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Abstract

This paper deals with a mixture of H2 and Hoc. We have two inputs and one output.
One input signal is a white noise stochastic process, and represents errors e.g. resulting
from measurement noise. The other input has a more deterministic character. If one has
a reference signal (e.g. a step) as input one can not model this as white noise, but it
fits nicely into this new class of inputs. The objective is to minimize the effect of these
exogenuous signals on the output ofthe system. We define a cost function which enables us
to combine the structural difference between these two exogenuous inputs. The analysis of
this function leads to a standard Hoc Riccati equation. We will motivate this cost function
by looking at two theoretical applications: the derivation of robust performance bounds
and a tracking problem.

"The research of dr. A.A. Stoorvogel has been made possible by a fellowship of the Royal Netherlands
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1 Introduction

Since the seventies the progress made in H 2 and H oo theory is enormous. H 2 theory deals
with an exogenuous, white noise, disturbance signal entering the system. It gives a measure
of the influence that this signal has on the output. On the other hand Hoo theory deals with
square integrable, unknown, disturbance signals, and discusses the worst-case influence of such
signals on the output. The H oo norm can be used to derive an indication for the sensitivity
of the system due to perturbations of the model. It is a good measure for the robustness
problem, where we want to guarantee stability for all systems in some neigbourhood of the
model. The model uncertainty in this setup is incorporated via some disturbance system in
the model, which is bounded in an H oo sense. The H 2 norm is better suited to treat errors
resulting from e.g. measurement noise. The H2 and Hoo control problems, which minimize
these norms, are already solved (see e.g. [2, 4, 9, 10]).
The growing interest for so-called mixed H 2 / Hoo is a logical consequence, and it has already
been investigated extensively ([1, 3, 5, 6, 7, 8, 11]). In general we are interested in the
Hoo norm from one input to one output and, simultanuously the H 2 norm from another input
to another output. We can try to minimize the nominal H2 norm (the influence of exogenuous
signals on the output), while keeping the H00 norm small (we still want stability if the plant
is not equal to our model, but close to it). This is done for example in [1, 5], where they
minimize some upperbound (called auxilary cost) for the H 2 norm under an Hooconstraint.
From a practical point of view it seems more appropriate to consider some kind of worst
case H2 norm, such that for all systems close to the model the H2 norm has a guaranteed
upper bound. For example, assume that the plant can be represented by incorporating a
disturbance system ~ in the model, where ~ has an H oo bound. Then we would like to
minimize the H2 norm for the worst disturbance system ~. This disturbance system includes
modelling errors as well as discarded non-linearities, time-variations and dynamics. The latter
arises because of the desire to get a model of sufficiently simple structure for the design of
controllers. Instead of maximizing the H 2 norm over all possible disturbance systems ~, in
[8] the approach is taken to maximize instead over all signals, constrained such that they
can be connected via a disturbance system ~. This approach has the disadvantage that it is
difficult to incorporate causality of~. Moreover, except for SISO systems, the results only
yield bounds for worst-case performance.
In this paper we want to combine the H 2 and Hoo norm in one cost function where we have
two inputs and one output. The objective is to study a system with two inputs. One input is a
white noise input, like in H 2 , resulting from disturbances which have a clear random character.
The other input, resulting e.g. from command signals or from modelling uncertainty, has a
more deterministic character. The latter is for instance expressed in the fact that this signal
need not have zero expectation. It is not clear what measure we should take on the output
space. THe H 00 norm is normally defined via L2-signals and hence is defined as a measure
on the transient behaviour. On the other hand, the H 2 norm is defined via the steady-state
behaviour. However, there is a natural way of defining the Hoo norm via "power signals" and
this shows that the H 00 norm can also be defined as a measure on the steady state behaviour.
Because of the above reasoning we decided to define our cost function as a measure for the
steady state behaviour. Our cost function expresses the worst-case effect of the inputs on the
steady state behaviour of the output.
In section 2 this will be formulated more explicitly. In section 3 the cost function is evaluated
for the finite horizon case, which avoids a number of technicalities. In section 4 this will be
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extended to the infinite horizon case, which leads to an expression in terms of a standard
H oo Riccati equation. In section 5 this cost function is minimized with state feedback using
well-known H 00 techniques. In section 6 an interpretation of the cost function is given, and the
conclusions are stated in section 7. Since some of the proofs are rather lenghty and technical,
they are given in two appendices.

The notation used is fairly standard. We will use that < x, Y >T:= iT x'(t)y(t)dt and

I1xll~,T :=< x, x >T. Moreover, by zw,(3 we denote the output z for initial condition x(O) =
o and inputs wand v, where v is a Brownian motion with £v(t) = 0 and £v(t)v/(s) =
j3Imin(t, s).

