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Stability Criteria for thé Boundary Layer Formed by Throughflow at.

a Horizontal Surface of a Porous Medium
C. J. van Duijn!, R. A. Wooding?, G. J. M. Pieters!, and A. van der Ploeg?

We consider gravitational instability of a saline boundary layer formed by evapo-
ration induced throughflow at a horizontal surface of a porous medium. Two paths
are followed to analyse stability: the energy method and the method of linearised
stability. The energy method requires constraints on saturation and velocity pertur-
bations. The usual constraint is based on the integrated Darcy equation. We give
a fairly complete analytical treatment of this case and show that the corresponding
stability bound equals the square of the first root of the Bessel function Jy. This
explains previous numerical investigations by Homsy & Sherwood [1975, 1976]). We
also present an alternative energy method using the pointwise Darcy equation as
constraint, and we consider the time dependent case of a growing boundary layer.
This alternative energy method yields a substantially higher stability bound which
is in excellent agreement with the experimental work of Wooding et al. [1997a, b).
The method of linearised stability is discussed for completeness because it exhibits
a different stability bound. The theoretical bounds are verified by two-dimensional
numerical computations. We also discuss some cases of growing instabilities. The
presented results have applications to the theory of stability of salt lakes and the

salinization of groundwater.

1. INTRODUCTION

Consider a semi-infinite porous medium with a hor-
izontal upper boundary. If a uniform upflow exists
within the medium and through the boundary, and if
appropriate boundary conditions apply, a spatially one-
dimensional boundary layer may be created and sus-
tained by the outflow. For instance, if the surface is
maintained at a temperature different from that of the
medium and the saturating fluid, a thermal boundary
layer is formed with an equilibrium thickness propor-
tional to the ratio of thermal diffusivity to upflow rate.
Similarly, a boundary layer is formed by dispersing so-
lute if the solute concentration at the boundary differs
from the concentration of the solution issuing from the
medium.

Such flows occur naturally in areas of groundwater
discharge. These may be characterised by very low flow
rates, leading to boundary layers of significant thick-
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ness. An upflow of warm or hot groundwater has been
postulated for some shallow geothermal areas (Wood-
ing [1960]). As the surface is relatively cold, a ther-
mal boundary layer of cool water is formed below the
surface. A reversal of this situation relative to grav-
ity may arise for in situ coal gasification (Homsy &
Sherwood [1975]), where a hot reaction surface forms
a boundary layer at the lower horizontal boundary of
a cooler permeable layer. Boundary layers are also
formed in semi-arid regions containing extensive ar-
eas of groundwater discharge (Gilman & Bear [1996];
Wooding et al. [1997a]). The groundwater contains salt.
After throughflow induced by evaporation, the salt re-
mains behind at the surface to form saline deposits
(salt lakes). These salt lakes may be ‘dry’ at the sur-
face under the influence of evaporation, or may contain
standing water (ponding), perhaps varying seasonally
between the two states.

In each of these examples the fluid in the horizon-
tal groundwater boundary-layer differs in density from
the fluid in the adjacent permeable medium, and the
question of the gravitational stability of the bound-
ary layer arises. Wooding [1960] treated the case of
a constant-pressure (ponded) boundary by linearised
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stability theory. Jones € Persichetti [1986] applied
linear analysis to a permeable layer with all combi-
nations of boundary condition and throughflow direc-
tion. Nield [1987] obtained approximate stability crite-
ria by variational means. Gilman & Bear [1996] treated
the linearised stability of a horizontal unsaturated layer
(vadoze zone) overlying a shallow water table. Wooding
et al. [1997a, b] discussed saturated groundwater move-
ment with dry or ponded conditions at the surface, and
used both experimental and numerical methods to sim-
ulate the unstable behaviour of a boundary layer grow-
ing from an initial salinity discontinuity at the surface,
and including the margin, of a dry salt lake.

In an important step, Homsy & Sherwood [1975, 1976]
pointed out that the presence of throughflow contributes
non-symmetric (odd-order) terms to the stability equa-
tions. The linear, time-independent part of the stability
equations is not self-adjoint, and linear stability analy-
sis is applicable only when the system is definitely un-
stable. Subcritical instabilities of finite amplitude are
possible at Rayleigh numbers below the critical value
derived using linear theory (Davis [1971], Straughan
[1992]).

In the present work we are concerned with this aspect
and also with the stability of a growing boundary layer.
For simplicity we consider only the dry lake case in a
vertical upflow, in which we assume that a rapidly es-
tablished saturated surface layer exists yielding a steady
boundary condition for the salt concentration. We will
employ both the energy (variational) method and the
method of linearised theory.

1.1. Stability of the Equilibrium Saline Boundary
Layer

In applying the energy method we follow two ap-
proaches. The first one is the ‘standard approach’ as
outlined, for example, by Homsy & Sherwood [1975, 1976]
or by Straughan [1992]. In this approach one incorpo-
rates an integral constraint in the class of admissible
perturbations, which is based on continuity and the in-
tegrated Darcy equation. The Euler-Lagrange equa-
tions with boundary conditions can be combined into a
second order eigenvalue problem with time as a parame-
ter. One of the goals of this paper is to demonstrate that
at equilibrium, when the boundary layer has reached its
large time profile, this eigenvalue problem can be solved

in terms of Bessel functions yielding
R, = 5.7832 (1.1)

as a value of the Rayleigh number below which the sys-
tem is definitely stable; note that /R, is the first root

of the Bessel function Jo (Abramowitz & Stequn [1972,
p. 409)).

In a second approach we deviate from Homsy & Sher-
wood and consider a different maximum problem. Using
the same functional, we replace the integral constraint
with an exact differential relation which is now based
on continuity and the ‘pointwise’ Darcy equation. This
yields a sixth order eigenvalue problem which we solve
numerically by the Jacobi-Davidson method. With the
given boundary conditions we find approximately

R, = 8.590 (1.2)

as the largest Rayleigh number below which the sys-
tem is definitely stable. The close agreement of this
result with the numerical results of Pieters [2001] and
the experimental results of Wooding et al. [1997a, b] is
discussed in Section 5.

