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1_ INTRODUCTION 

The original formalisms for expressing queries on relational databases come from a mathematical back
ground. One of these formalisms is the relational algebra. Since the introduction of such formalisms 
however, there has been an evolution in querying relational databases and the need has grown for 
stronger formalisms. The three main aspects, in which the original formalisms are not strong enough, 
are: 
(1) the presence of the first normal form (1NF); 
(2) the absence of aggregation and computation; 
(3) the absence of recursion. 

Since the introduction of the recommendation that relations should be in first normal form ([C70J), i.e. 
only atomic data values are allowed, it has been suggested ([AR84), [FI"83) that this widely accepted 
requirement is in fact too restrictive. Recently a number of proposals ([SS86), [V87]) for nested rela
tions (relations with relational data values) have been made. 
Furthermore, it seems that allowing the usage of aggregation, computation and recursion in queries is 
another step towards a formalism for expressing queries, that is strong enough to serve much more of 
the user's needs that the original formalisms, like the relational algebra, can do. 
Our aim is to define a formalism for expressing queries on a relational database, that comes from a 
mathematical background, but that adds to the usual features of such formalisms the three features, that 
we just described. 

Since we think that for too long these formalisms have been one dimensional, there is one other impor
tant aspect that we want to capture with our formalism. When we say that these formalisms are one 
dimensional, we mean that systems based on these formalisms are only able to handle queries, that are 
expressed by one dimensional formulas, i.e. strings of symbols. 
This idea of communicating in a one dimensional way with computers is now gradually being replaced 
by the idea of communicating through a graphical interface, that not only represents the output of the 
computer in a two dimensional graphical way, but that also handles the computer's input «answers on) 
questions to the user) in such a way. Since the best way to express nested relations is in a two dimen
sional way (e.g. trees), our formalism should allow the user to express queries on relations two dimen
sionally, i.e. by making full use of the screen of the machine on which the relational system is operat
ing. 
The formalism that we will present here is constructed having in mind, that the system that uses this 
formalism should be two dimensionally, but the formalism itself is presented in the usual mathematical, 
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Le. one dimensional, way. Since our formalism is a two dimensional version of the relational algebra 
we call this formalism the R 2 -algebra. As notations for the operations of the R 2 -algebra we use one 
dimensional formulas, but these formulas are chosen in such a way that the two dimensional idea 
behind an operation (i.e. the two dimensional manipulations on the screen) is obvious. Note that this 
can imply that these formulas are rather complex from a one dimensional point of view. 

2. TWO DIMENSIONAL ALGEBRA 

The R 2 -algebra has a lot in common with other nested algebras. When defining this algebra we want to 
capture a number of features, that are not (sufficiently) captured in other nested algebras. One of these 
features, the two dimensional usage, will be discussed in this section, since a number of definitions 
strongly depend on this notion. Note however, that we can capture the other features, like having non
INF relations and allowing aggregation, independently of the introduction of the two dimensional usage 
into our formalism. 

The idea of the R 2-algebra is that a relation is represented by a two dimensional figure on the screen. 
When a user wants to express a query, he manipulates a number of known relations in such a way that 
a new relation is constructed, that holds exactly the information that is specified by the query. In our 
system we imagine that for a number of relations there are representations on the screen and that with 
the aid of several screen manipulations a representation of a new relation is constructed on the screen. 
The operations of the R 2 -algebra will be implemented as performing certain screen manipulations. The 
system will supply the user with menu's from which operations can be chosen that should be executed, 
Le. of which the corresponding screen martipulations should be executed. 

A relation consists mainly of two parts, its schema and its value. A relation is used to represent some 
iuformation. The schema of a relation defines the structure of the information, whereas the value of a 
relation specifies the current instance of the information. 
The schema of a relation defines the attributes of a relation. Also it defines which attributes are atomic, 
i.e. their value is an atomic data value, and which attributes are structured (nested), Le. their value is 
the value of a relation. 
We imagine a schema of a relation to be represented on the screen by a tree. Such a tree is constructed 
by having first of all a vertex labeled with (the name of) the schema. For each atomic attribute of the 
schema there is an edge to a vertex labeled with (the name of) that atomic attribute and for each struc
tured attribute there is an edge to the tree representing that structured attribute, which is a relation 
schema itself. 
We will be able to manipulate relation schemata (Le. trees) instead of relations, since we require that 
every schema corresponds with one value. This implies of course that in the system there is the possi
bility of asking for the (current) value corresponding with a given tree. 
Therefore, the idea is that a user starts with a screen with trees, representiog relations. Then he exe
cutes operations, which he can choose from several menu's, thus obtaining new trees on the screen, 
until a tree is obtained that represents the required relation, i.e. the relation that is specified by the 
query. 

3. RELATIONS IN THE R 2-ALGEBRA 

In order to define what relations in the R 2 -algebra are, we will now introduce some (inforF.>al) 
definitions. 
A relation is used to store information. The structure of this information, i.e. the structure of the rela
tion, is described by the schema of the relation. As mentioned in the introduction, we are interested in 
nested (two dimensional) structures. Such a structure can easily be represented by a tree. 

In our formalism a schema is the name of the schema, which is an identifier, followed between 
parentheses by its attribute list (we use I for the concatenation of elements in a list). 
An attribute is either atomic or structured. An atomic attribute is just the "arne of that attribute. A 
structured attribute is a schema. 
We define that, if x is a schema or an attribute, the name of x is denoted by N (x), whereas, if x is a 
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schema or a structured attribute, the attribute list of x is denoted by L (x). 
If n (/) is a schema, i.e. n is an identifier and / is an attribute list, then N (n (/» ; n and L (n (I) ; /. 
If a is an atomic attribute, i.e. a is an identifier, then N (a) ; a. If a is a structured attribute, i.e. a ~ 
nell with nell a schema, then N(a) = N(n(/» and L(a) ~ L(n(/». 