2 Problem formulation

To get a somehow natural mixture of the H2 norm and the H oo norm, it is important to decide
which definitions of these norms to use, how to combine these in some mixed cost function,
which class of signals to take, and so on. In this paper we consider the case of 2 inputs and
1 output, as is shown in the following picture:

z..

The objective we have for this paper was already pursued in [11]. In [11] the authors give
a cost function which mixes H2 and H oo • However their work is not very satisfactory since
it lacks a solid mathematical foundation. For instance, one of their inputs is a deterministic
function which behaves like white noise; a function, the authors admit, that does not exist.
We will pursue a cost function which is intuitive, and also fits into a solid mathematical
framework. At first we assume ~ to be a linear, time-invariant, finite-dimensional system
which has the following structure:

~: {X(t) = Ax(t) +Gw(t) +Ed(t) , x(O) = 0

z(t) = Cx(t)

with A stable. Here d is a white noise process, which in fact does not exists in continuous
time. We can overcome this by writing d(t)dt as dv(t), where v is a Brownian motion. In this
way we can get a solid framework by writing ~ in terms of a stochastical differential equation:

~: {dX(t) = Ax(t)dt +Gw(t)dt +Edv(t)
z(t) = Cx(t)

(1)

Here we assume v to be a Brownian motion with £v(t) = 0 and £v(t)v/(s) = ,Blmin(t, s).
Obviously the direct feedthrough matrix from v to z has to be zero, since otherwise the
H 2 norm from v to z is infinite. For simplicity we assume the direct feedthrough matrix from
w to z to be zero.
For the infinite horizon case we have, as mentioned in the introduction, the problem that the
standard definition for the H2 norm investigates the transient behaviour while the standard
definition for the H2 norm investigates the steady state behaviour. This makes it difficult to
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combine the two. Hence we first investigate the finite horizon case where this problem does
not arise.
As in Hoo we investigate worst-case behaviour. Because we allow the disturbance to depend
on the current state we see that in general w will be a stochastic process, albeit not necessarily
Gaussian or with zero expectation. In section 6, as we investigate some applications, we will
see why it is natural to allow w to be stochastic.
We define nT as the set of all stochastic processes on [0, T] such that

ellwll~T := e [T w'(t)w(t)dt, Jo
is well-defined and bounded. Then it is possible to define a finite horizon cost function in
terms of an induced norm:

ellzw,,BII~,T
3('2:-, T) = ~~~ ellwll~,T + j3T (2)

where wEnT is constrained to be such that wet) is F~-measurable. Here F~ is the O'-algebra
generated by {v(s), 0 ~ s ~ t}. The latter says nothing more than the only stochastics
contained in wet) is a dependence on past values of v. Note that the term j3T is a little
surprising. As we already stated we have one input d which is white noise with ed(t)d'(t) = j3I
for all t. Hence elldll~,T = j3T, and we get a cost function

- ellzw,,BII~,T ellzw,,BII~,T

3('2:-, T) = S:~ e(llwll~,T + Ildll~,T) = ~~~ ellwll~,T + j3T

In discrete time this would be the formal definition. It is in some way the operator norm of '2:
on [0, T] induced by the norm ell· 112,T, except that, but for the magnitude, the distribution
of the random signal d is fixed. However in continuous time white noise is not well-defined.
This forces us to work with v instead of d. But the above reasoning motivates the definition
of 3('2:-, T). We will derive a test, whether 3('2:-, T) is smaller than a given bound, in terms
of a Riccati differential equation.
We would like to extend this definition to the infinite horizon case. The definition of the
H 2 norm is in terms of the steady state covariance of the output, i.e.

t~oo e~ Ilzll~,T (3)

It seems appropriate to define 3('2:-) in terms of the steady state behaviour of the signals.
However, we would like to work with input and output spaces that are linear vector spaces.
The class of stochastic processes for which the limit in (3) exists is easily seen not to be linear.
Furthermore we could not show that for w in this class and j3 > 0 the output z is in this
class. Hence it is better to take input and output functions in n which is defined as the set
of stochastic processes w for which

Ilwll~ = lim sup eTlllwlI~,T
T-+oo

is well-defined and finite. It is easily checked that n is a linear space. On the other hand note
that 11.lln is not a norm, since it equals zero for all signals in L 2 (it is however a semi-norm).
With this class we are able to extend 3('2:-, T) to the infinite horizon case:

3('2:-) = sup IIzw,,BII~ (4)
w,,B Ilwll~ + j3
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where wEn is constrained to be such that wet) is .F~-measurable. It will be shown that this
cost function is well-defined and finite for stable systems. In the appendix we show that J(E)
equals the square of the Hoc> norm if f3 = 0. It is easily seen that J(E) equals the square of
the Hz norm for w = 0, which indicates the natural mixture of these norms. We will derive a
test, whether J(E) is smaller than a given bound. This test will be in terms of an algebraic
Riccati equation. However we will need quite a bit of work to derive this test. In section 6
we will show that J(E) has nice interpretations, e.g. for robust performance and for tracking
problems.

