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Part A:

The In-Duct Matching Problem

S.W. Rienstra
Eindhoven University of Technology

P.O.Box 513, 5600 MB Eindhoven, NL
February 22, 2001

Summary

The matching problem is considered across the interface between a region with CFD-type full Navier-
Stokes modelling (the source region) and a region (duct) with an acoustic field with mean flow mod-
elling. The discontinuous field cannot be avoided. Therefore a method is proposed, based on a modal
representation of the acoustic field, to determine the field as well as possible by means of a least squares
modification of a Galerkin-type mode matching.

1 Introduction

1.1 The CFD and acoustic zones and their interfaces

In the CFD regions (fig.1, or zones 4,6,7,15 in fig.2) the unsteady parts of all flow variables like pres-
sure, velocity, density and possibly the thermodynamic variables are of the same order of magnitude
as the steady (time-averaged) parts. In the acoustic regions (zones 1,3,5,8,9, 10,16,18 in fig.2) the un-
steady components are small compared to the steady (mean) flow. Therefore, the way the CFD flow is
determined is much different and usually numerically more advanced and calculation-intensive than the
acoustic field.

Apart from that, the underlying models may vary considerably. The flow may be (Reynolds-averaged
turbulent) viscous, isentropic, irrotational, cylindrical symmetric, of single frequency, etc.

Therefore, to translate the CFD results (pressure, velocity) into a form suitable for serving as a source
in the acoustic problem is not straightforward.
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1.2 Continuity of acoustic field

At the interfaces (see fig.2) we jump from modelA (the full Navier-Stokes, say) into modelB (inviscid
flow with acoustic perturbations, say). The mean flow variables, that are consistent within modelA, are
almost certainly not consistent within modelB, in other words: do not satisfy the equations. Therefore,
some of the field variables (both of mean flow and perturbation) will have to be discontinuous at the
interface. Any attempt to make more than one of the acoustic variables continuous has to be paid by a
just as unphysical and artificial reflected field.

All this is an artefact of the fact that we change from one model to another and these reflections
should be considered just as much of an error as the discontinuities. However, the CFD results are
produced without taking into account any back-reaction, such that the field at the interface is as much as
possible outgoing. Therefore, we should consider the possibility of minimizing both the reflections and
the discontinuities.

As a result, it seems best todefinesomehow the field at the interface as unidirectionally outgoing.
To achieve this, the equations should be solved at least locally near the interface such that incoming and
outgoing waves can be separated. This may be approached in various ways. First is an acoustic analogy
approach (FW-H, or Kirchhoff type) where the interface is suitably applied with flow sources [9, 8] and
will be studied separately in part B of this document. The second route is the idea of local parabolic
approximation or wave splitting [11, 10] and is most conveniently applied to a modal representation of
the sound field, if available.

1.3 Reflection free boundary conditions

Ideally, the CFD flow is computed with reflection-free boundary conditions. To formulate such bound-
ary conditions is a significant problem in its own right and an important part of the CFD calculations.
Strictly speaking, it is separate from the matching problem and in practice it can only be achieved by
manipulations, similar to the ones we are going to deal with here.

To eliminate false reflections from the interface in the CFD results, a CFD modelA may at or near
the interface be approximated by a simpler modelÃ (usually one which is valid for inviscid linear per-
turbations and without the turbulence model included). This model can be solved analytically and the
right and left running waves can then be separated (wave splitting).

In order to continue beyond the interface, in the acoustic region, with an acoustic modelB, we will
do something similar: we will try to continue the CFD field smoothly into the acoustic field of modelB
and to recognize the spurious reflected modes resulting from the jump between modelA andB. So even
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Figure 1: Sketch of CFD-region, acoustic region and interface.
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1 = far-field inlet
2 = inlet plane
3 = inlet duct
4 = fan rotor
5 = rotor-stator gap

16 = turbine exhaust duct
17 = hot jet nozzle
18 = far-field hot exit

  6 = outlet guide vanes
  7 = engine section stator
  8 = bypass duct
  9 = cold jet nozzle
10 = far-field cold exit

11 = low-pressure compressor
12 = high-pressure compressor
13 = combustion chamber
14 = high-pressure turbine
15 = low-pressure turbine
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Figure 2: The zones

if the CFD results are ideal and reflection free in some sense, there will inevitably be false reflections
from the non-ideal jump from modelA to B.

Rather than assuming the CFD field to be reflection free and not even considering the possibility of
a reflected field, it seems therefore a better strategy to include in the matching the detection of reflected
modes. Of course, after detection these modes play no role in the acoustic problem and may be discarded.

1.4 The character of the jump

The ideal situation would be the control surface (between the CFD and the acoustic region) positioned
far enough into the acoustic region, so that the acoustic equations are equivalent to the Navier-Stokes
equations. We can then continue with either the given pressure or axial velocity distribution,p or v.

The real situation, however, is that the control surface is positioned as close to the CFD region as
possible and we have to deal with a discontinuity in almost every mean flow variable. The acoustic field
will then have to be discontinuous in some quantities. A question may be: which quantities should one
make as continuous as possible.

As the CFD is nonlinear and the acoustic model is linear, the mean flow and acoustic mean flow
will differ. In addition, the acoustic model is usually based on a simpler flow (irrotational, isentropic,
inviscid, no swirl, etc.). Hence the “model-jump” is not always the same and the risk of an artificial
source hidden in the interface will depend both on the mean flow and acoustic field model considered.
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1.5 The mean flow

Another problem is that the CFD mean flow will have to be translated into the acoustic mean flow. We
could define the CFD mean flow as the time-averaged CFD flow, while the unsteady part is defined as
the acoustic and hydrodynamic perturbation. Note that (in the case of steady boundaries) this mean flow
does notsatisfy the steady version of the CFD problem (steady Euler, Navier Stokes, etc.) and that this
perturbation does notexactly satisfy the linearized equations if the flow remains nonlinear.

As the various models are in general not equivalent, the mean flow obtained is still unable to satisfy
the basic assumptions of the acoustic model and therefore the mean flow has to be stripped further to
remove: swirl, entropy variations, vorticity and a strong radial component.

1.6 Modal decomposition

The wave splitting via modal decomposition is probably the best, or at least systematic, way to bring
the CFD perturbations into an acoustic form. It hinges on the availability of generation of modes in
cylindrical ducts with mean flow.

For plug flow the situation is fairly well established. Modes are formed by linear combinations of
Bessel functions, while the eigenvalues are zeros of the derivatives. The modes are orthogonal, so there
are no uniqueness problems. Hydrodynamic modes are pressureless (see below) which may confuse a
description based on acoustic modes alone, but this seems to be a minor problem.

For parallel mean flow we have the Pridmore-Brown equation, for which the eigenvalue problem is
more complicated, but it is soluable with the right numerical software; it may become problematic for
higher frequencies. Modes are not orthogonal, so the amplitudes associated to a finite number are not
unique. Hydrodynamic modes are also present.

For uniform mean flow with swirl, the mode problem [1, 2] becomes more and more complicated,
especially if the swirl is arbitrary. Solid body rotation or free vortex swirl are relatively well studied.
Little is known for more general parallel mean flow with swirl.

1.7 Hard wall

It is definitely easier to assume that the interface is positioned in a hard-walled section. This may not
always be realistic, for example, the fan rotor section may be lined. However, most CFD routines seem
not to be equipped with lined boundary conditions. Therefore, we will start by assuming hard walls.

2 Summary of equations for fluid motion

For future reference we will describe here a large number of possible acoustic models, systematically
derived from the compressible Navier-Stokes equations, under the assumptions of absence of friction
and thermal conduction and the fluid being a perfect gas. The flow is described by a steady mean
flow and small perturbations, upon which linearization and Fourier time-analysis is possible. Further
simplifications are considered based on axi-symmetric geometry and mean flow.
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2.1 Conservation laws and constitutive equations

The original laws of mass, momentum and energy conservation, written in terms of pressurep, density
ρ, velocity vectorv, scalar velocityv = |v|, viscous stress tensorτ , internal energy densityε, total
energy densitye and heat flux vectorq, are given by

mass: ∂
∂t ρ + ∇·(ρv) = 0 (1a)

mom.: ∂
∂t (ρv)+ ∇·(ρvv) = −∇ p + ∇·τ (1b)

energy: ∂
∂t (ρe) + ∇·(ρev) = −∇·q − ∇·(pv)+ ∇·(τv) (1c)

while
e = ε + 1

2v
2. (1d)

Depending of the application, it is often convenient to introduce enthalpy or heat function

h = ε + p

ρ
, (2)

or entropys and temperatureT via the fundamental law of thermodynamics for a reversible process

Tds = dε + pdρ−1 = dh − ρ−1dp. (3)

With d
dt = ∂

∂t + v ·∇ for the convective derivative, the above conservation laws may be reduced to

mass: d
dt ρ = −ρ∇·v (4a)

momentum: ρ d
dt v = −∇ p + ∇·τ (4b)

energy : ρ d
dt ε = −∇·q − p∇·v + τ :∇v (4c)

ρ d
dt h = d

dt p − ∇·q + τ :∇v (4d)

ρT d
dt s = −∇·q + τ :∇v. (4e)

For acoustic applications the entropy form (4e) is the most convenient to use.

