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A compositional proof system for dynamic process 
creation * 

F. de Boer 

Technical University Eindhoven 
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The Netherlands 

email:wsinfdb@info.win.tue.nl 

Abstract We present a compositional proof system for a parallel language with dy
namic process creation. We show how a dynamic system of processes can be described 
in terms of specifications ofthe local processes which involve a characterization of their 
interface with the environment. The proof system formalizes reasoning about these 
interfaces on an abstraction level that is at least as high as that of the programming 
language . 

• An extended abstract of this paper appeared in the proceedings of LICS'91. 
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1 Introduction 

The goal of this paper is to develop a compositional proof system for reasoning about 
the correctness of a certain class of parallel programs. We shall consider programs 
written in a programming language, which we simply call P. The language P is a 
simplified relative of POOL, a parallel object-oriented language [Am]. POOL makes 
use of the structuring mechanisms of object-oriented programming [Mey], integrated 
with concepts for expressing concurrency: processes and communication. 

A program of our language P describes the behaviour of a whole system in terms 
of its constituents, objects. These objects have the following important properties: 
First of all, each object has an independent activity of its own: a local process that 
proceeds in parallel with all the other objects in the system. Second, new objects 
can be created at any point in the program. The identity of such a new object is 
at first only known to itself and its creator, but from there it can be passed on to 
other objects in the system. Note that this also means that the number of processes 
executing in parallel may increase during the evolution of the system. 

Objects possess some internal data, which they store in variables. The value of a vari
able is either an element of a predefined data type (Int or Bool), or it is a reference 
to another object. The variables of one object are not accessible to other objects. 
The objects can interact only by sending messages. A message is transferred syn
chronously from the sender to the receiver. It contains exactly one value; this can be 
an integer or a boolean, or it can be a reference to an object. (This is the only essential 
difference between P and POOL: in POOL communication proceeds by a rendezvous 
mechanism, where a method, a kind of procedure, is invoked in the receiving object 
in response to a message.) Thus we see that a system described by a program in 
the language P consists of a dynamically evolving collection of objects, which are all 
executing in parallel, and which know each other by maintaining and passing around 
references. This means that the communication structure of the processes is deter
mined dynamically, without any regular structure imposed on it a priori. This is in 
contrast to the static structure (a fixed number of processes, communicating with 
statically determined partners) in [AFR] and the tree-like structure in [ZREB]. 

In [AB] we developed for the language P a proof system based upon a generalization 
of the ideas underlying the proof theory of CSP ([AFR]). In that system the local 
behaviour of an object is specified with respect to assumptions about its environment. 
In what is called the coopemtion test these assumptions associated with different 
objects have to be shown to be mutually consistent with respect to a global invariant, 
i.e., an assertion describing the global topology. A drawback of this methodology is 
that it provides no tools to understand and reason about a complete system in terms 
of its constituents. 

In this paper we show how a complete system can be described in terms of its objects, 
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by viewing an object as an entity consisting of some internal data/activity, and an 
interface with its environment. Such an interface we model as a history of interactions 
of the object with its environment. This basic idea has been applied to a eSP-like 
language in [ZREBJ. We generalize this idea to cope with dynamic process creation 
and dynamically evolving process structures. In our case an interaction will be either 
the creation of an object or a communication event. A specification then of a complete 
system can be obtained from specifications of its objects essentially by a conjunction 
and viewing the local history of an object as a subsequence of the global history of 
the system consisting of those interactions which involve the object. 

Another important characteristic of our proof system is that it allows reasoning about 
histories and dynamically evolving process structures on an abstraction level that is 
at least as high as that of the programming language. In more detail, this means the 
following: 

• The only operations on 'pointers' (references to objects) are 

testing for equality 

dereferencing (looking at the value of an instance variable of the referenced 
object) 

• In a given state of the system, it is only possible to mention the objects that 
exist in that state. Objects that have not (yet) been created do not playa role. 

The above restrictions have quite severe consequences for the proof system. The 
limited set of operations on pointers implies that first-order logic is too weak to express 
some interesting properties of pointer structures. Therefore we have to extend our 
assertion language to make it more expressive. We will do so by allowing the assertion 
language to reason about finite sequences of objects. 