For completeness we also consider the linearised sta-
bility analysis of the equilibrium boundary layer. This
yields a fourth order eigenvalue problem. Using again
the Jacobi-Davidson method we find approximately

Ry =14.35 (1.3)
as a critical Rayleigh number above which the system
is definitely unstable.

Given the physical parameters of the system a value
for the Rayleigh number R, results. This value may fall
within one of three ranges: definitely stable for R, <
Rg, (i = 1,2), definitely unstable for R, > Ry, and pos-
sibly unstable to disturbances of finite amplitude (lead-
ing to subcritical instabilities) when R, < R; < Ry.

Homsy € Sherwood [1976] considered throughflow in
a finite slab. Their numerical results for large thick-
ness of the slab approximately give the critical Rayleigh
numbers (1.1) and (1.3).

1.8. Time Dependent Growth of the Saline Boundary
Layer

Problems of fluid instability with impulsively-gene-
rated (time-dependent) density profiles have been dis-
cussed, in particular, by Homsy [1973], who used the
energy method to treat global stability of fluid lay-
ers, and Caltagirone [1980], who compared the sta-
bility behaviour using linear and energy methods and
also used finite-difference computations for a horizontal
porous layer with a sudden rise in surface temperature.
These studies, however, did not involve a superimposed
throughflow.

Our case involves a dispersive boundary layer in an
upflow, and we shall identify approximate parameter
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values where instability is likely to occur. Section 3
explains the stability analysis for a growing boundary
layer. Here time t appears as a parameter. In the early
stages of development, the layer is sufficiently thin to be
stabilised by the given boundary conditions. However,
the monotonic increase in layer thickness with time will
be accompanied by decreasing stability of the system as
the influence of the boundary diminishes. This is shown
in Figures 2 and 3.

Figure 2 shows a family of curves in the @, R plane,
a denoting the horizontal wavenumber, for increasing
values of t. The curves are obtained with the energy
method based on the differential constraint. For a given
time t > 0, corresponding to an instantaneous state of
the growing boundary layer, let Rg(t) denote the min-
imum of the corresponding curve. Similarly, Figure 3
shows a family of curves obtained with the linearised
stability method. Now, let Ry (¢) denote the minimum
of the curve corresponding to time t.

We now have the following refinement with respect
to the equilibrium case. If R, < Rg(x) = Rpg,, the
layer will attain a stable equilibrium profile. If, how-
ever, R, > Rg, we can determine a time t%, corre-
sponding to R; = Rg(t%), and conclude the stability
of the growing boundary layer for ¢ < t3. On the other
hand, if R, > R; we can nominate an elapsed time tj
corresponding to R, = R (t§) and conclude the insta-
bility of the layer for ¢ > t7. These observations follow
from the nature of the curves in Figures 2 and 3. The
curves in Figure 2 are upper bounds for regions of sta-
ble (a, R) combinations, whereas the curves in Figure 3
are lower bounds for regions of unstable (a, R) combi-
nations.

The shape, i.e. number of ‘salt-fingers’ or critical
wavenumber, of growing instabilities depends substan-
tially upon the perturbations present during the initial
stable period. This is investigated numerically in Sec-
tion 4, where we use a finite element approach based on
the stream function formulation. If initial perturbations
are periodic and sufficiently small we observe growing
instabilities in the theoretically predicted range. This is
shown in Figure 5 Other perturbations are considered
as well. Some qualitative features of the computational
results are explained in terms of the stability bounds.
In particular the stochastic case meets the theory quite
satisfactory (see Section 4.3-a).

In Section 5 we present conclusions and discuss exper-
imental Hele-Shaw results ( Wooding et al. [1997a, b])
in terms of our theoretical findings. Theory and ex-
periment are reproduced in Figure 6, showing excellent
agreement. ‘

3

The results presented in this contribution are taken
from two extensive technical reports, Van Duijn et al.
[2001] and Pieters [2001]. These reports are available
upon request from the authors at Eindhoven University
of Technology.

2. PROBLEM FORMULATION

Following Wooding et al. [1997a), we consider a uni-
form isotropic porous medium occupying the three di-
mensional halfspace 2 = {(z,y,2) : —00 < z,y <
00, z > 0}, where z points vertically downwards. The
medium is saturated with a fluid of variable density p:
i.e. water with dissolved salt. Along the upper bound-
ary {z = 0} we prescribe density and fluid flow cor-
responding to a ‘dry lake bed’, with a sufficient rate
of evaporation to remove all free surface water and a
rapid buildup of salt. If p, denotes the fluid density in
‘natural circumstances’ (i.e. far away from the outflow
boundary) and p,, the maximum density at the outflow
boundary, we have p, < p < p,, throughout the flow
domain (.

The flow equations in terms of the Boussinesq approx-
imation (Bear [1972], Nield & Bejan [1992], Wooding
et al. [1997a]) are given by:

Fluid incompressibility

divg=0; (2.1)
Darcy’s law
%q +grad p—pge, = 0; (2:2)
Salt transport
¢%§ +div (pq) =DAp . (2.3)

Here ¢ denotes fluid discharge, p fluid viscosity, &
medium permeability, p fluid pressure, g gravity con-
stant, ¢ porosity and D an appropriately defined dis-
persivity or diffusivity. Further, e, denotes the unit
vector in z-direction, pointing downwards.

These equations are considered in {2 subject to the
boundary conditions

g=—Fe, and p=p, atz=0 (2.4)
and initial condition
Plio=pr nN. (2.5)

Here E denotes the evaporation rate.
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We recast the problem in dimensionless form by set-
ting

u, = (Pm - Pr)g'? ,

(2.6)

S:M and U:i,
Pm — Pr Ue

and by introducing the scales D/E and ¢D/E?, respec-
tively, for length and time. This yields

divU =0, (2.7)
U-+grad P—Se, =0, (2.8)
aa—f + R,U -grad S = AS . (2.9

in 2 and for all ¢ > 0, subject to
U=Up:= —-Riez and S=1 atz=0 (2.10)
§

and

Slee=0 ing2. (2.11)
Here P denotes an appropriately chosen dimensionless

pressure and R, the system Rayleigh number

(pm = pr)gs _ te

F % - (2.12)

