

Algebraic specification and simulation of lazy functional
programs in a concurrent environment
Citation for published version (APA):
Feijs, L. M. G. (1996). Algebraic specification and simulation of lazy functional programs in a concurrent
environment. (Computing science reports; Vol. 9620). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/292f8744-a062-48c0-924f-b9a7ec316d00

Eindhoven University of Technology
Department of Mathematics and Computing Science

Algebraic Specification and Simulation of Lazy Functional
Programs in a Concurrent Environment

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof. dr. I.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

by

Loe Feijs

Computing Science Report 96120
Eindhoven, October 1996

96/20

Algebraic Specification and Simulation of Lazy Functional
Programs in a Concurrent Environment

Loe Feijs
Philips Research Laboratories Eindhoven,

Eindhoven University of Technology

Abstract

The mechanism of Landin-style stream input/output (I/O) makes it possible to
write functional programs) which behave as reactive systems when executed with
lazy evaluation. Functional programming languages like Gofer are attractive for
programming the data transformations of a reactive system. But although the
I/O behaviour can be programmed in such languages tOOl the functional paradigm
lacks the capabilities for specification and reasoning which are needed to analyse
the communication behaviour of the program and its enviroment. We propose to
use the Algebra of Communicating Processes (ACP) for that purpose. The present
paper attempts to bridge the gap between the functional and the process-oriented
worlds. It is shown how a simple generator can produce both Gofer program pat
terns and ACP equations. The patterns can be completed with data transformation
functions and then executed whereas the equations can be used for reasoning and
simulation. The term rewriting system (THE) of the functional language, the struc
t,ured operational semantics (SOS) of the I/O mechanism, the process equations
and the fixed point semantics of a program are described and their relationships
are analysed. We abstract from the details of the particular programming language
by using an intermediate concept of 'abstract functional program'.

Key Words: ACP, Bisimulation, Communication protocols, Component genera
tion, Denotational semantics, Executable specifications, Fixed point theory, Formal rea
soning, Functional programming, Gofer, Labeled transition systems, Lambda calculus,
Lazy evaluation, Patterns, PSF, Scripting, Simulation, Streams, Structured operational
semantics.

1 Introduction and motivation

In many circumstances it is important to have precise specifications of computer pro
grams in order to analyse their behaviour in the context of a large system. In particular
this is important for 'scripted agents', by which we mean programs which are meant
for being transfered through a communication network for execution as a reactive pro
gram at another site. In this paper we investigate a number of issues arising when
a program is written in a programming langnage which is based on lazy evaluation,
like Gofer [1]. Although it is possible to let a functional program perform all kinds
of I/O actions, such as reading and writing files, it makes sense to adopt a restriction
to so-called Landin-style stream I/O; in that case, a program, viewed as a process in
a concurrent environment (a distributed system), will have only one input port and
one output port. Of course a distributed system will need multi-port components like
routers too, but one can assume that these are realised by other means already and

1

that these can be specified using process-theoretic means, for example ACP [2]. In tbis
way the data processing aspects are separated from the communication aspects. By
means of an example it will be shown that this can be done without loss of generality
(provided the network contains routers). For our examples we use Gofer and we work
out the details to such a level that we can use the axioms of ACP; [2] for reasoning
and ACP-based tools like PSF [3] for simulation.

Related work: in [4] it was already shown that the concept of stream domains makes
it possible to relate certain A-calculus based program descriptions to behavioural de
scriptions of the program in a concurrent environlnent. In [5] an operational semantics
of a Haskell fragment is given and used to derive process-theoretic properties using
CCS. In [6] a powerful I/O mechanism is proposed which is not restricted to Landin
style stream I/O. Whereas we view a functional program as one of many agents in a
concurrent world, [6] addresses the problem the otber way around, turning the world
into a set of objects being manipulated by the functional program.

Survey of the work: in Section 2 a survey of the relevant aspects of lazy functional
languages is given. In Section 3 some aspects of ACP are introduced. In Section 4 a
first example is studied (ping-pong behaviour). In Section 5 a second example is stud
ied (state-based behaviour). In Section 6 another technicality is added (non ping-pong
behaviour). In Section 7 we propose a constructive approach, using a generator to
make program patterns together with their ACP equations. In Section 8 we show this
constructive approach in action, when we build a simple distributed system consisting
of a service provider (an Eliza-like psychiater) and a service manager (filtering Eliza's
advice when the user did not pay). In Section 9 We use PSF to simulate the ACP equa
tions of this service manager together with a model of its environment. In Sections 10
and 11 we study the correctness aspects and certain semantic aspects, respectively. In
Section 12 some concluding remarks are given.

2 Aspects of lazy functional languages

Functional programming languages have been used for artificial intelligence (AI) appli
cations and for tool construction for many years. Important languages are LISP, ML,
Miranda, Haskell, Clean and Gofer. Several of the more recent languages are based on
lazy evaluation, which amounts to a particular reduction strategy together with cer
tain assumptions about the representation and manipulation of data structures. With
respect to the reduction strategy, lazy evaluation means that:

• an argument to a function is not earlier evaluated than when its value is needed
(so if it is not needed at all, it is not evaluated),

• an argument to a function is evaluated only once, also if its value is needed several
times during the function's execution.

The important data type of lists is always built-in to functional languages. ,Vith respect
to list-processing, lazy evaluation means that:

• if the result of an execution is a list, then this list is delivered in an incremental
way, i.e. the head will be delivered first (while arguments only relevant for the
tail are not evaluated),

• if the argument of a function is a list, then evaluation of the function can start
already before all list elements are available (typically a function requires the
list's head first, then the head of its tail and so on).

2

For a survey of Gofer, see [1]. An interactive Gofer program with top level function f is a
kind of executable function of type [Response] -) [Request] (assuming that Gofer's
standard prelude is imported). The program produces requests to its environments,
such as requests to read and write strings from standard input ("stdin") and to stan
dard output ("stdout tl

). The environment gives responses, containing success/failure
indications and strings, which serve as inputs for the program.

If we refrain from using arbitrary calls to the file system, and instead of that, just
read and write from/to standard input and standard output, the type of f is much
simpler. It is of type String -) String. In this case the main program looks as
follows:

main = interact f
f .. String -) String

When this is executed, the characters are read (for example from the keyboard) and
then processed by f. The function interact is a predefined function from Gofer's
standard prelude. The lazy evaluation mechanism determines at which points in time
there has been enough input in order to produce output. The interaction behaviour can
still be complex, in the sense that the the program consumes nl inputs before producing
ml outputs, then n, inputs followed by m, outputs etc., where the ni and mi depend
on the contents of the lines read so far. Sometimes this is called Landin-style stream
I/O.

Although f is declared as String -) String it consumes aud produces information
in certain chunks, normally characters. In order to have a more practical granularity
for the I/O, we shall in the sequel assume that each line is treated as a separate chunk
of information. Therefore we focus on programs whose 'main' is as follows:

main = interact (unlines . g . lines)
g :: [String] -) [String]

Here we used the function lines from the standard prelude; it breaks a string into
a sequence of strings by recognising the end of line charaelers. And unlines is its
inverse. Note the'.) operator, which denotes function composition.

Next to the functional behaviour of g, we need to understand the behaviour of g
in a concurrent environment, where synchronisation is relevant. As explained above,
the synchronisation between the responses and the requests is regulated by the lazy
execution mechanism. This implies that from the environment's point of view, g is eager
to deliver results: it produces as much outputs (requests) as possible, only pauzing to
wait for an input (a response) if no other action is possible.

3 Aspects of ACP

The Algebra of Communicating Processes ACP proposed by Bergstra and Klop [7], is a
theory about processes and their communication behaviour in the tradition of CCS [8].
For an introduction to ACP, see [2]. We mention some of the most important operators:
+ for alternative composition, . for sequential composition, T for silent step and II for
parallel composition. The laws of ACP are always written as equations, such as the
following la.ws, called 'ba.sic process algebra.'.

x+v v+ x

3

(x+y)+z

x+x
(x+y)·z

(x·y)·z

x+(y+z)
x

x·z+y·z

x·(y·z)

To these one has to add additional laws describing II, T etc., for example x . T = x.
ACP is parameterised over an action-alphabet A, which must be chosen dependent

on the application domain. For the purpose of studying interactive functional programs,
we assume that A contains the following elements:

• 8(t)
• r(t)
• c(t)

• T.