We have proved that the proof system is sound and complete with respect to a formally 
defined semantics. Soundness means that everything that can be proved using the 
proof system is indeed true in the semantics. On the other hand, completeness means 
that every true property of a program that can be expressed using our assertion 
language can also be proved formally in the proof system. 

Our paper is organized as follows: In the following section we describe the program
ming language P. In section 3 we define two assertion languages, the local one and 
the global one. Then, in section 4 we describe the proof system. The semantics of 
the programming language, the assertion languages, and that of correctness formulas 
is described in section 5. In section 6 we discuss soundness and completeness of the 
proof system. Finally, in section 7 we draw some conclusions. 
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2 The programming language 

In this section we give a formal definition of the langnage P. We assnme as given a 
set C of class names, with typical element c. By this we mean that symbols like c, 
c', C1, etc. will range over the set C of class names. The set C u {Int, Baal} of data 
types, with typical element d, we denote by C+. Here Int and Baal denote the types 
of the integers and booleans, respectively. For eac1t c E C and d E C+ we assnme 
IVar~ to be the set of instance variables of type d in class c, with typical elements xd 
and Yd' Such a variable xd occurs in each object of class c and it can refer to objects 
of type d only. We assume that 1Vard n IVar~, = 0 whenever c oF If or d oF d'. In 
cases where no confusion arises we omit the subscripts and superscripts. 

Definition 2.1 
We define the set EXPd of expressions of type d in class c, with typical element ed' 
Such an expression ed can be evaluated by an object of class c and the object to which 
it refers will be of type d. 

These expressions are defined as follows: 

€d .. - xd 
self if d = c 

nil 

true I false if d = Baal 

n if d = Int 

e, e + e2 e if d = Int 

An expression ed will be evaluated by a certain object Q of class c. An expression 
of the form x denotes the value of the variable x that belongs to the object Q. The 
expression self denotes the object Q itself. The expression nil denotes no object .at 
all. The intended meaning of the other expressions we assume to be self-evident. 
Note that in the programming language we put a dot over the equality sign ("') to 
distinguish it from the equality sign we use in the metalanguage. 

Definition 2.2 
We next define the set State of statements in class c, with typical element se. These 
statements can be executed by an object of class c. 



Statements can be of the following forms: 

se .,_ Xd:= ed 
Xd := newd 
c, C 

Xcloed 

X~I ?Yd 
?yC • d 

Sf;Si 

if d oJ Int, Bool 

if eC then SI else Si fi 

while eC do SC od 

5 

A statement SC can be executed by an object of class c. The object executes the 
assignment statement x := e by first evaluating the expression e at the right-hand 
side and then storing the result in its own variable x. The execution of the new
statement x := newd by the object ex consists of creating a new object (3 of class d and 
making the variable x of the creator (t refer to it. The instance variables of the new 
object (3 are initialized to nil and (3 will immediately start executing its local process. 
It is not possible to create new elements of the standard data types Int and Bool. 

A statement x~,!ed is called an output statement and statements like x~, ?y~ and ?y~ are 
called input statements. Together they are called I/O statements. The execution of 
an output statement xl~,!ed by an object (t is always synchronized with the execution 
of a corresponding input statement X2~'?Yd' or ?Yd' by another object (3. Such a pair 
of input and output statements are said to correspond if all the following conditions 
are satisfied: 

• The variable Xl of the sending object (t should refer to the receiving object (3 
(therefore necessarily the type of the variable Xl coincides with the class c' of (3). 

• If the input statement to be executed is of the form xl?Y~, then the variable X2 
of the receiving object (3 should refer to the sending object (t (again, this means 
that the type of the variable X2 coincides with the class c of (t). 

• The type d of the expression ed in the output statements should coincide with 
the type of the destination variable y~; in the input statement. 

If an object tries to execute a I/O statement, but no other object is trying to exe
cute a corresponding statement yet, it must wait until such a communication partner 
appears. If two objects are ready to execute corresponding I/O statements, the com
munication may take place. This means that the value of the expression e in the 
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sending object a is assigned to the destination variable y in the receiving object /3. 
When an object is ready to execute an input statement ?y there may be several 
objects ready to execute a corresponding output statement. One of them is chosen 
non-deterministically. 