R, =
The main purpose of this paper is to investigate the
stability properties of the flow problem defined by (2.7)-
(2.12). More specifically, we will consider the stability
of the ground-state implied by the uniform initial con-
dition (2.11). Because of the constant boundary data
(2.10) this ground-state can be determined explicitly.
It is characterized by the uniform upflow
in 2

U =U, (2.13)

and the growing boundary layer, for z > 0,

1 _, z—t| 1 z+1
S = Su(z,t) = 3¢ erfc [_2\/f] + 3 erfc [—2\/2] ,
(2.14)

satisfying

So(z,t) 2 e™% ast—00. (2.15)
The corresponding pressure P = P, is found by in-
tegrating Darcy’s law (2.8). The stability analysis is

based on the expansion

U=Uy+u and P=Py+p,
(2.16)

S=5+s,

with u = (u,v,w), and where S, U and P satisfy equa-
tions (2.7)-(2.9) and boundary conditions (2.10). In the
next section we study the corresponding perturbation
equations. In the analysis we drop the subscript s on
R; and denote the Rayleigh number by R. This is to
distinguish between R as an eigenvalue in the equations
and its value R, for the actual physical system.

3. ANALYSIS OF PERTURBATION EQUATIONS

Based on experimental observations of early instabil-
ities we assume that the perturbations are periodic in
the horizontal z, y-plane. Further we require

s=u=0 atz=0,00, (3.1)

expressing that {S, U} and {So, U} both satisfy (2.10)
and behave similarly at large depth.

3.1. Perturbation Equations

Substituting (2.16) into equations (2.7)-(2.9) and
writing R instead of R;, yields the system (in 2 and
for all t > 0)

divu=0, (3.2)
utgradp—se, =0, (3.3)
aS—-(—(J)E+Rw?-'§'g + Ru -grad s = As . (3.4)

ot 0z Oz

As in Lapwood [1948] we note that equations (3.2) and
(3.3) can be combined to give for s and w the linear
relation

Aw=A;s inf2, (3.5)

where A, denotes the horizontal Laplacian

2 P
5 o

This relation plays a crucial role in various parts of the
stability analysis.

Because of the assumed z,y periodicity, we may re-
strict the analysis of equations (3.2)—(3.4) to the peri-
odicity cell

V={(z,9,2) 2] <7/as, |yl <m/ay, 0<z< o0},
(3.6)

where a, and a, are the, as yet unspecified, horizontal
wavenumbers. We call

N 2
a:=,/a; +ay

(3.7)
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the horizontal wavenumber of the periodicity cell V.

There are two well-known paths to carry out the sta-
bility analysis: the variational energy method and the
method of linearised stability. Some important refer-
‘ences in this respect are Wooding [1960], Nield [1987],
Straughan [1992] and Homsy & Sherwood [1976]. Be-
cause of the existing throughflow (U = Uy), the energy
method and the linearized stability method yield differ-
ent stability bounds on the Rayleigh number. Therefore
we will discuss both approaches.

3.2. Energy Method

In the energy method one estimates the time deriva-
tive of the L2-norm of the saturation perturbation. In
particular, the aim is to find the largest Rayleigh num-

ber for which
d
TG / s°<0.

The value of R for which this inequality is satisfied
clearly will depend on the wavenumber a and, because
So = So(z,t), on time t. Once (3.8) is established, it
follows that the L2-norm of the velocity perturbation is
bounded as well, since (Van Duijn et al. [2001])

NI E
- JY v

This is a direct consequence of (3.2) and (3.3).
To investigate (3.8), we multiply (3.4) by s and inte-
grate over V. Using (3.2) we find the identity

dt2/ /|grad s - R/ 35". (3.10)

Thus if R is chosen such that the right-hand side of
(3-10) is negative for all perturbations satisfying a given
constraint, then stability is guaranteed.

1t is our aim to investigate the consequences of two
different constraints. In the first we consider perturba-
tions satisfying (3.2) and the integrated Darcy equation:

/|u|2—/sw=0.
v v

(3.8)

(3.9)

(3.11)

This approach is a modification of that used by Homsy

& Sherwood [1976). While they considered a stationary
ground state only and solved the corresponding eigen-
value problem numerically, we are in the position to
deal with time evolution of the primary profile as well.
However, we shall not pursue the time dependence for
this constraint. Instead we give a complete analytical
treatment of the case where the ground state is given

5

by (2.15) for all ¢ > 0. This analysis explains quite
elegantly some of the previously obtained numerical re-
sults. _

In the second constraint, we consider perturbations
satisfying the differential expression (3.5). We shall
treat the time dependent ground state and show that
this differential constraint significantly improves inte-
gral constraint (3.11).

3.2.1. Integral constraint. Identity (3.10) and con-
straints (3.2), (3.11) lead to the maximum problem

— = sup

—Jv 9% (3.12)
R (s,u)eEH / |grad s|2 -
\%

with

H= {(s, u) : z, y-periodic with respect to V,
s=u=0at z2=20,00,

div u = 0 and /|u|2=/sw}.
1% 1%

The corresponding Euler-Lagrange equations are

( 650
—2AS+R3;U)—[HU—O,

¢ 2uu — grad 1r+R%sez —puse, =0,

0z

divu=0 and /|u|2=/sw,
\ v v

where p (constant in space) and 7 are Lagrange multi-
pliers. Applying the scaling

e A B 1A
= \/I_Z ’ H= A2 p= 2 \/}_.211‘ ?
one finds
(VR /1 85,
T<X—/\E—>w+As—0, (3.13)
vR (1 aSs
! (X_,\sz—) se,—u—gradp=10, (3.14)
divu=0, (3.15)
/ lul> = ‘/T}—z/ sw. (3.16)
\ Jy v

These equations were also found by Homsy & Sherwood
with a slightly different interpretation of the parameter
A. Note that (3.14) has a structure similar to Darcy’s
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law.
As before, (3.14) and (3.15) can be combined to give

Aw=YE (1 - A%) Avs (3.17)

2\ 0z

Further, multiplying (3.14) by wu, integrating the result
over V, and using (3.16) yields the useful identity

/sw
N=—

—_ v
_ [ 9%,
vaz

(3.18)

Finally, multiplying (3.13) by s, integrating the result
over V, and using (3.18) gives

/|grads|2=E/sw.
v Ay

Next we introduce the periodicity. Setting s := as,
with a given by (3.7), we find from (3.13) and (3.17)
the equations (with D signifying d/dz)

(3.19)

(D*-a?) s+ @ (% - A%g) w=0, (3.20)
“l
(D? - a®)w + # G - ’\%;_0) s=0, (3.21)

for 0 <z < co. Note that in these equations ¢ appears
as a parameter through the ground state. We seek non-
trivial solutions subject to the homogeneous conditions
(3.1) and the constraint (3.18).