3 The finite horizon case

First note that for the finite horizon problem, we do not have to deal with stability properties.
So we can drop the assumption that A is stable. For T > °we define the cost function J(E, T)
by (2) where the supremum is taken over all w such that £llwll~ T is well-defined and finite,
f3 ~ °and (w,(3) i= (0,0). If we only consider deterministic signals w (so w does not depend
on v), it is easy to compute J(E, T):

Lemma 3.1 : Let I'l(T) be the finite horizon Hoc> norm from w to z, and I'z(T) the finite
horizon Hz norm from v to z:

(T) II zw,oIIz,T
1'1 = sup

wEL2 l oc Ilwllz,T and I'z(T) = £lizo,lll~,T

£llzw,(3II~,T
=

IIwll~,T + (3T

If we require in definition (2) that w is a deterministic function and hence independent of v,
then J(E, T) = max{,,),i(T) , I'i(T)}. 0

Proof: Note that w is deterministic and hence it is not difficult to see that

£ < zw,o, zO,(3 >T= O.

Therefore, we get

IIzw,oll~,T + £llzo,(3II~,T

Ilwll~,T + (3T

< I'i(T)II wlllT + I'i(T)f3T

IIwll~,T + (3T

< max{")';(T) , I'i(T)}

If I'z(T) ~ 1'1 (T), then this upper bound is attained by w = 0. This is seen by noting that

£llzo,(3II~,T= f3£[l zO.l II~.T·

On the other hand, if I'l(T) > I'z(T), then J(E, T) =I'f which is attained for (3 =0. •

Now consider the general case, where w is allowed to depend on v, i.e. w is stochastic. It is
easy to find an upper and lower bound for J(E, T):
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Lemma 3.2 : Let'l and,2 be as defined in lemma 3.1. For .J(~, T), defined by (2), we
have the following bounds

max hi(T), ,i(T)} $ .J(~, T) $ 2max hi(T), ,i(T)} o

Proof: By taking w = 0 we see that .J(~,T) ~ ,i(T), and for {3 = 0 we get .J(~,T) ~ ,;(T).
This proves the first inequality. The second one folows by writing

£llzw.J3I1~,T = £lI zw,o + zo,J3II~,T

< 2£(lIzw,oll~,T + Ilzo.f3I1~,T)

< 2(,i(T)£lIwll~,T +,i(T){3T)

< 2max hl(T), ,i(T)}(£llwll~,T+ {3T)

•
To evaluate this cost function, we relate it to another problem. Just as in Hoc theory it is
useful to work with a quadratic cost criterion. For a > 0 we define

J(T, a) = sup £(llzw,J3II~,T - allwll~,T - a{3T)
w,J3

Obviously .J(~, T) $ a if and only if J(T, a) $ O. We have seen that .J(~,T) ~ ,;(T). We
know that for a > ,;(T) the Riccati differential equation

p(t) = A'P(t) + P(t)A + J:P(t)GG'P(t) + G'G , P(O) = 0
a

has a solution Pa with Pa(t) ~ 0 for t ~ O. We can prove the following (the proof is given in
appendix A):

Theorem 3.3 : Let'I(T) be the finite horizon Hoo norm from w to z. Then J(T, a) < 00 if
and only if a > ,;(T) and fl Trace E'Pa(t)Edt $ aT. Moreover, in that case, J(T,a) = 0,
which is attained by w*(t) =a-IG'Pa(T - t)x(t) and {3* = O. 0

Since Pa decreases if a increases (while aT of course increases), it is easy to compute .J(~).

If fl Trace E'PaEdt $ aT, then .J(~,T) $ a, and if fl Trace E'PaEdt > aT, then
.J(~,T) > a. Hence is possible to give an explicit formula for our cost function:

Corollary 3.4 : We have .J(~, T) = inf {al fT Trace E'PaEdt $ aT}
a>"Yf(T) Jo

and a binary search will lead to .J(~,T).

5
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4 The infinite horizon case

In the infinite horizon case the cost function will in general be unbounded if A is unstable.
Hence a standing assumption in this section will be that A is stable. The results found in
the previous section can be extended to the infinite horizon case, although the mathematical
details become more complicated. Consider the cost function .7(~), defined by (4), where the
supremum is taken over all wEn such that w(t) is F~-measurable and over all f3 ~ 0 where
llwlln and f3 are not both zero. We defined the class n at the end of section 2. Notice that
11.lln is a semi-norm, not a norm. As in the finite horizon case it is possible to give an upper
and lower bound for .7(~):

Lemma 4.1 : Let 1'1 be the Hoo norm from w to z, and 1'2 be the H2 norm from v to z:

and 1'2 = lim E:T1I1zo,11l~ T
T-oo '

