient during opening, which is a measure for the resistance
to forward flow. In Figure 4.9 this pressure gradient is given for both the reinforced
(solid line) and non-reinforced (dashed line) model and is computed as the difference
between the ventricular and aortic pressures taken at 10 [mm] upstream and 35 [mm]
downstream the valve (measured from the lowest point of the aortic ring). The mean
systolic pressure gradient, i.e. the averaged positive pressure gradient (from A to B in
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(a) t = 0.0 [s]; MPSr = 0.92 [-]

(b) t = 0.05 [s]; MPSr = 0.43 [-]

(c) t = 0.075 [s]; MPSr = 0.17 [-]

(d) t = 0.10 [s]; MPSr = 0.39 [-]

(e) t = 0.125 [s]; MPSr = 0.38 [-]

(f) t = 0.1875 [s]; MPSr = 0.23 [-]

(g) t = 0.225 [s]; MPSr = 0.30 [-]

(h) t = 0.275 [s]; MPSr = 0.41 [-]

(i) t = 0.30 [s]; MPSr = 0.47 [-]

(j) t = 0.3375 [s]; MPSr = 0.23 [-]

-10 0 10

Figure 4.8: Maximum principle Cauchy stresses in the leaflet matrix material during systole. In
all frames the right leaflet is taken from the non-reinforced model for comparison.
MPSr denotes the maximum principle stress ratio of the reinforced and non-reinforced
leaflets. The stress scale on the bottom is given in [kPa].
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Figure 4.9: Systolic transvalvular pressure gradient ∆p of the fiber-reinforced (solid line) and
isotropic (dashed line) stented valve.

Figure 4.9), reaches a value of 1.46 [kPa] with the obtained maximum flow. In the natu-
ral valve, values of 2.0-3.0 [kPa] are most commonly found for maximum flows of 400-
500 [ml/s] (Driscol et al., 1965). As the fiber-reinforcement has no significant effect on
the fluid dynamics, the pressure drop over the valve is approximately identical to the
non-reinforced model. This emphasizes the important role of leaflet fiber-reinforcement
during the systolic phase of the cardiac cycle. Fluid dynamical aspects are preserved,
whereas the structural mechanical aspects are significantly improved.

Calcification and/or stenosis of the valve leaflets is often accompanied by stagnant
flow regions persisting throughout the whole cardiac cycle, which stimulate thrombo-
genecity. In Figure 4.10 blood wash-out is illustrated during two successive cycles.
Frame (a) represents the initial (end diastolic) situation, where fluid particles are posi-
tioned upstream the valve and in the sinus cavity. Following these frames from (a) to
(f) each particle descends into the aorta within two successive cardiac cycles. Although
this is demonstrated for these particular positions, we were unable to find any region
for this stented valve design, in which a stagnant flow is present.

4.6 Discussion

The presented stented aortic valve model is based on the Galerkin finite element method
and implemented in the SEPRAN software package (Segal, 2000). The key features of
this model are: 1. three-dimensionality, 2. fully coupled fluid-structure interaction, 3.
avoidance of mesh update strategies, 4. physiological realistic material behaviour and
5. high Reynolds number flow. The systolic phase of the cardiac cycle is analyzed by
applying a time-dependent plug flow at the inflow plane and aortic pressure curve at
the outflow plane. This choice, however, does not allow for analyses during the dias-
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tolic phase, in which the leaflets have to bear the diastolic aortic-ventricular pressure
gradient. Imposition of Dirichlet conditions at the inflow plane gives rise to internal
diastolic ventricular pressures, which are of the same order as the aortic pressures.

The results presented in this chapter show that the implemented fiber-reinforcement
has significant impact on the stress state and kinematics of the leaflets, while the
fluid dynamical behaviour is preserved when compared with non-reinforced (isotropic)
leaflets. The maximum principle peak stresses in the leaflet matrix material during the
systolic phase are reduced with 63%. Similar values have been reported for diastolic
loading of the valve by De Hart et al. (1998); Cacciola (1998). Moreover, the reinforce-
ment appears to have a stabilizing function for the leaflet kinematics during midsystole.
It should be emphasized that the fiber implementation is based on a continuum approx-
imation, yielding that on the element level the fiber contribution is present throughout
the complete thickness of the leaflet. In the natural case, the collagen fiber contribution
is mainly found at the aortic leaflet surface and, consequently, its impact on kinematical
stabilization might therefore be less significant.

(a) t = 0.0 [s] (b) t = 0.12 [s] (c) t = 0.28 [s]

(d) t = 0.55 [s] (e) t = 1.062 [s] (f) t = 1.13 [s]

Figure 4.10: Particle tracking during two successive cardiac cycles.
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There have been many discussions on the valve closing mechanism in the past (Bell-
house et al., 1969; Van Steenhoven, 1979; Thubrikar, 1990). Our simulation predicts
vortical flow in the ascending aorta during flow deceleration, which precedes vortex
development in the sinus cavities at end systolic phase. This suggests that vortical flow
in the sinus cavity is of less importance for systolic valve closure and that the grad-
ual valve closure is instigated by the (small) pressure difference over the leaflets. Van
Steenhoven et al. reported on this hypothesis already in 1981 based on in vivo cine-
matographic studies. Although our model predicts a similar closing behaviour, we like
to stress that our fluid finite element discretization is chosen from a time efficient point
of view. A decrease in mesh size might reveal some deviant fluid dynamical behaviour.

Evaluation of the aortic valve performance is in clinical practice frequently based
on pressure drops over the valve. We have shown that the applied fiber-reinforcement
has no effect on the value of this measure and that for our model this value is within
the physiological range observed in healthy natural valves. Within the context of clinical
application, stenotic and/or incompetent valve performance can be studied with respect
to the associated medical complications using computational models as presented in
this chapter. We intend to report on these findings in terms of e.g. (wall) shear stresses
and tissue fatigue behaviour in the near future using patient related data as model
parameters.
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Chapter 5

Computational Analysis of a
Fiber-Reinforced Stentless Aortic Valve1

The importance of the aortic root compliance in the aortic valve performance has most
frequently been ignored in computational valve modeling, although it has a significant
contribution to the functionality of the valve. Aortic root aneurysm or (calcific) stiffening
severely affects the aortic valve behaviour and, consequently, the cardiovascular regulation.
The compromised valve functioning is difficult to study both ’in vivo’ and ’in vitro’. The
effect of aortic root compliance on the valve kinematics, mechanics and fluid dynamics dur-
ing the systolic phase is investigated numerically. To this end a finite element model of a
fiber-reinforced stentless aortic valve is developed. In the computational evaluation of its
clinical functioning the interaction of the valve with the blood is essential. Hence, the blood-
tissue interaction is incorporated in the model using a combined fictitious domain/arbitrary
Lagrange-Euler formulation. Results show that aortic root compliance largely influences the
valve opening and closing configurations. Stresses in the delicate parts of the leaflets are
substantially reduced if fiber-reinforcement is applied and the aortic root is able to expand.

1The contents of this chapter are submitted to the Journal of Biomechanics, under the title:

A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve
De Hart, J., Baaijens, F.P.T., Peters, G.W.M., Schreurs, P.J.G.
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5.1 Introduction

The opening and closing behaviour of the aortic valve is governed by the complex
interaction between the valve leaflets, aortic root, blood flow and blood pressures
(Thubrikar, 1990). Disfunctioning heart valves compromise cardiovascular regulation
and may severely affect quality of life. Stresses in the leaflets and aortic root are be-
lieved to be an important measure for the long-term physiological condition of the valve
tissue. Fiber-reinforcement of the leaflets and dilation of the aortic root are natural
stress reducing mechanisms that enable long-term performance. Pathological changes
of the structure may result in abnormal motion and function of the valve. Moreover,
blood flow and pressures may significantly become disturbed, resulting in decreasing
cardiac output and increasing cardiac work. Thromboembolic complications are known
to arise for low blood shear stresses (Nerem et al., 1972), which result from changes in
the hemodynamics of the blood. Since stresses are difficult to measure experimentally
for transient systems with complex three-dimensional geometries, computational mod-
eling can enhance the understanding of aortic valve behaviour under different physio-
logical conditions.

The clinical performance of a valve is evaluated by both mechanical and hemody-
namical characteristics. Hence, the interaction of the valve with the blood is essen-
tial when analyzing its functioning. To incorporate fluid-structure interaction we use
a combined fictitious domain/arbitrary Lagrange-Euler method, integrated within the
classical Galerkin finite element method (FEM). A Lagrange multiplier based fictitious
domain method (Baaijens, 2001; De Hart et al., 2001a, and Chapter 3) is used to de-
scribe the interaction of the blood flow with the moving leaflets. Fictitious domain
methods make fluid mesh update strategies redundant. Instead, dissimilar and inde-
pendent fluid and structural discretizations are allowed, and thus the fluid mesh is
not altered or interrupted by the presence of the valve leaflets. Hence, the different
mathematical representations of the fluid and structure balance equations can be main-
tained, allowing convenient common descriptions for each of these subsystems. In our
model, blood-leaflet coupling is realized by a set of kinematical constraints (the no-slip
conditions along the leaflet surface), which are enforced through Lagrange multipliers
(Bertrand et al., 1997; Glowinski et al., 1998; Patankar et al., 2000).

The dimensions of the aortic root change with the varying internal blood pressures.
Consequently, the shape of the fluid domain changes accordingly. Here, the arbitrary
Lagrange-Euler (ALE) method (Donea et al., 1982; Johnson et al., 1994; Schreurs,
1983) is adopted to accommodate the fluid domain for aortic root deformation. ALE
methods have frequently been used for fluid-structure interaction analyses in vascular
systems, see e.g. Perktold et al. (1995); Reuderink (1991); Rutten (1998).

In this chapter the mechanical and hemodynamical behaviour of a fiber-reinforced
stentless aortic valve model is analyzed. The results are compared to similar non-
reinforced models and stented models, which have been presented by De Hart et al.
(2001b) and in Chapter 4. The physiological condition under which the valve operates,
is, within the numerical applicability, adopted to obtain clinical relevance. First, the
problem definition and governing equations for the fluid and structure computations
are summarized. Next, the coupling between these two phases is briefly described for
the combined fictitious domain/arbitrary Lagrange-Euler formulation. The results of
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the valve models are presented in terms of structural displacements, stresses, and fluid
velocities and wash-out.

5.2 Problem definition and governing equations

Blood is a concentrated suspension of blood cells in plasma. Its rheological behaviour
is dominated by the red blood cells. Assuming homogeneity of the concentration a
macroscopic continuum model can be used to describe the blood flow. In our model
the blood flow is considered to be laminar, isothermal and incompressible. Hence, in
absence of body forces and adopting a Newtonian behaviour, the Navier-Stokes equation
and the continuity equation, with respect to an Eulerian reference frame, read

ρ f(
∂�v f

∂t
+�v f · �∇�v f) + �∇pf − 2η�∇ · DDDf =�0, (5.1)

�∇ ·�v f = 0, (5.2)

where ρ f denotes the density, t the time, �v f is the velocity, pf the pressure, DDDf the rate-
of-deformation tensor, η the (constant) dynamic viscosity and �∇ the gradient operator.
Scaling spatial coordinates with a characteristic length, e.g. the aortic valve radius ra,
velocities with a characteristic velocity, e.g. the peak (inflow) velocity V and time with
a characteristic time, e.g. the flow deceleration time τ (measured from maximum flow
to the onset of flow reversal), the dimensionless (∗) representation of Equation (5.1) is
given by

Sr
∂�v ∗

f

∂t∗
+�v ∗

f · �∇∗�v ∗
f + �∇∗p∗ − 1

Re
2�∇∗ · DDD∗

f =�0, (5.3)

where the Strouhal number Sr and the Reynolds number Re are defined as

Sr =
ra

τV
; Re =

ρVra

η
. (5.4)

As fluid and structure density are nearly identical, buoyancy forces can be neglected,
and the contribution of the small leaflet mass to the system inertia is assumed to be
insignificant. Moreover, the inertia effects resulting from the aortic root and wall are
not considered in our model.

The valve leaflets constitute a fiber-reinforced texture. The fiber/matrix structure
renders an orthotropic incompressible composite (Sauren, 1981), of which the matrix
is assumed to obey a Neo-Hookean material law according to

σσσm = −pmIII + τττm ; τττm = Gm(BBB − III), (5.5)

where σσσm is the Cauchy stress tensor, pm the hydrostatic pressure, III the second-order
unit tensor and τττm the extra stress tensor of the matrix. The definition of τττm represents
an isotropic hyperelastic behaviour with Gm the shear modulus and BBB the Finger or left
Cauchy-Green strain tensor. In our model the fibers are described as a one-dimensional
material exerting only tensile stress (σ fb) in the fiber direction according to (Van Oijen
et al., 2002)

σ fb = c1µ
2
(

ec2(µ2−1) − 1
)

; µ = ‖FFF ·�e0‖, (5.6)
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with c1 and c2 material constants and µ the fiber stretch, defined in terms of the defor-
mation tensor FFF. The unit vector �e0 represents the initial local fiber direction. Since
FFF describes the deformation of the composite, matrix and fiber undergo the same de-
formation. Relation (5.6) is chosen such to represent collagen behaviour for specific
choices of the material constants, as will be shown further on for the matrix-fiber com-
posite texture. The constitutive law for the leaflet composite consisting of N fiber layers
can now be written as (Van Oijen et al., 2002)

σσσl = −pmIII + τττ l ;



τττ l = τττm +

N∑
k=1

[θ fbk (σ fbk −�ek · τττm ·�ek)�ek�ek] , µ ≥ 1,

τττ l = τττm, µ < 1
(5.7)

with �ek the unit vector of the current local fiber direction and θ fbk the volume fraction
of fiber k in the composite. Relation (5.7) is a continuum approximation which states
that in the fiber direction�ek the fiber stress and extra matrix stress contribute to τττ l with
fractions θ fb and 1 − θ fb, respectively.