As a first observation we note that (3.20), (3.21) and
the boundary conditions imply s = w. Hence we are
left with the second order boundary value problem (for
0<z<00)

{ (D2—a2)s+%}_2 (—;‘— —Aéz,%) s=0, (3.22)
3(0) = s(00) =0, (3.23)

subject to the constraint (replacing w by s in (3.18))

feS]
0

2 T —————————
A =" w%sz. (3.24)
o -0z
Identity (3.19) rewrites into
/ (Ds)? = (\/RG - az) / s (3.25)
° A 0

This expression and equation (3.22), using 9% — 0 as

z = oo, imply that nontrivial solutions only exist in the
parameter range
VR

1< — .
<a/\<2

So far we have not used the explicit form of Sp. In the
analysis below we confine ourselves to the equilibrium
case (2.15), where S is a simple decaying exponential.
Introducing the new parameters

(3.26)

5=E (with 1< 6 < 2), a=\/2—@,
ai
/ é
B8 = B(a,8) =2a4/1 - 5 (3.27)
and the transformation
E=0e”?, f(£) =s(2), (3.28)

we find for f a boundary value problem involving the
Bessel equation

Ef+ef + (& -B)f =0
with

onl0<é<a, (3.29)

f(0) = f(e) =0. (3.30)

Here primes denote differentiation with respect to £. A
solution of (3.29) satisfying the first condition in (3.30)
is

f(&) =Js(8), (3.31)

with Js denoting the Bessel function of the first kind,
order 8. Next we fix a > 0 and consider

JB(a,5)(61) =0

where & = £1(a,d) is the first positive zero of Jg. Then
setting @ = & in the second equation of (3.27), we
obtain the first eigenvalue R, for the given values of a
and é:

fori<édé<2, (3.32)

Ry = Ri(a,8) = %5(151((1,(5))2 for1<6<2.
(3.33)

Keeping a fixed, we now turn to the integral constraint
(3.24). In the transformed variables it reads

€11 .
A (6L

5 =2a% L (3.34)
/0 £3(6)de
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Figure 1. Comparison of estimates involving lowest eigen-
value R; versus wavenumber a for the equilibrium boundary
layer. Curve 1: Energy method using integral comstraint.
Curve 2: Energy method using differential constraint. Curve
3: Linearised stability method using Jacobi-Davidson (solid
curve) and Frobenius expansion (crossed points).

The question now arises whether there exists a unique
number J, € (1,2) such that § = 4, satisfies (3.34).
This would result in the first eigenvalue

Ri(a) := Ry(a,b;) fora>0. (3.35)
The proof involves some technical details which are
given in Van Duijn et al. [2001]. The energy stability
curve in the a, R-plane is plotted as curve 1 in Figure
1. If perturbations are x,y-periodic with wavenumber
a and if B, < R;j(a), then the ground state (at equi-
librium) is stable in the L2-sense. The construction
implies

(first zero of Jp) .
(3.36)

R,(0) = Hﬂ} R (a) =5.784---

Homsy & Sherwood used a numerical shooting method
to solve the eigenvalue problem. They found (3.36) ap-
proximately as a stability bound.

3.2.2. Differential constraint. In a second approach
we want to achieve (3.8) for perturbations satisfying the
diffential constraint (3.5). This leads to a maximum
problem in which (3.12) is considered for the space of

perturbations

H= {(s,w) : z, y-periodic with respect to V,

s=w=0at z=0,00, and Aw=A;sin V}.

This maximum problem results in an eigenvalue prob-
lem which has a much higher complexity than the eigen-
value problem related to (3.11). In fact it leads to a
sixth order differential equation in terms of w, for which
no explicit solution is known. However, one expects
to have a more accurate description, yielding larger
Rayleigh numbers, in particular since (3.5) is based on
the pointwise Darcy equation. This statement is made
precise in Appendix A.

Now the Euler-Lagrange equations read (Van Duijn
et al. [2001]):

R 0S, a?
2 _ 2) - L2090 a”
(D?—a?)s 55, Yt (3.37)
(D*-a?)m= —R%s , (3.38)
with m(0) = 0 as natural boundary condition, and
(D? —a®) w = —a®s. (3.39)

These equations need to be solved for 0 < 2 < 0o and
they contain time ¢ (through Sy = Sp(z,t)) as param-
eter. Eliminating m from equations (3.37) and (3.38)
yields a fourth order equation in s and w, and the fur-
ther elimination of s using (3.39) leads to the sixth order
w equation

(D? - a?)’w + "%R{(p2 _a?) (%w)

8z
95 (p2_ 2 }_
+ 52 (D —a?)wy =0. (3.40)

The corresponding boundary conditions for this equa-
tion are

w(co) =0, (3.41)

implying that all higher order derivatives vanish as well
at z = o0, and

w(0) = D*w(0) = D*w(0) =0. (3.42)

The first two conditions are obvious. The third one
is a consequence of w(0) = 0; this condition implies
D?%5(0) = 0 from (3.37), which is then used in (3.39).
In terms of the variables w, s and w, we have the ho-
mogeneous conditions

w=s=717=0 at 2=0,00. (3.43)
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The eigenvalue problem (3.40), (3.41) and (3.42), or
equivalently (3.37)-(3.39) subject to (3.43), was solved
numerically by the Jacobi-Davidson method. This
method is briefly described in Van Duijn et al. [2001].
Detailed information is given in Fokkema et al. [1999]
and Sleijpen € Van Der Vorst [1996].