For anideal gas we have the following relations

p = ρRT, (5a)

dε = CVdT, (5b)

dh = CPdT, (5c)

whereCV is the heat capacity or specific heat at constant volume,CP is the heat capacity or specific heat
at constant pressure [12] and bothCV andCP may be functions ofT . R is the specific gas constant and
γ the Poisson ratio, which are practically constant and given by (the figures refer to air)

R = CP − CV = 286.73 J/kg K, γ = CP

CV
= 1.402 (6)

From equation (3) it then follows for an ideal gas that

ds = CV
dp

p
− CP

dρ

ρ
(7)
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while isentropic perturbations (ds = 0), like sound, propagate with sound speedc given by the expression

c2 =
(∂p

∂ρ

)
s
= γ p

ρ
= γRT. (8)

In the case of aperfectgas, the specific heats are constant and we can integrate (apart from an immaterial
integration constant) the equations (5) to obtain

ε = CV T, (9a)

h = CPT, (9b)

s = CV log p − CP logρ. (9c)

2.2 In a rotating frame of reference

For axes, rotating steadily relative to the absolute frame of reference, we have to include fictitious body
forces due to rotation. If the moving frame of reference is rotating with angular velocity� andx is the
relative position vector, the absolute velocity is given byvabs= v + �×x and the equations (1) take the
form

mass: ∂
∂t ρ + ∇·(ρv) = 0 (10a)

mom.: ∂
∂t (ρv)+ ∇·(ρvv) = −2�×v − �×(�×x)− ∇ p + ∇·τ (10b)

energy: ∂
∂t (ρe) + ∇·(ρev) = −∇·q − ∇·(pv)+ ∇·(τv) (10c)

where
e = ε + 1

2

(
v2 + |�|2|x|2 − (�·x)2

)
. (10d)

If � = �ex andr is the radial coordinate in the cylindrical coordinate system(x, r, θ), this simplifies to

e = ε + 1
2v

2 + 1
2�

2r 2. (10e)

2.3 Acoustic applications

In the acoustic realm to be considered, the viscous or turbulent stress terms are assumed to play a role
only within the source region, while any perturbation is assumed too fast to be affected by thermal
conduction. Therefore, for the present applications of acoustic propagation we intend to ignore viscous
shear stress (τ ) and thermal conduction (q), such that we have

d
dt ρ = −ρ∇·v, (11a)

ρ d
dt v = −∇ p, (11b)
d
dt s = 0. (11c)

This means that entropy remains constant and thus dh = ρ−1dp, along pathlines.

Furthermore, we will assume the gas to be perfect, with the following thermodynamical closure
relations

s = CV log p − CP logρ, c2 = γ p

ρ
. (11d)
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2.4 Perturbations of a mean flow

When we have a steady mean flow with unsteady perturbations, given by

v = V + v′, p = P + p′, ρ = D + ρ ′, s = S+ s′ (12)

and linearize for small amplitudes, we subsequently obtain for the mean flow

∇·(DV
) = 0, (13a)

D
(
V ·∇)

V = −∇ P, (13b)(
V ·∇)

S = 0, (13c)

with

S = CV log P − CP log D, C2 = γ P

D
(13d)

and the perturbations are governed by

∂
∂t ρ

′ + ∇·(Vρ ′ + v′D
) = 0 (14a)

D
(
∂
∂t + V ·∇)

v′ + D
(
v′ ·∇)

V + ρ ′(V ·∇)
V = −∇ p′ (14b)(

∂
∂t + V ·∇)

s′ + v′ ·∇S= 0 (14c)

with

s′ = CV

P
p′ − CP

D
ρ ′, c′ = 1

2C
( p′

P
− ρ ′

D

)
. (14d)

The expression forc′ usually serves no purpose in linear acoustics.

2.5 Bernoulli for the mean flow

SinceS remains constant along streamlines, we can introduce the mean flow enthalpyH , with dH =
D−1dP. When we integrate the momentum equation (13b)

V ·∇V = 1
2∇V2 + (∇×V )×V = −D−1∇ P = −∇H (15)

along a streamline, noting that(∇×V )×V is orthogonal toV and therefore to the streamline, we obtain
for the mean flow a form of Bernoulli’s equation as follows:

1
2V2 + H = constant along a streamline. (16)

2.6 Homentropic mean flow

If the mean flow is homentropic (S = constant), for example whenP andD are constant, the perturba-
tions are isentropic along streamlines and the pressure and density are related by(

∂
∂t + V ·∇)

p′ = C2( ∂
∂t + V ·∇)

ρ ′ (17)
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2.7 Isentropic perturbations

If the perturbations are entirely isentropic (s′ ≡ 0), for example whenV = 0 andS = constant, the
pressure and density perturbations are related by the usual expression

p′ = C2ρ ′. (18)

2.8 Time harmonic

When the perturbations are time-harmonic, given by (note the+iωt convention)

v′ = Re(v eiωt), p′ = Re(p eiωt ), ρ ′ = Re(ρ eiωt), s′ = Re(seiωt ) (19)

(where we ignore the prime from here on), we then find in the usual complex notation

iωρ + ∇·(Vρ + vD
) = 0, (20a)

D
(
iω + V ·∇)

v + D
(
v ·∇)

V + ρ
(
V ·∇)

V = −∇ p, (20b)(
iω + V ·∇)

s + v ·∇S = 0, (20c)

s = CV

P
p − CP

D
ρ. (20d)

Note that further systematic simplifications are possible if we take into account the fact that in an engine
duct the axial velocity dominates, while at the same time axial variation of the mean flow variables is
relatively slow due to the (necessarily!) slowly varying geometry.

2.9 Irrotational isentropic flow

When the flow is irrotational and isentropic everywhere (homentropic), for example in the inlet, or when
we assume this condition for reasons of computational efficiency, for example in the by-pass duct, we
can introduce a potentialφ for the velocity, wherev = ∇φ and expressp as a function ofρ only. We
can then integrate the momentum equation and obtain the important simplification

∂

∂t
φ + 1

2

∣∣∇φ∣∣2 + c2

γ − 1
= constant,

p

ργ
= constant (21)

that produces for the mean flow and harmonic perturbation (introduceφ = 8 + φ′ = 8 + φ eiωt ) the
following equations

∇·(D∇8) = 0, 1
2

∣∣∇8∣∣2 + C2

γ − 1
= constant,

P

Dγ
= constant (22a)

iωρ + ∇·(ρ∇8+ D∇φ) = 0, D
(
iωφ + ∇8·∇φ) + p = 0, p = C2ρ (22b)

The entropy equation becomes a superfluous identity.
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2.10 Circular symmetric geometry

To make further progress, we assume a geometry that in the immediate neighbourhood of the interface
is equal to a hollow or annular cylinder of solid walls, while the mean flow is taken to be circular
symmetric and axially constant. In that case the mean flow cannot have a non-zero radial component and
is a function of the radial coordinater only. With axial componentU (in x-direction) and circumferential
componentW (in θ-direction) the mean flow variables become

V = U (r )ex + W(r )eθ , D = D(r ), P = P(r ), S = S(r ), (23)

and the pressure is independent ofx (whence the pressure gradient vanishes) because the flow is parallel
and frictionless.

All mean flow equations are now identically satisfied, except for

D

r
W2 = ∂P

∂r
, (24)

and so any mean flow profilesU,W, D, P, Smay be assumed, as long as they satisfy the two consistency
relations

P =
∫ r D

r
W2 dr ′, S= CV log P − CP log D. (25)

Without swirl (i.e. W = 0), P is a constant, whileD may vary inr if S does. A homentropic flow
without swirl implies thatD is a constant.

If the flow is irrotational and we want to describe it by means of a velocity potential, the most general
form of the mean flow potential8 is

8 = Ux + 0θ, with V = Uex + 0

r
eθ (26)

whereU and0 are constants. If the flow is also homentropic (S = S0 = constant), the general form of
the pressure and density is

P =
(

P0 − γ − 1

2γ
e−S0/CP

02

r 2

) γ
γ−1
, D = P1/γ e−S0/CP (27)

whereP0 is a constant.

An important special case is that of uniform flow with0 = 0 andP andD constant.

2.11 Types of swirl

Typically, the following cases occur in a turbomachine duct

• In the inlet, the mean flow is nearly uniform and irrotational and typically we have a thin boundary
layer and a circumferential velocity, or swirl, given by

W ' 0 (28a)

• In the compressor stages, the pressure increases quickly and the boundary layer is most probably
thin.
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• In the compressor, behind a stator or guide vanes and before a rotor, the mean flow is close to that
of a rigid body rotation and the circumferential velocity is typically

W ' �r (28b)

• In the compressor, behind a rotor and before a stator or guide vanes, the mean flow also contains
rotation, for example in the form of a free axial vortex and the circumferential velocity is typically

W ' �r + 0

r
(28c)

• Behind the compressor, for example in the by-pass duct, the swirlW is again small, but the bound-
ary layer may be significant acoustically (refraction).