If / is an attribute list, then SA (I) is defined to be the set of attributes in the list and SN ( I) is defined 
to be the set of the names of the attributes in the list 
We require for every schema that the attributes occurring in the schema have distinct names and that 
those names are distinct from the name of the schema. 

Example: 

Let s be the schema A(B(C I D) I E(F(G I H(l) I J) I K). Then: 
N(s) = A,L(s) = B(CI D)I E(F(GI H(l)1 J)I K, 
SA (L(s» = [ B(CI D), E(F(GI H(I»I 1), K}, SN(L(s» = [ B, E, K }. 

Here A, B, C, D, E, F, G, H, I, J and K are identifiers. 
o 
SM (n (/» will be the set of all the atomic attributes of schema n (I). The atomic attributes of schema 
n (l) are those attributes, that are either atomic attributes in / or atomic attributes of structured attributes 
in /. So, if a is an atomic attribute, then SMeal = [a}; if a is an attribute and / is an attribute list, 
then SM(a I /) = SMeal u SM(I); if n(l) is a schema, then SM(n(l» = SM(I). 
ALL (n (I» will be the set of all the attributes of schema n (I), defined by : if n (I) is a schema, then 
ALL(n(l» = [n(l)} u ALL(/); if a is an atomic attribute, then ALL (a) = [a}; if a is an attribute 
and / is an attribute list, then ALL (a I I) = ALL(a) u ALL(I). 

Now we will define what tuples, instances and sets of instances are. 
Suppose n(l) is a schema, D is a non-empty set of domains and d is a mapping from SM(n(l» onto 
D. A tuple over n(l) (w.r.t d) is a mapping I, with domain SA (I) and 

- I(a) E deal ,if a is an atomic attribute; 
- I (a) E I (a) , if a is a structured attribute. 

An instance of nell (w.r.!. d) is a set of tuples over n(l) (w.r.!. d). The set of all instances of n(l) 
(w.r.t. d) is called [(nell) (w.r.t. d). 
For the purpose of this paper we suppose that the mapping d is known, so that it is known for every 
atomic attribute a what the domain of a is. Therefore, in this paper we do not include D and d in the 
definition of a relation. 
A relation r is a pair (n(l), v), where n(l) is a schema and v is an instance of n(l). We will use 
S(r) to denote the schema and V(r) to denote the value of a relation r: if r = (n(l), v), then S(r) = 
n(l) and VCr) =v. 

Example: 

Let STUD be the relation (stud, vstud), where stud is the schema 
student(name I address(street I or I city) I year I exam(subject I attempt(date I result»), 

and vstud is the instance that could be represented as : 
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stndent 

address exam 
name 

city 
year 

subject 
attempt 

street or 
date result 

Bob Square I NY I math I 010286 4 
Avenue 88 NY 110486 3 

020387 6 
math2 110186 8 

Jim Road 5 LA 2 compilers 120986 8 
201086 7 

algorithms 111186 I 

Bill Square I NY 2 algorithms 

o 
4_ BINARY OPERATORS 

We introduce a number of algebraic operators in order to query the relations of the R 2-algebra. Such 
an operator is a relation-valued function. In this section we define the binary operators union, intersec
tion, difference and join. These operators have intuitively the same meaning as the binary operators 
from the (flat) relational algebra. Besides describing the intuitive meaning of the operators, we give the 
formal (one dimensional) definition and the two dimensional idea behind that definition. Note that for 
reasons of convenience we define that every available relation has a unique name. 

UNION 

Wben we have two relations with the same structure, i.e. with the same schema (n,(I) and n2(1) resp.) 
except of course for the names of the schemata (n, '" nol, then we can use the union operator to com
pute a relation with that same schema (n,(l)), again except for its name (n, '" n, and n, '" nol, and 
with a value that is the (set theoretical) union of the values of the two given relations. 

Definition : 

Let" = (n,(l), v,) and '2 = (n,(I), vol be relations with n, '" n2' Let n, '" n, and n, '" n2' 
Then we define : 

UNI[ n,(I) ; n2(1) ; n, 1 ('" 'oJ = T, 
with T, = (n,(I), v,) a relation with value 

The notation for the union operator is chosen in this way, since the idea is that when a union of two 
relations is to be computed, the user first of all has to identify those two argument relations. He does 
so by clicking the representations of the schemata (i.e. trees) of the relations (n, (I) and n,( I)) on the 
screen. The system should react by computing the new relation and by drawing its representation on 
the screen. Since we require that every relation known in the system has a unique name, the system 
will ask the user to enter a name (n:v for this new relation. 

Of course, the intersection and the difference can be defined analogously. 
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INTERSECTION 

Definition : 

Let'l = (n,(I). VI) and'2 = (n2(1). vv be relations with n, '" n2' Let n, '" n, and n, '" n2. 
Then we define : 

INT[ n,(l) ; n2(l) ; n,l ('" 'V =', 
with " = (n,(l). v,) a relation with value 

Il 

DIFFERENCE 

Definition : 

Let'l = (n,(l). VI) and r2 = (n2(l), vv be relations with n, '" n2' Let n, '" n, and n, '" n2' 
Then we define : 

DIF[ n,(1); n2(1); n,l (r" riJ = r3 
with'3 = (n3(1), V3) a relation with value 

Il 

JOIN 

Basicly. the jnin can be defined analogously. However, we do not reqnire that the lists of the schemata 
(n,(I ,) and n2(liJ) of the two given relations are the same. The list of the schema of the resulting 
relation will be composed of the lists of the given relations by concatenating the first list and the part of 
the second list, that does not occur already in the first list. Again a new unique name (n3) of the 
schema must be chosen. 