For a given wavenumber ¢ > 0 and time ¢ > 0, let
Rg(a,t) denote the smallest positive eigenvalue. The
dashed curves in Figure 2 show the numerical approx-
imations of the curves {(a,R) : @ > 0, R = Rg(a,t)}
for increasing values of t. Note that these curves es-
sentially move downwards, except for large a and t. At
large time they converge to the equilibrium curve, corre-
sponding to (2.15). This limit case is also shown in Fig-
ure 1 (curve 2). The results obtained with the differen-
tial constraint are superior to the results obtained with
the integral constraint. In particular, the minimum of
curve 2 is R = 8.590 approximately, which is signifi-
cantly higher than the minimum of about R = 5.78 of
curve 1.

To interpret the results of the time dependent case,
we set

Rp(t) := ran>1£1 Rp(a,t) for0<t<oo (3.44)
and we recall the Rayleigh number of the physical sys-
tem R, given by (2.12).

If R, < Rg(o0) =: Rg, which we denoted by Rg, in
the introduction, the boundary layer is definitely stable
for all ¢ > 0. However, if R, > Rg, we can only con-
clude that the boundary layer is stable for 0 < t < t%,
where t% is determined by R, = Rg(ty). When t >t}
no direct conclusions can be drawn. The appearance
and form of the growing instabilities critically depends
on the choice of initial perturbations. This is further
investigated in Section 4.

3.3. Linearised Stability

In the method of linearised stability one disregards
the higher order terms in (3.4) and considers the ap-
proximate linear saturation equation

ds Js 950

E - -a—; + R’U) 9 As
for ¢ > 0. We shall seek nontrivial solutions of this
equation together with (3.5), subject to the homoge-
neous boundary conditions (3.1). In case of a stationary
ground state one looks for solutions having an exponen-
tial growth rate in time. Since here, the ground state
depends on time as well, such a construction is only
possible under the assumption that the rate of change

in 2 (3.45)

Figure 2. Solid curve: Stability curve for equilibrium
boundary layer according to the energy method with differ-
ential constraint. Dashed curves: Stability curves prior to
equilibrium. Numerical values are calculated by the Jacobi-
Davidson method. Short-dashed curve traces minima of sta-
bility curves with increasing ¢t > 0.

of the ground state is small compared with the growth
rate of infinitesimal perturbations (the frozen profile ap-
proach). Hence, for given t > 0, we consider instead of
(3.45) the approximate equation

ds 0Os 85y
ar 5 TG,

for 7 > 0 and sufficiently small. Now again ¢ appears as
a parameter in the equation, as in the case of the energy
methods. From here on the procedure is quite standard
(Wooding [1960], Nield & Bejan [1992]). Applying again
the z,y periodicity, taking o as the exponential growth
rate and setting

(t,2) =As in N2 (3.46)

s,w = s, w(z)exp (07 +i(azx + ayy)) , (3.47)

we find from (3.5) and (3.46) the coupled set of second
order equations .
(D? - a®)w = —a’s, (3.48)
2 2 950
(D*+D—-a*>-0)s= Ra(z,t)w . (3.49)

The corresponding eigenvalues now depend on a, t and
on the growth rate o. In Appendix B we show for the
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smallest positive eigenvalue Ry(a,t,0):
Ri(a,t,0) S Ri(a,t,0) ifand only if 0 S0 . (3.50)

These inequalities imply the following. Let R, be suf-
ficiently close to Ri(a,t,0). If R; > Ri(a,t,0), then
there exists a ¢ > 0 such that R, = Ri(a,t,0). In
other words, if R, > Ri(a,t,0), there exists a grow-
ing infinitesimal perturbation which implies that the
boundary layer is unstable. If R, < Ri(a,t,0) no defi-
nite statement about stability can be made. Only cer-
tain infinitesimal perturbations now decay. Others, and
in particular large perturbations, may still grow in time.

As a consequence it suffices to analyse equations
(3.48), (3.49) for the case of neutral stability o = 0.
Eliminating s and setting o = 0, gives for w the fourth
order eigenvalue problem

850

(D*+D-a%) (D*-a®)w= —azRgz—(z,t)w
(3.51)
for 0 < z < o0, with
w(0) = D?w(0) =0 and w(o0)=0. (3.52)
The equilibrium case (t = oo and Sy = e%) can

be treated by a semi-analytical technique based on a
Frobenius expansion in terms of descending exponen-
tials (Van Duijn et al. [2001], Wooding [1960]). As a
result one finds an accurate approximation to the low-
est eigenvalue R;(a) for any wavenumber ¢ > 0. In
Figure 1, point values of R;(a) have been plotted as
crosses, showing excellent agreement with solid curve
3 -- the numerical solution of the eigenvalue problem
(3.51), (3.52) using the Jacobi-Davidson method. We
find

Ry = m>i51 R,(a) = Ri(a.) = 14.35 (3.53)

with

as = 0.759 (3.54)

approximately. These numbers, in good agreement with
the numerical results of Homsy & Sherwood [1976], are
characteristic of the linearised stability method.

To study the instability of the growing boundary layer
we need to consider the eigenvalue problem for each fi-
nite ¢ > 0. Let Rp(a,t) denote the smallest positive
eigenvalue. Again we used the Jacobi-Davidson method
to find accurate numerical approximations. These re-
sults are shown in Figure 3 where the dashed curves
indicate Ry (a,t) for increasing values of t. Note again

Figure 3. Solid curve: Stability curve for equilibrium
boundary layer according to linearised stability method.
Dashed curves: Estimate of stability curves prior to equi-
librium, treating time as parameter. Numerical values are
calculated by the Jacobi-Davidson method.

that these curves essentially move downwards, except
for large @ and t. As t — oo convergence towards the
equilibrium curve Rj(a) is attained.

As before, we set

Ry (t) := min Rr(a,t) . (3.55)
a>0

If R; > Ry(o0) =: Ry, an estimate for the onset time
of instability is found by the crossover time t] deter-
mined by R, = Rr(t}). In other words, the boundary
layer becomes unstable for t > t;. If R, ~ Ry, the
boundary layer becomes unstable when it is close to its
equilibrium profile.

For R, < Ry no definite statement about stability
is possible. The linearised stability analysis only im-
plies that infinitesimal small perturbations vanish for
R; < Rp. Subcritical instabilities originating from
large perturbations may still grow in time. This is a
consequence of the uniform upflow, implying that the
eigenvalue problem is not self-adjoint (Homsy & Sher-
wood [1976]).