Then we have max bf,1'n ~ .7(~) ~ 2max hf,1'n. o

Proof: That .7(~) ~ 1'1 follows immediately by taking w = O. In the appendix we show
that .7(~) equals 1'f for f3 == 0, which proves the first inequality. The second one follows by
writing

where in the last step we used that .7(~) equals 1'f for f3 = o.

lim sup E: T
1

IIzw,,BII~,T
T-oo

lim sup E:T11Izw,o + zo,,BII~,T
T-oo

< 2limsuPE:T11Izw,oll~,T + 2limSUPE:T11Iz0,,BIl~,T
T-oo T-oo

< 21'ilimsuPE:~llwll~T+21'~f3
T-oo T '

•
In the same way as in lemma 3.1, it is easily seen that .7(~) = maxbi, 1'n if we only consider
deterministic functions w which are hence independent of v. The evaluation of .7(~) goes in
an analogous way as for the finite horizon case. For a > 0 we define

K(a) = sup limsupE:~llzw,,BII~,T-alimsuPE:~llwll~,T-af3
w,,B T-oo T T-oo T

Obviously .7(~) ~ a if and only if K(a) ~ O. Since K(a) involves limsup twice, this is not
so attractive for computations. We would rather relate it to

J(a) = sup lim sup E: T
1

(llzw,,BII~,T - allwll~,T) - af3
w,,B T_oo

(5)

It is easily seen that K(a) ~ J(a). To show that they are equal we will first evaluate J(a).
We know that .7(~) ~ 1'i, and that for a > 1'i the Riccati equation

A'p +PA +a-I PGG'p +G'G = 0

6
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has a solution Pa ~ 0 such that

(7)

is stable.

Theorem 4.2 : Let '1 be the Hoo norm from w to z. Then J(o:) < 00 if and only if
0: > ,f and Trace E'PaE $ a. In that case J(a) = 0, which is (not uniquely) attained by
w* =a-IG'Pax and (3* = O. 0

The proof is given in appendix B. Using the optimal w* and (3* from this theorem we find
the following lemma (also proven in the appendix):

Lemma 4.3 For a > ..1(~) there holds J(a) = K(a). o

This lemma shows that ..1(~) $ a if and only if J(a) $ O. In combination with the previous
theorems the following is an immediate result:

Corollary 4.4 We have ..1(~)

Proof: We have that

..1(~) < a ~ K(a) = J(a)

..1(~) $ a ~ K(a) $ 0

Combined this yields

..1(~) < a ~ J(a) $ 0

On the other hand, we have

inf {a I Trace E'PaE $ a}
a>')'?

o

J(a) $ 0~ K(a) $ 0~ ..1(~) $ a

The above immediately yields a proof of the corollary •
Note that this cost-function equals 'f if E = 0, and ,i if G = 0, exactly what is expected.
The term Trace E'PaE is the so called auxilary cost, which has been used in [5, 8, 11]. In
these papers the auxilary cost is used as an upperbound for the nominal H 2 norm, which is
minimized under an H oo constraint.
Since Pa increases if a decreases, it only requires a binary search to compute ..1(~).
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5 Minimization by state feedback

In the previous section we analysed a cost function 3{E), and we showed that it can be related
to a standard H oo Riccati equation. Using well-known techniques from H oo optimization (see
e.g. [9]), the minimization of .J(~) using state feedback is relatively easy. First consider the
open-loop system

~: { dx(t) = Ax(t)dt + Bu(t)dt +Gw(t)dt +Edv(t)

z(t) = Gx(t) + Du(t)

We make the following assumptions:

Assumption 5.1

(i) The pair (A, B) is stabilizable,

(ii) The pair (G, A) is detectable,

(iii) D'[G D] = [0 f]. o

These assumptions are standard for Hoo theory. For the third assumption it is sufficient that
D is injective. In that case assumption (iii) can be achieved via a preliminary feedback.
For an arbitrary, possibly non-linear, time-varying or dynamic but causal compensator: u =
F(x) we denote by ~ x F the closed loop interconnection. The interconnection is well-posed
if the state and output signals, for given input and zero inititial conditions, are unique and
well-defined stochastic processes. We call a compensator stabilizing if the interconnection is
well-posed and stable. From lemma 4.1 we know that we can never achieve .J(~ x F) < ,[,*,
where ,1,* is the infimum over all, > 0 for which there exists a stabilizing compensator for
which the closed loop H 00 norm from w to z is less than ,. We know the following ([9]):

Corollary 5.2 : Let, > O. There exists an internally stabilizing feedback such that the
H 00 norm from w to z is less than, if and only if there exists a positive semi-definite solution
Q of

A'Q +QA + ,-2QGG'Q - QBB'Q +G'G = 0

such that A +,-2GG'Q - BB'Q is stable.