The aortic root and wall texture contain mainly circumferential arranged smooth
muscular tissue embedded in a network of arbitrarily oriented elastin fibers with scat-
tered small collagen fibers (Sauren, 1981). However, an isotropic constitutive behaviour
which is approximately linear elastic for the physiological strain range may be expected
(Thubrikar, 1990). Therefore, a Neo-Hookean material law similar to Equation (5.5) is
adopted, using wall shear modulus Gw and hydrostatic pressure pw.

In absence of body forces, the structure balance equations can now be written as:

�∇ · σσσs =�0, (5.8)
det(FFF) = 1 (5.9)

where the subscript ’s’ has been introduced to represent the general structure, i.e. leaflet
or wall. Equations (5.8) and (5.9) are described using an updated Lagrange formula-
tion. In this formulation it is customary to take the displacement field �us during a time
step tn → tn+1 as the unknown. For the interaction with the fluid, the structural ve-
locity field is considered rather than the displacement field. To this end a first-order
approximation for the velocity field is used:

�vs =
�us

∆t
(5.10)

where time step ∆t = tn+1 − tn.

5.3 Fluid-structure interaction

Fluid-structure interaction in the aortic valve involves a coupling of the fluid domain
(blood) with immersed structures, i.e. the valve leaflets, and bounding structures, i.e.
the aortic root and wall, as sketched in Figure 5.1. This coupling is straightforward
if equal-order discretization of the fluid and structural domain is used and nodes and
element boundaries coincide along the fluid-structure interface. However, in (5.1) and
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(5.2) the fluid domain is fixed in space, while in (5.8) and (5.9) the position of the
structural domain is moving and not known a priori. Consequently, continuously up-
dating the fluid mesh to accommodate for the motion of the structural domain requires
remeshing or alternatively, an arbitrary Lagrange-Euler (ALE) formulation for the fluid
domain. The change in mesh topology during remeshing introduces artificial diffusivity
as state variables must be interpolated to the newly generated mesh. Moreover, this
technique is difficult and/or time-consuming to perform with sufficient robustness and
accuracy for three-dimensional problems. The ALE formulation is restricted to applica-
tions where the motion of the structural domain is such that the accommodated fluid
mesh preserves a proper quality, as is the case for interaction with the aortic root and
wall. This approach is, however, not applicable for interaction with the valve leaflet,
which shows large deformations (Baaijens, 2001). Instead, a fictitious domain formu-
lation is used to circumvent fluid mesh updating according to the leaflet motion. The
mathematical formulation describing the interaction of the leaflets with the fluid is elab-
orated in De Hart et al. (2001a) and summarized here.

γb γb

γiγi

leaflet
blood

aortic wall

ao
rt

ic
ro

ot

outflow

inflow

Figure 5.1: Composition sketch of the aortic valve. The boundaries γb and γi denote the fluid-
structure interface at the bounding aortic wall and immersed leaflets, respectively.

To distinct between the immersed and bounding interface we define the fluid-struc-
ture boundary γ = γi∪γb (Figure 5.1). Physically, the immersed leaflets and fluid cannot
occupy the same domain in space. The basic idea of fictitious domain formulations
is to mathematically rewrite the problem defined on the fluid domain as a problem
defined on an extended fluid domain containing the immersed structure. To describe
the presence of the immersed structure for this new problem we introduce kinematical
(no-slip) constraints defined by

�v f −�vs =�0, (5.11)

along the fluid-structure boundary γi. For the aortic valve leaflets these coupling con-
straints can be enforced along one side of the leaflet only, since their thickness is negligi-
ble as far as the interaction with the fluid is considered. The key feature of the fictitious
domain approach is that these constraints may be enforced weakly and hence allow dis-
similar and independent discretizations for the fluid and leaflet mesh, which makes the
method very appealing for fluid-structure interaction problems involving large struc-
tural motions. In our model, the coupling constraints are weakly enforced using La-
grange multipliers�λ (Fortin et al., 1983; Bathe, 1982)(Appendix B).
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In the interaction of the fluid with bounding structures the fluid mesh is neither
fixed to the fluid domain nor fixed in space (ALE description). To this end we introduce
a moving computational fluid grid, which completely covers the fluid domain. At the
fluid-structure interface γb the grid displacement field is taken to be identical to the
structural displacement field. As fluid elements along γb may become distorted by this
deformation the complete fluid grid is aligned to the change in boundary shape in order
to preserve a proper mesh quality. This results in a grid displacement field �ug which is
arbitrary (except at the boundaries) and defined for numerical purposes only. Within
the class of ALE procedures, the methods differ in their way of controlling this grid
displacement field. Here, the moving grid is considered to be a (pseudo-)structure
defined by an isotropic, linear elastic material law to which the structural displacements
at γb are applied as Dirichlet conditions (Johnson et al., 1994; Nomura et al., 1991).
Having no physical relevance the actual pseudo-structural material parameters can be
chosen arbitrarily. The associated grid velocity vector �vg is defined by the first-order
approximation

�vg =
(�u n+1

g −�u n
g )

∆t
. (5.12)

Then, elaboration of the spatial derivative in the Navier-Stokes equation defined on a
moving grid (Donea et al., 1982) yields

ρ f

(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f

)
+ �∇pf − �∇ · 2ηDDDf =�0, (5.13)

which is derived in Appendix C.
Depending on the fluid and structure discretizations along γb, the coupling con-

straint similar to (5.11) can be enforced weakly (unequal discretizations at γb) using
Lagrange multipliers�λ or strongly (equal discretizations at γb) avoiding the introduc-
tion of�λ. The latter is adopted in this work to describe the interaction at the aortic root
and wall.

Using Ωg and Ωs to define the (moving) fluid and structural computational domains,
and Γg and Γs the associated boundaries, the weak formulation describing the total
system reads∫

Ωg

�wf ·
(
ρ f
∂�v f

∂t
+ ρ f (�v f −�vg) · �∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : 2ηDDDf dΩg−∫
Ωg

(�∇ · �wf)pf dΩg +
∫
γi
�wf ·�λ dγi =

∫
Γg

�wf ·�t f dΓg,∫
Ωg

q f(�∇ ·�v f) dΩg = 0,

(5.14)

∫
Ωs

(�∇�ws)T : τττ s dΩs −
∫

Ωs

(�∇ · �ws)ps dΩs −
∫
γi
�ws ·�λ dγi = 0,∫

Ωs

qs

(
det(FFF) − 1

)
dΩs = 0,

(5.15)

∫
γi

�� · (�v f −�vs) dγi = 0, (5.16)
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which must hold for all admissible weighting functions �wf , qf , �ws, qs and ��. The surface
tractions�t f = (−pf III+2ηDDDf)·�n in Equation (5.14) are prescribed at the outflow boundary
and represent the aortic pressure applied to the models. The Lagrange multipliers�λ in
Equation (5.14) and (5.15) may be interpreted as the surfaces force exerted on the fluid
and structure respectively to ensure coupling as defined by Equation (5.16). For the
spatial discretization of these equations we adopt the Galerkin finite element method
(FEM), which is discussed in De Hart et al. (2001a) and briefly described in the next
section (see Appendix A for more details on the implementation).

5.4 Model properties

The aortic valve consists of three highly flexible leaflets, which are attached to the aortic
root from one commissural point along a doubly curved line (aortic ring) towards a
second commissural point, as illustrated in Figure 5.2(a) to (c). Behind each leaflet
the aortic root bulbs into a sinus cavity to form the beginning of the ascending aorta.
Figure 5.3 shows some relevant dimensions that have frequently been used to describe
the geometry of the valve. The values of these dimensions used in the model and typical
anatomical values measured in human specimens (Thubrikar, 1990; Clark et al., 1974;
Sauren, 1981) are summarized in Table 5.1.

The valve leaflets constitute a fiber-reinforced composite texture. More precisely,
this texture consists of elastin and collagen fibers (mainly concentrated at the aortic
leaflet side) embedded in a matrix of endothelial cells. Originating at the commissures,
collagen fibers run circumferential and spread out over the whole leaflet, see Figure
5.4(a). In addition, discrete macroscopically visible bundles, perpendicular to the at-
tachment line, anchor the middle portion of the leaflet to the aortic root (Sauren, 1981).
This fiber-reinforcement is implemented into the model as two distinct layers (Figure
5.4(b)).

The stress-strain relation of the leaflet composite texture in humans has been mea-
sured by Sauren (1981). For two different specimens this relation in circumferential

ao
rt

ic
ro

ot

aortacommissure

aortic ring

(a)

sinus

leaflets
(b)

commissure

sinus

free edge

(c)

Figure 5.2: Sketches of the aortic valve: side view of the complete valve (a), after dissection of one
leaflet with corresponding sinus wall (b), and top view.
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hs

ra

hc

rv ds

tl

rv
ds

tw

Figure 5.3: Definition of dimensions, which are used to describe the geometry of the stentless
aortic valve: rv denotes the ventricular valve radius, ra the aortic valve radius, ds the
sinus depth, hs the sinus height, hc the commissural height, tl the leaflet thickness and
tw the aortic root/wall thickness.

direction is given in Figure 5.5 and shows for each leaflet two main phases, which are
frequently denoted as the elastin or low strain phase and the collagen or high strain
phase. The low strain phase is encountered during the opening and closing of the valve
and is dominated by the characteristics of the elastin fibers in the leaflets. At higher
strains, e.g. when the leaflets are pushed towards the sinus cavities during midsystole
or the valve has to withstand the diastolic pressure gradient, the collagen fibers domi-
nate the material behaviour of the texture. To simulate this matrix-fiber behaviour the
matrix shear modulus and fiber parameters in the model composite are chosen such that
the low strain phase is determined by the matrix and the high strain phase by the fiber.
The resulting stress-strain behaviour is also shown in Figure 5.5. This behaviour is in
our models generalized to hold for both implemented fiber layers. Corresponding pa-
rameter values as well as the parameter values describing the wall and blood are given
in Table 5.2. In this table the leaflet low strain modulus in circumferential direction
(Sauren, 1981), the aortic root/wall shear modulus (Sauren, 1981) and physiological
blood viscosity and density (Caro et al., 1978), measured in humans, are also presented.

Although the three leaflets are not completely identical, it is assumed that they
are similar enough to permit a general description of a valve with trileaflet symmetry.
Hence, only 1

6 of the valve will be considered as shown in Figure 5.6. The configuration
given in this figure is taken as the initial, stress free condition. The model is bounded

rv ra ds hs h∗
c tl tw

Model [mm] 12.0 12.0 5.75 21.0 10.5 0.20 1.00

Human [mm] 12.0 11.4 5.52 20.9 17.5 0.20 1.03

Table 5.1: Geometrical model properties and corresponding anatomical values. ∗The commissural
height hc used in the model is based on the geometry of the synthetic fiber-reinforced
prostheses presented in Cacciola (1998) and De Hart et al. (1998).
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(a)

fiber layer # 1

fiber layer # 2

(b)

Figure 5.4: Typical fiber structure in the aortic valve leaflets: (a) natural leaflet (from Sauren
(1981), with permission), (b) numerical model.

in circumferential direction by the symmetry surface, which intersects through half of
one leaflet, and by the contact surface, at which two adjacent leaflets come into contact
during the closing phase (Figure 5.6(a)). In axial direction the model is bounded by the
ventricular (inflow) and aortic (outflow) plane (Figure 5.6(c)), and obviously, in radial
direction by the aortic root/wall.

Homogeneous Dirichlet conditions are imposed to suppress out of plane motion for
the fluid, wall and leaflet at the symmetry surface and for the fluid and wall only at the
contact surface. Fluid-structure coupling at the contact surface prevents the leaflet from
penetrating this surface for sufficiently small time steps. The leaflet is fixed to the aortic
wall at the ventricular surface using a discretization, which is taken identical to the local
wall discretization. The aortic wall is fixed at the outflow plane (25 [mm] downstream
the valve, measured from the commissural point) and at the inflow plane (15 [mm]
upstream the valve, measured from the lowest point of the aortic ring). Although in
reality the valve is positioned right after the left ventricle, the fluid inflow conduct is
used here for numerical stability reasons.

leaflet 1

leaflet 2

σ
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ε[−]
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0
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Figure 5.5: Cauchy stress (σ) versus Green-Lagrange strain (ε) of two different circumferential
aortic leaflet specimens reported by Sauren (1981) (dashed and dotted lines). The
stress-strain relation in a single fiber direction of the composite used in the numerical
model is shown as a solid line.
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η f ρ f Gw G∗
l c1 c2 θ N

Dimension [Pa·s] [kg/m3] [MPa] [−]

Model 3.8·10-3 1.0·103 0.5 3.0·10-2 1.0·10-3 50.0 0.1 2

Human 3.8·10-3 1.0·103 0.3 2.0·10-2 − − − −

Table 5.2: Material model properties and corresponding physiological values. ∗The value for Gl of
the human leaflet is measured at low strains and represents the shear modulus in the
elastin phase of the leaflet material.

The model is fed with a plug flow at the inflow plane (Figure 5.7). The correspond-
ing maximum flow reaches 230 [ml/s], which is approximately half of the maximum
physiological flow. A higher flow would instigate numerical instabilities for the applied
mesh resolution described below. However, the shape of the velocity curve is typical for
the aortic valve system (Thubrikar, 1990). The associated Reynolds (Re) and Strouhal
(Sr) number respectively read 1500 and 0.12. At the outflow plane the aortic pressure
is applied, which is taken from Van Renterghem (1983).

The aortic root and wall configuration as shown in Figure 5.6 is taken to be the
initial, stress free configuration. It is assumed that this configuration corresponds to
the physiological end diastolic situation at which the root and wall have to withstand
internal blood pressures of 10 [kPa]. Hence, only 6 [kPa] is applied at the outflow
plane to simulate an aortic root and wall motion, which corresponds to a maximum
physiological systolic loading of 16 [kPa]. The analysis is performed for two successive
cardiac cycles to obtain a cycle independent solution.