We will not assume here any further mean flow profile. It should, however, be noted that we will assume a
discrete spectrum for the modal expansion to be introduced below (“normal modes approach”). Although
the matter is not completely settled yet, there is strong evidence in the literature that a discrete set of
modes is not a complete basis of the solution space of the present equations considered if the mean flow
profile is arbitrary. At least in principle, care should be taken when the profile allows critical layers (the
radial position where the convected derivative(iω + V ·∇) vanishes). Only if the mean flow is simple
enough (like the above cases) does the modal spectrum seems to be discrete everywhere.

3 Acoustic equations with circular symmetric geometry

The acoustic equations, corresponding with the circular symmetric mean flow introduced in section 2.10,
are as follows. When we introduce for the perturbation velocity vector

v = uex + ver + weθ (29)

the harmonic perturbation equations are written out in full (a prime denotes a derivative tor of the mean
flow variable) in the subsections below* .

* Recall the following identities in cylindrical co-ordinates for vector fieldsv andV and a scalarφ

∇·v = ∂
∂x u + ∂

∂r v + 1
r v + 1

r
∂
∂θ
w

V ·∇v = (
U ∂
∂x u + V ∂

∂r u + 1

r
W ∂
∂θ

u
)
ex + (

U ∂
∂x v + V ∂

∂r v + 1
r W

(
∂
∂θ
v −w

))
er

+ (
U ∂
∂xw + V ∂

∂r w + 1
r W( ∂

∂θ
w + v)

)
eθ

∇×v = (
∂
∂r w + 1

r w − 1
r
∂
∂θ
v
)
ex + (1

r
∂
∂θ

u − ∂
∂xw

)
er + (

∂
∂x v − ∂

∂r u
)
eθ

∇φ = ∂
∂r φer + 1

r
∂
∂θ
φeθ + ∂

∂xφex.
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3.1 With swirl and variable entropy

(
iω + U

∂

∂x
+ W

r

∂

∂θ

)
ρ + D

(∂u

∂x
+ 1

r

∂

∂r
(r v)+ 1

r

∂w

∂θ

)
+ D′v = 0 (30a)

D
(
iω + U

∂

∂x
+ W

r

∂

∂θ

)
u + DU ′v + ∂p

∂x
= 0 (30b)

D
(
iω + U

∂

∂x
+ W

r

∂

∂θ

)
v − 2DW

r
w − W2

r
ρ + ∂p

∂r
= 0 (30c)

D
(
iω + U

∂

∂x
+ W

r

∂

∂θ

)
w + DW

r
v + DW′v + 1

r

∂p

∂θ
= 0 (30d)(

iω + U
∂

∂x
+ W

r

∂

∂θ

)
s + S′v = 0 (30e)

By using relation (20d) betweens, p andρ and equation (30a),s can be eliminated and equation (30e)
replaced by (

iω + U
∂

∂x
+ W

r

∂

∂θ

)(
p − C2ρ

) +
( DW2

r
− C2D′

)
v = 0 (30f)

3.2 Without swirl and variable entropy

Without swirl the harmonic perturbation equations are

(
iω + U

∂

∂x

)
ρ + D

(∂u

∂x
+ 1

r

∂

∂r
(r v)+ 1

r

∂w

∂θ

)
+ D′v = 0 (31a)

D
(
iω + U

∂

∂x

)
u + DU ′v + ∂p

∂x
= 0 (31b)

D
(
iω + U

∂

∂x

)
v + ∂p

∂r
= 0 (31c)

D
(
iω + U

∂

∂x

)
w + 1

r

∂p

∂θ
= 0 (31d)(

iω + U
∂

∂x

)(
p − C2ρ

) − C2D′v = 0 (31e)

3.3 Homentropic without swirl

Without swirl and entropy variations the harmonic perturbation equations are

(
iω + U

∂

∂x

)
ρ + D

(∂u

∂x
+ 1

r

∂

∂r
(r v)+ 1

r

∂w

∂θ

)
= 0 (32a)

D
(
iω + U

∂

∂x

)
u + DU ′v + ∂p

∂x
= 0 (32b)

D
(
iω + U

∂

∂x

)
v + ∂p

∂r
= 0 (32c)

D
(
iω + U

∂

∂x

)
w + 1

r

∂p

∂θ
= 0 (32d)

p − C2ρ = 0 (32e)
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3.4 Irrotational homentropic flow

When the flow is irrotational and homentropic, we can introduce a potential in the form of equation (26)
and integrate the momentum equation (22).P andD are in the form of equation (27), whileU and0 are
constants. The result is the expressions:

(
iω + U

∂

∂x
+ 0

r 2

∂

∂θ

)
ρ + D

(∂2φ

∂x2
+ 1

r

∂

∂r

(
r
∂φ

∂r

) + 1

r 2

∂2φ

∂θ2

)
+ D′ ∂φ

∂r
= 0 (33a)

D
(
iω + U

∂

∂x
+ 0

r 2

∂

∂θ

)
φ + p = 0 (33b)

p − C2ρ = 0 (33c)

3.5 Uniform mean flow

The simplest, but therefore the most important configuration is the one with a uniform mean flow. Note
that this doesnot exactly imply irrotational and isentropic perturbations.

Axial mean velocityU , mean pressureP, densityD and sound speedC are constants, so we have

(
iω + U

∂

∂x

)
ρ + D

(∂u

∂x
+ 1

r

∂

∂r
(r v)+ 1

r

∂w

∂θ

)
= 0, (34a)

D
(
iω + U

∂

∂x

)
u + ∂p

∂x
= 0, (34b)

D
(
iω + U

∂

∂x

)
v + ∂p

∂r
= 0, (34c)

D
(
iω + U

∂

∂x

)
w + 1

r

∂p

∂θ
= 0, (34d)(

iω + U
∂

∂x

)(
p − C2ρ

) = 0. (34e)

We then split the perturbation velocity into a vortical part and an irrotational part by introducing the
vector potential (stream function)9 and scalar potentialφ as follows (see the footnote on page 14)

v = ∇×9 + ∇φ, (35)

If desired, the arbitrariness in9 (we may add any∇ f , since∇×∇ f ≡ 0) may be removed by adding
the gauge condition∇·9 = 0, such that the vorticity is given by

ξ = ∇×v = ∇(∇·9)− ∇29 = −∇29. (36)

Since the divergence of a curl is zero,∇·v = ∇·(∇×9 + ∇φ) = ∇2φ and equation (34a) becomes

(
iω + U

∂

∂x

)
ρ + D∇2φ = 0 (37)

From the equations (34b-d), given in vector form by

D
(
iω + U

∂

∂x

)(∇×9 + ∇φ) + ∇ p = 0, (38)
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we readily see that by taking the divergence of equation (38) and using equations (34e) and (37), we can
eliminateφ andρ to obtain the convected reduced wave equation for the pressure

C2∇2 p −
(
iω + U

∂

∂x

)2
p = 0. (39)

(Note that we did not assume the isentropy relationp = C2ρ.) With some care, especially taking due
notice of the singular edge behaviour, this equation may be transformed to the ordinary reduced wave
equation by allowing

p(x, r, θ;ω) = p̃(X, r, θ;�)exp(i �M
C X), (40)

where x = βX, ω = β�, M = U

C
, β =

√
1 − M2.

In addition, by taking the curl of equations 34(b-d) we can eliminatep andφ to produce an equation
for the vorticity:

−
(
iω + U

∂

∂x

)
∇29 =

(
iω + U

∂

∂x

)
ξ = 0. (41)

Summarizing, we found a convected wave equation (39) for the pressure, and equations that describe
simple mean flow convection for the entropy (34e) and for the vorticity (41). These three equations are
(in this uniform flow case) completely independent and therefore describe independent quantities. Since
the velocity fluctuations are determined by a sum of acoustic contributions (connected top) and vortical
contributions (connected toξ ), any acoustic information from the velocity alone is impossible if the flow
is not irrotational (as in the by-pass duct, or anywhere behind a rotor or stator).

In such a case information on the direction of the wave might better be found from∂
∂x p, the axial

derivative of the pressure. This aspect will have to be carefully taken into account in the issue of matching
to be considered below.

4 Interface and boundary conditions

4.1 Hard wall conditions

At the solid walls atr = R1 andr = R2 the radial component of the velocity vanishes

v(x, r, θ) = 0 at r = R1, r = R2. (42)

4.2 The interface

To allow more general configurations (for example, with swept vanes or blades), the interface between
the source region and the rest of the duct is assumed to be given by the conical surface

xi (r ) = x0 + λr. (43)

At this control surface the fieldv, p, ρ, s is given. If we take the more important ones (but this is a matter
of taste), they may be described by

p(xi , r, θ) = P (r, θ), u(xi , r, θ) = U(r, θ), s(xi , r, θ) = S(r, θ), (44)



18

and as they are the product of another model (e.g., CFD based on RANS), it is almost inevitable and that
they are not consistent with the present model.

We have the following options.