This enables us to solve the problem of minimizing .J(~) using state feedback:

o

Theorem 5.3 : There exists an internally stabilizing feedback u = F( x) such that .J(~x F) ::;
a if and only if there exists a positive semi-definite solution Q of

A'Q +QA + a-1QGG'Q - QBB'Q +G'G = 0

such that A +a-1GG'Q - BB'Q is stable and such that Trace E'QE ::; a. In that case the
linear, static and time-invariant compensator u = - B ' Qx is internally stabilizing and assures
.J(Y:. x F) ::; a. 0

8



Proof: We denote by R(~ X F,a) the cost function J(a) as defined in 5 for the system
~ x F. Obviously (see the previous section) :J(~ x F) ~ a if and only if R(~ x F, a) ~ O.
For any stabilizing feedback u = F( x) we can write using assumption (iii):

R(~ x F,a)

sup Ilzw,,6II~ - allwll~ - 0.13
w,,6

suplimsuP£T
1

(IICx + Dull~,T - allwll~,T) - 0.13
w,,6 T-+oo

sup lim sup £T
1

({T ICx(tW + lu(tW - alw(tW + dd x'(t)Qx(t)dt - X'(T)QX(T)) - 0.13
w,,6 T-+oo Jo t

= sup lim sup £T
1

( (T ICx(tW + lu(t)1 2 - alw(tW + 2x'(t)QAx(t) + 2u'(t)B'Qx(t)
w,,6 T-+oo Jo

+2w'(t)G'Qx(t)dt - x'(T)Qx(T)) +f3(Trace E'QE - a)

1 iTsup lim sup £T( lu(t) + B'Qx(t)1 2 - alw(t) - a-1G'Qx(tWdt
w,,6 T-+oo 0

-x'(T)Qx(T)) + f3(Trace E'QE - a)

Here we used that It x'(t)QEdv(t) = 0 since v is a Brownian motion process and since x(t) is
.r~-measurable. Obviously (for any fixed stabilizing compensator) this supremum is bounded
if and only if Trace E'QE ~ a, which gives

1 iTR(~ x F,a) =limsup£T( lu(t) +B'Qx(tW - x'(T)Qx(t)dt)
T-+oo 0

which is (not uniquely) attained by w* = a-1G'Qx and 13* = O. By taking u* = -B'Qx, it is
easy to check (using that u* and w* result in the stable closed-loop matrix A +a-1GG'Q 
BB'Q) that

lim £T
1

x'(T)Qx(t) =0
T-+oo

and hence R(~ x F, a) = O. This completes the proof. •
We see that the minimization of :J(~) using state feedback is not so difficult to solve. The
minimization using dynamic feedback will be much harder, as in Hoo theory. This is the
subject of future research.

6 Norminterpretation

In this section we will give some intuition why one might be interested in the cost function
.J(~) introduced in this paper. One application is related to robust performance while the
other is basically the tracking problem.

9



6.1 Tracking problem

In this subsection we show how a standard tracking problem leads naturally to the perfor
mance measure J(~) as introduced in this paper. Consider the following setup:

r z

+

e

Here r is an, a priori unknown, reference signal. The objective is to make the output z
resemble this reference signal, i.e. to minimize the tracking error e. We can affect this
tracking signal by designing a suitable compensator C. However, our sensors measuring the
output z of the system, will always induce some measurement noise.
Clearly, it is natural to assume that the measurement noise is a white noise stochastic process
(in case of coloured noise we can easily incorporate this via a shaping filter). However, for
the reference signal r it is much better to model this as an unknown signal in the set n.
After all, the set n contains standard reference signals like steps, sinusoidal functions and
bounded piecewise-constant functions. Information with respect to the frequency content of
the reference signal can again be incorporated via a suitable weighting.
We would like to minimize the steady state tracking error. We know that if the inputs are in
the above classes then the resulting output will be in nand II· lin is indeed a measure for the
steady state tracking error.
One might argue that the measurement noise and the reference signal are independent. How
ever, there are two reasons why some dependency can occur. First of all if the reference signal
is produced by a human operator, the operator might make the reference signal depending
upon observations he personally makes of the closed loop system. Secondly the size of the
measurement error at a certain time might depend on the size of the signal to be measured.
After all, if the signal to be measured is large, then the measurement error might increase: ei
ther because the measurement error is relative to the size of the signal or because of saturation
effects.
After the above reasoning it should be clear why the measure J(~) is a natural measure
because it expresses the size of the tracking error relative to the size of the reference signal
and the measurement noise.
Concluding it is our feeling that the effect of measurement noise should be measured in an
H 2 sense while the effect of reference signals on the tracking error is better measured in an
H oo sense with suitable weighting. The measure introduced in this paper combines these two.

6.2 Robust performance

In this paper we defined a cost function J(~) which is a natural mixture of the H 2 and
H oo norm of a system with two inputs and one output. We have seen a very attractive
equivalent expression for J(~), which is given in terms of a Riccati equation. In this section
we want to give some results which can be derived using this cost function.