4. GROWING INSTABILITIES

The theoretical stability bounds tell us how the sys-
tem will respond to periodic perturbations of the initial
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Figure 4. Left: Early-time behaviour of E(t") originating from (4.8): solid line (R, = 35), crossed
solid line (Ry = 5). Right: Long-time behaviour of energy E(t") for Ry = 35. Solid line corresponds to
perturbation (4.8), dotted line to (4.9), dash-dot line to (4.10) and finally dashed line to (4.11).

state S = 0. For R; < Rg we expect decaying per-
turbations and for R, > Ry growing instabilities or
salt-fingers. In this section we verify this behaviour by
means of numerical experiments. We also investigate
the response of the system to non-periodic (Plates 2,3)
and a combination of periodic (Plate 4) initial pertur-
bations.

In the numerical experiments we consider the two-
dimensiona) truncated flow domain

0L :={(z,2): -L<z <L, 0<z<H}. (41)

In this definition the quantities H and L are scaled with
respect to the length scale D/E. The truncated flow
domain needs additional boundary conditions for the
velocity U and the saturation S: we set S = 0 and
U = Uy at z = H and we impose no-flow and no salt
transport along the lateral boundaries.

We solve equations (2.7)—(2.9) in terms of the satu-
ration S and the stream function ¥, where

oy ‘9‘[’) . (4.2)

U=curl¥:= (—-67., %

Following de Josselin de Jong [1960] we obtain the sys-
tem

8s o 9S oW bS

5 * R (a_xa - 5%) =AS, (4.3)
8s

av ==, (4.4)

in 2% and for all ¢ > 0. The corresponding boundary
conditions result directly from the imposed saturation
and flow behaviour.

4.1. The Numerical Method

Let t" = nAt, n = 1,2,--- N, N sufficiently large,
and let S™ denote the saturation at t = t®. The corre-
sponding stream function is found from

as™ .
5. I L.
This problem is discretised by the finite (linear) ele-
ment method. The corresponding matrix equation is
iteratively solved using the conjugate gradient method.
The numerical approximation of (4.5) is denoted by .
Next we consider
a8 R (6!7,': 88 ovr oS
ot +Hs Or 0z Oz Oz

AV = (4.5)

) =AS, (46)
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in 2% and for ¢ > t". Again we use a finite element dis-
cretisation, together with an upwind discretisation for
the convective part. Now the corresponding linear sys-
tem .is iteratively solved with the bi-conjugate gradient
stabilized method. For the time integration we use the
implicit Euler scheme. The numerical solution of (4.6)
is denoted by SP*!. Replacing S™*! in equation (4.5)
by the approximation S,':“, the above cycle is repeated
for subsequent time steps.

The numerical method does not involve automatic
time-step adaptation nor does it include algorithms for
local mesh refinement. This implies that the time-step
and mesh are fixed during the computations. The mesh
consists of square elements of length h. Motivated by
the convergence behaviour of the scheme (see Pieters
[2001] for technical details), we use A¢ = 0.005 and
h = 0.15625 for respectively the time-step and element
length, and we fix H =5 and L = 25.

4.2. Stability Criterion

To decide whether the system is stable or unstable,
a stability criterion is required. Inspired by the energy
method we consider the functional

E(t") := / . |u}(z,2,t)|° dzdz

2y

(4.7)

where u}, is the numerical approximation of the velocity
perturbation u. It is found by substracting the ground
state Uy from the numerical solution U}, = curl ¥f.
Numerical observations (Pieters [2001]) show that
E(t") either decreases from a positive value E(0) to-
wards zero for large n, or E(t") first decreases, reaches
a minimum and then strongly increases away from E(0).
Based on these observations, we call the ground state
unstable if there exists a m € IN such that E(t™) <
E(t") for all 0 < n < N. Otherwise the ground state is
stable. The time ™ is called turning time and will be
further denoted by .
The behaviour of E(t") is illustrated by two numerical
experiments. First we set R; = 5 < Rg and consider

S(z,z,t = 0) = ecos(z) , e=5-10"", (4.8)
for (z,z) € 2%. The functional (4.7) is plotted as a
crossed solid line in Figure 4 (left). Indeed, for this
choice the energy norm decreases with time and the
system remains stable. Next we set R, =35 > R and

- again (4.8). For this unstable regime the functional is
plotted as solid curves in Figure 4. The saturation pro-
file and velocity field for this experiment are depicted
in Plate 1. As to be expected, the initial periodic per-
turbation triggers growing instabilities in the saturation

11
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Figure_ 5. Solid curve: Stability curve for equilibrium
boundary layer according to linearised stability method.
Dashed curves: Stability curves treating { as parameter.

profile. At later times the influence of the lower bound-
ary becomes noticeable (middle and bottom figures) and
a steady state is reached. The corresponding saturation
profile has the original eight fingers. This is due to the
particular choice a = 1. Note that the energy E(t") has
a relative high value, Figure 4 (right).

As explained in Pieters [2001] this observation leads
to an alternative method to analyse stability of the sys-
tem: given wavenumbers a and Rayleigh numbers R,
within relevant ranges, we can determine the turning
times 1, yielding a set of triples (a, R;,t). Treating { as
parameter, we can construct stability curves similar to
the ones in Section 3. The result is shown in Figure 5
and agrees with the curves obtained by the method of
linearised stability (Figure 3). This is due to the fact
that the initial perturbations are small.

4.3. Numerical Experiments

We investigate the development of instabilities for
more general initial perturbations. We take R; = 35
and consider the following cases:

a. Stochastic perturbation, with

S(z,z,t = 0) = ep(z,2), for (z,2) € L, (4.9)
where g is uniformly distributed in [0, 1].

The computational results are shown in Plate 2. The
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system clearly selects a preferential wavenumber a* for
small and intermediate times. From the top figure in
Plate 2 we deduce a* = 1.86 approximately. At later
times a steady state is reached which now has a satura-
tion profile with twelve fingers and a relative low energy.