(i) Assume that one of the field variables (for example pressure) should be continuous,i.e.prescribed
by the source region at the interface. The other field variables of the resulting field will be discon-
tinuous at the interface. In this case it is not possible to include all incoming and outgoing waves
because the resulting field would radiate symmetrically away from the interface and comprise of
about as many incoming waves as outgoing waves. Therefore, the amplitudes would be about half
of what they should be.

Therefore, with this option it is not only natural but also necessary to assume beforehand that the
incoming waves are absent.

(ii) Do the same as under (i) for any of the field variables and take the average.

(iii) Rather than taking the average, we formulate a least squares problem, such that the discontinuity
is evenly distributed over the chosen field variables.

(iv) We could try to take into account the fact that the CFD interface boundary condition is not perfect
and that the produced field is not yet free of spurious reflections. In this case we could include,
on either side of the interface, both reflected (incoming) and transmitted (outgoing) waves. On
physical grounds (see above, option i), we then know that we will in turn require continuity of at
least 2 variables.

The usual direct approach, aiming at continuous pressure and axial velocity, is rather complicated
and requires a careful bookkeeping of matrices and submatrices.

The least squares method of option (iii), however, appears to include very easily waves in both
directions. Therefore, we propose here a more general (new?) approach, to minimize the discon-
tinuities over the most important variables in a suitable least squares sense. In the case of two
variables, the obtained minimum should be nearly equivalent to the direct method, while in the
case of more variables the error is spread.

Note that in option (iv) the reflections are amix of the effects of the imperfect CFD radiation condition
and the inherent modelling discontinuity. As we argued before, there is absolutely no reason to include
reflections due to the modelling jump. Therefore, this option is only useful if this jump is small and the
acoustic model ispractically equivalentto the linearized version of the CFD model.

We do not intend to consider the possibility that (in option iv) the spurious reflections are (iteratively)
coupled back to the CFD calculations, such that these reflections are made to vanish. This is practically
only possible if both CFD and acoustic calculations are run in parallel on the same computer.

Therefore, one might argue that there is no real need to include reflected waves and that it is sufficient
to apply the method to the outgoing waves only. Although this is true in principle, there are still a
few good reasons to at least investigate the possibility. (1) As we will see, the amount of work and
programming is practically the same for option (iii) and (iv). (2) The filtering of false reflections would
have been the final postprocessing of the CFD calculations anyway and if the acoustic model is not
simpler than the reduced CFD model “Ã” (see section 1.3), it is just as efficient to do it here. (3) The
amount of reflection is a possible measure of the interface mismatch, which may be a useful diagnostic
quantity for later analysis.
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Option (i) is clearly the simplest one and we should certainly start with it, for example with the
pressure. Then we should consider (ii) and repeat the manipulations with the axial velocity and entropy,
to see if the resulting fields are reasonably similar, so that a simple average can be regarded as satisfactory.

The method, however, which eventually is likely to be the preferred one, is (iii) or (iv), since the
amount of programming and calculation is only slightly more than with (ii).

5 Circumferential Fourier decomposition

In view of the circumferential periodicity of the solution, the dependent variables can be written as a
Fourier series inθ . Because of the linearity andθ-independence of the equations, the problem can be
solved per Fourier mode. Here we have

v =
∞∑

m=−∞
vm(x, r )e−imθ , p =

∞∑
m=−∞

pm(x, r )e−imθ , ρ =
∞∑

m=−∞
ρm(x, r )e−imθ , (45)

together with

U =
∞∑

m=−∞
Um(r )e−imθ , P =

∞∑
m=−∞

Pm(r )e−imθ , S =
∞∑

m=−∞
Sm(r )e−imθ . (46)

The equations for each case reduce to:

5.1 With swirl and variable entropy

(
iω + U

∂

∂x
− imW

r

)
ρm + D

(∂um

∂x
+ 1

r

∂

∂r
(r vm)− im

r
wm

)
+ D′vm = 0 (47a)

D
(
iω + U

∂

∂x
− imW

r

)
um + DU ′vm + ∂pm

∂x
= 0 (47b)

D
(
iω + U

∂

∂x
− imW

r

)
vm − 2DW

r
wm − W2

r
ρm + ∂pm

∂r
= 0 (47c)

D
(
iω + U

∂

∂x
− imW

r

)
wm + DW

r
vm + DW′vm − im

r
pm = 0 (47d)(

iω + U
∂

∂x
− imW

r

)(
pm − C2ρm

) +
( DW2

r
− C2D′

)
vm = 0 (47e)
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5.2 Without swirl and variable entropy

(
iω + U

∂

∂x

)
ρm + D

(∂um

∂x
+ 1

r

∂

∂r
(r vm)− im

r
wm

)
+ D′vm = 0 (48a)

D
(
iω + U

∂

∂x

)
um + DU ′vm + ∂pm

∂x
= 0 (48b)

D
(
iω + U

∂

∂x

)
vm + ∂pm

∂r
= 0 (48c)

D
(
iω + U

∂

∂x

)
wm − im

r
pm = 0 (48d)(

iω + U
∂

∂x

)(
pm − C2ρm

) − C2D′vm = 0 (48e)

5.3 Homentropic without swirl

(
iω + U

∂

∂x

)
ρm + D

(∂um

∂x
+ 1

r

∂

∂r
(r vm)− im

r
wm

)
= 0 (49a)

D
(
iω + U

∂

∂x

)
um + DU ′vm + ∂pm

∂x
= 0 (49b)

D
(
iω + U

∂

∂x

)
vm + ∂pm

∂r
= 0 (49c)

D
(
iω + U

∂

∂x

)
wm − im

r
pm = 0 (49d)

pm − C2ρm = 0 (49e)

5.4 Irrotational homentropic flow

(
iω + U

∂

∂x
− im0

r 2

)
ρ + D

(∂2φ

∂x2
+ 1

r

∂

∂r

(
r
∂φ

∂r

) − m2

r 2
φ
)

+ D′ ∂φ
∂r

= 0 (50a)

D
(
iω + U

∂

∂x
− im0

r 2

)
φ + p = 0 (50b)

p − C2ρ = 0 (50c)

5.5 Uniform mean flow with irrotational isentropic perturbations

(
iω + U

∂

∂x

)
ρ + D

(∂2φ

∂x2
+ 1

r

∂

∂r

(
r
∂φ

∂r

) − m2

r 2
φ
)

= 0 (51a)

D
(
iω + U

∂

∂x

)
φ + p = 0 (51b)

p − C2ρ = 0 (51c)
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6 Normal modes

In order to solve our present matching problem, we need to be able to distinguish incoming and outgoing
(left and right running) waves. We do this by solving the above equations, assuming that they represent
the field locally near the interface.

A general way to solve the equations, which are still partial differential equations inr andx, involves
a Fourier transformation inx of the form

f (x, r ) =
∫ ∞

−∞
f̂ (r ; κ)e−iκx dκ (52)

The resulting equations to be solved then become just ordinary differential equations inr . It will appear
that the Fourier transformed solution has an infinite number of poles in the complex axial wave number
plane, corresponding to the duct modes. If the Fourier transformed solution is meromorphic (analytic
except for isolated polesκ = κµ), the inverse transform can be evaluated and the solution inx-space can
be written as an infinite modal sum. This appears to be the case if the mean flow is sufficiently simple
(uniform, etc.). Symbolically, this is represented as

f (x, r ) =
∞∑
µ=1

F+
µ (r )e−iκ+

µ x +
∞∑
µ=1

F−
µ (r )e−iκ−

µ x (53)

where the modal wave numbersκ+
µ andκ−

µ correspond to right running and left running modes respec-
tively.

In general, the Fourier transformed solution is not meromorphic and the solution has to be described
by a modal sum plus an integral over the continuous part of the wave number spectrum. For example,

f (x, r ) =
∞∑
µ=1

F+
µ (r )e−iκ+

µ x +
∞∑
µ=1

F−
µ (r )e−iκ−

µ x +
∫

C

f̂ (r ; κ)e−iκx dκ (54)

Usually, this supplementary part seems to be of minor importance acoustically, as it refers mainly to
hydrodynamic type of perturbations. Furthermore, it is also computationally very inconvenient. There-
fore, we will ignore it here altogether and assume solutions of the form are just

vm =
∞∑

µ=−∞
vmµ(r )e−iκmµx, pm =

∞∑
µ=−∞

pmµ(r )e−iκmµx, sm =
∞∑

µ=−∞
smµ(r )e−iκmµx (55)

(the distinction between left and right running will be made later) leading to the following reduced sets
of equations. Introduce for national convenience

�mµ = ω − κmµU, �(W)
mµ = ω − κmµU − mW

r
, �(0)mµ = ω − κmµU − m0

r 2
. (56)
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6.1 With swirl and variable entropy

i�(W)
mµ ρmµ + D

(
−iκmµumµ + 1

r

∂

∂r
(r vmµ)− im

r
wmµ

)
+ D′vmµ = 0 (57a)

i D�(W)
mµ umµ + DU ′vmµ − iκmµpmµ = 0 (57b)

i D�(W)
mµ vmµ − 2DW

r
wmµ − W2

r
ρmµ + ∂pmµ

∂r
= 0 (57c)

i D�(W)
mµ wmµ + DW

r
vmµ + DW′vmµ − im

r
pmµ = 0 (57d)

i�(W)
mµ

(
pmµ − C2ρmµ

) +
( DW2

r
− C2D′

)
vmµ = 0 (57e)