Definition: 

Let'l = (n,(l,). v,) and,z = (nz(lz). vz) be relations with n, '" nz. Let n3 '" n, and n3 '" n2' 
Then we define : 

JOl[ n,(l,) ; nz(/v ; n31 (,,,,z) ='3 
with '3 = (n3(/3). V3) a relation with the list of the schema 

13 = 1, I (/2 ~(SA (I z) - SA (I,» ) 
and with the value 

v, = ( t 't tuple over n,(13) and 
E( t,,12: 1, E V, and 12 E V2: 
A(a : a E SA(I ,): tea) = 1,(a» and A(a : a E SA(li): tea) = lzea») J. 

o 
5_ SELECTION AND PROJECTION 

Now we will define the operators selection and projection in the R 2-algebra. These operators have the 
same intuitive meaning as in the flat relational algebra. except for the fact that in the R 2-a1gebra selec
tion and projection can be applied at all levels of the nested structure. 

With the unary operators we often have to specify a number of attributes that play some role in the 
operation. The two dimensional idea is that the specifying of attributes is done by clicking these attri
butes on the screen in the desired order. In our formal definition we will give a list of attributes. that 
represent the clicking of the attributes in the order in which they occur in the list Since every attribute 
must have a unique name. we can even give a list of attribute names instead of a list of attributes. 
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Before defining the selection operator we will give some definitions, that are used in most of the 
definitions of unary operators. 

If Ian is a non-empty list of attribute names, then LA (Ian) is the list of attributes obtained by substitut
ing each attribute name by the attribute, that is uniquely determined by that name. 
If a is an attribute and al is a list of attributes, then we use the predicate 0 (a, al) to denote that a 
occurs in al. We also use OS (a, al) to denote that the structured attribute a has successor attributes 
that occur in al. So we define : 

O(a,al)<;=;.a E SA(al); 
OS(a, al) <;=;. E( a' : a'ESA(L(a»: O(a', al) or OS(a', al». 

Sometimes the attributes that we specify in some list ai, must correspond with sibling attributes in a 
given schema n (I), i.e. the corresponding nodes must be sibling nodes in the representation tree. 
Therefore we define : 

SIB(al, n(l» <;=;. 

E( a: aEALL(n{l»: A( b : bESA(al): O(b,L(a»». 
Another predicate, that is used in most of the definitions, is the predicate LO (ai, n (I), k), that denotes 
whether there are attributes in the list al that occur in the schema n (/) at level k. It is defined as : 

LO (ai, n(l), 0) <;=;. 0 (n (I), al) ; 
LO(al, n{l), k) <;=;. E( a : aESA{l) : LO(al, a, k-l», for k > O. 

Now we can introduce the selection and the projection. 

SELECTION 

The idea of the selection is the traditional idea of selecting tuples satisfying a given criterion. This 
implies that, given an instance, i.e. a set of tuples, we can compute a subset of that instance determined 
by a function 1 and an argument list of attributes al. Also we have the possibility to replace the value 
of some structured attribute by a subset of that value, when the attributes of al occur at a higher level 
in the given schema. 
We can specify this selection by giving the schema n (/) of the argument relation, the function 1 and 
the list of attribute names (Ian) that uniquely corresponds with the attribute list al. The attributes must 
be sibling attributes at least at level 1. The function 1 and the list of attributes al are such that, given 
a tuple lover at least the attributes in ai, 1 (ai, I) is a boolean value. 
Note that in practice one could specify the name of the argument relation instead of its entire schema. 
Here we will specify the entire schema in order to have all necessary information visible. 

Definition : 

Let 7 = (n (I), v) be a relation, 1 a function, Ian a list of attribute names and n' an identifier. 
Suppose: 

LA (Ian) = al and SIB (ai, n (I» and n' .. n. 

Then we define : 
SEL[ n(l);1 ; Ian; n'] (7) = r' 

with r' = (n' (/), v') a relation, where: 

ifLO(al,n(/),I),then 
v' = [I II E v and/(al,I)}; 

ifLO(al,n(l),k)andk > 1 andoa E SA (I) and OS(o, a/), then 
v' = [ ( I ( tuple over n'(I) and 

E(t:IEV: 
A( a: a E SA (I) - [oa}: (a) = I(a» and 
(oa)=V(SEL[oa;1 ; Ian ;N(oa)] (oa,l(oa»» }. 
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o 
How are we going to apply a selection at a real system? We start by choosing from some menu of 
operations the selection operation, i.e. by clicking the SEL operator, and by identifying the argument 
relation, i.e. by clicking its representation (n (I ». The system will react by asking to enter a function 
(f), i.e. the narne of some predefined function, and to click the argument attributes (Ian) in the order in 
which they should occur in the function. When we say clicking an attribute, we mean clicking the root 
(i.e. the narne) of the tree representing that attribute. Then the system knows which criterion is 
specified by f and Ian. Such a selection criterion is a function that, given a list of attributes and a 
tuple over at least these attributes, determines a boolean value. The functions that can be used as a 
selection criterion are those functions that can be specified in some programming language (e.g. Pascal) 
and thus can be computed by the system. The system reacts by computing the new relation and, since 
there is no new name known, it asks to enter that narne (n'). 