The fluid domain is discretized using 650 hexahedral (Crouzeix-Raviart) elements
based on the so-called mixed (velocity/pressure) formulation with a quadratic inter-
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Figure 5.6: Three-dimensional FEM model of the stentless aortic valve: (a) part of the valve used
for the computation, (b) structure mesh and (c) fluid mesh.
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Figure 5.7: Velocity curve (bottom frame) and aortic pressure curve (top frame) applied to the in-
and outflow plane, respectively.

polation of the velocity field and a linear interpolation of the pressure field which is
discontinuous throughout the mesh. The discontinuous interpolation for the pressures
appears to be mandatory as demonstrated by Baaijens (2001). Identical finite elements
are used to discretize the structural domain, however, based on a displacement/pressure
formulation. The Dirichlet conditions applied to the structure at the symmetry surface
are, with this choice of finite elements, imposed over the full leaflet thickness. Given the
quadratic interpolation field for the displacement the bending behaviour of the structure
can be modeled using only 1 element across the thickness. However, the element aspect
ratio must be restricted to achieve a correct bending behaviour. These findings led to a
discretization of the wall and leaflet consisting of 105 and 210 elements, respectively.

The Lagrange multipliers are approximated with piecewise constants. Each constant
is positioned in the center of a structural element side that coincides with the fluid-
structure boundary γi. At these so-called control points Equation (5.11) is enforced
locally. This choice requires the leaflet mesh density to be higher than the local fluid
mesh density to obtain a satisfying coupling. Many other discretization strategies are
possible, however, the above choice is founded on experiences from numerical experi-
ments.

Finally, temporal discretization is achieved using an implicit backward-Euler scheme
which is first-order accurate in time. An adaptive time step algorithm is used for the
first part of the systolic phase, which led to a minimum time step size of 0.00125 [s]
required for only a few discreet time points. A time step size of 0.0025 [s] appeared to
be sufficiently small for the remaining part of the systolic phase.

The total system renders a set of non-linear equations, which are linearized using
Newton’s method (Appendix A). The adopted solution strategy combines a fully cou-
pled approach to solve the fluid and structure unknowns and a weakly coupled approach
to incorporate the fluid mesh deformation associated with the moving aortic root and
wall (Appendix D). Within each time step the Newton-Raphson iterative procedure is
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applied to ensure equilibrium for the velocity fields, pressure fields and Lagrange mul-
tipliers. At each iteration the equations defined by (5.14), (5.15) and (5.16) are solved
simultaneously with the BiCGStab iterative solver using an ILU preconditioning, which
shows satisfying convergence properties due to the extra fill-in of the computed lower
and upper triangular matrices (Saad, 1996). If convergence is achieved for this set of
equations the structural displacements at the aortic root/wall are applied to the pseudo-
structural problem defined on the moving fluid grid. A grid displacement and velocity
field for the fluid domain is computed and the fluid mesh is updated accordingly. From
this point the computational analysis proceeds to the next time step.

5.5 Results

We want to make a comparison between the results of the fiber-reinforced and non-
reinforced stentless valves as well as between these results and the results of the stented
valves reported by De Hart et al. (2001b) and in Chapter 4. A selection of representative
mechanical and fluid dynamical aspects will be given.

To visualize the delicate interaction between the pliable leaflets, compliant aortic
root and the blood, a general assessment of the model is shown in Figure 5.8. In this fig-
ure, 6 successive configurations of the reinforced valve with corresponding fluid velocity
vector field are given. The opening (frames (a) to (c)) is typical for stentless valves (Cac-
ciola, 1998) and is approximately identical for reinforced and non-reinforced leaflets as
will be shown further on. The commissural points move outward in response to rising
internal blood pressures pulling the leaflets towards the sinus cavities. This mechanism
is essential for stentless valve opening, while the contribution of blood-leaflet interac-
tion is of minor importance during the first part of the opening phase. In fact, numerical
tests have shown that if fluid-structure interaction of the leaflets is completely ignored
this commissural motion would result in approximately 80% opening of this valve de-
sign. In the last part of the opening phase the leaflets are pushed further into the sinus
cavities driven by the blood flow. The opening configurations differ significantly from
the stented types (De Hart et al., 2001b, and Chapter 4) in that the free edges are much
less subjected to bending. Frame (d) shows a valve configuration associated with the
first part of the closing phase. At this stage the maximum velocity is reached, while the
net forward flow is already decreasing. During this stage the commissural points move
inwards following the decreasing aortic pressure curve (Figure 5.7). Frames (e) and (f)
cover the last part of the closing phase.

The fluid dynamical phenomena are visualized better in Figure 5.9. In this figure
the non-reinforced model is considered, since the reinforced model shows vortex ori-
entations, which are difficult to capture in a three-dimensional representation. Frames
(a) to (c) represent the acceleration phase of the flow. Just prior to forward flow very
little vorticity is observed in the sinus cavity (frame (a)). In frame (b) the aortic root
dilates as it has to carry the increasing internal blood pressure. Consequently the vol-
ume, captured by the aortic root, increases and is filled by the inflowing blood. Hence,
the blood flow through the valve exceeds the blood flow into the ascending aorta. A
completely opened configuration is attained in frame (c) and precedes the moment of
maximum forward flow reached at t = 0.1 [s]. This is also observed in stented models
(De Hart et al., 2001b, and Chapter 4) and has been reported for physiological flows
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(a) t = 0.00 [s] (b) t = 0.06 [s] (c) t = 0.10 [s]

(d) t = 0.275 [s] (e) t = 0.35 [s] (f) t = 0.425 [s]

Figure 5.8: Configurations of the fiber-reinforced stentless valve and corresponding velocity vector
fields taken at 6 successive points in time. The left and right diagram at the bottom
of each frame denote the applied velocity and pressure curves, respectively.

by Van Steenhoven et al. (1981) in an in vivo cinematographic study of the aortic valve.
As the flow starts to decelerate a vortex develops behind the leaflet free edge (frame
(d)) descending into the aorta (frame (e)). This vortex is basically oriented in the sym-
metry plane. In the fiber-reinforced model the vortex tends to align with the leaflet
free edge and, therefore, is difficult to visualize in a three-dimensional representation.
Subsequently, an increasing back flow along the wall initiates flow into the sinus cavity
(frame (f)) developing a large vortex in the sinus and pushing the leaflet towards a
closed configuration (frame (g) and (h)). Similar results have been reported by Yang et
al. (1998) in natural valves using MR imaging techniques. The strong back flow at the
aortic wall also initiates a small secondary vortex in the area of maximum sinus depth.

The impact of fiber-reinforcement on the mechanical performance is illustrated in
Figure 5.10. The stress state associated with 8 successive valve configurations are given.
In the right figure of each frame (top view) the aortic root is dissected from the transver-
sal cross-sectional plane at maximum sinus depth to the outflow plane, so that the stress
state of the inner sinus wall becomes visible. The maximum principle Cauchy stresses
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(a) t = 0.0 [s] (b) t = 0.0625 [s] (c) t = 0.0875 [s] (d) t = 0.15 [s]

(e) t = 0.20 [s] (f) t = 0.30 [s] (g) t = 0.375 [s] (h) t = 0.50 [s]

Figure 5.9: Fluid dynamics during systole of the non-reinforced model. The left and right dia-
gram at the bottom of each frame denote the applied velocity and pressure curves,
respectively.

are given for the matrix material of the reinforced (left and bottom) leaflets and for the
non-reinforced, isotropic (right) leaflet. The maximum principle Cauchy stresses in the
aortic root are scaled with the ratio of the aortic root and leaflet shear modulus for a
comprehensible interpretation of the colored stress distributions in the complete valve.

The opening behaviour (frames (a) to (c)) of the reinforced and non-reinforced
model is approximately identical. Hence, the fluid dynamical behaviour during this
phase is not affected by the presence of fiber-reinforcement. At maximum flow (frame
(d)) the non-reinforced leaflet is slightly pushed further into the sinus cavity to show
a subsequent fluttering behaviour, whereas the fibers in the other leaflets keep the free
edge in a stabilized position. As the aortic pressure decreases and the flow decelerates
the valve closes again (frame (e) to (h)). During this phase the non-reinforced leaflet
shows high bending deformations, which are thought to stimulate tissue fatigue and
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ultimately calcification and/or tearing. The fiber-reinforced leaflets show approximately
the same closing configurations when compared to the opening configurations, yielding
that no excessive bending deformations are present.

However, for both stentless cases valve closing is not synchronic with the applied
flow and pressure curves. The delay in valve closing is believed to result from the
combination of Dirichlet conditions at the inflow plane and Neumann conditions at
the outflow plane. The natural valve is in late systolic phase subjected to a consid-
erable adverse aortic-ventricular pressure gradient, which is important for final valve
closure (Van Steenhoven, 1979; Thubrikar, 1990). By imposing Dirichlet conditions at
the inflow plane the desired pressure gradient will not be reached during this phase
and certainly not maintained during the diastolic phase. This emphasizes that the flow
pulse must be regarded as a response of a valve subjected to ventricular and aortic pres-
sures rather than as a generalized input parameter, which is used in combination with
a physiological, but arbitrary aortic pressure curve.

The leaflet stresses during the opening and early closing phase are mainly concen-
trated near the fixation edge and for the non-reinforced leaflet during the last part of
the phase near the free edge. The matrix stresses in the reinforced leaflets are reduced
up to 62% (frame (g)) with respect to the non-reinforced leaflet. However, compari-
son of the stress states per time point is rather awkward for dissimilar reinforced and
non-reinforced leaflet configurations. If the maximum tensile stresses attained during
the complete systolic phase are compared (91 versus 131 [kPa]), a reduction of approx-
imately 31% is obtained. For the maximum compressive stresses (8 versus 12 [kPa])
this reduction reaches 33%. Since the valve leaflets are designed to bear tensile stresses,
they show a high risk of degeneration under compression. Compared with the results
of stented models (De Hart et al., 2001b, and Chapter 4), the compressive stresses in
the reinforced leaflets (8 versus 25 [kPa]) are reduced with 68%. This is an important
feature of aortic root compliance leading to a significant reduction of the cyclic loading
pattern in the delicate leaflets.

The stresses in the aortic root are mainly concentrated near the commissures at the
outer wall, above the sinus cavities at the inner wall and near the leaflet fixation edge
at the inner sinus wall. The stresses at the inner wall near the commissures are very
low. The aortic root stress distribution is identical for reinforced and non-reinforced
leaflets, however, the maximum value in the non-reinforced case (i.e. 249 [kPa]) is
approximately 38% higher. These higher stresses correspond to a (slightly) different
configuration of the aortic root, which is not clearly discernible in Figure 5.10. The
fibers in the reinforced model that span the free edge between the commissures cause
a restriction in commissural outward motion. Although these fibers reduce aortic root
stresses, they unintentionally have to bear higher stresses themselves to balance the
internal blood pressure. High stresses in these fibers may affect the long-term condition
of the leaflets. They can, however, easily be circumvented by increasing the commissural
height to lengthen the free edges, such that intercommissural stretch is reduced or
prevented.

Calcification and/or stenosis of the valve leaflets is often accompanied by stagnant
flow regions persisting throughout the whole cardiac cycle, which stimulate thrombo-
genecity. In clinical practice the valve performance is therefore evaluated by its wash-
out of blood. In Figure 5.11 this wash-out is illustrated for the non-reinforced stentless
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(a) t = 0.00 [s]; MPSr = 0.52 [-]

(b) t = 0.05 [s]; MPSr = 0.71 [-]

(c) t = 0.075 [s]; MPSr = 0.71 [-]

(d) t = 0.10 [s]; MPSr = 0.74 [-]

(e) t = 0.1875 [s]; MPSr = 0.74 [-]

(f) t = 0.25 [s]; MPSr = 0.72 [-]

(g) t = 0.30 [s]; MPSr = 0.38 [-]

(h) t = 0.35 [s]; MPSr = 0.44 [-]

-4 4 12
Figure 5.10: Maximum principle Cauchy stresses in the leaflet matrix material during systole.

In all frames the right leaflet is taken from the non-reinforced model for compari-
son. MPSr denotes the maximum principle stress ratio of the reinforced and non-
reinforced leaflets. The stress scale on the bottom is given in [kPa].
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model during two successive cycles. Frame (a) represents the initial (end diastolic) sit-
uation, where fluid particles are positioned upstream the valve and in the sinus cavity,
which is frequently considered as a potential stagnant flow region. After the first cycle
(frames (a) to (i)) some of the initially upstream positioned particles are mixed with left
particles from the sinus cavity. In a subsequent cycle (frames (j) to (l)) all particles have
descended into the aorta. Although the blood wash-out is demonstrated for a maximum
flow, which is approximately half of the flow reached in the physiological situation, it
is assumed that application of the physiological conditions does not introduce stagnant
flow regions.

5.6 Discussion

The presented stentless aortic valve model is based on the Galerkin finite element
method and implemented in the SEPRAN software package (Segal, 2000). The key
features of this model are: 1. three-dimensionality, 2. fully coupled fluid-structure
interaction, 3. combined fictitious domain/arbitrary Lagrange-Euler method, 4. fiber-
reinforced leaflets, and 5. compliant aortic root. The systolic phase of the cardiac cycle
is analyzed by applying a time-dependent plug flow at the inflow plane and aortic pres-
sure curve at the outflow plane. This choice, however, does not allow for analyses dur-
ing the diastolic phase, in which the leaflets have to bear the diastolic aortic-ventricular
pressure gradient. Imposition of Dirichlet conditions at the inflow plane gives rise to
internal diastolic ventricular pressures, which are of the same order as the aortic pres-
sures. Free in- and outflow conditions appear to be mandatory for a correct simulation
of the valve behaviour during end systolic and diastolic phase.