Statements are built up from these atomic statements by means of sequential com
position, denoted by the semicolon ';', the conditional construct if-Ihen-else-fi and the 
iterative construct while-do-od. The meaning of these constructs we shall assume to 
be known. 

Definition 2.3 
Finally we define the set Progc

» of programs, with typical element pCn , as follows: 

Cn •• (So, sCn-l • Sc») p .. = ct f- 1"'" Cn-l f- n-l . n 

Here we require that all the class names Ct, ..• ,Cn are different. Furthermore we 
require for every variable x;j occurring in p-that its type d is among Ct, ... ,Cn , Inl, Bool 
and th.at in every new-statement x := neWd the type d of the newly created object is 
among c}, ... , en-I. 

The first part of a program consists of a finite number of class definitions Ci <

S;, which determine the local processes of the instances of the classes Ct, ••. ,Cn-t. 
Whenever a new object of class Ci is created, it will begin to execute the corresponding 
statement Si. The second part specifies the local process Sn of the root class Cn. The 
execution of a program starts with the creation of a single instance of this root class, 
the root object, which begins executing the statement Sn. This root object can create 
other objects in order to establish parallelism. Due to the above restriction on the 
types of new-statements, the root object will always be the only instance of its class. 
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3 The assertion language 

In this section we define two different assertion languages. An assertion describes the 
state of (a part of) the system at one specific point during its execution. The first 
assertion language describes the internal state of a single object. This is called the 
local assertion language. It will be used in the local proof system. The other one, the 
global assertion language, describes a whole system of objects. It will be used in the 
global proof system. 

3.1 The local assertion language 

We introduce a new kind of variables: Let Log Var d be an infinite set of logical variables 
of type d, with typical element Zd. We assume that these sets are disjoint from the 
other sets of syntactic entities. Logical variables do not occur in a program, but only 
in assertions. 

Definition 3.1 
The set LExp'd of local expressions of type d in class c, with typical element l~, is 
defined as the set Exp'd but for the additional rule: I'd ::= Zd. 

The internal behaviour of an object will be specified with respect to a local history, 
which records the sequence of interactions of the object with its environment. Such a 
local history can also be understood as describing the interface of an object. To reason 
about histories we introduce a new kind of variables: Let Hist Vart be an infinite set 
of variables of type t, with typical element Zt, where t denotes the type of histories. 

Definition 3.2 
The set LHiste of local history expressions, with typical element lhe, is defined as 
follows: 

Zt 

(self, l~,) 

(l1~"self,12'd) 

(self, h~" 12:/) 

lh~ 0 lh2 

The local history of an object of class c is represented by the expression he. The 
empty history is denoted by f. The expression (self, l~,) denotes a history consisting 
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of one creation record which encodes the information that the object I~, has been cre
ated. The expression (Il~" self, 12~) denotes a history consisting of one communication 
record which encodes the information that the object 12d has been received from 11~'. 
Analogously, the expression (self,ll~,,12d denotes a history consisting of one record 
which encodes the information that the object 12~ has been sent to 11~" Finally, the 
expression Ihi 0 1hz is interpreted as the history consisting of the history Ihi followed 
by Ih'2. 

Definition 3.3 
The set LAssc of local assertions in class c, with typical element pC, is defined as 
follows: 

pC r d if d = Bool 

lhi = 1hz 
~pe 

pi /I pz 
3zpC 

We shall regard other logical connectives (V, _, V) as abbreviations for combinations 
of the above ones. 

Local expressions ld' local history expressions Ih e and local assertions pC are evalnated 
with respect to the local state of an object of class c, determining the values of its 
instance variables and the local history hC

, plus a logical environment, which assigns 
values to the logical variables and the history variables (distinct from hC

). Therefore 
they talk about this single object in isolation. In the local assertion 3z pC the variable 
z can be any history variable distinct from hC or logical variable. Quantification is 
interpreted as usual. More specifically, quantification over objects of some class c is 
interpreted as ranging over all the possible objects in that class, i.e., including the 
objects which have not yet been created. 