(t E String),

(t E String),

(t E String),

ACP is also parameterised over a binary communication function, : A X A --+ A, which
must be chosen dependent on the application domain. We define the partial function
1 such that one 'send' and one 'receive' together rnake one 'communication'. This is
expressed by the following equations:

,(8(t), r(t)) e(t)

,(r(t),8(t)) e(t)

undefined (otherwise)

These choices allow us to use ACP for the purpose of studying interactive functional
programs provided we may assume that, when viewed as a process, a lazy functional
program has a single input port corresponding to actions r(t), and an output port
corresponding to actions 8(t), as sketched in Figure 1.

"t) - lazy functio
nal process g

: sit')

+--

Figure 1: Lazy functional program viewed as a process.

At first sight this model looks too naive, because a simple experiment shows that
when the input of the program comes directly from a keyboard, the user can continue
typing, even when the program is not ready for consumption of the next line typed.
This is explained however, by assuming that there is a buffer between the keyboard
and the program. This buffer queues the lines which are typed. Similarly an output
buffer is assumed for the results which are to be displayed on the user's screen. The
buffers are not considered part of the process of g; they belong to the environment, as
sketched in Figure 2 below.

These preparations will enable us to address a central question in the next sections:
which ACP equations describe the behaviour of a functional program g, viewed as a
process?

4

conununicate

when environ
ment is ready

communicate
when g is ready

~

(}T-... : r(1) lazy functio-in_buffer

,.".,."., C" .•..•..• j nal process g ~ Coo"::r- i
communicate

when in_buffer

is not empty

and g is ready

communicate

when out_buffer

is not empty and

environment is ready

Figure 2: Environment for teletype I/O.

4 Example (memoryless function)

The first example is a particularly simple kind of process. It produces and consumes its
chunks of information in an alternating fashion. The program given below transforms
each input line into an output line by applying a memoryless mapping updline (for
'update line') from Line to Line.

type Line String
type Word ; String

main; interact (unlines . g . lines)

g [Line] -> [Line]
g; updlines

updlines
updlines
updlines

[Line] -> [Line]
[] ; []

(1 : Is) ; (updline 1)

updline Line -> Line

(updlines Is)

updline 1 ; unwords (updwords (words 1))

upd"ords [Word] -> [Word]
upd"ords [] ; []
updwords (w : ws) ; (map toUpper w) : (updwords "s)

Note that map is a built-in concept of Gofer and that toUpper is a function from the
standard prelude. This program can for example perform a dialogue as follows:

1. let us explain the compiler (receive)
2. LET US EXPLAIN THE COMPILER (send)
3. it has an easy evaluator (receive)
4. IT HAS AN EASY EVALUATOR (send)

Next we investigate the process behaviour of g. If we want to see a Gofer program g as
a. process, we denote it as Pig]. If we want to consider g as a mathematical function
we denote it as Fig]. From the definition of updlines we see that the first element

5

of the result updlines (I : Is) depends only on I and does not require Is. Therefore
the program produces an output immediately after each input. Of course the program
first performs some internal rewriting, which is modeled by a silent step T. This tells
us that it satifies the ACP equation.

P[g] = T' L r(x). s(updline(x))· P[g]
x

which is consistent with the following equation concerning the functional behaviour,
which is obvious from the program:

F[g](x : xs) = updline(x) : F[g](xs)

5 Example function with memory

N ext we look at an example of a more general case. The process below transforms each
input line into an output line, but it is not just a 'memoryless' mapping from Line to
Line. It has an internal state, coded as a 'dictionary', whose type is called Diet.

type Line = String
type Word = String
type Diet = [Word]

main = interact (unlines g lines)

g [Line] -> [Line]
g updlines iniDict

upd1ines :: Diet -> [Line] -> [Line]
upd1ines d [] = []
upd1ines d (1 : ls) = (upd1ine d 1) : (upd1ines (updDiet d 1) ls)

updDict :: Diet -> Line -> Diet
updDict d 1 = (add (words 1) d)

updline :: Diet -> Line -> Line
upd1ine d = unwords . (map (updword d)) . words

updword d w isin w d = w
otherwise = map toUpper w

add [Word] -> Diet -> Diet
add [] d = d
add (w : liS) d isin Vi' d = add ws d

otherwise = II : (add liS d)

isin Word -> Diet -> Bool
isin w [] = False
isin w (x : xs)

(w -- x) = True
(w ++ liS" -- x) = True
(w -- x ++ "s") = True
otherwise = isin " xs

6

iniDict :: Dict
iniDict ["in" J "the" J "and" J "is", "has" J "it" J "from", "thing" J "easy", "have" J

'I a ", "at" ,"of", "to", "use", "will", "find" ,"one", "always" J "about",
"an" J "now", "let", "us", "talk", "mention" J "explain" J "work",
"so-called" ,"define", "separate", "treat", "way" ,"as", "if" ,"clear" J

"next" J "or", "may", "be", "used" J "new ll ,"some", IIwhere" , II no ", "find ll
,

"should" J "tell", "we" J "however" J "try", "for" J "form",
"they". "are" J "not"]

This program performs a slightly more interesting task. It maps fresh words (except
for frequently used verbs and particles) to uppercase, but only in the line where they
occur for the first time. This is a dialogue:

l. let us explain the compiler (receive)
2. let us explain the COMPILER (send)
3. it has an easy evaluator (receive)
4. it has an easy EVALUATOR (send)
5. evaluators are always easy (receive)
6. evaluators are always easy (send)

This process satisfies the ACP equation Pig] = UiniDict where for all d of type Dict we
have that Ud is given by:

Ud = T' I: r(I)· s(I/) . Ud'
I

where I' == ((unwords. (map (updword d)). words) l) and d' == (add (words
1) d). This is consistent with the functional behaviour for which we check from the
Gofer program text that Fig] = u(iniDict) where for all strings I and Is,

u(d)(I: Is) = I': u(d')(ls)

6 Example which does not ping-pong

The previous examples had alternating send and receive behaviour (ping-pong be
haviour). But can we also make a program which does not ping-pong, but which
does ping-ping-pong-pong? Such a process G would be described by an ACP equation
of the form:

G = T' I: T(t j)· r(t2)· S(t'(t!, tz))· s(tl/(tj, t2))· G'(G, tj, t2)
t11tz

Yes, we can, and then the functional behaviour for g is described by an equation of the
form:

g (t j : t2 : ts) = t'(tj, tz) : tl/(t j , t2) : l(g, t], t2)(tS)

In fact, the number of pings a.nd pongs can be determined dynamically, as shown by
the program given below. This program compares each subsequent input line with
the current line, and throws the next line away if it is a subset (with respect to the
non-trivial words) of the current line. The set of 'trivial' words is given by iniDict.

main = interact (unlines . g . lines)

g :: [Line] -> [Line]

7

g = mute []

mute :: [Word] -> [Line] -> [Line]
mute e [] = []
mute e (1 : Is) (criterion c 1) = mute c Is

otherwise = 1 : (mute (nontrivs (words 1)) Is)

criterion Diet -> Line -> Bool
criterion c 1 = subset (nontrivs (words 1» c

subset [Word] -> [Word] -> Bool
subset [] e = True
subset (w : ws) c (isin w c) = subset ws e

otherwise = False

nontrivs [Word] -> [Word]
nontrivs [] = []
nontrivs (w : ws) (isin w iniDict) = nontrivs ws

otherwise = w : (nontrivs ws)

-- Line, Word, Diet, isin, iniDict as before

This program can for example perform a dialogue of the ping-pong-ping-pong-ping
ping-pong type, as shown below.

l. let us explain the compiler (receive)
2. let us explain the compiler (send)
3. it has an easy evaluator (receive)

4. it has an easy evaluator (send)

5. evaluators are always easy (receive)
6. thanks heaven (receive)
7. thanks heaven (send)

The line "evaluators are always easy" is viewed as a subset of "it has an easy evaluator')
and therefore the latter line is not echoed.

7 A constructive approach

In general it is impossible to automatically analyse arbitrary Gofer programs to find
their ACP equations. But we can easily identify a number of useful patterns for which
the Gofer program can be analysed. For each such pattern we can give both the ACP
equations and an outline of the Gofer program. One could make a library of such pairs
consisting of a pattern and a set of equations. We demonstrate this idea for a few
interesting pairs and we cast the library into the form of a menu-driven generator. The
user (programmer) still has to add definitions of a number offunctions called fO, fl, f2
etc. We devised a few patterns for which one needs a number of user-defined functions;
these have the following characterisation.