Fluid dynamical performance is investigated on flow phenomena which are impor-
tant for aortic valve functioning. Forward flow is observed for all regions in the valve
during the opening phase, so the sinus vortex does not persist throughout the whole
cardiac cycle. Vortical flow develops at the leaflet free edges when the valve reaches its
completely opened configuration. This vortex is stretched into the ascending aorta as
the flow starts to decelerate and subsequently initiates a strong back flow at the aortic
wall, which pushes the leaflets towards a closed position. This mechanism seems to be
the driving force to close this valve design and is possibly enforced if the physiologi-
cal aortic-ventricular pressure gradient can be attained at end systolic phase. At valve
closure a large sinus vortex remains and its intensity decreases as the diastolic phase
proceeds. These findings are in contrast with frequently accepted theories reported by
Bellhouse et al. (1969), who assume that vortical flow in the sinus cavity is important
for the closing behaviour and thus precedes aortic valve closure. We like to stress, how-
ever, that the mesh resolution of the models is chosen from a time efficient point of
view. An increase of resolution might reveal some deviant fluid dynamical behaviour.

The importance of leaflet fiber-reinforcement and aortic root compliance on the
long-term performance of the valve is demonstrated by means of the valve stress analy-
sis. The opening configurations are mainly determined by commissural outward motion
and are similar for reinforced and non-reinforced leaflets. Different from the opening
of stented models reported by De Hart et al. (2001b) and in Chapter 4, the leaflets
are in the stentless models much less subjected to bending. The contribution of leaflet
fiber-reinforcement to aortic valve functioning, during complete valve opening, is to
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(a) t = 0.00 [s] (b) t = 0.10 [s] (c) t = 0.17 [s] (d) t = 0.22 [s]

(e) t = 0.25 [s] (f) t = 0.35 [s] (g) t = 0.40 [s] (h) t = 0.50 [s]

(i) t = 0.60 [s] (j) t = 1.06 [s] (k) t = 1.14 [s] (l) t = 1.24 [s]

Figure 5.11: Particle tracking during two successive cardiac cycles.
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stabilize its position and, during valve closing, to prevent high bending deformation of
the leaflet free edge. The maximum principle Cauchy stresses in the leaflet matrix ma-
terial are significantly reduced with 31% and 33% for tensile and compressive stresses,
respectively. The effect of aortic root compliance is most significantly present in the
compressive stresses. Compared to the reinforced stented model (De Hart et al., 2001b,
and Chapter 4) these stresses are reduced with 68%.

Within the context of clinical application, stenotic and/or incompetent valve per-
formance can be studied with respect to associated medical complications using com-
putational models as presented here. Fiber-reinforcement, leaflet geometry, shape and
size of the sinus cavities or compliance of the aortic root are design parameters, which
can easily be investigated and/or optimized to improved both hemodynamical and me-
chanical valve performance of existing or new concepts. Guidelines for prosthetic valve
design, which are obtained from advanced computational analyses, may prevent expen-
sive and time consuming experimental research.
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Chapter 6

Discussion and Conclusions

A three-dimensional computational fluid-structure interaction model of the aortic valve
is presented. The merits and demerits of the applied numerical techniques are given in
this chapter. Fluid and structure modeling, fluid-structure interaction modeling, boundary
conditions and solution strategies are briefly discussed. Based on the findings presented
in this thesis the conclusions are given pointwise and, finally, the implication for clinical
research is summarized.
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6.1 Discussion

6.1.1 Fluid and structure modeling

Blood can be modeled by a range of constitutive models, the simplest being Newtonian,
the more complex being microscopic describing the behaviour of the blood cells. Since
a homogeneous concentration distribution of blood cells may be assumed in large arter-
ies (Gijsen, 1998), a macroscopic model is adopted for flow in the aorta. In this thesis
blood is described as an incompressible continuous liquid medium, of which the rheo-
logical behaviour is dominated by red blood cells. This continuum approach is allowed
if macroscopical phenomena are investigated as is done in this study. Moreover, a con-
venient mathematical formulation based on the Navier-Stokes equation and continuity
equation can be used to describe the fluid.

In reality, blood shows a viscoelastic and shear thinning behaviour. It has been
demonstrated by Gijsen (1998) that this behaviour cannot be neglected for flow in
large arteries. However, since this study mainly focuses on fluid-structure interaction,
a Newtonian (constant viscosity) model has been chosen for simplicity. The effect of
shear thinning and viscoelasticity on the fluid-structure interaction in the aortic valve
system requires further investigation.

Many studies have been done on the morphology of the aortic valve leaflets, see e.g.
Thubrikar (1990) and references therein. Like all biological tissues, they consist of more
than one type of substance and show a viscoelastic, anisotropic and non-linear mechan-
ical behaviour. However, little is known about the interaction between the different
components. Hence, constitutive modeling remains complex for such a texture.

The mechanical properties of collagen and elastin together with their structural lay-
out determine the global properties of the leaflets. In the fiber-reinforced models pre-
sented in this thesis the natural orthotropic behaviour of the three-layered composite
texture is simulated by a continuum approximation. On the finite element level this is
implemented using two representative fiber layers of which the properties are defined
for each integration point associated with the structural elements. These fiber layers are
embedded in a matrix with a low elasticity modulus. The (collagen) fiber-reinforcement
of the leaflets gives the investigated valve designs a more stable behaviour throughout
the systolic phase. This approach is directly applicable to reinforced synthetic prosthe-
ses such as developed by Cacciola (1998). For the natural valve, where collagen fibers
are mainly concentrated at the aortic leaflet side, the impact of this approach on the
valve behaviour has not been studied yet.

In contrast with the valve leaflets much less is known about the morphology of the
aortic root and wall. The behaviour involves not only interaction with the blood, but
also an essential interaction with extraneous tissue, which may show muscular activity.
Sauren (1981) reported a viscoelastic material behaviour, which was assumed to be
isotropic. For simplicity reasons and the lack of available data a linear elastic model
is chosen. Moreover, the stress free configuration is important for a correct prediction
of the aortic root and wall behaviour. The initial, stress free configuration used in the
models is, with the applied aortic pressures, assumed to give a representative systolic
behaviour. However, the effect of stress free state and viscoelasticity on aortic root and
wall performance requires further investigation.

The geometry of the aortic valve as used in the three-dimensional models is based
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on data taken from the literature (Clark et al., 1974; Sauren, 1981) and from synthetic
prototype prostheses developed by Cacciola (1998). Moreover, a trileaflet symmetry
is assumed, which significantly reduces both memory and computing time. To obtain
a realistic model with valve asymmetry and/or imperfections, a full three-dimensional
valve system needs to be considered with geometrical input taken from e.g. MR imaging
data. The application of realistic input data will be studied in the near future.

6.1.2 Fluid-structure interaction modeling

The interaction of the blood with the leaflets is described using a fictitious domain
method. This method allows independent and dissimilar discretizations for the fluid
and structural domains, which makes it very appealing in problems that involve large
structural deformations and/or motions. Kinematical constraints are enforced weakly
using Lagrange multipliers to achieve coupling between the spatially independent do-
mains. However, the resolution of the Lagrange multiplier distribution is, for a correct
coupling, strongly dependent on the chosen fluid and structural mesh densities.

Spurious modes of the finite elements are easily attained if too few coupling con-
straints are applied, whereas locking in the degrees of freedom results from too many
additional Lagrange multipliers, leading to an overconstraint set of equations. Although
hexahedral elements with triquadratic interpolation fields are not very susceptible to be-
come overconstraint, the elements, which are subjected to Dirichlet conditions, show an
increased chance to lock. This numerical phenomenon can be controlled for the struc-
ture by taking the number of additional constraints to be constant per element, as is
done in this study. However, since the number of structural elements within a fluid
element may change during the analysis, the number of additional constraints per fluid
element changes accordingly. Hence, it is more complex to control locking in the fluid
elements. As to the spurious modes, the resolution of the Lagrange multipliers becomes
specifically important if a fluid pressure gradient develops over the structural phase,
which may instigate flow through the structure.

Consequently, it is in general difficult to choose a satisfying Lagrange multiplier
distribution. The choice adopted in this thesis appears to be sufficient to couple fluid
and structural phases without the introduction of spurious modes or locking. Analysis
of the diastolic phase, where the leaflets have to bear a considerable aortic-ventricular
pressure gradient, possibly fails with this distribution of Lagrange multipliers, since too
few constraints are describing the interaction in this high potential flow situation.

The interaction between the blood and the compliant aortic root and wall is de-
scribed using an arbitrary Lagrange-Euler method. This method is most commonly
applied in fluid-structure interaction analyses, involving structural deformations, where
a proper fluid mesh quality is preserved. The combination with the fictitious domain
method appears to be satisfying in systems such as the aortic valve.

6.1.3 Boundary conditions

The application of a physiological correct flow pulse has most frequently been used in
fluid dynamical analyses of cardiovascular systems which are assumed to be rigid. The
addition of an associated aortic pressure curve is usually adopted if a compliant sys-
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tem is considered. However, when analyzing heart valve functioning, the flow through
the valve, and consequently the downstream pressure, are dependent of the valve be-
ing considered. Moreover, when a closed valve has to withstand an adverse pressure
gradient, it is rather inappropriate to prescribe the inflow conditions. The correct flow
follows from the structural deformations caused by this gradient. A more natural choice
would be to apply ventricular pressures and model the terminal impedance. However,
when applying inhomogeneous Dirichlet and Neumann conditions at the inflow and
outflow plane, respectively, the flow through the valve can easily be controlled, which is
convenient for testing the numerical tools. With this approach the Lagrange multiplier
related problems arising for fluid-structure coupling during diastolic phase (previous
section), where the valve has to withstand a considerable adverse pressure gradient,
are circumvented, although unintentionally.

At the contact surface, out of plane fluid flow is suppressed by imposing appropri-
ate Dirichlet conditions. It is assumed that the fluid-structure coupling prevents the
leaflets from penetrating this surface. Hence, the application of a contact algorithm
becomes redundant. As the coupling constraints are weakly enforced at this surface,
some penetration may be expected if within a time step the displacement of a struc-
tural nodal point towards the contact surface exceeds the distance of this point to the
surface. Moreover, the fluid-structure coupling is fully determined by the number of
coupling constraints, which thus controls penetration. In the presented models the time
step size and number of additional coupling constraints are chosen such to get a balance
between correctness of coupling and computational efficiency.

At the leaflet symmetry surface the structural nodal points of the triquadratic hex-
ahedral elements are suppressed for out of plane motion. For a correct simulation of
leaflet symmetry, rotation of these nodal points in the plane perpendicular to the sym-
metry surface needs also to be suppressed. As nodal rotations are no degrees of freedom
for these elements, some rotation in the perpendicular plane may be expected. How-
ever, in the presented models the associated leaflet elements appear to remain mainly
perpendicular to the symmetry edge. A similar situation is observed for the leaflet ele-
ments at the fixation surface in the stented models. For modeling thin structures, such
as the valve leaflets, finite elements, which are based on the shell theory described
by e.g. Hughes (1987); Zienkiewicz and Taylor (1989), would be more appropriate,
as rotational degrees of freedom are explicitly defined for such elements. For practi-
cal reasons, however, we use triquadratic hexahedral elements to model the complete
structural phase. This choice is allowed for the leaflets if the element aspect ratio is
restricted to achieve a correct bending behaviour, as is done in this study.

Since a plug flow is prescribed at the inlet, an extra inflow conduct is used to stabi-
lize the fluid flow before entering the valve section. The length of the ascending aorta
is taken 25 [mm] measured from the commissural points. The implications for out-
flow boundary effects when outflow tracts of different lengths are used, needs further
investigation.

6.1.4 Solution strategy

A fully coupled solution strategy is used to solve the blood-leaflet interaction problem.
This choice is based on the numerical instabilities that arise in weakly coupled methods.
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The main advantage of a fully coupled approach is that fluid and structural unknowns
are solved simultaneously and, consequently, are completely in equilibrium each time
the set of equations is solved. Hence, this strategy makes iterative algorithms to couple
the fluid and structure phases redundant. Since the size of the finite element matrix
is such that a direct solver requires both a large amount of memory and CPU time, the
BiCGstab iterative solver is adopted. The matrix condition of the total system is severely
affected by the additional Lagrange multipliers. Consequently, preconditioning of this
matrix appears to be necessary. The quality of the preconditioning matrix is chosen
such to obtain a balance between solvability and computational efficiency. A 64-bit
Alpha 21264DP platform with a 667 MHz processor and a maximum applied memory
allocation of 1.6 GB is sufficient to solve all presented models.

Suggestions have been made in Appendix D for alternative solution strategies, which
may reduce the computation time. The class of weakly coupled strategies seems to be
inappropriate, since during valve opening and closing the leaflets are very sensitive to
pressure gradients and are unable to withstand compressive stresses existing in the tan-
gential plane over the full leaflet thickness. Moreover, this situation reverses when the
diastolic phase of the cardiac cycle is considered in which the leaflets have to bare con-
siderable pressure gradients. As a consequence it is difficult to adopt a weakly coupled
solution strategy, which suffices throughout the complete cardiac cycle. However, in
view of the rather coarse finite element meshes and the assumption of trileaflet symme-
try, a solution strategy, which significantly reduces the computation time and required
memory, would be beneficial. Development of such strategies requires further investi-
gation.

6.2 Conclusions

The conclusions, based on the findings presented in this thesis, read:

• The combined fictitious domain/arbitrary Lagrange-Euler method is a useful nu-
merical tool for systolic fluid-structure interaction analyses in the aortic valve.
This tool can be used to evaluate valves on their mechanical and hemodynamical
performance for conditions, which are close to the physiological situation.

• The combination of inhomogeneous Dirichlet and Neumann conditions at the in-
and outflow surface to load the aortic valve system is inappropriate for analyses
of the diastolic phase. Free flow conditions at these surfaces are mandatory for
the system to generate the diastolic aortic-ventricular pressure gradient.

• Leaflet fiber-reinforcement has great impact on the mechanical behaviour of the
aortic valve. This behaviour is substantially improved, while the hemodynamical
performance of the valve is preserved.