Example: 

For illustrating the unary operators, we will use the relation STUD from section 3. 

Consider the selection : 
SEL[ student(name I address(street I uri city) I year I exam(subject I attempt(date I result») ; f ; 
year ; first-year-student 1 
with f(year, t) ~ t (year) = 1. 

When we apply this selection on STUD, then we get a relation SI, which has a schema that is the same 
as the schema of STUD, except for the name, which is first-year-student. The value V(SI) can be 
represented as follows : 

first-year-student 

address exarn 

narne 
city 

year 
subject 

attempt 
street m 

date result 

Bob Square 1 NY 1 mathl 010286 4 
Avenue 88 NY 110486 3 

020387 6 

math2 110186 8 

So this selection produces an instance with the tuples from the value of STUD, that have the value of 
year equal to 1. This implies that this selection selects the first-year-students. 

Consider the selection : 
SEL[ student(name I address(street I or I city) I year I exarn(subject I attempt(date I result») ; g ; 
attempt; veteran 1 
with g(attempt, t) ~ I t(attempt) I" 3. 

When we apply this selection on STUD, then we get a relation S2, which has the sarne schema as 
STUD, except for the narne which is veteran. The value V (S2) can be represented as follows: 
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veteran 
address exam 

name 
city 

year 
subject 

attempt 
street or 

result date 

Bob Square I NY I math I 010286 4 
Avenue 88 NY 110486 3 

020387 6 

Jim Road 5 LA 2 

Bill Square I NY 2 

Applying this selection on STIJD produces an instance with tuples, that are obtained from tuples of 
vstud (V(STUD» by taking in the value of exam only those tuples, that have as value of attempt a set 
with at least 3 elements. So this selection gives information about the students that have made at least 
3 attempts at some subject. 
o 
PROJECTION 

The idea of the projection is again the traditional idea from the relational algebra, i.e. we want to com
pute a relation, which has a schema that is only a part of the schema of the original relation. The main 
difference with the relational algebra is the possibility of projecting on attributes at all levels of the 
structure. 
We specify a projection by giving the schema (n(l» and a list of names (Ian) of attributes from that 
schema. The list of attributes specified by Ian will be interpreted in the following way: for every attri
bute occurring in the list, all its successors and all its predecessors occur in the new schema; no other 
attribute occurs in the new schema. So the tree representing the new schema will be the tree of the ori
ginal schema, where some entire subtrees are cut away. Of course, the root of the tree (the name of the 
resulting schema) is also different (n'). 

Definition: 

Let r = (n (l), v) be a relation, Ian a list of attribute names and n' an identifier. 
Suppose: 

LA (lan) = al and n' #' n . 

Then we define : 
PROf n(l); Ian; n' I (r) = r' 

with r = (s , v') a relation, where : 

if LO (ai, n (/), 0), then 
s =n'{I), 
v' = v; 

if LO{al, n(/), k) and k > 0, then 
v' = ( I I I tuple over s and 

E((:(Ev: 
A( a: a E SA(l) and (O(a, al) or OS{a, al»: 
(a" SM{n(l» ~ 

I{a) = V{ PROf a ; Ian ~ ((a) u SA{L{a» )) ; N(a) I {a, ({a»» and 
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(a E SAA(n(l»:;. t(a); (a)))) ) ; 
s is the schema defined by : 

s ; n'(PL( I ~ (a I a E SA (I) and (O(a, al) or OS(a, al)))), 
with PL(x) the projection on a list x, defined by: 

if/;alr,then 
PL(I);S(PRO[a ;Ian~«(a)u SA(L(a»);N(a)] (a, 0) IPL(r», 
ifl ;a,then 
PL(I); S( PROf a ; Ian ~ «(a) u SA (L(a») ; N(a)] (a, 0». 

On the screen we will first click the PRO operator. After identifying the argument relation (n (l », we 
have to specify which attributes should occur in the new relation. We could of course click all these 
attributes, but we have chosen to click only the attributes that, according to the interpretation outlined 
above, imply all these attributes. So we click some nodes (Ian) and the system knows that all these 
nodes, their successors and their predecessors should occur in the new relation. Of course, we finish the 
operation by entering a name for the new relation (n'). 

Example: 

Consider the projection: 
PROf student(name I address(slreet I or I city) I year I exam(subject I attempt(date I result») 
name I date ; exam-date ]. 

Applying this projection on STUD prodnces a relation S3 with schema: 
exam-date(name I exam(attempt(date»). 

The value V (S3) is : 

exam-date 
exam 

name attempt 
date 

Bob 010286 
110486 
020387 

110186 

Jim 120986 
201086 

111186 

Bill 

So this projection produces an instance with for every tuple from vstud only the value of name and a 
set, with for every value of subject the set of values of date. 

Consider the projection : 
PROf student(name I address(slreet I or I city) I year I exam(subject I attempt(date I result») ; 
student; student' ]. 

The application of this projection on STUD results in a relation S4, that except for the name of the 
schema (student') equals STUD. So this selection produces a copy of STUD and assigns to this copy a 
new name. 
D 
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6_ NEST AND UNNEST 

As in all formalisms that allow for relations that are not in first normal form, we have two operators 
that give the possibility to gain a level in the structure of the schema or to loose a level in that struc
ture. 

NEST 

The idea behind the nest is that we can take a number of attributes from an attribute list and construct a 
new structured attribute with exactly those attributes in its attribute list. 
So, after specifying the argument relation (n{l)), we will specify which attributes have to be nested by 
giving a list of the names of these attributes (Ian). These attributes are required to be sibling attri
butes. The new attribute must get a name (an), that does not conflict with the names already occurring 
in the schema. 