• fO - initialisation (cf. iniDict in Section 5),

• f 1 - reaction (cf. updline in Section 5),
• f2 - reflection (how to update the internal state, cf. updDict in Section 5),

• f3 - filtercriterion (which lines will not pass, cf. criterion in Section 6),

8

• f4 - stop-criterion,

• f5 - menu.

We characterise the patterns by a kind of regular expression. The generator given below
supports three patterns (although its menu has three more patterns). Of course many
extensions and generalisations are possible.

G = skip . S(f5) . surne x in Line,
rex) . s(fl(e,x))

S([]) = skip
sex : xs) = sex) s(xs)

type Line = String
type Word = String
type Diet = [Word]
main:;: interact (unlines . g . lines)
g :: [Line] -> [Line]
g xs :;: is ++ g' xs
g' [Line] -> [Line]
g' (x : xs) = fl x
f 1 Line -> [Line]
f5 [Line]

fl x = generate (head (words x))
f5 :;: menu

generate .. Word -> [Line]

generate "0" = aepO ++ prelu ++
generate " 1" = acpl ++ prelu ++
generate "2" = aep2 ++ prelu ++
generate "3" acp3 ++ prelu ++
generate rest ["sorry"]

menu = ["0: s*rs*
"1: (rs)inf - roern

"2: (rs)*
"3: (r [s] linf
114: (rslinf
"5: (rs*linf
"6: s(rs)*

]

prelu = ["type Line = String
"type Word = String
"type Diet = [Word]

goferO
goferl
gofer2
gofer3

"

"main:;: interact (unlines . g . lines) "
"g :: [Line] -> [Line] "

]

goferO = ["g xs = f5 ++ g' xs
"g' [Line] -> [Line]
"g' (x : xs) = fl x
"f1 .. Line -> [Line]

"i5 [Line]
]

9

"
"
"

goferl = ["g (x : xs) = (fl x)
"f1 :: Line -> Line"

]

gofer2 = ["g .; g' fO
"g' · . Diet -> [Line]

"g' e (x : xs) I (f4

(g xs)

-> [Line]
e x) = []

I otherwise = (fl e x) (g' (f2 e x) xs)
"fO Diet
"fl · . Diet -> Line -> Line
"f2 Diet -> Line -> Diet
"f4 Diet -> Line -> Bool

]

gofer3 = (ltg '; g' fO
"g' · . Diet -> [Line] -> [Line]

"g' e (x : xs) I (f3 e x) = g' (f2 e x) xs

" I otherwise = (fl e x) : (g' (f2'
lifO · . Diet
"fl · . Diet -> Line -> Line
"f2 · . Diet -> Line -> Diet
"f2' · . Diet -> Line -> Diet
"f3 · . Diet -> Line -> Bool

]

acpO = ["_- G = skip S(f5) srun(x in Line,
1'_- rex) s(f1(e,x))
"_-
"_- S([]) = skip
"_- Sex : xs) = sex) S(xs)

]

aepl = [,,-- G = srun(x in Line, rex) . s(fl(x» . G)
]

aep2 = [,,-- G(e) = Skip. (surn(x in Line
"-- [f4(e ,x)=True]->
"--
"_-
"_-

skip

+ surne x in Line
[f4(e,x)=False]->

e x)

rex) . s(fl(e,x» . G(f2(e,x»
"_-

]

aep3 = ["-- G = skip . G(fO)
"_- G(e) = surne x in Line
"-- [f3(e,x)=True]-> rex) . G(f2(e,x»

"_- + surn(x in Line

xs)

"

"
"
"
"
"

"

"-- [f3(e,x)=False]-> rex) . s(f1(e,x» . G(f2'(e,x»",
"_-

]

10

This program can generate its own pattern. More precisely, by choosing option 0 it
produces its own prelude up to (and including) the typing clauses of the definition
of fl and f5. The ACP equations are generated as comment (this is an example of
a component-generator in the sense proposed in [9]). The concrete syntax for ACP
chosen is the syntax of PSF. The choice for PSF has two advantages: first, it has an
ASCII syntax, and secondly there are simulation and analysis tools for it.

8 The generator in action

In this section we show the generator in action. We generate (part of) a manager for a
psychiater. When experimenting with this system we employ M . .Tones' Gofer version
of Eliza, which comes together with the standard Gofer distribution.

The manager must add addresses to its outpnt. We assume an external router,
which is capable of interpreting these addresses. The network structure is as follows:
the user's problems (lines beginning with 'po') and money (lines beginning with om:')
as well as Eliza's answers (lines beginning with 'a:') are queued and serve as input for
the rnanager. There is a router, whose output '1' is connected to the user's console
(address 1) whereas output '2' goes via a buffer to Eliza, which has address 2, (see
Figure 3). The manager is made using the generator, by choosing option 3. In order

manager Eliza

to:1, to:2

a:

Figure 3: Service network structure.

to support our claim that this approach is at the same time practically executable and
amenable to analysis with algebraic means, we did two things:

• we constructed an environment for the Gofer interpreter nsing buffer-access rou
tines and a router written in C, exploiting the multitasking capabilities of a
standard operating system; this is reported in the present section (see below);

• we specified the buffers and the router in PSF, which in combination with an
algebraic specification of the data-manipulation functions (fO, fl, f2, f2' and
f3) and the generated equations allowed us to simulate the manager process in

11

PSF; the details are given in Section 9. At the same time these PSF texts are
equational ACP; specifications which could be used to formally derive properties
of the system. We ran the simulator, but we did not really perform any further
formal derivations.

We needed a kind of multitasking environment. We realised this in a Unix environment,
using files for the two main buffers and using pipes for the four other buffers (the small
ones in the figure). We wrote C programs reader, writer and router. The system is
started by issuing the following three commands:

1. (writer faa)

2. (reader faa)

3. (reader bar)

(gofer manager.gs) I (router bar)

(gofer eliza.gs) I (writer faa)

(each command was issued in a separate shell, which is easy when using e.g. an X
window system). The writer takes lines from the users terminal and writes them to a
file. The reader reads lines from a file and puts them on the user's screen. The router
reads lines from its standard input; lines which begin with to: 1 are routed to its output
port 1, lines which begin with to: 2 are routed to its output port 2, and all other lines
are thrown away.

We could only use the interactive version of Gofer, probably because the compiled
versions of the programs did not force their pipes to be properly flushed. For initialisa
tion purposes we had to put the word 'main' in each of the buffer-files 'foo' and 'bar'.
We expect that by modifying Gofer's runtime. c these technicalities can be resolved in
other ways too.

G ; skip . G(fO)
G(e) ; surn(x in Line

[f3(e,x);True]-> rex) . G(n(e,x»

+ surn(x in Line
[f3(e,x);False]-> rex) . s(f1(e,x» . G(f2'(e,x))

type Line ; String
type Word String
type Diet ; [Ilord]
main ; interact (unlines . g . lines)
g :: [Line] -> [Line]
g ; g' fO
g' :: Diet -> [Line] -> [Line]
g' e (x : xs) I (f3 e x) ; g' (f2 e x) xs

I otherwise; (fl e x) : (g' (f2' ex) xs)

fO Diet
f1 Diet -> Line -> Line
f2 Diet -> Line -> Diet
f2' Diet -> Line -> Diet
f3 Diet -> Line -> Bool

m: money
p: problems
a: advice

fO ; ["$"J

12

fl c 1 (words 1 -- [J) = 1
"m: ") ~ 1 (head (words 1) -

(head (words 1) -
(head (words 1) --
otherwise

lip: If)
Ira:")

:; "to:2 " ++ unwords (tail (words 1»
;; "to:1 " ++ unwords (tail (words 1»
= 1

f2 [J

f2 (d

f2' c 1

f3 [J

f3 (d

1

c) 1

(words 1 -- [J = [J
(head (words 1) __ "m: II):; tendollar
otherwise = [J
(words 1 -- [J) = (d: c)
(head (words 1) -- "m:"):;: tendollar ++ Cd
(head (words 1) -- "p:") =
otherwise (d

f2 c 1

1

c) 1

(words 1 -- [J
(head (words 1) __ lIa: "

otherlf1ise
(words 1 -- [J
(head (words 1) -
(head (words 1) -
otherwise

:;: True
:;: False
:;: True
:;: True

") :;; False
False

False

c)

c
c)

The manager gives an initial credit of one dollar to the user. This suffices for one
problem being asked to Eliza. Lines starting with 'm:' are treated as an advance
payment of ten dollars. This system can for example perform a dialogue as follows:

1. Hi! I'm Eliza. Please tell me your problem.

2. p: I do not like my computer any more
3. Do computers worry you?
4. p: no, no

5. p: no, no

6. m: enclosed are ten dollars
7. p: no, no

8. Are you saying no just to be negative?

(receive)
(send)

(receive)
(send)
(send)
(send)
(send)

(receive)

Note that the user does not get an answer for his problems on lines 4 and 5. This
is because the manager's sees the acount is empty and does not pass the problems to
Eliza. From the payment of line 6 onwards, the contact with Eliza is re-established.