6.2 Without swirl and variable entropy

i�mµρmµ + D
(
−iκmµumµ + 1

r

∂

∂r
(r vmµ)− im

r
wmµ

)
+ D′vmµ = 0 (58a)

i D�mµumµ + DU ′vmµ − iκmµpmµ = 0 (58b)

i D�mµvmµ + ∂pmµ

∂r
= 0 (58c)

i D�mµwmµ − im

r
pmµ = 0 (58d)

i�mµ

(
pmµ − C2ρmµ

) − C2D′vmµ = 0 (58e)

which becomes, after eliminating all variables butpmµ, the equation

�mµD

r

∂

∂r

( r

�mµD

∂

∂r
pmµ

)
+ κmµU ′

�mµ

∂

∂r
pmµ +

(�2
mµ

C2
− κ2

mµ − m2

r 2

)
pmµ = 0. (58f)

6.3 Homentropic without swirl

i�mµρmµ + D
(
−iκmµumµ + 1

r

∂

∂r
(r vmµ)− im

r
wmµ

)
= 0 (59a)

i D�mµumµ + DU ′vmµ − iκmµpmµ = 0 (59b)

i D�mµvmµ + ∂pmµ

∂r
= 0 (59c)

i D�mµwmµ − im

r
pmµ = 0 (59d)

pmµ − C2ρmµ = 0. (59e)

This becomes forpmµ (becauseD is a constant)

�mµ

r

∂

∂r

( r

�mµ

∂

∂r
pmµ

)
+ κmµU ′

�mµ

∂

∂r
pmµ +

(�2
mµ

C2
− κ2

mµ − m2

r 2

)
pmµ = 0. (59f)
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6.4 Irrotational homentropic flow

i�(0)mµρmµ + D
(
−κ2

mµφmµ + 1

r

∂

∂r

(
r
∂φmµ

∂r

) − m2

r 2
φmµ

)
+ D′ ∂φmµ

∂r
= 0 (60a)

i D�(0)mµφmµ + pmµ = 0 (60b)

pmµ − C2ρmµ = 0 (60c)

This becomes forφmµ

1

r D

∂

∂r

(
r D

∂φmµ

∂r

) +
({�(0)mµ

C

}2 − κ2
mµ − m2

r 2

)
φmµ = 0 (60d)

6.5 Uniform mean flow with irrotational isentropic perturbations

i�mµρmµ + D
(
−κ2

mµφmµ + 1

r

∂

∂r

(
r
∂φmµ

∂r

) − m2

r 2
φmµ

)
= 0 (61a)

i D�mµφmµ + pmµ = 0 (61b)

pmµ − C2ρmµ = 0 (61c)

This becomes, finally, forφmµ

1

r

∂

∂r

(
r
∂φmµ

∂r

) +
(�2

mµ

C2
− κ2

mµ − m2

r 2

)
φmµ = 0 (61d)

6.6 The modes

The resulting differential equations and boundary conditions are to be solved as eigenvalue problems,
with in general complex eigenvaluesκmµ. This can be done in various ways that we will not further dis-
cuss here. For example, the uniform flow case allows an analytical solution and therefore is a particularly
interesting case, but for the other more general cases numerical solution methods are necessary.

In the present application it is very important to distinguish the incoming and outgoing (left- and
right-running) waves. The set of poles corresponding to modes decaying in the positivex-direction
are found (in this notation convention!) in the lower complex half plane Im(κ) < 0. Apart from any
instabilities* , these modes are entirely right running. Further, the set of poles corresponding to modes
decaying in the negativex-direction are found in the upper complex half plane Im(κ) > 0 and apart
from any instabilities, these modes are entirely left running. The poles found along the realκ-axis are
not immediately recognized as either right or left running. Without mean flow, the direction of the wave
corresponds with the modal phase velocityκµ/ω. With flow this is not exactly the case anymore and
some extra care must be taken. One possible way to classifiy the modes is by taking the hard wall limit
of a duct with soft (dissipative) walls.

* Note that a necessary and sufficient condition for stability of a rotating incompressible inviscid fluid isd
dr (Wr)2 > 0,

(Rayleigh, see [3]).
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7 Mode matching

If we have found the modal basis functions of all field variables, both incoming and outgoing, we can
write our field as a formal series expansion over these basis functions. Suppose that theoutgoingbasis
functions of the pressurepmµ are the setψmµ(r ) with µ > 0 and theincomingare the setψmµ(r ) with
µ < 0.

In the following, we will consider two approaches (see section 4.2). A simpler one (options i or ii)
based on direct modal expansion of the interface quantities, where only outgoing modes are considered
and a more advanced one (option iii) based on a least squares approach, where outgoing but also incoming
modes (option iv) may be included.

The reason for optionally including incoming (i.e. reflected) modes, is the imperfect reflection-free
boundary condition in the CFD calculations. One way to obtain a reflection-free interface is by modal
wave splitting, a procedure similar to the one described here. By including this final step in the matching
procedure, the CFD results may be slightly improved. Furthermore, the complexity of the method we
propose is just the same if we include incoming modes or not. At present, it is not possible to decide if
this option is really useful and a final conclusion should be based on further study.

Under the assumption of completeness, as discussed before, we can write the resulting outgoing
pressure field (or any other variable) as

pm(x, r ) =
M∑
µ=1

Amµψmµ(r )e−iκmµx (62)

whereM is the number of modes considered.

If the pressure is to be continuous at the interface and we do not include possible reflections (that is
only in option iv), we have thus

M∑
µ=1

Amµψmµ(r )e−iκmµ(x0+λr ) = Pm(r ) (63)

The amplitudes are found by the following Galerkin-type procedure.

Form an (L2) inner product, between the left and right hand sides and a suitable set of test functions,
by integration along the cross section of the interface,i.e. betweenR1 to R2. Usually, the complex
conjugate of the basis functions themselves are convenient for this purpose, especially when they are
orthogonal or nearly orthogonal under the defined inner product. We choose hereψ∗

mν(r )eiκ∗
mνλr , ν =

1 . . .M, to get
M∑
µ=1

Amµ e−iκmµx0

∫ R2

R1

ψmµ(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr =
∫ R2

R1

Pm(r )ψ
∗
mν(r )eiκ∗

mνλr r dr (64)

or in matrix form
Ma = p (65)

where

{M}νµ =
∫ R2

R1

ψmµ(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν)λr r dr (66a)

{a}µ = Amµ e−iκmµx0 (66b)

{ p}ν =
∫ R2

R1

Pm(r )ψ
∗
mν(r )eiκ∗

mνλr r dr (66c)
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With this choice of test functions the matrixM is then hermitian. This means that the transposed complex

conjugate,i.e.M∗ =M>, is equal toM itself: M∗ = M, leading to the important consequences thatM’s
eigenvalues are real andM’s eigenvectors are orthogonal. An even more important consequence here is
the relatively simple form that the solution of the least square problem, defined below, attains. Therefore,
we will assume in the analysis below that the test functions are chosen such thatM is hermitian.

Now we can construct solutions according to the 4 approaches, proposed in section 4.2.

7.1 Single variable (option i)

Here is the direct way, where only one variable (for examplep) is continuous and the other field variables
are ignored. As discussed in section 4.2(i), we do not account for false reflections, so we have

pm(x, r ) =
M∑
µ=1

Amµψmµ(r )e−iκmµx (67)

M∑
µ=1

Amµ e−iκmµx0

∫ R2

R1

ψmµ(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr =
∫ R2

R1

Pm(r )ψ
∗
mν(r )eiκ∗

mνλr r dr (68)

Using the same nomenclature as given by equations (66), the amplitude vector is then (formally) given
by

a = M−1 p (69)

and may be obtained by standard numerical techniques.