• Aortic root compliance significantly affects the aortic valve kinematics by domi-
nating the opening and closing configurations. The valve orifice, which is circular
in stented valves, changes from a stellate to a triangular configuration and vice
versa, thereby reducing severe leaflet bending deformations, which are typical in
stented valves.
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• The fluid dynamical phenomena observed in the quasi two-dimensional experi-
ments are reproduced numerically. Although experimental validation of the three-
dimensional model has not been performed (yet), the fluid dynamical character-
istics such as vortical flow development, vortex orientation and back flow, are
qualitatively in agreement with results from most of the experimental studies pre-
viously done. However, the numerical model can provide a detailed description of
the flow phenomena, which is more difficult to obtain experimentally.

6.3 Clinical application

Computational models such as presented in this thesis can be useful in the cardiovas-
cular research for choosing the time and type of surgical intervention. However, these
models can not be regarded as substitutes for the conventional clinical apparatus, which
has proven to be reliable over the last few decades. They may specifically be helpful in
giving insight in system responses, which are difficult to capture experimentally. More-
over, their application towards development of clinical hardware, such as (new types
of) prosthetic valves is of great interest. A significant reduction in the number of animal
testings may be achieved if computational techniques are integrated into the clinical
research. The computational techniques presented here are, as a matter of course, not
confined to the aortic valve system. They can readily be generalized to be applicable to
other fluid-structure interaction systems within the cardiovascular regulation.

With respect to diseased aortic valves, a setup of guidelines for designing prosthetic
devices can be defined, in which both the mechanical and hemodynamical performance
are considered. Design parameters, such as commissural height, free edge length,
leaflet/root fixation, leaflet fiber-reinforcement, sinus depth and height, and aortic root
compliance, can computationally be optimized depending on the patient’s character-
istics. The technique is time and cost efficient when compared to currently available
experimental methods. This makes computational modeling very appealing in the near
future and is believed to reserve a distinct position within the cardiovascular research,
however, closely related to and, in some cases, combined with existing clinical tech-
niques.
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Appendix A

Finite element implementation

This appendix describes some details on the finite element implementation of the fluid-
structure interaction problem1. A synopsis will be given without paying attention to the
incorporation of the regular boundary conditions. The weighted residuals method is dis-
cussed followed by the linearization of the weak form of the problem. To arrive at the finite
element equations the Galerkin discretization method is applied. The constitutive relations
are not considered in these derivations to preserve generality. For a more precise description
the reader is referred to the literature on finite element methods.

1Although Chapters 3 and 4 refer to this appendix, the implementation is given for the combined
fictitious domain/arbitrary Lagrange-Euler formulation described in Chapter 5. Hence, the reader is
referred to this chapter for additional information on the applied definitions.
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A.1 Weighted residuals method

In absence of body forces, the so-called strong form of the equation of motion and the
continuity equation for the isothermal and incompressible fluid problem defined on an
arbitrary computational grid reads (see Appendix C):

ρ f(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f ) = �∇ · σσσ f , (A.1)

�∇ ·�v f = 0, (A.2)

using the previously defined symbols (see Chapter 5). Equation (A.1) represents the
arbitrary Lagrange-Euler (ALE) formulation of the equation of motion with �vg the ve-
locity field of the moving fluid grid. For the incompressible structural problem these
equations, neglecting inertia terms and body forces, are written as

�∇ · σσσs =�0 (A.3)
det(FFF) = 1 (A.4)

The above sets of equations, (A.1), (A.2) and (A.3), (A.4), should hold in any point of
the moving fluid domain Ωg (i.e. Ω f for the fixed fluid domain in an Eulerian formu-
lation) and the structural domain Ωs, respectively. Concerning the interaction with the
fluid, the structural velocity field is considered rather than the displacement field. Then,
coupling of fluid and structural velocity along the fluid-structure interface γ is realized
through

�v f =�vs, (A.5)

which is enforced using Lagrange multiplier �λ (Fortin et al., 1983). To obtain an ap-
proximation of the velocity and pressure fields in the (moving) fluid and structural
domain, the weighted residuals method is used (Bathe, 1982; Cuvelier et al., 1986;
Hughes, 1987). In this method the residuals of Equation (A.1) and (A.2) are required
to be orthogonal to all vector functions �wf and scalar functions qf , respectively, in the
proper functional spaces W f and Q f . With respect to Equation (A.3) and (A.4) this set
of so-called weighting functions is defined by �ws in Ws and qs in Qs. Equivalently, the
weighting function associated with Equation A.5 is defined by �� in L. Integration of the
weighted residuals equations over the domains Ωg, Ωs, and boundary γ yields:∫

Ωg

�wf ·
(
ρ f(

∂�v f

∂t
+ (�v f −�vg) · �∇�v f) − �∇ · σσσ f

)
dΩg +

∫
γ

�wf ·�λ dγ = 0,∫
Ωg

q f (�∇ ·�v f ) dΩg = 0,
(A.6)

∫
Ωs

�ws · (�∇ · σσσs) dΩs −
∫
γ

�ws ·�λ dγ = 0,∫
Ωs

qs (det(FFF) − 1) dΩs = 0,
(A.7)

∫
γ

�� · (�v f −�vs) dγ = 0, (A.8)



Finite element implementation 99

which must hold for all admissible weighting functions �wf , qf , �ws, qs and ��. The ap-
pearance of�λ in Equations (A.6) and (A.7) is demonstrated in Appendix B. Applying
integration by parts on the term �wf · (�∇ · σσσ f) yields∫

Ωg

�wf · (�∇ · σσσ f) dΩg =
∫

Ωg

�∇ · (�wf · σσσ fff) dΩg −
∫

Ωg

(�∇�wf)T : σσσ f dΩg. (A.9)

Next, the divergence theorem is used to convert the first term on the right hand side of
Equation (A.9) into the boundary integral∫

Ωg

�∇ · (�wf · σσσ f) dΩg =
∫

Γg

�wf ·�t f dΓg, (A.10)

where�t f = σσσ f · �n with �n the outward normal of Γg. Following the same procedure for
the structural term �ws · (�∇ · σσσs), the strong formulations (A.6) to (A.8) are weakened to
the first-order differential equations∫

Ωg

�wf · ρ f

(
∂�v f

∂t
+ (�v f −�vg)·�∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : σσσ f dΩg+

+
∫
γ

�wf ·�λ dγ =
∫

Γg

�wf ·�t f dΓg,∫
Ωg

q f(�∇ ·�v f) dΩg = 0,

(A.11)

∫
Ωs

(�∇�ws)T : σσσs dΩs −
∫
γ

�ws ·�λ dγ = 0,∫
Ωs

qs

(
det(FFF) − 1

)
dΩs = 0,

(A.12)

∫
γ

�� · (�v f −�vs) dγ = 0, (A.13)

The surface tractions�ts that would appear in Equation (A.12) as a result from Equation
(A.10) are neglected. Clearly, the above formulations should be supplemented with
appropriate boundary conditions.

A.2 Linearization

The problem defined by (A.11) to (A.13) renders a system of non-linear equations,
which requires a linearization and an iterative procedure to obtain an approximation of
the solution. The fluid problem (A.11) is non-linear with respect to the convection part
in terms of the velocity field, whereas the structural problem (A.12) is non-linear with
respect to the unknown position field �xs. This affects the quantities that depend on the
current position�xs, i.e. the changing domain Ωs, the gradient operator �∇ which is taken
with respect to the current configuration Ωs and the stress tensor σσσs, which is a non-
linear function of (�∇0�xs)T . Although boundary γ moves with the structural domain, the
effect on the linearization is usually neglected. However, a linearization of the velocity
fields in Equation (A.13) is required for compatibility reasons.
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Fluid problem

First, time discretization is performed for the time-dependent terms in Equation (A.11),
using an implicit, backward-Euler scheme. Consider the time interval tn → tn+1, with
time step ∆t = tn+1 − tn, then

∂�v f

∂t
≈
�v f −�v n

f

∆t
, (A.14)

where use is made of the notation�v f = �v n+1
f . Next, the Newton linearization procedure

is applied to the convection term. Let �̂v f be the solution of (A.11), �v f the estimate of �̂v f

and δ�v f the error in the estimate. Taking the fluid grid velocity at time t = tn, i.e. �v n
g ,

hence choosing it to be constant during the time interval tn → tn+1, then the convection
in (A.11) may be elaborated to hold

(�v f + δ�v f −�v n
g )·�∇(�v f + δ�v f) = (�v f −�v n

g )·�∇�v f + (�v f −�v n
g )·�∇δ�v f + δ�v f ·�∇�v f , (A.15)

where the products δ(·)·δ(·) are neglected. Applying (A.14) and (A.15) and writing also
the Cauchy stress tensor and Lagrange multipliers in terms of their estimates σσσ f and�λ
and their errors δσσσ f and δ�λ, Equation (A.11) may be written as∫

Ωg

�wf · ρ f

(
δ�v f

∆t
+�V · �∇δ�v f + δ�v f · �∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : δσσσ f dΩg+

+
∫
γ

�wf · δ�λ dγ =
∫

Ωg/γ

�wf ·�r f dΩg/γ +
∫

Γg

�wf ·�t f dΓg,

(A.16)

with �V = (�v f −�v n
g ) and�r f defined according to

∫
Ωg/γ

�wf ·�r f dΩg/γ = −
∫

Ωg

�wf · ρ f

(
�v f −�v n

f

∆t
+�V · �∇�v f

)
dΩg

−
∫

Ωg

(�∇�wf)T : σσσ f dΩg −
∫
γ

�wf ·�λ dγ.
(A.17)

Substituting δσσσ f = −δpf III + δτττ f , the linearized weak form of (A.11) yields:∫
Ωg

�wf · ρ f

(
δ�v f

∆t
+�V · �∇δ�v f + δ�v f · �∇�v f

)
dΩg −

∫
Ωg

(
�∇ · �wf

)
δpf dΩg

+
∫

Ωg

(�∇�wf)T : δτττ f dΩg +
∫
γ

�wf · δ�λ dγ =
∫

Ωg/γ

�wf ·�r f dΩg/γ +
∫

Γg

�wf ·�t f dΓg,∫
Ωg

q f

(
�∇ · δ�v f

)
dΩg = −

∫
Ωg

q f

(
�∇ ·�v f

)
dΩg.

(A.18)

The quantities in this linearized weak form are taken with respect to the estimated
velocity field �v f . This is in contrast with (A.11) where quantities are taken with respect
to the exact velocity field. Since the structure will be described in an updated Lagrange
formulation and Ωg is explicitly updated (�v n

g is constant throughout ∆t), the integrals in
(A.18) over Ωg and the gradient operator are defined with respect to the configuration
at t = tn.
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Structural problem

The structure equations are based upon an updated Lagrange formulation by taking Ωn
s

at t = tn as the reference configuration (Bathe, 1982). Consequently, the deformation
tensor is split as FFF = FFF∆ · FFFn, where the deformation from the initial configuration
Ω0

s to Ωn
s is described by FFFn and from Ωn

s to the current configuration Ωs by FFF∆. The
integrations in (A.12) over the current domain Ωs are transformed to integrations over
Ωn

s by means of the relation: dΩs = J∆dΩn
s , with J∆ = det(FFF∆). Since the structure

is incompressible2, J∆ is assumed to be 1. The gradient operator �∇ is related to the
gradient operator with respect to the reference configuration �∇n through

�∇ = (FFF∆)−T · �∇n = �∇n · (FFF∆)−1. (A.19)

Using this expression for the first term of the momentum equation in (A.12) yields∫
Ωs

(�∇�ws)T : σσσs dΩs =
∫

Ωn
s

(�∇n�ws)T : (FFF∆)−1 · σσσs dΩn
s . (A.20)

Notice that the above transformations are meaningless in the fluid formulation, since
Ω f is assumed to be fixed throughout time step ∆t, i.e. FFF∆ = III.

If �̂xs denotes the current position field resulting from the solution of Equation (A.12)
and �xs is an estimate of �̂xs, then the error δ�xs in this estimate is given by: δ�xs = �̂xs −�xs.
Taking all quantities in (A.12) with respect to the estimate �xs and using the definitions
F̂FF∆ = FFF∆ + δFFF∆, σ̂σσs = σσσs + δσσσs and�̂λ =�λ+ δ�λ, Equation (A.12) may be written as∫

Ωn
s

(�∇n�ws)T : (FFF∆ + δFFF∆)−1· (σσσs + δσσσs) dΩn
s −

∫
γ

�ws · δ�λ dγ =
∫
γ

�ws ·�λ dγ. (A.21)

As stated before, it is common practice to neglect the change of γ in the linearization
procedure. This equation is now defined on the reference domain and all quantities are
taken with respect to the estimated position field �xs. Elaboration of the first term on the
left hand side in (A.21) yields:∫

Ωn
s

(�∇n�ws)T : (FFF∆ + δFFF∆)−1 · (σσσs + δσσσs) dΩn
s =∫

Ωn
s

(�∇n�ws)T :
(
(FFF∆)−1 · σσσs + (FFF∆)−1 · δσσσs + (δFFF∆)−1 · σσσs

)
dΩn

s

(A.22)

where the products δ(·) · δ(·) are neglected. Using F̂FF∆ · ( F̂FF∆)−1 = III the term (δFFF∆)−1 may
be written as: (δFFF∆)−1 = −(FFF∆)−1 ·(�∇δ�xs)T . With this expression and using (A.20) Equa-
tion (A.21) can be rewritten with respect to the most recent estimate of the domain, i.e.
Ωs: ∫

Ωs

(�∇�ws)T :
(
δσσσs − (�∇δ�xs)T · σσσs

)
dΩs −

∫
γ

�ws · δ�λ dγ =
∫

Ωs/γ

�ws ·�rs dΩs/γ, (A.23)

2The volume ratio factor J(= J∆Jn) describes the change in volume of Ωs with respect to Ω0
s . Hence,

for incompressible materials, J = 1 at the known configuration Ωs. Although in the linearization process
Ωs is yet unknown, J∆ is taken to be 1 for the transformation of the integrals from Ωs to Ωn

s . However, a
linearization of J is used for the incompressibility condition (A.25).
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with the right hand side defined as∫
Ωs/γ

�ws ·�rs dΩs/γ = −
∫

Ωs

(�∇�ws)T · σσσs dΩs +
∫
γ

�ws ·�λ dγ. (A.24)

To linearize the continuity equation the volume ratio is written as J + δJ, with δJ =
J(�∇ · δ�xs). This yields∫

Ωs

qs(�∇ · δ�xs) dΩs = −
∫

Ωs

qs
(J − 1)

J
dΩs, (A.25)

where both the left and right hand side have been divided by J. Substituting δσσσs =
−δpsIII + δτττ s, the linearized weak form of (A.12) follows:∫

Ωs

(�∇�ws)T :
(
δτττ sss − (�∇δ�xs)T · σσσsss

)
dΩs −

∫
Ωs

(
�∇ · �ws

)
δps dΩs

−
∫
γ

�ws · δ�λ dγ =
∫

Ωs/γ

�ws ·�rs dΩs/γ,∫
Ωs

qs

(
�∇ · δ�xs

)
dΩs = −

∫
Ωs

qs
(J − 1)

J
dΩs.

