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Here e, + with 6

___
and : with 6 covers all possibilities for

n 4+e+c5 n 1-6
tl 4 2 t2 4 2

n 1- n
t3 4 2 t4 .

M is the matrix of a ’third’ minor. The evaluation of

det (Mr. M)

ml +1
where

-3
-3

of order tv, gives

det M 0,

det M 0,

det M + 4n"/2 3 +/- 4g,/n3,

for= +1,6 +l,n> 8;

for e +1,6 --1, n >= 8;

for e --1,6 --1, n >= 8.

The problem also shows that the (n- 2)- and (n- 3)-order nonsingular
submatrices of an n-order Hadamard all have inverses whose nonzero entries
can be only + 2/n or -2/n.

Problem 73-8. A Polynomial Diophantine Equation, by M. S. KLAMKIN (Ford
Motor Company).
Determine all real solutions of the polynomial Diophantine equation

(1) P(x)2 P(x2) x{Q(x)2 Q(x2)}.

Solution by O. P. LOSSERS (Technological University, Eindhoven, the Nether-
lands).

From the given equation, it follows that

p(x4) x2Q(x4) p2(x2 x2Q2(x2)

{P(x2) xQ(x2)} {P(x2) + xO(x2)}.
Letting F(x) P(x2) xQ(x2), we have

(2) F(x2) F(x)F(- x).
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Conversely, any solution of (1) may be obtained from a solution of (2) by taking

P(x) {F(x// + F(-x/)},

Q(x) x -F(x/-X + F(-

Polynomial solutions of (2) may be written in the form

V(x) C(x )(x )... (x .)

Then

(C is a constant).

(the cyclotomic polynomials). Since for all k 1, 2, 3,-.., the set

{exp [2rcil/(2k 1)]}t,2k_ 1)= is squaring-invariant and the set of solutions of (2)
is closed under multiplication, the general polynomial solution of (2) is

F(x) (- 1)deg F H (/k(X))nk’
k=O

the n being nonnegative integers, n g: 0, for a finite number of indices k. These

polynomials all have integral coefficients.

Also solved by the proposer, who notes that one can give extensions by
considering higher order roots of unity. For example, letting o9

3 1, consider

F(x3) F(x)F(Ogx)F(Ogzx), where F(x)= P(x3) -t- coxQ(x3) q- OgZxZR(x3).

F(-x) (-1)"C(x + ,)(x + 2)"’" (x + ,),

so that

F(x)F(-x) (-1)"C2(x l)(x + 0l)(x 02)(x + 02)"" (x ,)(x + 0,).

On the other hand, taking/i such that//2 i(i 1, ..., n), we find

F(X2) C(x l)(X -}- l)(X 2)(x 2)"’" (x n)(X + n)"

Therefore, in view of (2), excluding the trivial case C 0, we obtain C
and (i)i= is a permutation of (fli)7=

Finite, squaring-invariant subsets of the complex plane can only contain 0

and roots of unity of odd order. The irreducible polynomials corresponding to

these roots are

2o(X) x, 2(x) 1-[ Ix exp [2rcil/(2k 1)], k 1,2, 3, .-.,
(2k- ,l)=