9 Simulating ACP equations with PSF

We have simulated the generated equations using the PSF tools. The PSF model
consists of two parts: data specifications and process specifications. We just survey
the sorts and their operations: The sort Bool has values True and False, the sort
Word has valueD and the sort Prefix has values 'a', 'm', 'p', '1' and '2'. Next,
the sort Contents has values like hi-i-m-eliza-please-tell-me-your-problem and
do-computers-worry-you. The sort Lines has constructor _++_ Prefix # Content

13

-> Line and operations head and tail. Finally the sort Diet, has constructors
empty-diet and cons and operations head, tail and finally _++ _ from Diet and Diet
to Diet.

data module F0122'3
begin

exports
begin

functions
fO
f1
f2
f2'
f3

end
imports

Diet
Diet
Diet
Diet

-> Diet
Line -> Line
Line -> Diet
Line -> Diet
Line -> Baal

Diets, Lines, Words, Prefixes, Contents, Boals
functions

tendollar : -> Diet
variables

c -) Diet
1 : -> Line
d : -> Word

equations
[01] fO = cons(D,empty-dict)

1 [02] f1(e,ll
[03] f1(e,ll
[04] f1(e,l)

'2' ++ tail(l)
'1' ++ tail(l)

when head (1)
when head(l)
when head(l)

'm'
'p'
'a'

[05] f2(empty-diet,l)
[06] f2(empty-diet,l)
[07] f2(empty-diet,l)

tendollar when head(l)
empty-diet when head(l)
empty-diet when head(l)

'm'
'p'
'a'

[08]

[09]
[10]

f2(cons(d,c) ,1)
f2(eons(d,e),l)
f2(cons(d,c) ,1)

tendollar ++ consed,c) when head(l)
= e

consed,c)

[11] f2'(e,l) = f2(e,l)

[12] f3(empty-dict,l) False when head(l)

when head(l)
llhen head (1)

'a'

'm'
'p'
'a'

[13] f3 (empty-diet ,11 True when head(l) 'm' -- otherwise
[14] f3 (empty-diet ,1) True vhen head (1) 'p'

[15] f3(eons(d,e) ,1) False when head (1) 'a'
[16] f3(eons(d,e) ,1) False when head(1) 'p'
[17] f3(eons(d,e),l) False when head(l) 'm' othenlise

[18] tendollar = cons(D,cons(D,cons(D,cons(D,cons(D,
cons(D,cons(D,cons(D,cons(D,cons(D,empty-dict))))))))))

end F0122'3

There are some process modules needed to define the enumerated sets needed to make
the simulations run efficiently, but these are not shown here. We only show the
communications section and the definitions sections, since it is not hard to guess
the essentials of the exports, imports etc. from these.

process module Example2
begin

14

communications
read-foo(x)
sex)

write-router' (x)
read-router2(c)
read-bar (c)

ss(x)

r(x)

s' (x)

write-router(x)
write-bar(c)
r(e)

for x
for x
for x
for e
for e
for x

in Line
in Line
in Line
in Content
in Content
in Line

wri te-foo' (x)
ss' (x)
write-foo(x)

int-read-foo(x)
int-manager-to-router(x)
int-manager-to-router(x)
int-router-to-bar(c)
int-bar-to-eliza(c)
int-eliza-to-foo(x)
int-eliza-to-foo(x) for x in Line

definitions
manager = skip. G(fO)
G(c) = sum(x in Line

[f3(e,x)=True]-> rex) . G(f2(e,x»

+ sum(x in Line
[f3(e,x)=False]-> rex) . s(f1(e,x» . G(f2'(e,x»

eliza = ss('a' ++ hi-i-m-eliza-please-tell-me-your-problem) . E

E r(i-do-not-like-my-computer-any-more)
· ss('a' ++ do-computers-worry-you)

· E
+ reno-no)

ss('a' ++ are-you-saying-no-just-to-be-negative)

• E

router sum(x in LINE

foo
bar

(head(x)='l']-> write-router(x)
+ [head(x)='2']-> write-router(x)
+ [head(x)='m']-> skip router
+ [head(x)='a']-> skip router
+ [head(x)='p']-> skip router

read-routerl(tail(x»
read-router2(tail(x»

sum(x in LINE write-foo(x)
sum(c in CONTENT. write-bar(c)

read-foo(x) . foo)
read-bar(c) . bar)

router
router

manager-to-router = sum(x in LINE, s'(x)
eliza-to-foo sum(x in LINE. ss'(x)

write-router' (x»
1lrite-foo' (x»

manager-to-router
eliza-to-foo

psychosystem = encaps(H. (manager
\ \ eliza

end Example2

II foo
II bar

II router
I I manager-to-router
II eliza-to-foo
)

Here we have modeled the buffers foo and bar as one-place buffers only. We obtain for
example the following execution trace. From line 9 onwards we have summarised the
various internal steps by just counting them.

1. com. int-eliza-to-foo(('a' ++ hi-i-m-eliza-please-tell-me-your-problem))
2. corn. int-eliza-to-foo((,a.' ++ hi-i-m-eliza-please-tell-rne-your-problem))
3. skip <0>
4. com. int-read-foo(('a' ++ hi-i-m-eliza-please-tell-me-your-problem))

15

5. com. int-manager-to-router(('l' ++ hi-i-m-eliza-please-tell-me-your-problem))
6. com. int-manager-to-router(('I' ++ hi-i-m-eliza-please-tell-me-your-problem))
7. atom read-router l(hi-i-m-eliza-please-tell-me-your-problem)
8. atom write-foo((,p' ++ i-do-not-like-my-computer-any-more))
9. (10 X int)

10. atom read- rou tel' 1 (do-com puters-worry-you)
11. atom write-foo((,p' ++ no-no))
12. (1 X int)
13. atom write-foo((,p' ++ no-no))
14. (1 X int)
15. atom write-foo(('m' ++ enclosed-are- ten-dollars))
16. (1 X int)
17. atom wri te-foo(('p' + + no-no))
18. (10 X int)
19. atom read-routerl (are-you -saying-no-just-to- be-negative)

Note that the user does not get an answer for his problems on lines 11 and 13. As
before, this is because the manager sees that the account is empty and does not pass
the problems to Eliza. From the payment of line 15 onwards, the contact with Eliza is
re-established.

This concludes our discussion of the practical aspects of relating lazy functional
programming to process-algebraic specification and simulation. The next sections are
devoted to a more theoretical analysis of the relation between the programs and its
process equations.

10 Correctness aspects

Recall that if we want to see a Gofer program g as a process, we denote it as Pig]. It
would be nice if we could extract the ACP equations for Pig] from the Gofer program g.
In general there are many process equations possible for the same functional behaviour.
Finding the right ones demands that the rules of the lazy evaluation mechanism are
taken into account. Our approach is similar to that of [5J, but instead of giving a
labeled transition system in one step, we separate the internals of Gofer (a TRS) from
the external behaviour (an SOS with actions s(x), r(x) and T). This approach of
factoring the definition of the transition system into two steps is not new: it has been
presented in [10] with a first set of rules called operational rewrite rules (a TRS) and a
second set whose elements are called transition rules.

For the purpose of our present study we propose a language fragment. We only give
the BNF rules but We assume type-correctness as usual.

<program>
<rule>
<pattern>

<term>

<termlist>

· . = { <rule> }+

::= <pattern> = <term>
· . = <id>

<id> <termlist>
· . = 11 stringll

I []
I (<term> : <term>)
I <id>
I (<id> <termlist>)

.. = <term> { , <term> }+

16

For a program given as il t; = t~ ... im 4n = t~ we define the set funs = {i], ... , im }.