(A.26)

In the sequal the structural velocity field is considered rather than the displacement
field. To this end a first-order approximation is used, yielding δ�xs = ∆t δ�vs.

Coupling equation

It is straightforward to show that the linearization of the coupling equation (A.13),
based on the estimates for the fluid and structural velocity fields, is given by∫

γ

�� · (δ�v f − δ�vs) dγ = −
∫
γ

�� · (�v f −�vs) dγ. (A.27)

Again, the effect of the changing boundary γ on the linearization procedure is neglected.
Considering the structural velocity field rather than the displacement field has conse-
quences for the structural finite element matrix, which will be shown further on.

A.3 Galerkin spatial discretization

The Equations (A.18), (A.26) and (A.27) are spatially discretized using the finite el-
ement method (Bathe, 1982; Reddy, 1993). In this method the domains Ωg, Ωs and
boundary γ are divided into a number of non-overlapping subdomains (elements), Ωe

g,
Ωe

s and γe. Every element consists of a number of nodal points at which the velocity
unknowns, pressure unknowns or Lagrange multipliers are defined. The unknowns δ�vα
(α = f, s), δpα and δ�λ at position �xα in the associated domain Ωe

g, Ωe
s or on boundary

γe for time t can be approximated by δ�v h
α , δph

α and δ�λh, respectively, using a polynomial
interpolation based on the corresponding nodal values. Introducing the column nota-
tion ( ·

˜
) and matrix notation ( · ), with respect to a Cartesian basis, these interpolation
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expressions read:

δ�v h
α(�xα, t) → δv

˜α
(x
˜α
, t) =

N∑
i=1

φi
α(x˜α

)δv
˜

i
α(t) = Φαδv˜

e
α, (A.28)

δph
α(�xα, t) → δpα(x

˜α
, t) =

M∑
i=1

ψi
α(x˜α

)δpi
α(t) = (Ψ

˜ α)
Tδp

˜
e
α
, (A.29)

δ�λh(�xα, t) → δλ
˜
(x
˜α
, t) =

L∑
i=1

θi(x
˜α

)δλ
˜

i(t) = Θδλ
˜

e, (A.30)

with N, M and L the number of nodal points for the velocity, pressure and Lagrange
multipliers, respectively. The functions φi

α, ψi
α and θi are the so-called shape functions

in nodal point i, which are fully determined by the field x
˜α

and are associated with the
nodal point variables δv

˜
i
α, δpi

α and δλ
˜

i, which are only functions of time. The columns
( ·
˜
)e contain the components of all corresponding nodal variables in Ωe

g, Ωe
s or on γe.

Following the Galerkin method, the discretization of the weighting functions and the
unknowns are chosen identical, i.e. Equations (A.28) to (A.30) are defined likewise for
the polynomial approximations �wh

α, qh
α and �� h of the corresponding weighting functions

using the same shape functions. To this end the finite dimensional subspaces Wh
α ⊂ Wα,

Qh
α ⊂ Qα and Lh ⊂ L are constructed, where Wh

α, Qh
α and Lh are spanned by the set(

φi
α, i = 1,N

)
,

(
ψi
α, i = 1,M

)
and

(
θi, i = 1, L

)
, respectively. Equations (A.18), (A.26)

and (A.27) must now hold for �wh
α ∈ Wh

α, qh
α ∈ Qh

α and�λh ∈ Lh.
With respect to the terms �∇�a (with �a = �v f , δ�v f , δ�xs, see previous section) it is conve-

nient to introduce the matrix notation

�∇�a → ∇ a = ∇
˜

a
˜

T . (A.31)

A column containing the entries of matrix ∇ a can be defined in terms of the nodal
variables a

˜
e associated with an element:

∇ a → ∇
˜ a = Bα a

˜
e, (A.32)

where matrix Bα transforms the nodal variables a
˜

e to their partial derivatives and is in
structural analysis often referred to as strain-displacement matrix.

Using (A.31) and (A.32) the next characteristic terms appearing in (A.18) are elab-
orated to arrive at matrix-column notations:

�wf ·�V · �∇δ�v f = �wf�V : �∇δ�v f → tr(w
˜ f V˜

T∇ δv f
) = w

˜
T
f V∇

˜ δv f
, (A.33)

�wf · δ�v f · �∇�v f = �wfδ�v f : �∇�v f → tr(w
˜ fδv˜ f

T∇v f
) = w

˜
T
f (∇v f

)Tδv
˜ f , (A.34)

(�∇ · �wf)δpf = (�∇�wf)T : IIIδpf → tr(∇wf
Iδpf ) = (∇

˜ wf
)T I

˜
δpf , (A.35)

(�∇�wf)T : δτττ f → tr(∇wf
δτ f) = (∇

˜ wf
)TD f∇˜ δv f

, (A.36)

where the matrix D f has been introduced to incorporate the contribution of the extra
stress tensor δτττ f , and I

˜
is the column representation of the unity matrix I. A formulation

similar to (A.35) and (A.36) can be derived for the corresponding structural terms in
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Equation (A.26). It is left to the reader to derive a matrix-column notation for the
remaining terms in (A.18), (A.26) and (A.27).

Applying a first-order approximation for the structural velocity field3 , i.e. δx
˜s =

∆tδv
˜s, and using (A.28) to (A.30) and (A.33) to (A.36), the discretized version of Equa-

tions (A.18), (A.26) and (A.27) on the element level reads:

w
˜

e
f
T(M f + C f + K f)δv˜

e
f + w

˜
e
f
TPT

f δp
˜

e
f
+ w

˜
e
f
TLT

f δλ˜
e = w

˜
e
f
T f
˜

v
f
,

q
˜

e
f
TP fδv˜

e
f = −q

˜
e
f
TP f v˜

e
f ,

(A.37)

w
˜

e
s
T∆t Ksδv˜

e
s + w

˜
e
s
TPT

s δp
˜

e
s
+ w

˜
e
s
TLT

s δλ˜
e = w

˜
e
s
T f
˜

v
s
,

q
˜

e
s
T∆t Psδv˜

e
s = q

˜
e
s
T(Ψ

˜ s)
T(

J − 1
J

),
(A.38)

�
˜

eT(L fδv˜
e
f + Lsδv˜

e
s) = −�

˜
eT(L f v˜

e
f + Lsv˜

e
s), (A.39)

with M f the fluid mass matrix, C f the convection matrix and K f the diffusion matrix:

M f=
∫

Ωe
g

ρ f

∆t
ΦT

f Φ f dΩe
g ; C f =

∫
Ωe

g

ρ f ΦT
f

(
V B f + ∇v f

Φ
)

dΩe
g, (A.40)

K f =
∫

Ωe
g

BT
f D f B f dΩe

g, (A.41)

The divergence matrix P f , coupling matrix L f and right hand side column f
˜

v
f

read:

PT
f = −

∫
Ωe

g

BT
f I
˜

Ψ
˜

T
f dΩe

g; LT
f =

∫
γe

ΦT
f Θ dγe, (A.42)

f
˜

v
f
=

∫
Ωe

g

ΦT
f r
˜

e
f dΩe

g +
∫

Γe
f

ΦT
f t
˜

e
f dΓe

f , (A.43)

The equivalent structural matrices and columns are expressed by:

PT
s = −

∫
Ωe

s

BT
s I

˜
Ψ
˜

T
s dΩe

s; Ks =
∫

Ωe
s

BT
s (Ds + D̂s) Bs dΩe

s, (A.44)

LT
s = −

∫
γe

ΦT
s Θ dγe; f

˜

v
s
=

∫
Ωe

s

ΦT
s r

˜
e
s dΩe

s, (A.45)

where D̂s incorporates the Cauchy stress contribution associated with the most recently
computed configuration. The matrices Kα and column f

˜

v
α

(α = f, s) depend on the
choice of the applied constitutive relations. To preserve generality these will not be
elaborated here.

Since Equation (A.37) to (A.39) must hold for all admissible weighting functions
the resulting linearized matrix-column notation of the total system assembled over all
elements can now be written as

3Consider v̂
˜s = x̂

˜s−x
˜

n
s

∆t defining the structural velocity with x
˜

n
s the position field at t = n. Substituting

v̂
˜s = v

˜s + δv
˜s and x̂

˜s = x
˜s + δx

˜s yields the error in the estimate v
˜s(=

x
˜s−x

˜
n
s

∆t ) defined by δv
˜s = δx

˜s
∆t .
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[
K∗

f

P f

[
L f

PT
f

0

]

[
Z

]

0

[
K∗

s

P∗
s

Ls

[
Z

]

PT
s

0

]

0
]

[
LT

f

0

]

[
LT

s

0

]

[
Z

]




·




δv
˜ f

δp
˜ f

δv
˜s

δp
˜s

δλ
˜




=




f
˜

v
f

f
˜

p
f

f
˜

v
s

f
˜

p
s

f
˜λ




(A.46)

where K∗
f = M f +C f +K f , K∗

s = ∆t Ks, P∗
s = ∆t Ps and Z represents the corresponding zero

entries. The right hand side vectors associated with the pressure degrees of freedom are
given by f

˜

p
f
= −P f v˜ f for the fluid problem and f

˜

p
s

= (Ψ
˜ s)

T J−1
J for the structure problem.

The column operating on the Lagrange multipliers is defined by f
˜λ

= −(L f v˜ f + Lsv˜s).
This system of linear algebraic equations can readily be solved. A Newton-Raphson
iterative procedure is adopted within each time step to obtain a converged solution.
Some details on the solution procedure and linear solver can be found in Appendix D.
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Appendix B

Lagrange multiplier method

The appearance of the Lagrange multiplier in the weighted residuals formulation of prob-
lems to which constraints are imposed using the Lagrange multiplier method has most
commonly been based on invoking stationarity of an energy functional of the original for-
mulation. A short derivation of the resulting set of equations is given for common linear
partial differential equations, which is frequently generalized to hold for non-linear prob-
lems.
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B.1 Minimization problem

Consider, for example, the class of problems constituted by the following partial differ-
ential equation (PDE):

Lα�vα = �fα in Ωα, for α = a, b (B.1)

where L is a linear differential operator, operating on the state variable�vα in Ωα and �fα
represents a body force. Clearly, equation (B.1) must be supplemented with appropriate
boundary conditions. Then, the energy functional Iα(�vα) can be written as

Iα(�vα) =
1
2

∫
Ωα

�vα · Lα�vα dΩα −
∫

Ωα

�vα · �fα dΩα, for α = a, b (B.2)

Considering the combined system consisting of Ωa and Ωb and enforcing the constraint
defined by �va = �vb at the interface γ of Ωa and Ωb, the Lagrangian (Fortin et al., 1983)
reads

L(�va,�vb,�λ) = Ia(�va) + Ib(�vb) +
∫
γ

�λ · (�va −�vb) dγ. (B.3)

Invoking stationarity of the Lagrangian with respect to �va, �vb and�λ involves vanishing
of the first variation of L(�va,�vb,�λ) with respect to δ�va, δ�vb and δ�λ (Cuvelier et al., 1986;
Bathe, 1982):

δL = δIa(�va) + δIb(�vb) +
∫
γ

δ�λ · (�va −�vb) dγ+∫
γ

�λ · δ�va dγ −
∫
γ

�λ · δ�vb dγ = 0 ∀ δ�va ∧ δ�vb ∧ δ�λ,
(B.4)

where δIα(�vα), for α = a, b, can be written as

δIα(�vα) =
∫

Ωα

δ�vα · L�vα dΩα −
∫

Ωα

δ�vα · �fα dΩα. (B.5)

Grouping the variational terms δ�va, δ�vb, δ�λ and requiring stationarity for each of these
terms results in∫

Ωa

δ�va · L�va dΩa +
∫
γ

δ�va ·�λ dγ =
∫

Ωa

δ�va · �fa dΩa ∀ δ�va, (B.6)∫
Ωb

δ�vb · L�vb dΩb −
∫
γ

δ�vb ·�λ dγ =
∫

Ωb

δ�vb · �fb dΩb ∀ δ�vb, (B.7)∫
γ

δ�λ · (�va −�vb) dγ = 0 ∀ δ�λ, (B.8)

which demonstrates the contribution of�λ and its variational counterpart δ�λ to the set
of system equations.
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B.2 Generalization

A sufficient condition for a PDE to have an equivalent energy functional is that the
operator L must be linear. To this class of linear PDE belong all operators appear-
ing in formulations derived in this thesis, except for the non-linear convective term of
the Navier-Stokes problem. In other words, there does not exist an equivalent energy
functional for convection-diffusion problems. However, the results given here are most
commonly generalized to hold for any class of problem to which the weighted residuals
formulation is applied. Consequently, the Lagrange multiplier method operates on the
Galerkin finite element formulation of the problem to be solved, see e.g. Cuvelier et al.
(1986) and Bathe (1982).
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Appendix C

Arbitrary Lagrange-Euler method

The arbitrary Lagrange-Euler (ALE) method is nowadays frequently applied in the compu-
tational analysis of problems that involve fluid-structure interaction. Many variants fall
within the class of ALE procedures, each differing in the method of controlling the domain
configuration. In all these methods the governing equations describing the motion of the
continuum are adapted equivalently. The impact on the equilibrium equations describing
the fluid problem is briefly outlined in this appendix.
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C.1 Coordinate reference systems

One of the basic concepts of the ALE method is the introduction of three separate ref-
erence systems for identification of the points in the continuum (Schreurs et al., 1986):
the Spatial Reference System (SRS) which is fixed in space according to an Eulerian ap-
proach, the Material Reference System (MRS) which moves with the material according
to a Lagrangian approach, and the Computational Reference System (CRS) which may
move arbitrarily with respect to the considered continuum. These coordinate reference
systems each support a different way of labeling the points in the continuum. A point in
the MRS is called a material point, and its position with respect to the SRS is denoted by
�x(t) (Figure C.1). The position of this material point with respect to the CRS is denoted
by �xg(t).