3.2 The global assertion language 

Next we define the global assertion language. To be able to describe interesting 
properties of pointer structures we also introduce logical variables ranging over finite 
sequences of objects. To do so we first introduce for every d E C+ the type d* of finite 
sequences of objects of type d. We define C* = {d* : d E C+} and take ct = C+ U C*, 
with typical element a. Now in addition we assume for every d E C+ the set LogVar d' 

of logical variables of type d*, which range over finite sequences of elements of type d. 
Therefore we now have a set Log Var a of logical variables of type a for every a E ct. 
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Definition 3.4 
We give the following typical rules characterizing the set CExp~ of global expressions 
of type a, with typical element g~: 

g~ .. - Za 

roota if a = c 
C c' 

gcl,xd if a = d 

IgJ·1 if a = Int 

Yd· : 9dl if a = d, d' = I nt 

A global expression is evaluated with respect to a complete system of objects plus a 
logical environment. A complete system of objects consists of a set of existing objects 
together with their local states, a root object, and a global history. The expression 
rootc denotes the root object. The expression g.x denotes the value of the variable x 
of the object denoted by g. Note that in this global assertion language we must 
explicitly specify the object of which we want to access the internal data. Igl denotes 
the length of the sequence denoted by 9. The expression 9, : 92 denotes the nth 
element of the sequence denoted by 9" where n is the value of 92 (if g2 is less than 1 
or greater than 19d, the result is niL) 

Definition 3.5 
The set CHist C of global history expressions, with typical element gh C

, is defined as 
follows: 

Zt 

(gl~l ,g2~2) 

(gl~l ,g2~2,g3d) 

ghelg~, 

ghj 0 gh2 

The expression h denotes the global history of a complete set of objects. Global 
history expressions are introduced to reason about the global history. The expression 
(g,Cj ,g2e,) denotes the history consisting of one creation record which encodes that 
9, Cj has created g2 e2 . The expression (g'e" g2e2' g3d) denotes the history consisting 
of one communication record which encodes that g'el' has sent to g2 c2 the object 
93d' The subsequence of a history gh consisting of those communication and creation 
records which involve the object ge' is denoted by ghlge,. Finally, the expression 
gh, 0 gh2 denotes the global history gh, followed by gh2. 
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Definition 3.6 
The set GAsse of global assertions, with typical element pe, is defined as follows: 

pc g'j if d = Bool 

ghi = gh~ 
,pe 

P[AP{ 

3zpe 

In the global assertion 3z P the variable z can be any history variable distinct from 
h or logical variable. Again, other logical connectives are regarded as abbreviations. 

Quantification over (sequences of) integers and booleans is interpreted as usual. How
ever, quantification over (sequences of) objects of some class c is interpreted as ranging 
only over the existing objects of that class, i.e., the objects that have been created 
up to the current point in the execution of the program. For example, the asser
tion 3ze true is false in some state iff there are no objects of class c in this state. 
Quantification over history variables is interpreted as ranging over finite sequences of 
interactions involving only existing objects. 

Next we define a transformation of a local (history) expression or assertion to a global 
one. This transformation will be used to specify the global behaviour of a program 
in terms of the local behaviour of objects. 

Definition 3.7 
Given a local expression I:J and a global expression ge we define a global expression 
l'j 1 ge' This expression denotes the result of evaluating the local expression I in the 
object denoted by the global expression g. The definition proceeds by induction on 
the complexity of the local expression I. We give the following typical cases: 

xl 9 = g.x 

self 1 9 = 9 

For a local history expression Ih' we define the global history expression Ih e 1 g, as 
follows: 

(he) 1 9 

Ih 1 9 

(self, I) 1 
(11,self,lz) 

if Ih = z, f 

= (g,llg) 

(111 g,g,lz l g) 

(self,II,lz) = (g,111 g,lz1g) 

(lh l 0 1h z) 1 9 Ihl 1 9 0 1hz 1 g) 
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It is important to note that (hC) 1 g = hlg expresses that the local history of an object 
g can be obtained from the global history h by considering only those interactions 
involving g. Finally, for a local assertion pC we define the global assertion pC 1 gc as 
follows: 

(~p)l g 

(Plllp2) 1 g 

(3z p)l g 

3.3 Correctness formulas 

(~p 1 g) 

(Pllg)II(P2 Lg) 

3z(plg) 

In this section we define how we specify an object and a complete system of objects, 
using the formalism of Hoare triples. We start with the specification of an object. 