10



We consider the problem of robust performance. Assume that w = .6.z for some .6., as is
shown in the following picture:

- ~ -

w

~
f+-

Z v

This system described by this interconnection will be denoted by :Ea. The disturbance system
.6. contains modelling errors, non-linearities, time-delays, and so on. We assume .6. to be
causal, and bounded (say by 1) in the sense of n induced semi-norms (which, for most
systems, is equal to being bounded by 1 in L 2 induced norm). Moreover, we require .6. to
yield a well-posed interconnection, i.e. given v, the disturbance system.6. and the model :E with
zero initial conditions, thesignals wand z are unique and well-defined stochastic processes.
This unknown structure of.6. requires an investigation of the definition of the H2 norm. The
stochastic definition of the H 2 norm can be extended to non-linear, time-varying systems: we
define the H 2 norm for a (possibly) non-linear, time-varying system :En as:

II:Enll~ := lim sup £T1I1znll~,T'
T-oo

where Zn is the output of :En with a Brownian motion Vn as input where £vn(t)v~(s) =
Imin(t, s). We take limsup instead of lim, because we can only guarantee that Zn is bounded
in this sense, and not that the limit exists (especially for time-varying perturbations). From
.J(:E) we can derive an upperbound for the worst-case H 2 norm:

Lemma 6.1 : If .J(:E) ~ Q < 1, then sup lI:Eall~ ~ 1 ~ Q' 0
lIall oo $1

Proof: Notice that II:Eall~ = IIzaz,lll~ (13 = 1). Say w = .6.z with 11.6.1100 ~ 1. Then

IIzaz,tll~ < IIzaz,lll~ = Ilzw,lll~ < Q

IIzaz,lll~ + 1 - lI.6.zaz,ll1~ +1 Ilwll~ +1 -

Since Q < 1, the result follows immediately. •

It is not difficult to check that this bound is not tight. For example if G = 0 the disturbed
system will always have the same H2 norm, namely 72 (notice that .J(:E) = 7i). And if E = 0
it should be zero (here .J(:E) = 7l). It is possible to give a better bound:

Lemma 6.2 : If 7i < 1, then

sup II:Eall~ ~ inf Trace E'PaE
lIa II 00 $1 l>a>-r? 1 - Q

where Pa for Q > 7; is equal to the unique solution P ~ 0 satisfying (6) such that (7) is
~~ 0

11



Proof: This bound can be derived by a careful reexamination of the sequence of equalities
used in the proof of B.3. For 1 > a > If (take f3 == 1) we find

sup lim sup £r
1

(1Izw,lll~,T - allwll~,T) - a
w T-+oo

== sup limsuP £r
1
(-lIw-a-1G'Paxll~,T-x'(r)PaX(r)) +TraceE'PaE-a

w T-+oo

which is equal to Trace E'PaE - a and this supremum is (not uniquely) attained by w* ==
a-1G'Pax. Hence

sup limsuP £r
1

(1IZw,lll~,T - allwll~,T) == Trace E'PaE
w T-+oo

So for w == ~z with 11~lloo ~ 1 we get

(1- a)limsuP£r11IzaZ,111~,T <
T-+oo

<

lim sup £r
1

(1Izaz,lll~,T - all~zaz,lll~,T)
T-+oo

li~~p £ ~(lIzw,lll~,T - allwll~,T)

Trace E'PaE

From this the result follows immediately. •
Note that Pa decreases if a increases (a < 1), while l~a increases. This makes this bound
not so easy to compute. This bound seems to be a tight one, for example if E == 0 or G == 0
it gives exactly the results given above (notice that /'1 == 0 if G == 0, and in that case Pa == L
where L is the observability grammian).

7 Conclusions

In this paper we investigate a mixed cost function which combines the H2 and the Hoo norm
in a stochastic framework. We consider the case of two inputs and one output. First we chose
a suitable class of functions for the input space from which we can define the H2 norm and
the H oo norm in terms of the same kind of measure on the output. The cost function .J(~)

is then defined in a natural way as an induced semi-norm. This paper mainly deals with the
analysis of this mixed cost function. Our objective was to show how the H2 and Hoo norm
can be combined in a logical and elegant way. We find a very attractive expression for .J(~)

in terms of a standard H oo lliccati equation, which is known in literature as the auxilary cost.
In section 5 we show that using this expression the minimization of the cost function for the
state feedback case is relative easy. We also give some connections with problems like robust
performance and tracking problems, for which we can easily derive results using .J(~).

For the combination of H 2 and H oo in one mixed cost function there are many open problems
which seem rather tractable. We can look at the dual version of the problem stated here, Le.
the case where we have one input and two outputs. Then we can try to consider the general
case of two inputs and two outputs. Especially this last set-up is very useful for the problem
of robust performance but hard to handle. Furthermore it is interesting to investigate the use
of the mixed cost functions for certain applications in more detail.