7.2 Averaging over several variables (option ii)

Here is the solution averaged over a number of found amplitudes. Assume that we consider pressure,
axial velocity or axial pressure gradient, and entropy, with basis functionsψmµ(r ), χmµ(r ), ζmµ(r ) re-
spectively. Then we write

um(x, r ) =
M∑
µ=1

A(u)mµχmµ(r )e−iκmµx (70)

sm(x, r ) =
M∑
µ=1

A(s)mµζmµ(r )e−iκmµx (71)

and determine provisional values of the amplitudes by inner products as before. Hence, we have

M∑
µ=1

A(p)mµψmµ(r )e−iκmµ(x0+λr ) = Pm(r ) (72)

M∑
µ=1

A(u)mµχmµ(r )e−iκmµ(x0+λr ) = Um(r ) (73)

M∑
µ=1

A(s)mµζmµ(r )e−iκmµ(x0+λr ) = Sm(r ) (74)
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Now we multiply and integrate (although the idea is exactly the same as for equations (66), we will write
for clarity now and reference later, all formulas out explicitly) to obtain

M∑
µ=1

A(p)mµ e−iκmµx0

∫ R2

R1

ψmµ(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν)λr r dr =
∫ R2

R1

Pm(r )ψ
∗
mν(r )eiκ∗

mνλr r dr (75)

M∑
µ=1

A(u)mµ e−iκmµx0

∫ R2

R1

χmµ(r )χ
∗
mν(r )e−i(κmµ−κ∗

mν)λr r dr =
∫ R2

R1

Um(r )χ
∗
mν(r )eiκ∗

mνλr r dr (76)

M∑
µ=1

A(s)mµ e−iκmµx0

∫ R2

R1

ζmµ(r )ζ
∗
mν(r )e−i(κmµ−κ∗

mν)λr r dr =
∫ R2

R1

Sm(r )ζ
∗
mν(r )eiκ∗

mνλr r dr (77)

or in matrix form
Ma(p) = p, N a(u) = u, Qa(s) = s (78)

where

{M}νµ =
∫ R2

R1

ψmµ(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr, {a(p)}µ = A(p)mµ e−iκmµx0,

{ p}ν =
∫ R2

R1

Pm(r )ψ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr

(79)

{N }νµ =
∫ R2

R1

χmµ(r )χ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr, {a(u)}µ = A(u)mµ e−iκmµx0,

{u}ν =
∫ R2

R1

Um(r )χ
∗
mν(r )e−i(κmµ−κ∗

mν)λr r dr

(80)

{Q}νµ =
∫ R2

R1

ζmµ(r )ζ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr, {a(s)}µ = A(s)mµ e−iκmµx0,

{s}ν =
∫ R2

R1

Sm(r )ζ
∗
mν(r )e−i(κmµ−κ∗

mν )λr r dr

(81)

The amplitudes are subsequently

a(p) = M−1 p, a(u) = N −1u, a(s) = Q−1s (82)

which should be about the same if the discontinuity is not too strong (a point of study!). Finally, we take
for the “real” amplitude the average between the three variables

a = 1
3

(
a(p) + a(u) + a(s)

)
(83)

7.3 Least squares approach (option iii)

The least squares approach largely follows the steps of option (ii). Instead of equation (78), we now aim
at determininga such that it minimizes the cost function

c1

∥∥Ma − p
∥∥2 + c2

∥∥N a − u
∥∥2 + c3

∥∥Qa − s
∥∥2
. (84)

Note that we writeu for axial velocity, but this may as well be any other quantity, like axial pressure
gradient.
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The scaling constants

c1 = 1

p2
ref

, c2 = 1

u2
ref

, c3 = 1

s2
ref

(85)

are necessary, because the variables are as yet not scaled and therefore not comparable to one another.
The actual values of these scalings will need some discussion. A possible choice ispref = ρ∞c2∞,
uref = c∞ andsref = [S]duct, where[S]duct is a representative mean entropy variation across the duct.
However, if we take for example the axial pressure gradient as a matching variable, we take another
scaling accordingly.

If we search for the vectora that minimizes the above cost function (84) and use the hermitian
property ofM, we get* the following system(

c1M
2 + c2N

2 + c3Q
2
)
a = c1M p + c2N u + c3Qs (86)

and this equation is easily solved by standard numerical techniques.

7.4 Least squares with reflections (option iv)

If we indicate incoming modes by a negative indexµ and include a reflected field at the CFD-side of the
interface to the produced field (44), we now have the continuity condition

M∑
µ=1

Amµψmµ(r )e−iκmµ(x0+λr ) = Pm(r )+
−M∑
µ=−1

Bmµψmµ(r )e−iκmµ(x0+λr ) (87)

whereAmµ are the amplitudes of the transmitted modes andBmµ the amplitudes of the reflected modes.
As discussed before, the reflected modes are not relevant to the acoustic regime, but may be useful for
polishing up the CFD solution.

Although equation (87) refers physically to a balance between quantities, only valid at their own side
of the interface, we can formally rewrite it such that it takes exactly the same form as the equations used
in options (i), (ii) and (iii), without reflection. If we identify the amplitudes

Amµ = −Bmµ if µ = −1 . . .− M (88)

and bring the reflected field to the left hand side, we obtain

M∑
µ=−M

Amµψmµ(r )e−iκmµ(x0+λr ) = Pm(r ) (89)

* Introduce the complex vectorial inner product[x, y], which is equal to the ordinary inner product withy complex conju-
gated:[x, y] = (x, y). Then the hermitian property ofM implies

[Mx, y] = [x,M∗ y] = [x,M y].
Each squared distance in the cost function (84) becomes now like∥∥Ma − p

∥∥2 = [Ma − p,Ma − p] = [M2a, a] − [a,M p] − [M p, a] + [ p, p].

If we vary arounda by substitutinga + εb, we find forO(ε) that the variation of
∥∥Ma − p

∥∥2 is

2 Re
{[

M2a − M p, b
]}
.

If we look for stationary values of cost function (84) for any vectorb, the result (86) fora is obtained.
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with µ = 0 excluded. (Similar for other variables.) From here on the problem can be solved in the same
way as under option (iii), with the only difference that the size of the vectors and matrices are 2M and
2M × 2M respectively.

How does this compare with traditional mode matching?

It is interesting to compare this least squares approach with the traditional mode matching. In traditional
mode matching only two variables, pressurep and axial velocityu, are made continuous. However, with
2M unknowns (the transmitted and reflected amplitudes), only 2M equations are necessary. These are
created by takingL2 inner products of the continuity equations forp andu, like equation (64), but not
with all 2M basis functions. OnlyM basis functions from thep expansion (for example, the outgoing
modes) are applied to the continuity of pressure, leading toM equations. Similarly,M basis function
from theu expansion are applied to the continuity of velocity. Together, we have 2M equations, yielding
uniquely the 2M unknown amplitudes.

In our least squares approach of option (iv) we create even more equations, so that in the case of 2
variables we have 4M equations. With only 2M unknowns, these equations cannot in general be satisfied
exactly and therefore we use the least squares method. So the least squares solution is anapproximation.

It should be noted, however, that unless the basis functions areL2-orthogonal, the amplitudes found
by the traditional method are also an approximation. They depend on the number of modesM and on
the chosen basis functions used for the inner products. Only whenM → ∞ do the amplitudes converge
to the (a?) “correct” value.

So in general the least squares solution will differ from the traditional mode matching solution.
However, as the standard solution produces a small jump across the interface, the least squares solution
(constructed to minimize this jump) will naturally differ only by a small amount.

Further, there isnodifference when the problem is symmetric and the left and right running modes are
equivalent. In that case only 2M equations are different and the least squares solution will be equivalent
to the traditional mode matching solution (the least squares residue is exactly zero). In the general, a-
symmetric case, the least squares solution is expected to be slightly better. The inner product equations
are better balanced, because there is no dependence on the choice of the basis functions (all are used).

Since the least squares solution is not restricted to only 2 variables, incorporates very easily any
number of continuity conditions and the formulas, utilizing the hermitian form of the matrices, are very
simple, the least squares approach seems to be superior to the traditional approach.

7.5 Other basis functions

We used modal basis functions for the matching, because these modes are each solutions of the differ-
ential equations (in the assumed constant duct section) and therefore allows us to distinguish between
incoming and outgoing waves. If this information is not important or usable, for example because the
acoustic model only needs(ω,m)-profiles of the pressure perturbations at the interface, it is possible to
use other types of basis functions, as long as no manipulations are included that use the direction of the
field (e.g.no wave splitting).
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7.6 Conclusion

Once the matricesM,N ,Q are determined, the least squares method is only little more complicated
than the average method. Therefore, we consider it to be the preferred method.

Note that it is not clear yet in all possible situations which acoustic variables are the relevant ones to
be included.

The question whether option (iv) is to be preferred over option (iii) depends on the quality of the
CFD field and this should be tested in practice.

8 General strategy

Summarizing the proposed strategy step by step, we have

1. Consider the geometry. The interface should be located in a part of the duct that can be ap-
proximated (locally) by a cylindrical straight duct. The mean flow should be (approximately)
axisymmetric.

Sensitivity of the matching to the position of the interface should be included in the tests.

2. The total flow field, produced by the CFD calculations at the interface, has to be split into the
steady part (the mean flow) and the unsteady part for each multipleω = n� of the first harmonic
� and circumferentialm-mode considered (the perturbations). A logical approach is via Fourier
transformations int andθ , after which all frequencies andm-modes of interest are available. If
the mean flow is not axisymmetric (i.e. θ-dependent), them = 0-component is automatically its
average overθ .