Definition: 

Let r = (n (I), v) be a relation, Ian a list of attribute names and both an and n' identifiers. 
Suppose: 

LA (Ian) = al and ( (O(n{l), al) and not OS(n(l), al)) or SIB (ai, n(l)) ) and n' * n and 
an f/ (N(a) I aEALL(n(l))}. 

Then we define : 
NES[ n(l); Ian; an ; n' ] (r) = r' 

with r' = (s, v') a relation, where : 

if LO(al, n(l), 0), then 
s = n'(n{l)), 
v' = ( I II tuple over n'(n(l)) and I(n(l)) = v }; 

if LO(al, n(/), I) and al' = I ~ (SA(l)-SA(al)), then 
s = n'(al' 1 an(al)), 
v' = ( I I I tuple over s and 

E(t':t'EV: 
A( a : a E SA(al'): I(a) = t'(a)) and 
I(an(al)) = (u lu tupleoveral and 

E(U':U'EV: 
A( a : a E SA(al): u(a) = u'(a)) and 
A(a:a E SA(al'):u'(a)=t'(a)))})}; 

if LO(al, n(I), k) and k > 1 and a E SA(!) and OS(a, al), then 
v' = ( I I I tuple over s and 

E(t':t'Ev: 
A( d : a' E SA(l) - fa}: I(d) = t'(a')) and 
I(a) = V( NES[ a ; Ian; an ; N(a) lea, t'(a)))) }. 

with the schema s defined by : 
ifl=all',then 

s = n'(S( NES[ a ; Ian; an ; N(a) ](a, 0)) 1 1'), 
ifl=l'la,then 

s = n' (l' 1 S ( NES[ a ; Ian ; an ; N (a) ]( a, 0) )), 
ifl =101 al I"then 

s =n'(lol S(NES[a ; Ian ;an ;N(a)](a,0))II,), 
ifl =a, then 

s = n'(S( NES[ a ; Ian; an ; N(a) ](a, 0) )). 
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[] 

We will start specifying such a nest on the screen by first clicking the nest operator (NES) and subse
quently the argument relation (n (I» and the nodes that represent the attributes that are to be nested 
(Ian). The system should of course compute the new relation and draw its Iree on the screen while 
askiug to enter a name for the newly constructed node (i.e. the new attribute) (an) and a name for the 
root (i.e. for the schema) (n'). Note that if the nest is a nest at level 0, then only the new name for the 
root is relevant. 

Example: 

Consider the following nest : 
NES[ student(name I address(street I or I city) I year I exam(subjectl attempt(date I result») 
street lor; Sir-or; student' J. 

When we apply this operator on STUD, we obtain a relation S5 with schema: 
student'(name I address(str-or(street I or) I city) I year I exam(subject I attempt(date I result»). 

The value V (S5) can be represented by : 

student' 

address exam 

name str-or 
city 

year 
subject 

attempt 

street or date result 

Bob Square 1 NY 1 mathl 010286 4 
Avenue 88 110486 3 

020387 6 
math2 110186 8 

Jim Road 5 LA 2 compilers 120986 8 
201086 7 

algorithms 111186 I 

Bill Square 1 NY 2 algorithms 

This nest rearranges the information in such a way, that the values of street and or, that occur with one 
value of city, are taken together in one set, that is the sir-or value corresponding with that value of city. 
o 

UNNEST 

The idea of the unnest is rather the opposite of that of the nest. A structured attribute is substituted by 
the attributes from its attribute list 
In order to specify this operator we give the name (u) of a structured attribute, that must be unnested. 
It is obvious that we cannot allow that the schema itself is unnested. 
Of course, this operation also requires that we start with identifying the argument relation (n (I» and 
that we end with specifying a new name (n') for the result relation. 

Definition: 

Let r = (n (I), v) be a relation, u the name of an attribute and n' an identifier. 
Suppose: 

u ¢n andLA(u)=a and 0 E AU(n(l»-SM(n(l» and n' ¢n. 
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Then we can define : 
UNN[ n(l) ; u ; n' ] (r) = r' 

with r' = (s, v') a relation, where s and v' satisfy: 

if LO(a, n(l), I), then 
v' = { I I I tuple over s and 

E(I':(EV: 
A( a' : a' E SA (I) - {a 1 : I(a') = ( a') ) and 
E( w : WEI' (a) : A( d : d E SA (L (a» : I (a') = W (a') )) ) ). 

where s is the schema defined by : 
ifl =al r,thens =n'(L(a)Il'), 
ifl =/'1 a,thens =n'(/'I L(a», 
ifl =101 a11lothens =n'(lol L(a)II,), 
if 1 = a, then s = n'(L(a»; 

ifLO(a,n(l),k)andk > 1 andb E SA(I)andOS(b,a),then 
v' = { I I I tuple over s and 

E(t':t'EV: 
A( a' : a' E SA(I) - {b 1 : I(a') = (a')) and 
I(b) = V( UNN[ b ; u ; N(b) ](b,(b»» 1, 

where s is the schema defined by : 
ifl =bl r,thens =n'(S(UNN[b;u ;N(b)](b,0»II'), 
ifl = rib, thens =n'(r I S(UNN[b; u ;N(b)](b, 0»), 
ifl =101 bl/lothen 

s = n' (101 S ( UNN[ b ; u ; N (b) ]( b, 0) ) I I,), 
ifl =b,thens =n'(S(UNN[b;u ;N(b)](b,0»). 

The usage of the unnest on the screen is rather straightforward. First we click the UNN operator, then 
the argument relation (n (I» and subsequently the node that represents the attribute that is to be 
unnested (u) and when the system has computed the new relation it asks to enter the name of that rela
tion (n'). 