12



Appendices

A Proofs for the finite horizon case

The proof of theorem 3.3 will only be given for a = 1. The general result can be obtained via
scaling.

Theorem A.I : Let "Yl(T) be the finite horizon Hoo norm from w to z. Then J(T, 1) < 00

if and only if "Yf(T) < 1 and Ji Trace E'P(t)Edt ~ T. In that case J(T, 1) = 0 and the
supremum is attained for w*(t) = G'peT - t)x(t) and (3* = O. Here pet) is defined by

Pet) = A'pet) + P(t)A + P(t)GG'pet) +C'C , P(O) = 0

Proof: J(T, 1)

= sup £"(lIzw,,BII~,T -lIwll~,T - (3T +iT :tX'(t)P(T - t)x(t)dt)
w,,B 0

= sup £" (iT [x'(t)C'Cx(t) - w'(t)w(t)] dt - (3T
w,,B 0

+ iT 2x'(t)P(T - t)Edv(t) -iT x'(t)P(T - t)x(t)dt + iT (3 Trace E'P(t)Edt

+ iT 2x'(t)P(T - t) [Ax(t) +Gw(t)] dt)

= sup £" lT [2x'(t)P(T - t)Gw(t) - w'(t)w(t) - x'(t)P(T - t)GG'peT - t)x(t)] dt
w,,B 0

+(3(i
T

Trace E'P(t)Edt - T)

o

Here we used Ito's differential rule and the fact that £" Ji f(t)dv(t) = 0 for any f(t) that is
F~-measurable. Hence we get

J(T, 1) = sup (3(lT Trace E'P(t)Edt - T) - £"llw(t) - G'peT - t)x(t)II~,T
w,,B 0

which is finite if and only if Ji Trace E'P(t)Edt ~ T, and in that case J(T, 1) = 0 and the
supremum is attained for w*(t) = G'peT - t)x(t) and (3* = o. •

13



B Proofs for the infinite horizon case

The results found for the finite horizon case can be extended to the infinite horizon case,
although it needs some more extensive calculations. At first we will give an equivalent def
inition for the Hoo norm, which is used in lemma 4.1. This result is similar result given in
[11]. However, because we work with limsup instead of limits and because we do not make
assumptions on the input signals to allow a frequency domain analysis, we need to do more
work.

Lemma B.l : Let the system (1) be given. We have

sup Ilzw,olln = /1
w Ilwlln

where /1 is the H 00 norm from w to z. o

Proof: Note that since f3 = 0, we only deal with deterministic signals. We first show that
the above supremum is larger than or equal to /1. Let E > 0 be arbitrary small and choose
w* E L 2 such that

Ilzw.,oll~ > ",,2 _ ~
IIw*ll~ /1 4

This clearly implies that there exists T1 such that for all t > T1 :

Ilzw.,oll~,t > 2 E
/1 --

Ilw*"~,t 2

Define

K =

where 11.11 denotes the largest singular value of a matrix. Since the input w* is in L 2 and A
is stable, it is well-known that then

x(t) = I t
eA(t-T)Ew*(r)dr -+ 0

as t -+ 00. Using this it can be shown that there exists T2 > T1 such that for all t > T2 :

11t
eA(t-T) Ew*(r )drl < ~8

Since A is stable, it is obvious that there exists s > T2 such that for all t > s we have

1
lI eAt li < -

2

Next, we will define a input function with period s, and compute a lower bound for the
corresponding output. Define wEn by

w(ks+t) = w*(t)

14



Ix((k + l)s)\

for k E IN and 0 ~ t < s. Because w is periodic, it is easy to see that this function is indeed
in Q. We will show that Ix(ks)1 < 8 for all k E IN. Obviously this is true for k = 0 (x(O) =0).
Suppose it is true for some k E IN. Then

l
(k+l)S

leAsx(ks) + eA«k+l)s-t)Ew(t)dtl
ks

< lIeAS lllx(ks)1 +11s
eA(s-t)Ew*(t)dtl

1 1
< "2 8 +"2 8

The next step is to give a lower bound for Ilzw,oll~,ks for k E IN:

II Zw,o 11~,(k+l)S

l
(k+l)S

Ilzw,oll~ ks + IZw,o(tWdt, ks

l
(k+l)S

Ilzw,oll~,ks + ICeA«k+1)s-t)x(ks) + zw.,o(t - ksWdt
ks

By applying the same step to this expression, we find in a recursive way

This enables us to prove the result

Ilzw,oll~

Ilwll~

We used that IIw*II~,Tl ~ Ilw*IIL since T1 < s. Since £ > 0 was arbitrary, this proves that the
supremum is larger than or equal to 'Y1.