For terms we define vars("string") = 0, vars([]) = 0, vars((t l : t 2)) = vars(tl)Uvars(t2),
vars(i) = 0 if i E funs, {i}, otherwise; vars((i tl, ... , t n)) = vars(tJ) U ... U vars(in). For
patterns we define vars(i) = 0 and vars(i tl, ... , in) = va.rs(tl) U ... U vars(t n). For each
rule i [= t' we demand vars(t') C;; vars(i) and i E funs where funs is taken for the whole
program. More language features, like conditions etc. can be added easily later.

Now we define a structured operational semantics (SOS) which shall make the
operational behaviour of the Gofer interpreter for a given g completely explicit. First
we set out to define a term rewriting system (TRS) and a strategy.

We restrict ourselves to such g only which have type [Line] -> [Line]. Inside
terms we allow for a special artificial subterm: a tail part of a list which is not available
yet may be replaced by a placeholder, here resented as © (we prefer to reserve the
symbol .L for a slightly different kind of analysis later). So we change the BNF rule for
term as follows:

term::= ©
I Itstring ll

I []
I «term> <term»
I <id>
I (<id> <termlist>)

We write -+ for the functional reduction relation of Gofer (choosing an outermost redex
from the reductions {3, 71"1, 71"2)1. We assume that the strategy is leftmost outermost
(this strategy is well-known to be correct in the sense that a normal form will be found
whenever it exists). Also when there is a choice between some redex ocurring in the
head of a list and a redex occuring in the tail of that list, the one in the head is to be
selected.

There may be several reductions applicable to the same redex (because the left-hand

side patterns in the program can overlap). In principle, the first one of these must be
chosen, but there is a complication. The binary test for match, say, when checking a
concrete term c and the l.h .s. pattern P of a rule of the form P = t' can have three possible
outcomes: either match(c,p) = true, match(c,p) = false, or match(c,p) = dontknow
("unknown"). In particular match(©, []) = dontknow match(©, "string") = don
tknow and so is match(©, (x : xs)). But © does match a variable. It is understood
that the definition of match follows the structure of the 'c' recursively so that a dont
know match on an internal subterm will lead to dontknow at the top-level unless of
course there is a false, which overrules the dontknow. We resolve the complication
as follows: if the current term is c then the i-th rule Pi = t; is selected for firing if:

1. match(c, Pi) = true, and

2. for all j < i it holds that match(c,pj) = false.

The complication is demonstrated by the following program:

g ["foo"]
g (x : xs)

= ["goodbye"]
= ["bye"]

1 We define 11"1 as the rule head (x: XS) = x and 11"2 as the rule tail (x

17

XS) = XS.

After input offoo the interpreter will wait for a second line. In our TRS this is explained
becausematch(g ("foo": ©)),(g ("foo": [J))) = dontknow. The fact that
the second rule has a match is not enough for making it fire: the patterns of all earlier
rules for the same redex must yield a definite false.

Actually we can abstract away from some of the details of Gofer and in the definition
of the semantics P[g] to be given below, only very few data about the programming
language and its reduction mechanism are needed. We collect these data in a six-tuple.

Definition. For an identifier g we say that the six-tuple

(T,[j,:,©,[:=j,1/J)

is an abstract junctional program for g if T is a set of open terms containing [1 which is
closed under the binary operation':', and where the set of variables must be taken equal
to {©}. We require that (g ©) E T. The ternary operation [:= 1 takes a term and a
variable and returns the result of substituting the third argument for the variable, as
usual. Finally 1/J must be a partial mapping on T, called the rewrite junction, and it
must satisfy the conditions:

1. [1 if. dom(1/J),

2. if 1/J(x) = x' then 1/J(x: xs) = (x' : xs) (x,x' E T),
3. if © if. c and c oj [] and c oj (x : xs) then c E dom(1/J).

The second condition expresses that the strategy is leftmost with respect to list con
struction. The third condition expresses that We exclude programs which get stuck
because no more reduction rule applies. 0

We thank Jan Bergstra for the suggestion to introduce such notion. We denote equality
on T by == and since T is a set of terms we may later use the fact that for no x, xs
the equation [1 == (x : xs) holds. Each correct Gofer program of the form proposed in
Section 2 realises an abstract functional program, notably by adopting the 1/J derived
from the rules {Pi I i = 1,2" ... } of the program where c E dom(,p) iff 3i match(c, Pi)
= true and 'dj<i match(c,pj) = false. But of course an abstract functional program
could be realised in another lazy functional programming language too.

Usually we write c ---7"" c' or even just e ---7 e' instead of 1/J(e) = c'. And we write
x -1+"" or even just x -1+ if x if. dom(1/J). So ---7 is a functional reduction relation, i.e. a
TRS together with a reduction strategy. We write c -1+ to mean ,:lx' . x ---7 x' and we
write e == (x : xs) to mean that c is of the form (x : xs) for suitably chosen x and xs.

Now We define a structured operational semantics (50S), sometimes also called
'action relation'. We shall define a ternary action relation ---"'-> (note the long arrow)
and a unary termination relation 1. The 'c' below are the configurations. The s(x) and
r(x) are the send- and receive actions, respectively. The rules below are organised as

follows: above each line we give the conditions, which are concerned with the rewrite
function ---7. Below the line we give the axiom schema, which is about the action relation
---"'-> or the termination relation 1.

,(e == (x: xs) 1\ x-l+)
c ______ c'

c~c'

18

co=(x:xs)
© ~x
xl>

s(x)
C -----...:,. XS

co=(x:xs)
© E x
xl>

r(z)
C ---+ c[© := z : ©]

c t []
c t (y : ys)
cl>

r(x)
e ---+ c[© := x : ©]

The action relation ---+ ,s defined as the smallest relation satisfying the above rules
(axiom-schemas) together with the following, which we call 'standard' rules (check [2]
Table l1):

cd cd
cd

a ,
C2 ----1- c2

a ,
Cl ----+ c1

d (el . (2)l a ,
Cl . C2 ----1- C2

a ,
C1 . Cz ----+ C1 . C2

cd cd
a ,

C1 -----; C1
a ,

Cz ---+ Cz
(el + c,)l (e, + e2H a ,

c] + Cz -----; C1
+ a, c 1 C2 ----+ C2

So the actions for a process whose top-level Gofer function is g are found by following
the action relation starting with the initial configuration Co given by:

eo = (g©)

We write SOS(g) for the triple (co, 1, --,-,,+). Following a suggestion of Jan Bergstra,
we can make the process-semantics very explicit by means of a single equation. Define
Pig] := PI(g ©)], where

Pic] = [c 0= []]-> E

+ [,(co=(x:xs) II xl»andc-7c']-> T·Plc']
+ [c 0= (x : xs) and © ~ x and x 1>]-> s(x)· Plxs]
+ [c 0= (x : xs) and © E x and x 1>]-> Lz r(z)· Plc[© := z : ©]]
+ [c ¥' [J and c ¥' (y: ys) and c I>J-> Lx r(x)· P[c[@:= x : @J]

We used the notation [condition]-> to denote guards. Please note that all guards
describe syntactic conditions on terms, and do not involve any assumptions on the
action relation itself. The conditions which occur in the SOS are visualised in Figure 4
below.

Now we set out to use the SOS to define a suitable equivalence on configurations.
Suppose tha.t we have a set of configurations Cg for a program g together with the
relations t g and --'-"+g. Let Co be the initial configuration (the 'root'). Then it may be
the case that in a reactive environment we want to consider certain processes as being
'the same'. We define that a relation R <;; Cg X Cg is a rooted branching bisimulation
if it satisfies:

1. coRco

2. if e --"'-+ c' and eRd, then either

(a) a = T and c'Rd, or
(b) 3d" d' . d :!.:.::J, d, --"'-+ d' II eRd1 II c'Rd'

3. if c 1 and cRd then 3d' . d :!.:.::J, d' II d'l II cRd'

4. similarly when the roles of c and d are interchanged

19

«

c reduces to c' c does not reduce

cis [I cis [I

cis@ c is not []

c is not (y : ys)

c does not reduce

c is f applied to t

cis (x: xs)
X

: reduces x does not reduce

c is (x : xs) and x does not reduce
(two cases)

NOT(c is (x: xs) and x doesn't reduce) and c reduces to c'

Figure 4: Disjointness of conditions occuring in SOS.