Definition 3.8 
We define a local correctness formula to be of the following form: 

{p'}SC{t}· 

Here the assertion p is called the precondition and the assertion q is called the postcon
dition. The meaning of such a correctness formula is described informally as follows: 

Every terminating execution of S by an object of class c starting from a 
state satisfying p will end in a state satisfying q. 

Global correctness formulas describe a complete system: 

Definition 3.9 
A global correctness formula is of the form 

{pC}pC{QC} 

The precondition pc describes the initial local state of the root object. Initially this 
root object is the only existing object, so it is sufficient for the precondition of a 
complete system to describe only its local state. On the other hand, the final state of 
an execution of a complete system is described by an arbitrary global assertion. The 
meaning of the global correctness formula {p} p{ Q} can be rendered as follows: 

If the execution of the program p starts with a root object that satisfies 
the local assertion p and no other objects, and if moreover this execution 
terminates, then the final state will satisfy the global assertion Q. 
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4 The proof system 

We first introduce the local proof system which allows us to reason about the correct
ness of a single object. 

4.1 The local proof system 

The proof system for local correctness formulas is an extension of the usual system 
for sequential programs. Creation statements and input statements are modeled by 
mndom assignments to the local history. 

Definition 4.1 
The local proof system consists of the following axioms describing the creation and 
I/O statements: 

Creation 
{V'ZiP'[zd,hC 0 (self,zd)/xd,hC)]}xd:= new{pC} 

This axiom describes the execution of a statement xd := new E StatC by assigning 
to the variable Xd a randomly choosen object of class d and extending the local 
history hC with the corresponding creation record. (In case d = c we have to require 
additionally that the identity of the created object is distinct from the creator.) The 
weakest precondition of the assertion p with respect to the statement x~ := new then 
is calculated by universally quantifying over all the possible objects of class d. Note 
that in the local assertion language we indeed interpret quantification over objects of 
class d as ranging over all the possible objects of class d. 

Output 
{pCWo (self,x,e)/hC]}x!e{pC} 

This axiom describes the execution of an output statement x!e E StatC by extending 
the local history hC by the corresponding communication record. 

Input! 

This axiom describes the execution of an input statement X?Yd E State by assigning 
to the variable Yd a randomly choosen object of class d and extending the local history 
by the corresponding communication record. As with the axiomatization of object 
creation such a random choice is modeled by universally quantifying over all the 
possible objects of class d. 
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Input2 
{/\ 'v'Zc', Zd P[Zd' hC 

0 (zc" self, zd) / Yd, hC]}?Yd{P} 
c' 

Finally, the execution of an input statement ?Yd E StatC is described by randomly 
choosing both a sender and the object sent, assigning the latter object to the variable 
Yd and extending the local history hC by the corresponding communication record. (In 
case d = C we have to require additionally that the identity of the sender is distinct 
from the receiver.) The random choice of the object sent is modeled by universally 
quantifying over all the objects of class d, and the random choice of the sender by 
the universal quantification over all possible objects of any class, the choice of a class 
being modeled by the conjunction over all C E C. 

When we describe the behaviour of a complete system in terms of the local behaviour 
of its objects we select out of the random choices made by an object (l the correct 
ones by requiring its local history to be the sequence of those interactions of the global 
history which involve (l. 

The axiom for assignment and the rules for the other constructs are as usual. 