. Taking R; = 35 and considering the curve connecting
the minima in Figure 3, we expect to find from linear
stability @ = @ = 2.08. Similarly, we obtain from the
energy method, Figure 2, a = @ = 1.82. We observe
that ¢ =~ a@* < @. This is in agreement with the ex-
perimental results of Wooding et al. [1997a, b], see also
Figure 6 in Section 5.

b. Non-periodic perturbation, with

e for—£<z<% 0<z2<H,
0 elsewhere,

S(z,z,t=0) = {
(4.10)

The results for flow and saturation are shown in Plate
3. Now, at small and intermediate times, no preferen-
tial wave number can be detected. At large times the
resulting steady state shows ten fingers and an inter-
mediate energy E(t"). We stopped the computations
at t = 15. It could be possible that the steady state
is not yet reached because the corresponding energy is
still slightly increasing in time.
¢. Combination of periodic perturbations, with

S(z,2,t = 0) = €{cos(0.25z) + cos(z) + cos(2z)} ,
(.11)

for (z,z) € 2%.

We observe that the modes with a = 0.25, 2 decay,
while the one with a = 1 grows. The decay of a = 0.25
is in agreement with the stability analysis (Figure 3).
However, Figures 2 and 3 seem to indicate competition
between a = 1 and a = 2. Apparently, nonlinear effects
cause decay of a = 2 and growth of a = 1. Note that
the large time behaviour is identical to Plate 1, with
the same energy. :

5. DISCUSSION AND CONCLUSIONS

We have formulated a stability problem involving a
porous medium saturated with saline water flowing ver-
tically upwards through a horizontal surface. The up-
flowing water is assumed to evaporate completely at
the surface. Salt saturation is established quickly and is
sustained there, with excess salt precipitated on the sur-
face. Below the surface, a saline boundary layer grows
by diffusion in the counter direction to the upflow. If
this layer remains stable under gravity, an equilibrium

state is reached where the salinity (or density) profile
is exponential, decreasing downwards towards the am-
bient upflow value.

Since the surface salinity and upflow rate are both
taken constant, the layer is stable provided it is suf-
ficiently thin; it is initially stable, but will tend to
become less stable monotonically as the thickness in-
creases by diffusion/dispersion. The system is least
stable when the boundary layer has attained maximum
thickness, which occurs at equilibrium. The equilibrium
boundary-layer thickness provides a length scale for the
Rayleigh instability problem. If the porous medium has
a lower boundary, it is assumed to be at a distance large
relative to that scale.

To study the stability of the boundary layer we have
used two energy methods and the method of linearised
stability. In terms of the system Rayleigh number R,
(2.12), the first give upperbounds for stability, the latter
a lower bound for unstable behaviour. These bounds do
not coincide (see Figure 1) and leave the possibility for
decay of infinitesimal small perturbations and growth
of large perturbations.

In the first energy method we follow Homsy & Sher-
wood [1976] and use (3.11) as constraint for perturba-
tions. Assuming horizontal periodicity in the usual way,
this constraint leads to a second order eigenvalue prob-
lem. Homsy and Sherwood constructed a numerical so-
lution for the case of a porous layer of finite thickness
with a (thermal) boundary layer at equilibrium. We ex-
plain their asymptotic result for large thickness in terms
of Bessel functions. In particular we find that their sta-
bility bound corresponds to the square of the first root
of the Bessel function Jp.

In the second energy method we use (3.5) as differ-
ential constraint and we consider the time dependent
behaviour (growth) of the boundary layer. This leads
to a sixth order eigenvalue problem which we solved
by means of the Jacobi~Davidson method. Figure 2
shows the behaviour of the smallest positive eigenvalue
versus the wavenumber a, with time as parameter. Fig-
ure 1 compares the two methods for the equilibrium
case (t = oo) and shows superior behaviour when using
(3.5) instead of (3.11). This is explained in Appendix
A. Given a R,-value, we are now in a position to esti-
mate the time during which the boundary layer grows
in a stable manner. This is explained in Section 3.2.2,
see (3.44).

"The method of linearised stability estimates the on-
set of instabilities. We used the frozen profile approach
which allows us to incorporate the growth of the bound-
ary layer in the analysis. As a result we arrive at a
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50—

Figure 6. Comparison of theory (this paper) with experi-
mental results (Wooding et al. [1997a, b]). Solid curves 1-3
give eigenvalues R versus wavenumber a for the equilibrium
boundary layer (Figure 1). Curves of minima of R with re-
spect to a for ¢ > 0 increasing to equilibrium: by energy
method (Figure 2, dashes), by linearised theory (Figure 3,
short dashes). Symbols for experimental results are identi-
fied in the text.

fourth order eigenvalue problem which we solved again
by the Jacobi-Davidson method. The corresponding
stability curves are shown in Figure 3. Now we are in
the position to estimate an elapsed time beyond which
the boundary layer becomes unstable. This is explained
in Section 3.3, see (3.55).

In Section 4 we considered two-dimensional flow and
study the growth of instabilities by means of the finite
element method (with the stream function as flow vari-
able). Introducing the energy functional (4.8) we are
now in a position to estimate the elapsed time numer-
ically for a given initial perturbation. In this way we
could qualitatively reproduce Figure 3 (linearised sta-
bility) for small periodic perturbations. The response
of the system to other initial perturbations was investi-
gated as well. The results are shown in Plate 2 (stochas-
tic), Plate 3 (non-periodic) and Plate 4 (combination of
periodic modes). The stochastic case shows a prefer-
ential wavenumber which can be estimated in terms of
the curves tracing the minima in Figures 2 and 3. It
is also worthwhile to note that different initial pertur-
bations may lead to different steady states (occuring at

15

large times). This follows clearly from Figure 4 (right),
where the energy functional is plotted versus time.

Figure 6 repeats the equilibrium stability curves of
Figure 1 and includes experimental measurements ob-
tained using a tilted Hele-Shaw cell to simulate two-
dimensional flow in a porous medium, with inflow of a
saline solution and evaporation along part of the up-
per edge (Wooding et al. [1997a, b], Simmons et al.
[1999]). Experimental points are represented in Figure
6 by the symbols +, x and *. In the experiments, the
large scale Rayleigh number R, based on finite “aquifer”
depth was greater than 102 times the boundary layer R-
value. Although the large scale flow in the experimen-
tal work differed from a simple vertical upflow, a uni-
form evaporation rate was modelled and a saline bound-
ary layer of uniform thickness was observed to develop.
Wavenumbers of initial instabilities, scaled to the equi-
librium boundary layer thickness, were measured for a
wide range of R-values. Previously, these observations
were plotted by Wooding et al. [1997a, Figure 7] us-
ing wavenumbers scaled to the diffusion thickness and
therefore equivalent to a/R in the present case.