We define 5b as the unique maximal rooted branching bisimulation relation.
Now we set out to to find the ACP equations which hold for -rho Next to the usual

axioms for ACP; we introduce five more laws. They are in a one-one correspondence
with the SOS axiom schemata. Let us call this set of laws EQ(g).

c=(x:xs)
© 9'" x
xf>
c=s(x)·xs

,(c=(x:xs) II xf»

C:::::f

c=(x:xs)
© E x
xf>

C -----7 C'

c::::: T' C'

c = Lr(z). c[©:= z: ©l
z

c ~ [1
c ~ (y : ys)
cf>

c = Lr(x).c[©:= x: ©l
x

There is a complication related to possible non-terminating rewriting, which however
is easily remedied. If we want to apply these laws to a program which can engage in
an infinite rewriting process, we have to use them in a slightly different way: instead
of T, we have to use a special atomic action, say I; if this leads to certain equations
describing the configuration c, then the process is specified by T{l}(C), that is the pro
cess in which all I steps are renamed to T (of course there are certain contexts in which
Koomen's fair abstraction rule can be applied and then an infinite sequence of T steps
turns into 8 and then disappears).

Theorem (Soundness). Consider an abstract functional program (T, [], :, ©, [:=], 1/J)
for g, then

if ACP; + EQ(g) f- c = d then c::Z.rb d

Proof. We check the four axiom schemas of EQ(g) first. The key observation is that
the conditions for the rules are mutually disjoint. For example consider the first axiom

20

(about s) whose condition is c == [1. By definition of the notion of abstract functional
program, C == [l excludes c -+ C'. That it excludes the other conditions is obvious.

In order to check the first axiom, we assume that c == [1 and we must show that
c <-+,-b E. By the standard rules, we know that s 1. We claim that any (rb) bisimulation
R can be extended to R U {([], £)}, which then still is a (rb) bisimulation. So we must
check the four clauses of the definition of +-+,-b' Clause 1. holds because R is a (rb)
bisimulation. Clause 2 does not apply (disjointness of conditions!). Clause 3 must be
checked because [ll and because [l(R U {([], s)})£. We must indicate d' such that
s ~ d' II d' 111 ([]'d') E Ru {([l,s)}. Choose d' = £, taking zero T steps. Since <-+,b

is the maximal bisimulation, we conclude that c == [l~b£'
Checking the other axiom schemas can be done along the same lines. We only add

. r(xl
one remark for the last aXIOm. In general, from c ---+ c[© := x : ©l we can only
deduce that c = r(x)· c[©:= x: ©l + ... (some summand). But because there are no
other action triples for such c except those obtained by taking all values of x (which
does not occur in the conditions), we know that there are no other summands.

For the soundness of the laws of ACP; we refer to [2], Theorem 5.4.19. 0

We can use this to verify the ACP equations for the program patterns generated by
the generator of Section 7. We show this for one of the options.

Lemma. For the program g generated as option 1 by the generator of Section 7,

<-+,b F G=Lr(x),s(h(x)).G
x

Proof. We start from the Gofer program for g which is g (x: xs) = (fl x): (g
xs) and we assume that the f 1 implements a function h which maps lines to lines.

For the initial configuration, G = (g ©). This term satisfies the condition of the
r-Iaw of EQ(g) and therefore G = Lx r(x). (g ©)[© := x : ©l == Lx r(x)· (g(x : ©)).
The latter term can be rewritten since (g (x: ©)) --+ (fi x) : (g©) == (fi x) : G -+

h(x) : G (where we used the definitions of g and fi, respectively). For each rewrite
step, the T-Iaw of EQ(g) applies and thus:

G= Lr(x)'T'T'S(!t(X)).G
x

The T steps are removable because of the usual T law of ACP; which says that a· T = a.
Finally the soundness theorem can be applied. 0

11 Semantic aspects

One of the main advantages of functional programming languages which is often put
forward is that all programs denote true mathematical functions. Sometimes this is
explained by saying that 'referential transparancy' holds. This means that two subpro
grams denoting equal mathematical objects can be substituted one for another without
affecting the meaning of the program as a whole. In this section we define a de
notational semantics for a fragment of Gofer. Then this can be compared with the
SOS-based semantics given in the previous section.

Recall that if we want to consider g as a mathematical function, we denote it as
F[g]. We mnst define the meaning function F[]. We begin with the definition of a

21

suitable semantic domain, following [4]. The idea is as follows: a program transforms
a sequence of input strings to a sequence of output strings, so as a first approximation
one would expect that the semantic domain is the set String* of all finite sequences of
strings. However we have to add two more kinds of strings:

• Strings which are incomplete in the sense that only a finite prefix is given; these
are needed since we know that a program sometimes produces already output
when only an incomplete input has been consumed. Also the output mayor may
not be complete.

• Strings which are infinite; these are needed since we know that a program can go
on accepting input and producing output forever.

We start with some definitions. For a set V we identify ,V X (-. ·(V X V)·· '), with vn . .
n times

And V* = UnElN vn. So in this section we write String* instead of [String]. Finally VOO
denotes the function space IN --+ V. We order the set String U {-1} by [;; by postulating
that for X,y E StringU {-1}: x [;; y :{} (x = -1)V (x = y). We write STR(Stl'ing) for
the set:

(String* X {-1}) U String* U StringOO

An element of STR(String) is called a stream. Most often we just write STR for
STR(String), We order the set STR by [;; by postulating that for s, s' E STR and thus
80, sb, s" s;, ... E String U {-1} (here Sk denotes the k- th element of 8):

s [;; s' :¢} (3n E IN· [SO .. Sn_1] = [sb .. s~_1]11 sn = -1) V (s = S')

The intuition is that for example ["a", lIb II, 1-] is an approximation of [11 all , lib II , II ell , "d ll
].

We write UD for the least upperbound (l.u.b.) of a set D ~ STR, if it exists.
In [4] it is shown that (STR, [;;) forms a countably algebraic domain by which it is

meant that the following properties hold:

• the set of streams has a least element,
• for every directed set of streams D the l.u.b. U D exists,

• the set of finite approxirnations of a stream s is directed and every stream S IS

the l.u.b. of the set of its finite approximations: s = Ute;, 1\ t finite t,
• the set of finite elements (the s such that for all directed D we have s [;; U D =;.

3t ED· s [;; t) is countable.

The least stream is [-1]. The finite elements are the streams not in Stringoo.
A structure (5, [;;) for which only the properties of the first two items hold is called

a complete partial order (CPO). If we have two CPOs it is always possible to construct
a product CPO, ordering pairs by (x, y) [;; (x', y') :¢} (x [;; x') II (y [;; yl).

We extend the sequence constructor function ':' whose type was String X String* --+

String' to a function ':' of type (String U {-1}) X STR --+ STR as follows. Let it be
understood that x oj -1 and also 80, s" ... , Sn-1 oj L

• x ; [SO,Sl, .. "Sn_l] = [x,so,st"",Sn_l] (as before),

• -1: [so, S1,"" Sn-1] = [-1],
• x : [SO,Sll""Sn_l,l..] = [X,SO,Sl, ... ,Sn_l,l..],

• -1: [so, S" ... , Sn-1, -1] = [-1],

22

• x : [80,8], ... (00)] = [X,SO,S1, ... 00],
• .L: [80, 81, ... (00)] = [.L].

N ate that':' is monotonic in both arguments, that is, for x, Y E (String U {.L}), 8,8' E
STR, x c;: y =} (x : s) c;: (y : 8) and s c;: 8' =} (x: s) c;: (x : s'). It is also strict in its
first argument but not in its second.

We extend the equality predicate '==' whose type was String X String --t Baal to
a function '==' of type (String U {.L}) X (String U {.L}) --t (Baal U {.L}). Let it be
understood that x, y i .L.

• (x==y)=Trueifx=y

• (x = = y) = False if x i y

• (.L == x) = (x == .L) = (.L == .L) = .L.

(as before),

(as before),

Note that '==' is monotonic in both arguments, that is, for X,y,Z E (String U {.L}),
x c;: Y =} (x == z) c;: (y == z) and x c;: y =} (z == x) c;: (z == V). It is a1so strict.

We make head and tail total by putting head([]) = head([.L]) = .L and tail([]) =
tail([.L]) = [.L]. Of course this is not what happens in reality; it is truthful however if
we assume that the programmer makes sure that the program will not try to take the
head or tail of empty sequences.