Example: 

Consider the unnest : 
UNN[ student(name I address(street I or I city) I year I exam(subject I attempt(date I result») ; 
attempt; student' ]. 

Applying this unnest on STUD produces a relation S6 with schema : 
student'(name I address(streetl orl city) I year I exam(subject I date I reSUlt». 

The value V (S6) of this relation is : 
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studs 
address exam 

name 
city 

year 
subject date result street nr 

Bob Square 1 NY 1 mathl 010286 4 
Avenue 88 NY mathl 110486 3 

mathl 020387 6 
math2 110186 8 

Jim Road 5 LA 2 compilers 120986 8 
compilers 201086 7 
algorithms 111186 I 

Bill Square I NY 2 

This unnest rearranges the information in such a way that for each exam (i.e. each (date, result)-tuple) 
the value of subject is stated explicitly. Note how the value "algorithms" disappears in the last tuple, 
since no exams in algorithms are known. 
n 

7. AGGREGATION AND COMPUTATION 

Now we will introduce two operations, that give the possibility to compute new values based on sets of 
tuples or on single tuples. 

AGGREGATION 

What is the idea of the aggregation? We start with the value of a structured attribute, i.e. a set of 
tuples. Given some attribute list aI (specified by a list of attribute names (Ian» we compute from that 
set of tuples a multiset of tuples. by taking for each tuple from the original set of tuples the restriction 
of the tuple on the attributes of al. Then we compute for this multiset an atomic value with the aid of 
some function f. This new value is stored in a new atomic attribute. We require that the attributes in 
al are atomic attributes and that 1 is a function. that, given a multiset of tuples over al, produces an 
atomic value. 

We can specify an aggregation by giving the argument relation n(l), the function 1 and the list of 
attribute names Ian. We require that the attributes specified by Ian correspond with sibling nodes at 
least at level 2. The new attribute. that contains the result value of the aggregation, corresponds with a 
node, that is a sibling of the parent of the nodes that correspond with the attributes over which is aggre
gated. The name (an) of this attribute must not conflict with the names already occurring in the 
schema. 
Of course we also specify the name of the new schema (n'). 

Definition : 

Let r = (n (I), v) be a relation, 1 a function. Ian a list of attribute names, and both an and n' 
identifiers. 
Suppose : 

LA (Ian) = al and SIB (al, n(l» and not LO(aI, n(l), 0) and not LO(al, n(l), 1) and 
an e (N(a) I aEALL(n(l»} and SA(al) ~ SM(n(l» and n' "n. 

Then we can define : 
AGG[ n(I);1 ; Ian; an; n' 1 (r) = r' 
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with r' = (s, v') a relation, where: 

1I 

ifLO(al,n(I),2) and a e SA(I) and OS (a,al),then 
s = n'(11 an), 
v' = ( I I I tuple over s and 

E(t':t'ev: 
A( a' : a' e SA (I) : I(a') = t'(d» and 
I(an) =f([ w t SA(al) I we (a)]» j; 

N.B. [ and 1 enclose a multiset. 

if LO (ai, n (I), k) and k > 2 and a e SA (I) and OS (a, al), then 
v' = ( I I I tuple over s and 

E(t':t'ev: 
A(a' :a' e SA(I)- (aj : I(a')=t'(a'» and 
I(a) = V( AGG[ a ;J ; Ian; an ; N(a) ](a, I'(a»))), 

where s is the schema defined by the following : 
ifl =all',then 

s = n' (S ( AGG[ a ; f ; Ian ; an ; N (a) ]( a, 0) ) 1 n, 
if I = ria, then 

s = n'(/' 1 S( AGG[ a ; f ; Ian; an; N(a) lea, 0) », 
if I = lola 1 I" then 

s = n'(lol S( AGG[ a ; f ; Ian; an; N(a) lea, 0»1 I,), 
ifl=a,then 

s =n'(S(AGG[a;f ; Ian ;an ;N(a)](a,0»). 

The usage of this operator on the screen is similar to that of the selection. Mter clicking the AGG 
operator and the schema of the argument relation (n (I », the name of the predefined function (f) is 
entered and the nodes, that represent the attributes that should be aggregated, are clicked (Ian). Subse
quently, the names of both the new node (an) and the root (n') must be entered. 
The aggregation function is the function f that, given a multiset of tuples (computed with the aid of 
attribute list LA ( Ian», determines an atomic value. The functions that can be used as such an aggrega
tion function f are those functions that can be specified in some programming language and are thus 
computable for the system. 

Example: 

Consider the aggregation : 
AGG[ student(narnel address(streetl nrl city)1 yearl exam(subjectl attempt(datel result ») ; h 
; result; sum; studsum ], 
with h the function that assigns to a multiset of integers the sum of the elements. 

The application on STUD implies a relation S7 with schema: 
studsum(narne 1 address(street 1 nr 1 city) 1 year I exam(subjectl attempt(date I result) I sum». 