So from a physical quantityf (x, r, θ, t), given at the interfacexi (r ) = x0+λr , we derive the mean
flow quantityF(r ) and the(m, ω)-Fourier componentFm(r ;ω) of the acoustic interface quantity
as follows. If f is periodic in time with period 2π/� (radial frequency�), it can be written as

f (xi , r, θ, t) =
∞∑

n=−∞

∞∑
m=−∞

f̂m(r ; n�)ein�t−imθ (90)

Each Fourier component is given by

f̂m(r ; n�) = �

4π2

∫ 2π

0

∫ 2π/�

0
f (xi , r, θ, t)eimθ−in�t dt dθ (91)

(Note the±i and 2π conventions!). We have then (c.f. equation 23, 46)

F(r ) = f̂0(r ; 0) (92a)

Fm(r ;ω) = f̂m(r ;ω) (92b)

If the CFD results refer to a single rotor stage, they are effectively steady in a co-rotating frame
of reference. If, in addition, the field is periodic inθ with period 2π/B (B blades, say), the above
Fourier transformation may be simplified as follows. We write our field function as

f (xi , r, θ, t) = g(xi , r, θ −�t) =
∞∑

n=−∞

∞∑
m=−∞

ĝm(r ; n�)ein�t−imBθ (93)
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Now the double Fourier integrals reduce to a single one, while most of the Fourier coefficients
ĝm(r ; n�) vanish:

ĝm(r ; n�) = 1

2π
δn,mB

∫ 2π

0
g
(
xi , r,

ξ

B

)
eiξ dξ . (94)

3. The mean flow variables will not form a consistent solution of the mean flow equations that cor-
responds to the acoustic model considered. Depending on the model, the mean flow is to be
“stripped” by means of averaging until the mean flow variables are consistent. This means that a
swirl may be simplified or ignored, or that the radial pressure distribution is to be adjusted to a
given swirl and density distribution. As this mean-flow post-processing depends on the acoustic
model considered, we will not prescribe here a preferred procedure. Therefore, one should be
careful always to attach to any results the definitions used, which should be described explicitly
and in sufficient detail.

4. Once the mean flow is known, the acoustic modal equations can be solved for the circumferential
mode numbersm of interest and the matricesM, etc.., can be formed using the available basis
functions.

5. The perturbation field has to be decomposed into circumferential Fourier modes, leading to field
quantities that only depend onr .

6. The vectorsp, etc., can be constructed from the field and the basis functions.

7. A selection should be made which acoustic variables are considered to be most relevant and should
be made as continuous as possible. Pressurep and axial velocityu seem to be suitable for the inlet.
Care is necessary in case of dominating vorticity downstream of a rotor or stator. In that case it
might be better to take the pressure and the axial component of the pressure gradient. If the mean
flow contains swirl, while the acoustic model includes that feature, the radial or circumferential
velocitiesv orw or, alternatively, the rotationξ = ∇×v, might be included. If radial temperature
variations could produce entropy modes, the entropy should be included.

Note that this item is not clear yet and ought to be subject to further research.

8. The least squares calculations can be performed to obtain the amplitude vectors. A measure of
the model-jump,i.e. the discrepancy between the neighbouring CFD and CAA models, may be
represented by the residual least-squares error, or the amount of spurious reflections.
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Abstract

In this preliminary report, an approach taken by ISVR on the TurboNoiseCFD project bypass/exhaust
duct noise radiation calculation is described. The ISVR model consists of a wave admission region,
a computational aeroacoustic (CAA) region and a radiation model based on an integral solution of the
Ffowcs Williams-Hawkings (FW-H) equation implemented numerically to allow near- and far-field noise
levels to be determined efficiently. The wave admission region is designed to allow for the matching of
incoming acoustic waves with the CAA region. At this stage of the project research, a number of issues
need to be addressed so that the model can be validated and used in the TurboNoiseCFD project.

Nomenclature

c0 Freestream speed of sound
E Total energy
f (x, t) = 0 Equation of integration surface
H ( f ) Heaviside function
M Mach number
Mr Mach number in the radiation direction
n̂ Unit outward normal vector to surfacef = 0
p Pressure
p′ Perturbation pressure
P0 Mean pressure
r Length of radiation vector,‖x − y‖
r Radiation vector,x − y

31
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r̂ Unit radiation vector,r/r
t Observer time
u x-direction velocity
u′ Perturbation x-direction velocity
u Flow velocity vector
U0 Mean x-direction velocity
v y-direction velocity
v′ Perturbation y-direction velocity
vr Projection of flow velocity in radiation direction
v Integration surface velocity vector
V0 Mean y-direction velocity
w z-direction velocity
w′ Perturbation z-direction velocity
W0 Mean z-direction velocity
x, y, z Cartesian coordinates
x Far-field observer position vector
y Source position vector

Greek Symbols

δ( f ) Dirac delta function
δi j Kronecker delta function
ρ Density
ρ ′ Perturbation density
ρ0 Mean density
τ Source time
ξ, η, ζ Transformed coordinates

9 Introduction

In the TurboNoiseCFD project, a part of ISVR’s effort is to develop a model of noise radiation from
the aft bypass and exhaust ducts. It involves admission of noise propagation from the rotor and OGV,
though the ducts into the exhaust flow region, and transmission of noise in the exhaust/jet flow region,
leading to the far-field noise radiation. Consortium partners using computational fluid dynamics (CFD)
generate the unsteady flow/noise data. The data are further analysed and would be available in the forms
of various wave inputs,i.e. acoustic, vorticity and entropy. The noise generated by the exhaust/jet flow
itself is not considered at this stage.

A major issue is the admission of waves into the aerodynamic flow region covered by the ISVR
effort, i.e. flow outside the bypass and exhaust ducts. A matching problem is most likely to occur across
the interface between the duct region and bypass/exhaust flow region, as two different flow solvers are
likely to be used. On the interface, dynamically balanced flow solutions produced by one solver (e.g.
Navier-Stokes) cannot be directly used as the inflow conditions for another flow solver (e.g.Linearised
Euler), due to different approximations in the governing equations.
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10 Proposed Radiation Model

The proposed model consists of three parts as illustrated in figure 3 with a simple schematic: wave
admission region, CAA region and radiation region. In the wave admission region, the incoming waves
from the TUE duct acoustic calculations are admitted into the CAA region, in the form defined in the
following sections. The wave admission region is in fact a part of the CAA modelling. However, the
acoustic waves are prescribed. This region overlaps with a part of the TUE duct acoustic region. Spurious
waves and unwanted reflections are damped by a buffer zone boundary condition. In the CAA region, a
mean flow model is used to model the exhaust flow out of the bypass/exhaust ducts. The acoustic wave
propagation is calculated by a Linearised Euler solver. Solutions from the Linearised Euler equations
provide input to the radiation model. In this study, we use a an integral solution of the Ffowcs Williams-
Hawkings (FW-H) equation.

��������������������

��������������������

WAVE ADMISSION REGION

DUCT

CAA REGION

BUFFER ZONE

FW−H SURFACE

Figure 3: Schematic of the matching and radiation model.

11 Wave Admission Region

There will not be a matching problem for the incoming mean flow in the wave admission region as ISVR
will develop a mean flow model for the matching and radiation problem in this project. It is most likely
though that there will be a matching problem for the admission of the incoming acoustic waves. The
incoming acoustic waves are produced by computational fluid dynamics (CFD) computations and are
further processed by duct acoustic calculations (at TUE). The CAA solver used by ISVR possesses low
dissipation and dispersion characteristics. Hence any inconsistency at the inflow boundary will introduce
errors/spurious wave reflections in the CAA calculations, which will eventually render the calculations
useless.

To address the matching problem, a wave admission region is placed inside the duct (see fig.3), which
overlaps with the TUE duct acoustic region. Hence the TUE calculations provide not only the wave
condition on the inlet of the ISVR wave admission region, but also a ‘target’ for the CAA calculation in
the wave admission region. In the wave admission region, the incoming/outgoing waves act as a reference
and any corresponding outgoing/incoming waves will be damped. In the incoming flow region, ISVR
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requires information of the incoming waves such as angular frequency and axial/circumferential wave
number in order to exclude the incoming wave while damping outgoing waves in the region. Therefore,
the incoming acoustic waves in the whole of the wave admission region are required. A suitable form
would be:

f (x, y, z, t) =
∞∑

j =−∞

∞∑
k=−∞

∞∑
m=−∞

∞∑
n=−∞

f jkmne
inωt−i j kx x−ikky y−imkzz (95)

where f represents any of density, velocity components and pressure.ω, kx, ky, kz are the angular
frequency andx, y, z-direction wave numbers respectively.j , k, n andm are the corresponding wave
modes.

The length of this region will be decided through a series of tests. Specifications are be provided in
the later stages of the project.

12 CAA Region

12.1 Introduction

In this project, we assume that the acoustic propagation is governed by the Linearised Euler Equations
(LEE) where the assumption of small amplitude perturbations about a steady mean flow describes the
features of the propagating acoustic waves. In order for a finite difference CAA scheme to capture
the same wave propagation characteristics (namely, nondispersive, nondissipative and isotropic) as the
solutions of the LEE, the CAA scheme must be of high-order accuracy.

12.2 Summary of equations for fluid motion

Conservation laws

The non-linear Euler Equations representing inviscid and adiabatic fluid motion are represented in a
standard strong conservation form in equation (96).