We need special if- then-else operators of type (Baal U {.L}) X (String U {.L}) X

(String U {.L}) --t (String U {.L}) and of type (Baal U {.L}) X STR X STR --t STR. We
define that:

• (if True then a else b) = a,

• (if False then a else b) = b,
• (if .L then a else b) = .L, ([.L], respectively).

It is easy to see that if- then-else is monotonic in all three arguments; it is strict in its
condition argument but not in its 2nd and 3d argument.

If we have a CPO (5, C;:) then we can order the function space 5 --t 5 by letting
h c;: h :¢> V xES· h (x) c;: h(x). A function J is continuous if for all directed D <;; S
we have J(UD) = UJ(D). In [11] Cor. 1.2.7 it is shown that continuity implies mono
tonicity. An element xES is a fixed point of J if J(x) = x. By [11] Thm. 1.2.17 each
continuous J has a least fixed point Fix(J) = Un r(.L) where .L is the least element
of the CPO.

Lemma. The following operations are continuous in all argument positions:

(i) ':', head, tail,

(ii) ,

(iii) if-then-else,

(iv) A-abstraction,

(v) function application.

Proof. For (i), (iv) and (v) we can refer to the literature.

(i) See [4], Lemma of Section 2.3.

23

(ii) We show (UD == z) = U{x == Z I XED} for directed D. Note that IDI ~ 2.
If z = .L we check .L = U{.L}. Otherwise let z oF .L. Two cases arise: either (a)
UD = .L so D = {.L} whence (UD == z) = .L = U{.L} = U{.L == z} (end
of a), or (b) UD oF .L so for some x oF .L we find D = {x, .. . }. Now if x = z
then (UD == z) = Trne = U{True, ... } = U{x == z, ... }. And if x oF z then
(UD == z) = False = U{False, ... } = U{x == z, .. . }.

(iii) Analogonsly.

(iv) See [11]1.2.13.

(v) See [11]1.2.14. o

Now we turn our attention to Gofer programs again. For a Gofer program g, Fig] will
be a (partial) function Fig] : STR --+ STR. For purposes of giving semantics we
prefer pure A-terms. Therefore we show how to eleminate patterns and conditions in
favour of head, tail operations and if-then-else operators, respectively. We eliminate
conditions by application of the following rule:

g x I (p x) = rhs!
I otherwise = rhs2

becomes g = AX. if (p x)
then rhs!
else rhs2

And we eliminate patterns by application of the following rule (if there are more pat
tersn, the if-then-else follows the order in which they are given):

g [] = rhs!
g (x : xs) = rhs2

becomes g = AZ. if Z == []
then rhs!
else if head(z) == head(z)

then rhs2[x := head(z), xs:= tail(z)]
else [.L]

After these transformations, each function definition, like g has become an equation g =

Ax. expr(g, x). The expression 'expr' in the r.h.s. contains g and thus Ag. AX. expr(g, x)
can be viewed as the description of a functional2 . This functional maps each function 9

(of the right type) to another function Ax. expr(g ,x). Let r"'g be this functional. Define
Fig] := Fix(Fg) (which exists by [11] Thm. 1.2.17, stating that each continuous F has
a least fixed point, because Fg is continuous as follows from our lemma and the fact
that it is defined using the operations ':', head, tail, '==', if-then-else, A-abstraction
and function application, exclusively).

Now we can compare the denotational semantics with the SOS-based semantics.
We give a negative result first.

Fallacy. There is no translation function 'trans' such that for all g:

trans: Fig] >-7 Pig].

Counter example. Define two programs gl and g2 as follows:

gl [] = gl []
gl ex : xs) = gl ex : xs)

2 A functional is a function which maps functions to functions

24

g2 []
g2 ex

= g2 []
xs) = g2 xs

Then for i E {1,2} we have 'Ii' E STR· F[gi] = [1.]. But gl performs an infinite
rewriting without consuming input (but the first line), whereas g2 consumes all input
(still producing nothing). So P[gl] = Lx r(x) . T W whereas P[g2] = Lx r(x) . Gz. 0

The syntactic forms of the definitions of gl and g2 contain clues about the rewrit
ing process and the precise points in time when input is needed. These clues are lost
when considering the mathematical semantics alone. The full advantage of referential
transparancy is not applicable. Not all is lost however: there is a positive result too.

Proposition. For all g, let SOS(g) = (co, 1, ...:.::.,). Then for all traces f E {s(x), r(x), T} *,

defining -..i..,., in the obvious way:

if 3e· Co -..i..,., e then (F[g](flr++[l.]))lnon_.L = fl,

where ++ denotes sequence concatenation and where fir is the sequence of values (x)
occuring in r(x) values in f and where I, is defined similarly. The operator Inon-.L re
moves 1.. from streams.
Proof. We show the essential details for an example. Consider the program g and
the dialogue of Section 4. We write '1' for 'let us explain the compiler', 'L'
for 'LET US EXPLAIN THE COMPILER', and so on. We shall consider the trace f =
[r('l'), T, T, s('L'), r('i'), T, T, s('I')] for which fir = ['1', 'i'] and fl, = ['L', 'I'].

First we analyse the operational behaviour, for which we rewrite according to the
('1')

program's TRS and apply the SOS rules. (g ©) r--t (g ('1' : ©)) ~ (updline '1') :

())
T ©)) ,('L') () r('i') T T ,('I')) . g © --t 'L' : (g c --t g © --t --t--t --t (g © . ThIs shows that the

premiss of our proposition holds, that is, 3e . Co -..i..,., c.
Now we turn to the denotational semantics. By elimination of the auxiliary function

updlines and by elimination of all patterns from the left-hand side of its definition, g
can be transformed and then we find that Fig] is the least function g satisfying the
following fixed point equation:

g = AZ. if Z == []
then []
else if head(z) == head(z)

then (updline head(z)) : (g tail(z))
else [1.]

We claim that F[g](['l', 'i', 1.]) = ['L', '1',1.]. The claim follows by noting first that for
any g satisfying the above fixed point equation we can perform the following calculation:

g (['1', 'i', 1.]) = if z == []
then []
else if '1' == '1'

then 'L' : g(['i',1.])
else [1.]

= 'L' : (g ['i', 1.])
= 'L' : ('i' : g([1.]))

Moreover if g is the least solntion, then g([1.]) = [1.], so we continue:
... = 'L' : ('I' : [1.])

= ['L', 'I', 1..]

25

From the claim, (F[g](flr++[-L]))lnon-.L = g(['l', 'i', -Lllinon-.L = ['L', '1', -L]lnon-.L
['L', '1'] = [r('1'),T,T,s('L'),r('i'),T,r,s('1')]I, = [I" as was to be shown. 0

This is the consistency property we mentioned for several of our introductory example
programs. A survey of the theory developed so far is given in Figure 5 below.

g

(, .I.~)~

eliminate pat
terns and conditions

FIIgli

o ~
'-......

trace E traceset

EQIg) F ~

Figure 5: Survey of the theory.

12 Concluding remarks

Before we can conclude we must explain one technical point. We decided to consider
a 'line' as the smallest unit of data which is consumed or produced in one step. In
reality, a Gofer interpreter can do the lazy evaluation on a character-basis. For most of
our example program this makes no difference, since the program needs the entire line
anyhow before it is able to proceed. However in general this is not true. But one can al
ways enforce our assumptions by means of a simple trick: replace the standard function
lines by a local version lines' which is defined as (map (reverse. reverse)) .
lines. This works because the reverse function demands its argument to be com
pleted before it can reverse it (the lazy execution mechanism is is not smart enough to
'see' that the double reversal commutes with lines).

Looking back, We have covered both the practical aspects for which we proposed
a generator-based approach for important program patterns, and certain theoretical
aspects when we analysed the correctness conditions and some important semantical
issues. We showed that the strong points of modern functional programming and
algebraic concurrency analysis can be combined, but that there are a number of subtle
points which have to be addressed. More precisely we are able to provide correct ACP
equations for typical program patterns and we showed that the operational behaviour

26

is only partially compatible with a functional interpretation. Although the generator,
the multitasking experiment and the PSF simulation as developed so far are very smail,
this is not because of any fundamental limitation. On the contrary, there is evidence
that the approach can be made operational for much complexer systems too.

Acknowledgements: The author wishes to thank Lex Augusteijn, Jan Bergstra, Gert
Geurts and Michel Reniers, for the discussions and the help that contributed to the
work presented in this paper.