The value V (S7) is : 
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slumUID 

address exam 
name 

city 
year 

subject 
attempt 

street nr 
result 

sum 
date 

Bob Square I NY I math1 010286 4 13 
Avenue 88 NY 110486 3 

020387 6 
math2 110186 8 8 

Jim Road 5 LA 2 compilers 120986 8 15 
201086 7 

algorithms 111186 1 1 

Bill Square 1 NY 2 algorithms 0 

So this aggregation is used to compute for each student the sum of the results per subject. 
o 
COMPUTATION 

Whereas with the aggregation an atomic value is computed for a set of tuples, with the computation 
atomic values are computed for separate tuples. 
Given a tuple t and a list of attribute names Ian that specifies an attribute list ai, we use a function 1 
to compute for the restriction of t on the attributes of al an atomic value. This new value is stored in 
a new additional attribute, which is a sibling attribute of the attributes over which we compute. We re
quire that the attributes in the attribute list al are atomic and that 1 is a function that, given an attri
bute list al and a tuple over ai, determines an atomic value. 
We specify a computation in almost exactly the same way as we specify an aggregation. Since the new 
attribute becomes a Sibling attribute of the attributes over which is computed, we can allow here that 
they are at level 1. 

Definition : 

Let r = (n (I), v) be a relation, 1 a function, Ian a list of attribute names and both an and n' 
identifiers. 
Suppose: 

LA(lan) = a/ and SIB(al, n(/» and not LO(al, n(/), 0) and an '" [N(a) I aEALL(n(l»} 
and SA (al) !:: SAA (n(/) and n' #' n. 

Then we can define : 
COM[n(l);I; Ian; an; n' 1 (r)=7 

with 7 = (s, v') a relation, where : 

if LO(a/, n(l), 1), then 
s = n'(11 an), 
v' = [ tit tuple over s and 

E(t':t'EV: 
A( a : a E SA(I): t(a) = t'(a» and t(an) =/(al, 1'» }; 

if LO(ai, n(l), k) and k > 1 and a E SA (I) and OS(a, ai), then 
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v' = ( tit tuple over s and 
E(t':t'EV: 
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A(a': dE SA (I) - (a): t(a')= t'(a'» and 
t (a) = V ( COM[ a ; / ; Ian ; an ; N (a) ] (a, t' (a» ) ) ), 

where s is the schema defined by the following : 
ifl =al (,then 

s =n'(S(COM[a;/ ; Ian ;an ;N(a)](a,0»Ii'), 
ifl =(1 a,then 

s = n'(l' 1 S( COM[ a ;f ; Ian; an ; N(a)] (a, O) », 
ifl =/01 allJ,then 

s =n'(Iol S(COM[a;j; Ian ;an ;N(a)] (a,0»II,), 
if I = a, then 

s = n'(S( COM[ a ;f ; Ian; an ; N(a) ](a, o) ». 

The usage on the screen will be very similar to that of the aggregation. 

Example: 

Consider the computation: 
COM[ student(name 1 address (street 1 m 1 city) 1 year 1 exam(subject 1 attempt(date I result») ; i ; 
year ; yearpar ; student' ], 
with i(year, t) = t (year) (mod 2). 

When we apply this computation on STUD we obtain a relation with schema: 
student'(name 1 address(street 1 m 1 city) 1 year 1 exam(subject 1 attempt(date 1 result» I yearpar). 

The value of this relation V (S8) is : 

studs 

address exam 

name year 
subject 

attempt yearpar 
street m city 

date result 

Bob Square I NY 1 math 1 010286 4 1 
Avenue 88 NY 110486 3 

020387 6 

math2 110186 8 

Jim Road 5 LA 2 compilers 120986 8 0 
201086 7 

algorithms 111186 I 

Bill Square 1 NY 2 algorithms 0 

So this computation computes for each tuple a value, i.e. the parity of the value of year, and adds it to 
the tuple. 
D 

We have now introduced the so called generating operations, i.e. operations that manipulate the infor
mation in such a way that new information is produced. In a real system we also need some non
generating operations, like the renaming and reordering of attributes. These operations must give the 
possibility to manipulate relations, i.e. trees, in such a way that we are able to use the generating opera
tions according to their definitions. In this paper we will not introduce these operations. 
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8_ COMPOSITION OF OPERATIONS 

Now we will turn to the possibility of composing the operations introduced SO far into new operations. 
For reasons of convenience we will call the operations introduced so far basic operations. So we are 
now going to define how operations, which are in fact compositions of (basic) operations, can be 
defined in the system and how they can be used. 
Whereas a basic operation determines a relation, given a relation or a pair of relations, a (self-defined) 
operation determines a set of relations, given a set of relations. 
A user can only use an operation when the system knows that operation. This means that the user must 
define the operation in the system before being able to use it. An operation can be defined by storing 
an operation definition in the system. An operation definition defines what the resulting set of relations 
is, in case the operation is applied to a set of relations. 

The formalism that we use for operations is very similar to the one we use for basic operations. 
In our formalism an operation is the name of the operation (an identifier) followed by the [ symbol, a 
list of relation schemata, the ; symbol, a list of relation names (i.e. a list of identifiers) and the ] sym
bol. 
An operation definition is an operation followed by the := symbol and an operation body. An operation 
body is the I[ symbol followed by a list of (basic) operations, the ; symbol, a list of relation names (i.e. 
a list of identifiers) and the ]1 symbol. 

For every operation there is exactly one operation definition. This means that for every operation there 
is exactly one operation definition with that operation on the left hand side of the := symbol. Further
more every operation must have a unique name. 
In a real system a new operation is available iffan operation definition for that operation is stored, so 
the system is able to compute what the result of the application of this operation is. 
The list of relation names in an operation must be equal to that in its operation definition. 

As already mentioned, an operation is applied to a set of relations. In the operation the list of relation 
schemata denotes on which relations the operation is applied. 
The list of relation names in an operation determines which relations are in the resulting set of rela
tions. This specification of the resulting set is given in order to be able to neglect relations, that have 
been computed as an intermediate resul~ but that are not important for the user. 