The physical quantities in the governing equations describing the fluid and structure
problem are defined with respect to the SRS and MRS respectively. However, in the ALE
method the finite element discretization of the fluid domain Ω f is performed in the CRS
(Donea et al., 1982; Johnson et al., 1994; Nomura et al., 1991). Consequently, the finite
element formulation of the fluid problem in the CRS can only be accomplished if the
quantities defined in the CRS can be coupled to the quantities in the SRS.

P

OSRS

OCRS

�x(t)
�xg(t)

�x(t
+ ∆t)

�x
g (t +

∆t)

d�x

d�xg

�xg (t)− d�xg

Figure C.1: Relation between SRS and CRS for a particular material point P.

C.2 Material derivatives

To couple the CRS with SRS, the evolution of a state variable φ(�x, t) in material point P
is considered and a relation between the material and spatial time derivative is derived.

For an infinitesimally small time step ∆t, the position of a material point P with
respect to the SRS has changed from �x(t) to �x(t + ∆t) = �x(t) + d�x, see Figure (C.1).
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Then the material derivative for ∆t → 0 can be written as

Dφ
Dt

= lim
∆t→0

1
∆t

(
φ(�x + d�x, t + ∆t) − φ(�x, t)

)
= lim

∆t→0

1
∆t

(
φ(�x + d�x, t + ∆t) − φ(�x, t + ∆t) + φ(�x, t + ∆t) − φ(�x, t)

)
= lim

∆t→0

1
∆t

(
d�x · (�∇φ) + φ(�x, t + ∆t) − φ(�x, t)

)
=�v · (�∇φ) +

∂φ

∂t

∣∣∣∣
�x
,

(C.1)

where �v is the velocity of the material point and �∇ the gradient operator with respect
to the SRS.

The position of the material point P with respect to the CRS changes from �xg(t) to
�xg(t + ∆t) = �xg(t) + (d�x − d�xg). By replacing �x and d�x in equation (C.1) with �xg and
(d�x − d�xg), respectively, it is straightforward to show that

Dφ
Dt

= (�v −�vg) · (�∇φ) +
∂φ

∂t

∣∣∣∣
�xg

, (C.2)

where �vg denotes the grid velocity and �∇ remains operating with respect to the SRS.
Notice that the term ∂φ

∂t is now defined in the grid point �xg.
Consider next a material point P in a moving fluid domain Ωg, which is defined in the

CRS. The momentum and continuity equation in this point read (using the previously
defined notation):

ρ f
D�v f

Dt
= �∇ · σσσ f + �f f ,

Dρ f

Dt
= ρ f�∇ ·�v f .

(C.3)

Elaboration of the material derivative of �v f and ρ f yields the ALE formulation of the
momentum and continuity equations:

ρ f
∂�v f

∂t
+ ρ f(�v f −�vg) · �∇�v f = �∇ · σσσ f + �f f , (C.4)

∂ρ f

∂t
+ (�v f −�vg) · ∇ρ f = ρ f�∇ ·�v f . (C.5)

Substitution of the constitutive equation defined by σσσ f = −pf III + 2ηDDDf yields the well-
known Navier-Stokes equation

ρ f

(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f

)
= −�∇pf + �∇ · 2ηDDDf + �f f , (C.6)

while the incompressible behaviour, in case of a constant density ρ f , simplifies the con-
tinuity equation (C.5) to

�∇ ·�v f = 0, (C.7)
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Hence, the ALE formulation of the Navier-Stokes equation is equivalent to its Eule-
rian formulation (i.e. �vg =�0) except for the additive convective term −�vg · �∇�v f and the
term ∂�v f

∂t , which is defined in �xg. The Lagrangian formulation can easily be obtained if
in any point at any time the grid velocity equals the velocity of the material points, i.e.
�vg = �v f , and thus material and grid points coincide.
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Solution procedures

Many strategies exist for solving coupled problems, each with their own amenities for the
specific problem to be solved. In the aortic valve system the solution of each of the sub-
problems, i.e. the fluid, structure and, if aortic wall compliance is considered, moving grid
problem1, depends on the solution of the other subproblem. A distinction is made between
weakly coupled and fully coupled approaches to obtain an approximation of the solution
of the total system. In this appendix some of the weakly coupled strategies that have been
tested are described and their failures in the application to the aortic valve are discussed.
The merits and demerits of a fully coupled approach are outlined, leading to the solution
scheme, which is adopted here to solve the fluid-structure problem.

1The solution strategies given in this appendix incorporate the moving grid problem associated with
the arbitrary Lagrange-Euler formulation for the fluid, which is discussed in Chapter 5.
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D.1 Weakly coupled methods

In weakly coupled methods the subsystems are considered individually during one dis-
crete time step rather than considering the total system. These methods are also referred
to as partitioned or staggered procedures (Felippa et al., 1998; Farhat et al., 1998; Wall
et al., 1998), which are most frequently applied to solve three field problems, such as
the fluid, structure and moving (fluid) grid problems presented in this thesis. In this
approach the equilibrium equations associated with each subsystem are solved using
the most recently computed solutions of the other subsystems. As a result, for each
subproblem well established but distinct numerical solvers can be adopted, which are
best suited for that particular subproblem. This makes the staggered approach very
appealing in fluid-structure interaction problems.

A generally used weakly coupled strategy is described next and its application to the
aortic valve system is discussed. Neglecting external body forces, the weak form of the
isothermal and incompressible fluid problem in Ωg (using previously defined notations)
read for this strategy:∫

Ωg

�wf · ρ f

(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : τττ f dΩg−∫
Ωg

(�∇ · �wf) pf dΩg +
∫
γi
�wf ·�λ dγi =

∫
Γg

�wf ·�t f dΓg,∫
Ωg

q f (�∇ ·�v f) dΩg = 0,∫
γi

�� ·�v f dγi =
∫
γi

�� ·�vs dγi,

(D.1)

with γi the boundary of the immersed structures and�t f the externally applied surface
load. In this formulation the fluid velocity at γi is prescribed using the local structural
velocity field (�vs), which is assumed to be known. The solution of the fluid problem ren-
ders the surface traction�λ, resulting from the weakly enforced coupling constraint (last
equation of D.1), and (−pf III + τττ fff) ·�n, which the fluid exerts on γi and γb, respectively.
These forces are applied to the incompressible structural problem defined in Ωs:∫

Ωs

(�∇�ws)T : τττ s dΩs −
∫

Ωs

(�∇ · �ws) ps dΩs =
∫
γi
�ws ·�λ dγi +

∫
γb
�ws ·�ts dγb,∫

Ωs

qs

(
det(FFF) − 1

)
dΩs = 0,

(D.2)

with γb the boundary of the bounding structures and�ts = (−pf III + τττ f) · �n at γb. From
the computed structural displacement field �us the velocity field �vs at γi is derived using
a first-order approximation in time. The structural displacement �us at γb is used to
accommodate the fluid domain to the change in γb. A proper fluid mesh quality is
preserved by computing a fluid grid displacement field�ug from the linear elastic (moving
grid) problem defined in Ωg:∫

Ωg

εεεwg :
(4CCC : εεεug

)
dΩg = 0, (D.3)
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to which �us at γb are prescribed. In this equation, 4CCC denotes the fourth-order Hookean
elasticity tensor, εεεug the elastic strain tensor and εεεwg its variational counterpart with
respect to the field �wg. The fluid mesh is accommodated accordingly and a grid velocity
field �vg is computed (using also a first-order approximation). This velocity field and
�vs at γi are passed back to the fluid problem D.1, which is subsequently solved again.
This sequence is repeated for each time step or for each iteration within each time
step, which is known to be the strongly coupled variant of staggered procedures. The
procedure is schematically depicted in Figure D.1.

Fluid problem

Structure problem

Moving grid problem

�us on γb

�vg

�λ on γi

formulation (D.1)

formulation (D.2)

initialize subproblems

formulation (D.3)

�vs = �us/∆t on γi

(−p f III + τττ f ) ·�n on γb

Figure D.1: A three field staggered approach for solving fluid-structure interaction problems.

The solution method described above cannot generally be applied to couple a fluid,
with blood analog characteristics, and a structure, which has small inertia, damping and
bending stiffness, like a heart valve leaflet. Consider for example the valve opening and
closing phase when the valve leaflets are mostly subjected to very low strains or might
even be partly strain free. Then, in some parts insignificant internal stresses are present
and consequently, the fluid forces on both sides of the leaflets should balance. If the
weakly coupled method illustrated in Figure D.1 is applied, first the position and/or ve-
locity of the boundary γi is estimated. After solving the fluid problem, the fluid stresses
on both sides of the leaflets generally will not balance. The resulting fluid load �λ is
applied to the leaflets and the displacement field is computed. Due to the small stiffness
of the structure the displacements will be very large in order to obtain internal stresses
which balance the fluid load. Apart from the numerical instabilities that arise, it will
be clear that this situation is physically unrealistic. Hence, it is extremely important to
control the load which is exerted on the leaflets, using e.g. an underrelaxation scheme,
introducing artificial structural damping or decreasing the time step size. However,
numerical experiments show that none of these interferences appears to be successful
in analyzing the interaction with the highly flexible valve leaflets using the presented
weakly coupled strategy. On the other hand, a simple underrelaxation scheme for the
fluid load or a reasonable time step size is sufficient to describe the interaction with the
aortic wall using the solution procedure described above.
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An alternative decoupling of the total system may result in the next weak formula-
tion of the fluid problem:∫

Ωg

�wf · ρ f

(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : τττ f dΩg−∫
Ωg

(�∇ · �wf) pf dΩg =
∫

Γg

�wf ·�t f dΓg −
∫
γi
�wf ·�λ dγi,∫

Ωg

q f (�∇ ·�v f) dΩg = 0.

(D.4)

The essential difference with the previous solution method is the transport of state
variables from one subproblem to the other. Here the fluid velocity and pressure fields
are computed without weakly enforcing the fluid-structure coupling constraint. Instead,
the effect of this constraint is incorporated by prescribing the associated coupling force
�λ, which is therefore assumed to be known. The fluid velocity field �v f at γi and fluid
surface load (−pf III + τττ f) · �n at γb are passed to the structural problem, which is now
defined by∫

Ωs

(�∇�ws)T : τττ s dΩs −
∫

Ωs

(�∇ · �ws) ps dΩs −
∫
γi
�ws ·�λ dγi =

∫
γb
�ws ·�ts dγb,∫

Ωs

qs

(
det(FFF) − 1

)
dΩs = 0,∫

γi

�� ·�vs dγi =
∫
γi

�� ·�v f dγi,

(D.5)

with �ts = (−pf III + τττ f) · �n at γb. The solution of the structural problem renders the
displacement field �us and the coupling force�λ. The displacement field at γb is applied
to the moving grid problem (D.3), which is subsequently solved. The resulting grid
velocity field�vg and the force�λ are coupled back to the fluid problem D.4. The staggered
procedure for this decoupled strategy is summarized in Figure D.2.

This solution scheme as presented here neither appears to be successful in the anal-
ysis of the aortic valve system. The prescription of fluid velocities on the valve leaflets
results in an unrealistic internal stress distribution that severely affects the fluid flow
when applied back to the fluid problem. This can easily be understood by the fact that
the highly flexible thin-walled structures are designed to bear tensile stresses rather than
compressive stresses. Moreover, in the closed position the valve leaflets have to with-
stand a considerable pressure gradient. Corresponding structural stresses are of such
a magnitude that instability in the flow computation is easily attained. To circumvent
these instabilities a set of different numerical strategies have been examined. The use
of an underrelaxation scheme for the prescribed fluid velocities along γi or a decrease
of the time step size show no significant improvement. A simplification for the struc-
tural problem would be to neglect of the physically unrealistic compressive stresses,
although still prescribing the fluid velocities along γi. Combined with a distribution of
the coupling force�λ to a larger area surrounding the leaflets, an improvement of the
numerical stability is most probably to be achieved. A similar approach was adopted
by Peskin et al. (1977) and Peskin et al. (1995) for low Reynolds number problems,
where the structural domain is described by sets of fibers. However, applied to more
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Fluid problem

Structure problem

Moving grid problem

�us on γb

�vg

�v f on γi

�λ on γi

initialize subproblems

formulation (D.4)

formulation (D.5)

formulation (D.3)

(−p f III + τττ f ) ·�n on γb

Figure D.2: Alternative staggered approach for solving fluid-structure interaction problems.

sophisticated structures that are partly able to bear compression this method is likely to
fail. An interesting solution to this, from a numerical point of view, unstable behaviour
of the system would be to prescribe the normal fluid velocities and the tangential fluid
load at the interface γi. In combination with an appropriate distribution of the coupling
forces to the fluid domain this approach is worthwhile to be considered in the future as
a possible solution to this instability problem.