4.2 The global proof system 

In this section we show how to specify the global behaviour of a complete system in 
terms of the local behaviour of objects. In the following definitions, let pCn = (Cl <-

SCI sCn-l sen) 
1 , ... ,Cn-If- n-I: n' 

Definition 4.2 
The program rule of the global proof system has the following form: 

{InitdSd qd, 1 :S k < n, {p II Initn}Sn {qn} 

{p}p{qn! root II !\l",i<n 'v'Zi qi ! Zi} 

The premisses of this rule should be interpreted as being derivable from the local 
proof system. Here Initk, for 1 :S k < n, denotes the local assertion !\xElVar(S.)(x '" 

nil) II hk '" E. This assertion describes the initial local state of newly created objects 
of class Ck. On the other hand, Initn denotes the local assertion !\c!\xEIVaro(Sn)(x '" 

nil) II hn '" f, which describes the initial local state of the root object. So initially the 
variables of the root object of a type different from Int or Baal are undefined. This 
reflects the fact that initially only the root object exists. Note that in the conclusion 
of the program rule we take as precondition the precondition of the local process of 
the root object because initially only this object exists. The postcondition consists of 
a conjunction of the assertion qn ! root expressing that the final local state of the root 
object is characterized by the local assertion qn, and the assertions 'v'Zi qi ! Zi, which 
express that the final local state of every existing object of class Ci is characterized 
by the local assertion qi. 
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Definition 4.3 
We have the following consequence rule for programs: 

Pn--->PI, {pdp{QI}, QI--->Q 
{Pn}P{ Q} 
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5 Semantics 

In this section we define in a formal way the semantics of the programming language 
and the assertion languages. First, in section 5.1, we deal with the assertion languages 
on their own. Then, in section 5.2, we give a formal semantics to the programming 
language. Finally, section 5.3 formally defines the notion of truth of a correctness 
formula. 

5.1 Semantics of the assertion languages 

For every type a E C t , we shall let 0" denote the set of objects of type a, with 
typical element 0". To be precise, we define Od = Z, d = Int and Od = B, d = Bool, 
whereas for every class c E C we just take for OC an arbitrary infinite set. With 01 
we shall denote Od U {.l}, where .1 is a special element not in Od, which will stand for 
'undefined', among others the value of the expression nil. Now for every type d E C+ 
we let Od' denote the set of all finite sequences of elements from 01 and we take 
Of = Od'. This means that sequences can contain .1 as a component, but a sequence 
can never be .1 itself (as an expression of a sequence type, nil just stands for the empty 
sequence). Finally, let 0' = Rec', where Rec = (Uc,c' OC x OC')UUc,c',d OC X Oc' X Od). 
0' is the set of histories, i.e., finite sequences of creation and communication records. 

Definition 5.1 
We shall often use generalized Cartesian products of the form 

II B(i). 
iEA 

As usual, the elements of this set are the functions f with domain A such that 
f(i) E B(i) for every i E A. 

Definition 5.2 
Given a function f E A -; B, a E A, and bE B, we use the variant notation f{bJa} 
to denote the function in A -; B that satisfies 

f{bJa}(a') = { b if a' = a 
f( a') otherwise. 

Definition 5.3 
The set LStateC of local states of class c, with typical element 8c, is defined by 

LStateC = OC X II(IVard -; 01) X 0'. 
d 
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A local state (Jc describes in detail the situation of a single object of class c at a 
certain moment during program execution. The first component, denoted by (J.self, 
determines the identity of the object. The values of the instance variables are given 
by the second component, whereas the local history of the object, denoted by (J.h, is 
given by the last component. 

It will turn out to be convenient to define the function \7c E Lstate C such that 
\7(2)(X) = .1.., for every x E Ud IVard and \7(3) = f. Note that this function \7 gives 
the values of the variables of a newly created object: these are all initialized to nil, 
furthermore the local history of this new object is initialized to the empty sequence. 

Definition 5.4 
The set eState of global states, with typical element", is defined as follows: 

eState = aT pd) x II (OC -> II(IVard -> of)) X 0' 
d C d 

where pc, for every c E C, denotes the set of finite subsets of OC, and for d = Int, Bool 
we define pd = {ad}. 

A global state describes the situation of a complete system of objects at a certain 
moment during program execution. The first component specifies for each class the 
set of existing objects of that class, that is, the set of objects that have been created 
up to this point in the execution of the program. Relative to some global state a an 
object 0 E ad can be said to exist if 0 E a(l)(d). For the built-in data types we have 
for every global state" that "(I)(lnl) = Z and a(I)(Bool) = B. Note that .1.. !/c a(l)(d) 

for every d E C+. The second component of a global state specifies for each object 
the values of its instance variables. The last component, denoted by ".h, specifies the 
global history. 