We will now show that we actually have equality. Suppose there exists w* such that

Ilzw.,oll~ > ",2 + £

Ilw*lI~ - /1

for some € > O. Let b > 0 be such that b < ~E2 • By definition of the limsup there exists T1
E 'Y1

such that for all t > T1 :

1 2 2t Ilw*112,t ~ (1 +8)IIw*lln

15



Ilzw,ollL ~

wE~~fo,sl IlwilL

Moreover, there exists s > T1 such that

~llzw.,ollL ~ (1- 6)llzw.,oll~
s

Using this we find

II zw.,ollls

Ilw*IIL
> (1- 6)llzw.,oll~

(1 + 6)llw*ll~

(1 - 6) 2

(1+6)(-)'1+£)

> "ri
sup IIzw,oll~

wEL2 IIwll~

Since the infinite horizon Hoo norm is larger than or equal to the finite horizon Hoo norm,
this is a contradiction. This completes the proof. •

To prove that J(a) = 0 if J(a) < 00 (theorem 4.2), we need the following lemma:

Lemma B.2 If wEn then lim sup t'T1Ix(T)12 < 00 for all f3 ~ O.
T-+oo

Proof: We have

o

lim sup t'T1Ix(TW
T-+oo

1 T T 2
= limsupt'- { eA(T-t)Gw(t)dt+ ( eA(T-t)Edv(t)

T-+oo T Jo Jo

< 2 lim sup t'.!' {T eA(T-t)Gw(t)dtI2
T-+oo T Jo

+2 lim sup t'.! I (T eA(T-t)Edv(tW
T-+oo T Jo

The first term can be bounded as follows:

li~-:~p t' ~ 11
T

eA(T-t)Gw(t)dtI 2 ~ (100

IIeAtGl12dt) Ilwll~

using lemma B.l and the fact that A is stable. Using standard properties of stochastic
integrals we also find

11 T 2 f3 Tlimsupt'- ( eA(T-t)Edv(t) = limsup- { TraceE'eA'(T-t)eA(T-t)Edt
T-+oo T Jo T-+oo T Jo

which tends to zero since A is stable.

This lemma enables us to prove theorem 4.2 (for a = 1):
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Theorem B.3 : Let "I? < 1, where "11 is the Hoo norm from w to z. Then J(I) < 00 if
and only if Trace E'PE ~ 1, and in that case J(I) = 0, which is (not uniquely) attained by
w* = G'Px and (3* = O. Here P ~ 0 satisfies A'P +PA+ PGG'P+ G'G = 0 with A+ GG'P
~~ 0

Proof: We can write using lemma B.2 :

J(I)

= sup lim sup t:
T
1 (lIzw,pll~'T -lIwll~,T - (3 + [T [dd x'(t)Px(t)] dt - X'(T)PX(T))

w,p T .....oo Jo t

sup lim sup t:
T
1

([T (2x'(t)PGw(t) - w'(t)w(t) - x'(t)PGG'Px(t)) dt
w,p T .....oo Jo

- x'(T)PX(T)) +(3(Trace E'PE - 1)

Hence we get

J(I) = sup (3(Trace E'PE - 1) + limsupt:-.!. (-IIw - G'PxlltT - x'(T)Px(T))
~ ~oo T

which is finite if and only if Trace E'PE ~ 1, and in that case we see that J(I) = 0, which
is (not uniquely!) attained by w*(t) = G'Px(t) and {3* = O. Note that if we have inputs w*
and {3* (Le. v = 0) then it is easy to show that

lim t:
T
1

x'(T)Px(T) = 0
T .....oo

Therefore J(I) = O. Any wand f3 which attain this supremum are of the form (3* = 0 and
w* = G'Px +WI for some function WI with Ilwilln = O. •

Now we will prove lemma 4.3, which claims that J(o:) = K(o:). Again we take 0: = 1.

Lemma B.4 : If ..7(~) < 1, then

J(I) sup lim sup t:
T
1

(lIzw,pll~,T - Ilwll~,T) - f3
w,p T .....oo

= sup IIzw,pll~ - Ilwll~ - f3 = K(I)
w,p

Proof: The left-hand side equals J(I), for which theorem B.3 says that this supremum is
(not uniquely) attained by a state feedback w* = G'Px. This feedback results in the system

{

dx(t) = (A +GG'P)x(t)dt +Edv(t)
~* : z(t) = Gx(t)

w*(t) = G'Px(t)
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where A +GG'P is stable. It is not very hard to show that for every 13 ~ 0 the following limit
is well-defined and bounded:

lim £'Tll1w*ll~ T
T-+oo '

and hence

J(I) = li~-:~p £' ~(lIzw.,iJll~,T - Ilw*II~,T) - 13

= IIzw·,iJlI~ - IIw*lI~ - 13.

From this it easily follows that J(a) ~ K(a). That J(a) ~ K(a) is trivial.
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