From the published experimental data, stable bound-
ary layers were observed for R-values of 5.8, 5.6 (two
experiments), and smaller R. Unstable boundary lay-
ers resulted for R-values of 5.6 (one experiment), 8.9
(two experiments), and larger R. Except for the un-
explained appearance of instability in one experiment
performed at R = 5.6, there was a clear separation of
stable and unstable layers into two ranges. If the single
unstable result at B = 5.6 is not included, the theoreti-
cal lower bound of 8.590 obtained using the alternative
energy method is in agreement with the results of the
experimental studies.

The dashed curves in Figure 6 provide traces of the
minima of the stability curves defined by the energy
method in Figure 2 and by linearised stability analysis
in Figure 3. For the data obtained by experimental sim-
ulation, either curve might be considered as.an upper
bound to the wavenumber of an instability which first
appears. This is on the assumption that growth rate is
zero at a critical point for stability, and a growing per-
turbation becomes significant when the boundary layer
thickness scale has increased significantly. Clearly, how-
ever, the instabilities plotted in Figure 6 have been initi-
ated by perturbations of small but finite amplitude, and
the energy method with differential constraint provides
the appropriate estimate. Three experimental points at
the low-R end appear to be exceptional. These occur
in a range where accurate observation becomes more
difficult, and an inadvertent change of background con-
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ditions could have altered the wavenumber.

In general, we may conclude that the alternative for-
mulation of the energy method has improved the quan-
titative and qualitative estimate of a lower bound to ab-
solute stability, and is in agreement with experimental
modelling. The comparison with results from linearised
analysis yields interesting qualitative similarities, and
stability properties of a growing boundary layer can be
described in some detail. The above results have appli-
cations to the theory of stability of salt lakes and the
salinization of groundwater.
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APPENDIX A

In this appendix we compare the maximum problem
(3.12) for the admissible perturbations H and H. In
particular we show that H can be identified with a
proper subspace of H. This explains why the differ-
ential constraint yields larger Rayleigh numbers than
the integral constraint.

Let (s,w) € H. For this given s we have the unique
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(0.R(0))

Figure B1. Behaviour of eigenvalues R(0) (linearised sta-
bility) near o = 0.

decomposition (Temam [1984])

se, =v+grad ¢ (v, p are z,y-periodic), (Al)

where div v =0 and v - n = 0 on 8V. Here n denotes
the unit normal at the boundary 8V. As in (3.5) we
find

A’U3=AJ.5 inV,

where v3 is the vertical component of v. This implies

Alvz3—w)=0 inV,

and the boundary conditions on 8V give v3 = w in V.
Thus given (s,w) € H we have obtained the pair (s, v)
with div v = 0 and v3 = w in V. Multiplying (Al) by
v and integrating the result over V gives

/|v|2=/sw,
v \%

in other words, (s,v) € H.

The converse is not true. Given (s,u) € H and using
(A1) we obtain the vector field v satisfying Avs = A, s
in V. So (s,v3) € H, but in general v = u + curl & for
a smooth vector field ® which vanishes on dV.

APPENDIX B

Let @ > 0 and ¢ > 0 be fixed. To simplify notation we
set r = —a?8Sy/8z. Note that r = r(a, z,t) > 0 for all
z > 0. Combining (3.48), (3.49) and (3.52) yields the
eigenvalue problem

L,w:= (D?+ D —a? - 6)(D? — ¢*)w = rRw

17
for 0 < 2 < 00, with
w(0) = D*w(0) =0, w(o0)=0.

Let R(o) := Ri(a,t,0) denote the smallest positive
eigenvalue and w, the corresponding eigenfunction. We
want to show

R(o) S R(0) ifand only if 6 0. (B1)
Note that
Lo- = Lo -0’(D2 —a2) .

Below we denote by (-,-) the L2-inner product and by
||-]| the induced norm. Since L,w, = rR(c)w, we have

(Lawaa ww) = R(U) (ng, wcr)

or

(Lows,ws) + ‘7{||Dwa“2 + ||w.,||2}

= R(o)(rws,ws) . (B2)
Since
_ o (Low,w) _ (Lows,ws)
R(O)—lvr%/f (rw,w) < (rw,,w,)

where W is a suitably chosen function space, we obtain
from (B2) the estimate

|| Dws|? + [|wo||?

R(o) — >
(0) = R(O) 2 ot L (83)
Using Lowo = rR(0)wp or
Lywp + o(D* — a®)wy = rR(0)wp ,
we find in a similar fashion the upperbound
2 2

(Two ) wo)

This proves (B1) and thus (3.50) for ¢ sufficiently small.
Note that (B3) and (B4) imply

dR Duyl|? 2
aR| _|Dwlf ol
do |, (rwo, wp)

To conclude this appendix, we show that the lower
bound in (B3) is a concave function of o near ¢ = 0.
Differentiating L,w, = rR(c)w, with respect to o and
setting v, := dw, /do gives

Lov, — (D? - a®)w, = rR(0)v, + 1‘%11)(7 ,
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implying
(Lovy — TR(0)g,v6) + (Dvg, Dw,)
dR
+ a®(v,, w,) = a—a—(v,,rw,) .
1d

Since (vy,ws) = =-——||ws|[* (other terms similarly)

and since (L,v, — TR(0)vs,vs) > 0 (assuming v, not
in the eigenspace spanned by w, ), we obtain the differ-
ential inequality
(1Dl + o} < G- rwesws)  (B6)
for all o, and in particular for o = 0.
Next set

[|Dwo |2 + llwe*

Flo) = (rwe, we)

Differentiating this expression and using (B6), (B5) re-
sults in

dF
_— <0.
do |,
Moreover, since
d2 dF &eF
2 _(oF — oYL ar
do? (o (U)) 2 do + 9302’
we find
& F@)
—(oF(o <0,
do? =0

which implies the concavity of the lower bound in (B3)
near ¢ = 0. Thus for small |g| the eigenvalues R(o)
behave as in Figure B1.