We introduce the following abbreviations: a(1)(d) will be abbreviated to ,,(d), and 

,,(d) U {.1..} to a~). Whenever it is clear. from the context that 0 E OC, we abbreviate 
"(2)(C)(0), i.e., the local state of 0:, by "(0:). Furthermore, for any variable x E IVard' 
we abbreviate a(2)(c.40:)(x), the value.of the variable x of the object 0, by a(o)(x). 
The global history of a state a will be denoted by a.h. 

Definition 5.5 
We now define the set LEnvof logical environments, with typical element w, by 

LEnv = II(LogVar a -> a';. x (HistVar -> 0'). 
a 

A logical environment assigns values to logical variables and history variables. We 
abbreviate W(a)( za) to w( za). 
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Definition 5.6 
The following semantic functions are defined in a straightforward manner. We omit 
most of the detail and only give the most important cases: 

1. The function [:I E EXPd ---> LStateC 
---> 01 assigns a value [[e](O) to the expres

sion e~ in the local state OC. For example, t:[self](O) = O.self. 

2. The function Cd E LExPd ---> LEnv ---> LStateC 
---> 01 assigns a value £[/](w)(O) 

to the local expression l:l in the logical environment wand the local state OC. 

3. The function Hi E LHistC --> LEnv --> LStateC --> 0' assigns a value H/[/h](w)(O) 
to the local history expression Ih c in the logical environment wand the local 
state oe. For example, Hi/[hC](O) = O.h. 

4. The function ga E CExPa --> LEnv --> CState --> 01 assigns a value g[g](w)(a) 
to the global expression ga in the logical environment wand the global state a. 
For example, 9[g.x](w)(a) = a(9[g](w)(O))(x). 

5. The function Hg E CHist --> LEnv --> CState --> 0' assigns a value Hg[gh](w)(a) 
to the global history expression gh in the logical environment wand the global 
state a. For example, Hg[h](w)(a) = a.h. 

6. The function AC E LAssC --> LEnv ---> LStatee --> B assigns a value A[P](w)(O) 
to the local assertion pC in the logical environment wand the local state ()C. 

Here the following cases are special: 

AI/](w)(O) = {true if C[/](w)(O) = true 
false if C[I](w)(O) = false or £[/](w)(O) = J. 

A[3z
d 

p]( w)( 0) = {true if ther~ is an ci E Od such that A[P](w{ a/ z})( 0) = true 

false otherwIse 

7. The function A E CAss --> LEnv ---> CState ---> B assigns a value A[P](w)(a) 
to the global assertion P in the logical environment wand the global state a. 
The following cases are special: 

A[g](w)(a) = {true if C[g](w)(a) = true 
false if L[g](w)(a) = false or C[g](w)(a) = J. 

A[3z
d 

P]( w)( a) = {true if there is an ad E aid) such that AIP]( w{ a/ z})( a) = true 
false otherwise 
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Note that the quantification ranges over O"(d), the set of existing objects of type d 
(which does not include 1-). 

Al3zd• P](w)(O") = 

true if there is an ad' E Od' such 

that a(n) E O"~) for all n E N 

and AIP](w{a/z})(O") = true 

false otherwise 

For sequence types, quantification ranges over those sequences of which every 
element is either 1- or an existing object. For history types, quantification ranges 
over those elements of ot that consist only of interactions between existing 
objects. 

The values g[ga](w)(O") of the global expression ga, the global history expression 
1lg lgh](w)(O") and A[g](w)(O") of the global assertion P are in fact only meaningful 
for those wand 0" that are consistent and compatible: 

Definition 5.7 
We define the global state 0" to be consistent, for which we use the notation 0[(0") 
iff 

1. The value in 0" of a variable of an existing object is either 1- or an existing object 
itself. 

2. The history of 0" describes only interactions between existing objects. 

3. There exists a unique object, Le., the root-object, for which there are no occur
rences of records in the history of 0" witnessing its creation. Furthermore, for 
any other existing object there is precisely one occurrence of a record witnessing 
its creation. 