∂Q
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0 (96)

where the solution vectorQ is given by

Q =



ρ

ρu
ρv

ρw

ρE




and the flux vectors given by

F =




ρu
ρu2 + p
ρvu
ρwu

u(ρE + p)


 , G =




ρv

ρuv
ρv2 + p
ρwv

v(ρE + p)


 , H =




ρw

ρuw
ρvw

ρw2 + p
w(ρE + p)



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Formulation of the Linearised Euler Equations (LEE)

For fluid flows where the flow properties can be modeled as unsteady perturbations superimposed on a
steady mean flow, ie.

ρ(x, y, z, t) = ρ0(x, y, z)+ ρ ′(x, y, z, t),

u(x, y, z, t) = U0(x, y, z)+ u′(x, y, z, t),

v(x, y, z, t) = V0(x, y, z)+ v′(x, y, z, t),

w(x, y, z, t) = W0(x, y, z)+ w′(x, y, z, t),

p(x, y, z, t) = P0(x, y, z)+ p′(x, y, z, t).

(97)

we can linearise for small amplitudes and subsequently obtain the governing equations for the pertur-
bations - the Linearised Euler Equations. Equations (98 - 102) represent the governing perturbation
equations about a steady, non-uniform mean flow. The equations have been written in a compact form
where a subscript denotes a partial derivative with respect to the subscript variable.

Continuity

ρ ′
t + ρ0

(
u′

x + v′
y + w′

z

) + U0ρ
′
x + V0ρ

′
y + W0ρ

′
z

= −ρ ′(U0x + V0y + W0z

) − (
u′ρ0x + v′ρ0y + w′ρ0z

) (98)

X-momentum

ρ0u′
t + ρ0U0u

′
x + ρ0V0u′

y + ρ0W0u′
z + p′

x

= −ρ ′(U0U0x + V0U0y + W0U0z

) − ρ0u′U0x − ρ0v
′U0y − ρ0w

′U0z

(99)

Y-momentum

ρ0v
′
t + ρ0U0v

′
x + ρ0V0v

′
y + ρ0W0v

′
z + p′

y

= −ρ ′(U0V0x + V0V0y + W0V0z

) − ρ0u′V0x − ρ0v
′V0y − ρ0w

′V0z

(100)

Z-momentum

ρ0w
′
t + ρ0U0w

′
x + ρ0V0w

′
y + ρ0W0w

′
z + p′

z

= −ρ ′(U0W0x + V0W0y + W0W0z

) − ρ0u′W0x − ρ0v
′W0y − ρ0w

′W0z

(101)

Energy

p′
t + U0p′

x + V0p′
y + W0 p′

z + γ P0
(
u′

x + v′
y + w′

z

)
= −u′ P0x − v′ P0y − w′P0z − γ p′(U0x + V0y + W0z

) (102)

12.3 Implementation of the CAA scheme

Equations (98 - 102) represent the linearised Euler Equations in Cartesian coordinates. The governing
equations are recast in generalised curvilinear coordinates that allows the transformation of a curvilinear
grid in the physical domain to a rectangular grid in the computational domain. The LEE CAA solver
supports the propagation of incoming acoustic, entropy and vorticity waves. Matching the form of the
acoustic waves generated in the CFD solvers to the correct form for the LEE is an important task and has
been highlighted in this report. Once the correct form of the incoming acoustic waves is determined, the
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only other input required for the LEE solver is the mean flow field. In a simple case this can be generated
using either an analytic mean flow profile or time-averaged solutions of the Navier-Stokes Equations for
the flow within the CAA field.

The LEE solver uses a 6th-order compact scheme for the spatial derivatives and a 4/6 stage explicit
Runge-Kutta scheme for the time integration. The solver outputs the temporal and spatial variations
of the unsteady flow perturbations (ρ ′,u′, v′, w′, p′). These act as the input to the Ffowcs-Williams
Hawkings solver.

13 Ffowcs Williams-Hawkings Solver

13.1 Introduction

An integral solution of the Ffowcs Williams-Hawkings[13] (FW-H) equation is implemented numerically
to allow near- and far-field noise levels to be determined efficiently. The FW-H formulation is particularly
attractive in comparison to other integral methods as it permits the passage of hydrodynamic disturbances
through the integration surface without effecting the acoustic field, and therefore affords a greater degree
of flexibility in positioning the surface than say the Kirchhoff method [9]. The particular integral solution
implemented is known as formulation 1A of Farassat[14]. This time-domain formulation is valid in both
the near- and far-field, and is appropriate for surfaces in arbitrary motion.

The program described herein is a post-processing piece of software requiring as input the time histo-
ries of the flow-field variablesρ, ρu, ρv, ρw andρE over a user definable integration surface. Normally
this is provided in the form of time-accurate CFD data. In such cases the software first interpolates the
data to the integration surface before commencing calculations.

13.2 Governing Equations

The FW-H equation may be written in differential form as

( ∂2

∂t2
− c2

o

∂2

∂xi
2

)(
H ( f )ρ ′) = ∂2

∂xi ∂xj

(
Ti j H ( f )

) − ∂

∂xi

(
Li δ( f )

) + ∂

∂t

(
Uδ( f )

)
(103)

where

Ti j = ρui u j + Pij − c2
oρ

′δi j (104)

Li = (
Pij + ρui (uj − v j )

) ∂ f

∂xj
(105)

U = (
ρovi + ρ(ui − vi )

) ∂ f

∂xi
(106)

The first termTi j is known as the Lighthill stress tensor, and represents the volume sources; the second
represents the sound generated by unsteady forces; and the third represents the sound generated as a
result of the unsteady mass flux. The FW-H equation is the most general form of the Lighthill acoustic
analogy and is appropriate when sound is generated by surfaces in arbitrary motion.
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A time-domain solution to the above inhomogeneous second-order partial differential equation is
obtained in terms of a Green’s function [15]. The Green’s function,G(x, t; y, τ ) is defined such that it
satisfies the wave equation

( ∂2

∂xi ∂xi
− ∂2

∂t2

)
G(x, t; y, τ ) = −δ(t − τ)δ(x − y) (107)

The Green’s functionG(x, t; y, τ ) may be thought of as representing the pressure at pointx and time
t caused by an impulsive source located at the pointy and triggered at timeτ . The acoustic density
fluctuationρ ′(x, t) perceived by the far-field observer atx at time t , due to the distribution of sound
sources within the volumeV and over the surfaceS, is given by the sum of contributions from all
acoustic sources withinV and overSat the earlier(retarded) timeτ = t − ‖x − y‖/c∞.

A solution of equation 103 can be written as the convolution of the Green’s function and the right
hand side of the FW-H equation. Using the free-space Green’s function, the solution may be written

4πp′(x, t) = ∂2

∂xi ∂xj

∫
V

[
Ti j

r |1 − Mr |
]

ret

dy3 + ∂

∂t

∫
s

[
ρ ′(un − vn)+ ρoun

r |1 − Mr |
]

ret

dS

− ∂

∂xi

∫
S

[
σ ′

i j n̂ j − ρui (un − vn)

r |1 − Mr |
]

ret

dS (108)

Following Farassat the speed and accuracy of the calculation may be improved by converting the spatial
derivative of the third integral to a time derivative and then by moving the time derivatives inside the
integrals. The first aspect of this is achieved using the relation

∂

∂xi

(δ(g)
4πr

)
= 1

c0

∂

∂t

( r̂ i δ(g)

4πr

)
− r̂ i δ(g)

4πr 2
(109)

To allow the time derivatives to be taken inside the integral, it is noted that ther = ‖x − y(τ )‖ is a
function ofτ and therefore

∂

∂t
=

[
1

1 − Mr

∂

∂τ

]
ret

(110)

To complete the derivation, we make use of the following useful relations

∂r

∂τ
= −vr (111)

∂ r̂ i

∂τ
= r̂ ivr − vi

r
(112)

∂Mr

∂τ
= 1

c0r

(
r i
∂vi

∂τ
+ v2

r − v2
)

(113)

∂Un

∂τ
=

(∂Ui

∂τ
n̂i + Ui

∂n̂i

∂τ

)
≡ .

Un +U.
n (114)

The final result is
p′(x, t) = p′

Q(x, t)+ p′
L(x, t)+ p′

T (x, t) (115)

where

4πp′
T (x, t) =

∫
S

[
ρ0(

.
Un +U.

n)

r (1 − Mr )
2

]
ret

dS+
∫

S

[
ρ0Un(r

.
Mr +c0Mr − c0M2)

r 2(1 − Mr )
3

]
ret

dS (116)
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4πp′
L(x, t) = 1

c0

∫
S

[ .
Lr

r (1 − Mr )
2

]
ret

dS+
∫

S

[
Lr − L M

r 2(1 − Mr )
2

]
ret

dS

+ 1

c0

∫
S

[
Lr (r

.
Mr +c0Mr − c0M2)

r 2(1 − Mr )3

]
ret

dS (117)

and the termp′
Q(x, t), accounting for the quadrupole sources outside the integration surface, is neglected.

This integral representation of the FW-H equation is known as formulation 1A of Farassat.

14 Summary

The matching method and radiation model as proposed in this preliminary report represent some initial
thoughts of the bypass and exhaust duct noise matching and propagation problem. A number of issues
need to be addressed before the model can be validated and used in the TurboNoiseCFD project.
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