Example: 

The following is an operation definition : 
ps[ N(AI B(CI D)); N I N"]:= 
I[ PROf N(AI B(CI D)); B ; N' 1 I SEL[ N'(B(CI D)); f; B; N" 1; N I N']I. 

As we will see, after our definition of the application of an operation, this operation definition implies 
that the operation ps[ N(A I B(C I D)) ; N I N" ] is available and that it can be applied to a set con
taining a relation with schema N(A I B(C I D)). 
o 

Now we will define what the result of applying an operation is. This means that we define what the 
resulting set of relations is, when applying the operation to a given set of relations. 

Definition: 

Suppose 0 is an operation and 0 := b is the corresponding operation definition. Let Irs be the list of 
relation schemata in o. Here we suppose that in any set of relations every relation has a unique name. 
Let s be a set of relations. 

We define that 0 applied to s equals the union of the set of those relations from s for which the sche
mata are not specified in the list Irs and the set of relations obtained by applying operation body b to 
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the set of relations from s for which the schemata occur in Irs : 
o (s) = ( s - x ) u b (x), 
with x = [ r IrE sand S(r) E SS(lrs) } and 
SS (Irs) is the set of schemata occurring in the list Irs. 

So we now will define what b (x) is. 
Suppose b = I[ lbo ; Irn ]1, with Ibo a list of (basic) operations and Irn a list of relation names. 
It is defined that b(x) equals I[ lbo ; Irn ]1 (x), which is defined by: 
if bo is a (basic) operation and lbo' is a list of (basic) operations, then 

I[ bo I Ibo ; Irn ]1 (x) = I[ lbo' ; Irn ]1 (bo(x», 
I[ bo ; 1m ]1 (x) = 1[; 1m ]1 (bo(x», 
1[; 1m ]1 (x) = [r IrE x andN(S(r» E SRN(lrn) }. 
with SRN (1m) the set of relation names in the list Irn . 

We must define what the application of a basic operation bo on a set of relations x is. Of course, we 
define this as adding to x the relation obtained by applying bo to the relation with the schema that is 
specified in bo . 
So, we define for basic operation bo that 

bo(x)=x u [bo(r) Ir EX andS(r)=S(bo)} u 
[ bo(r, r') IrE x and r' E X and (S(r), S(r'» = S(bo) }. 

where S (bo) is either the schema of the relation on which bo is applied if bo is a unary operation, or 
the pair of schemata of the two relations on which bo is applied if it is a binary operation. 
Of course, we require that for every (basic) operation in the list of (basic) operations, it can be applied 
to some relation or set of relations in s . 
o 
So applying an operation on a set of relations s implies taking the set of relations x specified by the list 
of schemata. Then the (basic) operations specified by the operation definition are applied to x, thus 
getting new relations, which are added to x. Mter aU (basic) operations have been applied aU those 
relations are removed from x, for which their name is not specified in the list of relation names. The 
set thus obtained is added to s - x. 

Example: 

Consider the operation definition 
psi N(AI B(CI D»; N IN"]:= 
I[ PROf N(A I B(C I D» ; B ; N' ] I SEL[ N'(B(C I D» ; f; B ; N" ] ; N I N" ]1. 

If r is a relation with schema K(L I M(N I 0», then 
psi K(LI M(NI 0»; KIP 1 ([r]) = [r, r'}. 

with r' the relation with name P obtained from r by applying the above projection and selection. 
o 
So operations can be used to store in the system sequences of basic operations that the user wants the 
system to be able to apply autonomously. 
The set of relations on which an operation is applied represents the screen with representations of rela
tions at the start of the operation, i.e. at the moment of specifying on the screen which operation is to 
be applied. The resulting set of relations represents the screen after the application. So the resulting 
set specifies the answer on the query, that the user has specified by choosing an operation from the 
menu of possible operations. 

Note that we can imagine that in practice an operation definition is stored by telling the system to 
memorize a (manually) specified sequence of (basic) operations, in such a way that afterwards the sys
tem is able to execute this sequence of operations itself. 
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9. CONCLUSIONS 

In this paper we introduce the R 2-a1gebra, which in a number of aspects is much stronger than the 
existing formalisms for expressing queries. 
The first aspect, in which the R2-a1gebra is stronger, is the possibility of having nested relations. This 
is convenient, since many database applications can be managed much easier, when nested structures 
can be used. Furthermore, the selection is stronger. Not only because we can select at higher levels, 
but also because the criterion for the selection is not as basic as in many formalisms, since it can be 
programmed according to the user's needs. We also define aggregation and computation, that help to 
create new values, based on sets of tuples or on single tuples. Again the user is able to program the 
function that computes the new values. 
The user is given the possibility to define new operations as compositions of operations already defined. 
In this way a user can easily program his queries. Also this should help him to express recursive 
queries. At the moment we study how recursion can be expressed in the R2-a1gebra 
All of this implies that our algebra is of course much stronger than the relational algebra, but also that 
it is stronger than e.g. the NF 2-a1gebra of [SS86]. We can show that, although we define the binary 
operators only at the first level, we can express the binary operations at higher levels in our algebra. 
The expressive power of the R 2-a1gebra is another subject of current study. 
In the definition of this algebra we also capture the notion that the formalism should be two dimen
sional. This implies that a system, operating according to such a formalism, is able to manage queries 
in a two dimensional way. So the system and the user communicate through a graphical interface. 
Although this implies that our definitions sometimes seem complicated from a mathematical point of 
view, the system, that we specify with these definitions, gives the user the possibility to express queries, 
i.e. to manipulate data, in an intuitively much easier way. So not only more database applications can 
be managed by such a system, but they also can be handled in a more friendly way. 
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