D.2 Fully coupled method

To circumvent the numerical instabilities mentioned above, a fully coupled approach
is adopted to solve the aortic valve model described in this thesis. To this end the fol-
lowing problem formulations are defined. Neglecting external body forces and surface
tractions, the governing equations for the fluid are written∫

Ωg

�wf · ρ f

(
∂�v f

∂t
+ (�v f −�vg) · �∇�v f

)
dΩg +

∫
Ωg

(�∇�wf)T : τττ f dΩg−∫
Ωg

(�∇ · �wf) pf dΩg +
∫
γi
�wf ·�λ dγi =

∫
Γg

�wf ·�t f dΓg,∫
Ωg

q f (�∇ ·�v f) dΩg = 0,

(D.6)

while the structural problem is defined by∫
Ωs

(�∇�ws)T : τττ s dΩs −
∫

Ωs

(�∇ · �ws) ps dΩs −
∫
γi
�ws ·�λ dγi = 0,∫

Ωs

qs

(
det(FFF) − 1

)
dΩs = 0.

(D.7)
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In these equations�λ is an extra unknown related to the usual coupling constraint de-
fined by∫

γi

�� · (�v f −�vs) dγi = 0. (D.8)

Again, the moving grid problem remains unchanged and is described by D.3. Notice,
that the interaction on γb is taken into account implicitly, since fluid and structural
discretizations along γb are taken identical (see Chapter 5). The solution procedure
which is adopted here is depicted in Figure D.3 and described next.

Initialize subproblems
and iteration counters i, j = 1

Fluid problem:
Eq. (D.6) on T j−1

g

Structure problem:
Eq. (D.7) on T j−1

s

Coupling:
Eq. (D.8) at γi

Tg = Ts at γb

Fluid-structure interaction problem

�v i
f

�u i
s

�λi

�us at γb

i = i + 1

Converged

j = j + 1

T j
g on Ω j

g; �vg

Moving grid problem

Converged

Eq. (D.3) on T j−1
g

Figure D.3: The fully coupled iterative solution procedure.

First the initial configurations of the fluid domain Ωg and Ωs are discretized to obtain
a mesh Tg on Ωg and Ts on Ωs. The iteration counters i for the fluid-structure interaction
problem and j for the total problem, including the moving grid problem, are set to one.
Then for each time step the following actions are taken. The fluid problem and struc-
tural problem are solved simultaneously with the additional coupling constraint (D.8).
The solution of this fully coupled problem is checked for convergence with respect to
the state variables �v f , �us and�λ and with respect to the residual in the right hand side
vector. If convergence is obtained the structural displacement field at γb is prescribed
to the moving grid problem. T j−1

g is updated and �vg is computed. Next, j is upgraded
and the fluid-structure interaction problem is solved again where the fluid velocity and



Solution procedures 121

pressure fields are solved on T j
g . This process is repeated until convergence for the total

system has been reached.
There are a few interesting points concerning this scheme. First of all, with each

Newton iteration i the displacement field of the structure is fully coupled to the velocity
field of the fluid. This obviates the need for an additional iterative procedure between
the fluid and structural subproblems. Secondly, at each Newton iteration the fluid-
structure coupling through equation (D.8) is enforced using the location of γi defined
at the beginning of the current time step. Enforcement on the most recently computed
location of γi affects the convergence rate. Analog to the previously described weakly
coupled strategies the moving grid problem is decoupled from the fluid and structural
subproblems. Consequently, the update of Tg at each iteration j implies that the corre-
sponding grid velocity �vg, passes back to the fluid problem, results in an explicit defi-
nition for the additional convection. This simplifies the linearization process described
in Appendix A significantly. The decoupling of the moving grid problem results in a
linear contribution of the extra convective term to the system equations, improving the
convergence rate of the total system with respect to an implicit grid update.

On the other hand, the fully coupled strategy leads to a matrix-vector structure (see
Appendix A), which is far from being efficient to solve numerically. The ill-conditioned
matrix requires special attention on the choice of the linear solver being applied.

D.3 Linear solver

In the following, the attention will be focused on the linearized system of equations re-
lated to the fluid-structure interaction problem rather than to the moving grid problem,
which is fairly easy to solve. The linearized system of algebraic equations associated
with the fluid-structure interaction problem can be written in matrix-vector format:

A b
˜

= c
˜

(D.9)

where the column b
˜

is related to the entities that have to be solved, the matrix A is
constructed from the element and control point contributions, and c

˜
follows from the

contribution of the boundary conditions to the loads on the elements. Because of the
number of degrees of freedom (O(104 − 105)) a linear direct solver would require in-
admissible amounts of memory and CPU time and, therefore, a linear iterative solver is
used. The robustness and effectiveness of an iterative solver decreases when the size
and/or the condition number of the system matrix, κ( A) = ‖A‖ ‖A−1‖, increases. The
condition number will increase when the elements that are used to assemble A become
distorted or when the different material parameters display large variations. This is one
of the reasons why fully coupled procedures, as presented above, are sporadicly found
in fluid-structure interaction applications, since both fluid and structure entities, which
differ several orders of magnitude (O(109)), are incorporated and the elements may
become distorted. Moreover, the addition of the Lagrange multipliers to the system ma-
trix involves addition of zero blocks on the main diagonal and an increase of the matrix
bandwidth.

Using an fully coupled solution strategy for the mixed formulations of fluid and
structural problem, i.e. the velocity and pressure fields (v

˜
f , pf ) and (v

˜
s, ps) are solved
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simultaneously, the system of equations defined by formulation (D.6) to (D.8) can be
cast into the matrix-vector notation as described in Appendix A. The structure of this
matrix is illustrated in Figure D.4 where the positions of nonzero entries in the matrix
are shown. In Figure D.4(a) the fluid and structure degrees of freedom are ordered
such that first all velocities are considered and subsequently all pressures. To improve
the convergence properties of the matrix the degrees of freedom are renumbered per
level, see Figure D.4(b), where a level is defined by the cluster of nodal points based
on their spatial position in the domain (Segal, 2000). However, the solvability of the
matrix is still in both cases significantly affected by the presence of the submatrices Λα

associated with the Lagrange multipliers. Elimination of the Lagrange multipliers from
the fluid and structure matrix block (static condensation) could enhance the solvability
of the matrix. Although this approach results in an additional off-diagonal block it is
worthwhile to be considered in the near future.

Since this matrix is square and positive definite, but non-symmetric, a considerable
restriction is posed on the iterative solvers that can be applied. The iterative solver that
has been adopted here is based on the Bi Conjugate Gradient Stabilized (BiCGStab)
method (Saad, 1996). The robustness and convergence rate of the BiCGStab solver is
improved by using a preconditioner. The matrix-vector equation is then premultiplied
with a preconditioning matrix P (not to be confused with the divergence matrix Pα) to
render:

P A b
˜

= P c
˜
. (D.10)

The purpose of this preconditioning is to reduce the condition number of the linear sys-
tem and thus increase the convergence of the iterative solver. The ideal preconditioning
matrix is P = A−1, because this matrix renders the solution immediately, as for a direct
solver. The preconditioner used here is of the type ILU based on an incomplete factor-
ization of the system matrix. A general Incomplete LU factorization process computes a
sparse lower triangular matrix L and a sparse upper triangular matrix U so the residual

Λα

ΛT
α

Pα

PT
α

Ks

K f

Z

Z

Z

(a)

Λα

ΛT
α

Ks

K f
Z

Z

Z

P f

PT
f

Ps

PT
s

(b)

Figure D.4: Structure of the system matrix for two different orderings of the degrees of freedom.
See Appendix A for the explanation of the different submatrices. The subscript α
denotes the fluid ( f) and structure (s) submatrices.
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matrix R = L U − A satisfies certain constraints, such as having zero entries at specific
locations. To improve accuracy of the ILU factorization extra fill-in is allowed for L
and U . The main drawback of this method is the significant increase in the required
memory and computational cost to build the preconditioner, which is not predictable.
Moreover, the fill-in strategy is blind to numerical values and depends only on the struc-
ture of A. To this end a threshold strategy is adopted for dropping small elements. For
a detailed description of the dropping rules and fill-in strategy the reader is referred to
Saad (1996).
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Samenvatting

Hartkleppen reguleren de unidirectionele stromingsrichting van het bloed door het
lichaam. Elke ziekte van deze kleppen, die hun functionering beperkt, bëınvloed in
sterke mate de gezondheidstoestand van het individu. De frequentie en medische con-
sequentie van aandoeningen bij de aortaklep illustreren het belang van het correct func-
tioneren van deze klep. De prestaties en duurzaamheid van de natuurlijke aortaklep
kunnen echter (nog) niet geëvenaard worden door een vervangende klep. Onderzoek
naar de medische complicaties in huidige klepprotheses is voornamelijk gebaseerd op
dure en tijdrovende experimentele studies. Bovendien is de ontwikkeling van betere
protheses grotendeels afhankelijk van empirisch vergaarde kennis. De toepassing van
numerieke technieken kan deze ontwikkeling bevorderen door het aantal benodigde ex-
perimenten significant te reduceren en het inzicht in experimenteel moeilijk toeganke-
lijke systeemresponsies te vergroten. Echter, gangbaar numeriek onderzoek is hoofdza-
kelijk gebaseerd op modellen, waarbij de interactie met het bloed wordt verwaarloosd.
Deze interactie tussen bloed, klepvliezen, aortawortel en wand is essentieel voor het
gedrag van de klep tijdens de systole hartfase. De klinische evaluatie van het func-
tioneren van de klep dient dan ook gebaseerd te zijn op de mechanische eigenschappen
van de klep en de dynamische interactie met de vloeistof.

Dit proefschrift beschrijft een vloeistof-vaste stof interactie model van de aortaklep
dat gebaseerd is op de eindige-elementen methode. Met dit model is de invloed van
vezelversterking van de vliezen en compliantie van de aortawortel op de klepkinema-
tica en de vloeistofdynamica onderzocht. De ontwikkelde numerieke techniek maakt
het mogelijk klinisch relevante problemen van de natuurlijke klep en klepprotheses te
onderzoeken.

De modellering van de vloeistof-vaste stof interactie is complex door de grote ver-
plaatsing van de klepvliezen door het vloeistofdomein. De mathematische representatie
van de vloeistofbewegingsvergelijking wordt namelijk veelal beschreven in een Euler
formulering, waarbij de ruimtelijk gefixeerde discretisatie geschikt is om stromingsver-
schijnselen te modelleren. Voor de vaste stof is een Lagrange beschrijvingswijze meer
geschikt door de eindige beweging van het materiaal. Binnen deze formulering wordt
de ruimtelijke discretisatie toegepast op het bewegende materiaal. Dientengevolge is
de koppeling tussen de vloeistof en vaste stof discretisaties niet consistent gedurende
de analyse. Technieken om de vloeistof discretisatie lokaal met de vaste stof mee te
laten bewegen, zoals bijvoorbeeld remeshing of arbitrary Lagrange-Euler technieken,
zijn, vanwege hun beperkingen, in deze studie niet gebruikt voor de interactie met de
klepvliezen. In plaats daarvan wordt de ”fictitious domain” methode toegepast, waarbij
met behulp van Lagrange multiplicatoren kinematische randvoorwaarden die de inter-
actiekoppeling beschrijven, aan het systeem worden toegevoegd. De klassieke Euler
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en Lagrange formuleringen voor de vloeistof en vaste stof blijven dan gehandhaafd.
De fictitious domain methode is experimenteel gevalideerd met behulp van een twee-
dimensionaal klepmodel en blijkt geschikt te zijn voor de beschrijving van de interactie
tussen het bloed en de klepvliezen. De interactie met de compliante aortawortel wordt
correct beschreven met de gebruikelijke arbitrary Lagrange-Euler methode.

De geometrische eigenschappen van het numerieke model zijn gebaseerd op data
genomen uit de literatuur. De vloeistof is gemodelleerd als een Newtonse vloeistof met
bloedkarakteristieken. Het niet-lineaire, anisotrope materiaalgedrag van de klepvliezen
is gemodelleerd met behulp van vezelversterking. Het materiaalgedrag van de aorta-
wortel en wand is lineair elastisch en isotroop verondersteld. Stromings- en drukvari-
abelen zijn voorgeschreven aan het model en de bijbehorende Reynolds en Strouhal
getallen zijn respectievelijk 1500 en 0.12.

De vloeistof en vaste stof variabelen worden simultaan opgelost en zijn dus direct
in evenwicht. Een iteratief oplosschema om de twee fases aan elkaar te koppelen is
daardoor overbodig. Met betrekking tot de bewegende aortawand wordt het vloeistof
domein expliciet aangepast. Om evenwicht van het totale, niet-lineaire systeem te
verkrijgen wordt gebruik gemaakt van het Newton-Raphson iteratie proces. Per iteratie
slag worden de gelineariseerde vergelijkingen opgelost met behulp van de BiCGStab
iteratieve solver, waarvoor een preconditioner gebaseerd op een incomplete LU fac-
torisatie nodig is.

De toepassing van vezelversterking verbetert de mechanische eigenschappen van
de klep aanzienlijk, terwijl de vloeistofdynamische eigenschappen behouden blijven.
Het compliantie gedrag van de aortawortel blijkt een grote invloed te hebben op het
openingsgedrag van de klep en beperkt in belangrijke mate de buigdeformaties van de
klepvliezen. De combinatie van de fictitious domain en arbitrary Lagrange-Euler me-
thode voor de interactie van het bloed met de klepvliezen, en de aortawortel en wand
blijkt een geschikte manier om de systole klepfunctie te beschrijven. In diastole fase
moet het aantal koppelingsvoorwaarden worden uitgebreid om stroming door de klep
te voorkomen. Dit bëınvloed ernstig de oplosbaarheid van het systeem. Vloeistofdy-
namische effecten zijn echter van minder belang in deze fase en zijn bovendien goed te
voorspellen met bestaande vaste stof modellen.

Concluderend kan worden gesteld dat het ontwikkelde model gebruikt kan worden
als een numeriek ontwerpgereedschap om betere klepprotheses te maken. Bovendien
lijkt het model in de toekomst gebruikt te kunnen worden in de kliniek om extra input te
geven voor het bepalen van het moment en type chirurgische ingrepen met betrekking
tot zieke aortakleppen.
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