References

[lJ M.P . .lones. An introduction to Gofer, Draft report, available at
http://lal.cs.byu.edu/ cs5321 gofer I docsl goferdocl goferdoc.html (1991).

[2J J.C.M. Baeten, W.P. Weijland. Process algebra, Cambridge Tracts in Theoretical
Compnter Science 18, Cambridge University Press (1990).

[3J S. Mauw, G . .1. Veltink (Eds.). Algebraic specification of communication proto
cols, Cambridge Tracts in Theoretical Computer Science 36, Cambridge University
Press (1993).

[4J M. Broy. Extensional behaviour of concurrent, nondeterministic, communicating
systems, in: M. Broy (Ed.), Control flow and data flow: concepts of distributed
programming, NATO ASI Series Vol. F14, Springer Verlag (1985).

[5J A.D. Gordon. An operational semantics for I/O in a lazy functional language,
in: Conference on functional programming languages and computer architecture,
Copenhagen 1993, pp. 136-145, ACM Press, (1993).

[6J P. Achten, J. van Groningen, R. Plasmeijer. High level specification of I/O m
functional languages, in: Functional programming Glasgow 1992, J. Launchbury,
P. Sansom (Eds.), pp. 1-17, Springer Verlag (1992).

[7J .l.A. Bergstra, J.W. Klop. Process algebra for synchronous communication, Inf. &
Control 60, pp. 109-137 (1984).

[8J R. Milner. A calculus of communicating systems, LNCS 92, Springer Verlag (1980).

[9J H.B.M. Jonkers. An Overview of the SPRINT Method, Proceedings of Formal
Method Europe (FME) '93, J. Woodcock et. '11. (Eds.) (1993).

[lOJ M.W. Mislove, F.J. Oles. A simple language supporting angelic nondeterminism
and parallel composition, in: Mathematical foundations of programming semantics,
Brookes et. '11. (Eds.), LNCS 598.

[l1J H.P. Ba,rendregt. The lambda calculus, its syntax and semantics, revised edition,
North-Holland (1984).

27

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

931ll

93/12

93/13

93/14

93115

93116

93117

93/18

93119

93/20

93121

93122

93/23

93/24

93125

93/26

93127

93128

93129

93/30

R. van Geldrop

T. Verhoeff

T. Vemoeff

E.H.L. Aarts
I.H.M. Karst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

J. Deogun
T. KIoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma. p. 17

Quicksort for hnked lists, p. 8.

Deterministic and randomized local search. p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts. p. 72.

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD. a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p.l1.

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

93/34 I.C.M. Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
I-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
KM. van Hee

93/40 P.D.V. van der Stok
M.MM.P.J. Claessen
D. Aistein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B,W. Watson

93/44 B,W. Watson

93/45 E.l. Luit
I.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.l. Houben
Y. Kornatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. NederpeJt
O.S. van Roosmalen
H.C.M. de Swart

94102 F. Kamareddine
RP. Nederpelt

94103 L.B. Hartman
K.M. van Hee

94104 J.C.M. Baeten
I.A. Bergstra

94/05 P.ZhOll
J. Hooman

94/06 T.Basten
T. Kunz
1. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94108 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers, p. 11.

Automatic Verification of Regular Protocols in Pff Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and [I-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonna! Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice. p. 16.

94/10

94/11

94/12

94/13

94/14

94/15

94/16

94117

94/18

94/19

94120

94121

94/22

94/23

94/24

94/25

94/26

94/27

94/28

94/29

94/30

94/31

94/32

94/33

94/34

94/35

94/36

94/37

94/38

T. verhoeff

J. Peleska
C. Huizing
C. Petersohn

T. Kloks
D. Kratsch
H. Muller

R. Seljee

W. Peremans

R.J.M. Vaessens
E.H.L. Aarts
1.K. Lenstra

R.e. Backhouse
H. Doornbos

S. Mauw
M.A. Reniers

F. Kamareddine
R. NederpeIt

B.W. Watson

R. Bloo
F. Kamareddine
R. Nederpelt

B.W. Watson

B.W. Watson

S. Mauw and M.A. Reniers

D. Dams
O. Grumberg
R. Gerth

T. KIoks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C.W.A.M. van Overveld
M. Verhoeven

1. Hooman

I.C.M. Baeten
I.A. Bergstra
Gh. ~efanescu

B.W. Watson
R.E. Watson

1.1. Vereijken

T. Laan

R. Bloo
F. Kamareddine
R. Nederpelt

I.C.M. Baeten
S. Mauw

F. Kamareddine
R. Nederpelt

T. Basten
R. Bol
M. Voorhoeve

A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts. p. 30.

Dominoes. p. 14.

A New Method for Integrity Constraint checking in Deductive Databases. p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational. p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus. p. 15.

The performance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's '\" p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'v'ClL"', 3ClL'" and ClL"', p. 28.

KJ.3-free and W4-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattem matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type TheolY, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point~free substitution, p. 10.

94/39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. Kloks
D. Kretsch

94/42 J. Engelfriet
I.I. Vereijken

9~/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. Geaf
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poel A. Pnueli
C. Rump J. Zwiers

94/45 G.l. Hauben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94148 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94151 T. Kloks
D. Kratsch
H. MUller

94/52 W. Penczek
R. Kuiper

94153 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95101 1.1. Lukkien

95102 M. Bezem
R. Sol
J.F. Groote

95103 I.e.M. Baeten
C. Verhoef

95/04 J. Hidders

95/05 P. Severi

95106 T.WM. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aarts

95107 GAM. de Bruyn
O.S. van RoosmaIen

95108 R. Bloo

95109 I.C.M. Baeten
I.A. Bergstea

95110 R.c. Backhouse
R. Verhoeven
O. Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems. p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph. p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek". p. 43.

The A -cube with classes of tenns modulo conversion,
p. 16.

On il-conversion in Type Theory. p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.l6.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

Math]pad: A System for On-Line Prepararation of Mathematical
Documents. p. 15

95/11

95/12

95/13

95114

95115

95/16

95/17

95/18

95/19

95/20

95/21

95/22

95/23

95/24

95/25

95/26

95/27

95/28

95/29

95/30

95/31

95/32

95/33

95/34

95/35

96101

96/02

96103

96/04

96/05

96/06

96/07

96/08

96/09

96/10

96/11

96/12

96/13

R. Seljee

S. Mauw and M. Reniers

B.W. Watson and G. Zwaan

A. Poose, C. Verhoef,
S.F.M. Vlijmen (ed5.)

P. Niebert and W. Penczek

D. Dams, O. Grumberg, R. Gerth

S. Mauw and E.A. van dec Meulen

F. Kamareddine and T. Laan

I.CM. Baeten and I.A. Bergstra

F. van Raamsdonk and P. Seven

A. van Deursen

B. Arnold, A. v. Deursen, M. Res

W.M.P. van dec Aalst

F.P.M. Dignum. W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van dec Aalst

P.D.V. van dec Stok, 1. van dec Wal

W. Fokkink, C. Verhoef

H. Jurjus

J. Hidders, C. Hoskens. 1. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van dec Aalst

1. Engelfriet and JJ. Vereijken

J. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W M.P. van dec Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van dec Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Oignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12.

Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Nonnalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Ponna! Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the fuU ,u-calculus using Compositional
Abstractions, p, 17.

Handboek simulatie. p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types, p. 46.

An algebraic semantics for hierarchical prr NetS, p. 32.

Process Algebra with Autonomous Actions. p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi·SDL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance
A Petri-Net-Based Approach, p. 18.

Structura1 Petri Net Equivalence. p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deantie Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

96114 S.H.J. Bos and M.A. Reniers

96115 M.A. Reniers and 1.1. Vereijken

96116 P. Hoogendijk and O. de Moor

96117 E. Boiten and P. Hoogendijk

96118 P.D.V. van dec Stok

96119 M.A. Reniers

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

What is a data type?, p. 29.

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

- " , ,

	Abstract
	1. Introduction and motivation
	2. Aspects of lazy functional languages
	3. Aspects of ACP
	4. Example (memoryless function)
	5. Example function with memory
	6. Example which does not ping-pong
	7. A constructive approach
	8. The generator in action
	9. Simulating ACP equations with PSF
	10. Correctness aspects
	11. Semantic aspects
	12. Concluding remarks
	References