4. Finally, for every object different from the root-object there exist no occurrences 
of records in the history of 0" before the record which witnesses its creation. In 
other words, an object different from the root-object cannot have interactions 
before its creation. 

The formalisation of these conditions we leave to the reader. It is worthwhile to note 
that the first two conditions are of a purely logical nature, Le., they determine the 
semantics of the global assertion language. The last two conditions, however, can be 
expressed in the global assertion language. 

We define the logical environment w to be compatible with the global state 0", with the 
notation O[(w,O"), iff OJ«O") and, additionally, w assigns to every logical variable Zd 
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of a simple type the value 1- or an existing object, and to every sequence variable Zd' 

a sequence of which each element is an existing object or equals 1-. Furthermore, w 
assigns to every history variable a history which consists only of interactions between 
existing objects. Finally, w assigns to the logical variable roote the root-object of u, 
where c is the class to which this object belongs, and for any other class c' w(roote') 
is undefined. 

5.2 The semantics of the programming language 

In this section we describe a compositional semantics of the programming language. 
First, we define the semantics of statements: 

Definition 5.8 
We define the semantic function se EState -> LStatee -> P( LStatee) by induction 

on the complexity of statements. We give the following cases: 

Creation 

S[Xe:= new](II) = {1I{a,lI.ho (lI.self,a)/x,lI.h}: a E oe} 

So the execution of a statement Xe := new consists of randomly choosing an object 
a E oe, assigning a to Xe, and appending to the local history lI.h the record witnessing 
the creation of a. ((a,j3), for a,j3 E Ue oe, denotes the history consisting of the 
record which witnesses the creation of (3 by 0', and, for a,{3 E ot, Q' 0 f3 denotes the 
the concatenation of a and 13.) 

Output 

S[x!e](II) = {1I{II.h 0 (lI.self,lI(x),.c[eHII))/II.h}} 

The execution of an output statement x!e consists of appending to the local history 
lI.h the corresponding communication record. (For 0.,13 E Ueoe, 7 E UdOi, the 
history consisting of the communication record witnessing· the transmission of 7 from 
a to 13, is denoted by (0.,13,7).) 

Input1 

S[x?Yd](II) = {1I{o.,e.ho (lI(x),II.self,o.)/Yd,lI.h}: a E Od} 

The execution of an input statement x?y consists of randomly choosing an object of 
the appropriate type, assigning it to the variable Y, and extending the local history 
lI.h with the corresponding communication record. 
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Input2 

S[?Yd](Ii) = {1i{a,li.hO ({3,Ii.self,a)/Yd,li.h}: a E Od,{3 E Uoc} 
c 

The execution of an input statement ?y consists of randomly choosing a sender and 
the object sent, assigning the latter object to the variable Y, and extending the local 
history Ii.h by the corresponding communication record. 

The other constructs are dealt with in the standard way. (The semantics of the itera
tion construct is given by the least fixed point of a continous higher-order operator.) 

Definition 5.9 
We define the semantic function pc E Progc --+ LStateC --+ P( eState) as follows: Let 

p = (C1 <- Sf', ... Cn -1 <- S~~l: S~n). For Ii such that Initp(li) we define 

P[p](Ii) = {a': S[Sn](Ii) = a'(,oola')II Va E a,(c;)S[S;](\7c,) = a'(a), 1 ~ i < n} 

and for Ii such that Initp(li) does not hold we define P[p](Ii) = 0. Here Initp(li) holds 
if and only if Ii(xc) = .L, C E C, XC E IVar~n. Furthermore, ,oola' denotes the root 
object of a' . 

It is important to note that by requiring the local histories to be projections of the 
global history we enforce agreement between the local choices concerning commu
nications. Furthermore, since we consider only consistent states, the local choices 
concerning the identities of created objects are correct in the sense that no object is 
created twice. Formally one can prove the correctness of the semantics of statements 
with respect to a "standard" operational semantics as described in [ABKRJ. 

5.3 Truth of correctness formulas 

In this section we define formally the truth of the local and global correctness formulas. 
First we define the truth of local correctness formulas. 

Definition 5.10 
We define 

Next, we define the truth of global correctness formulas. 

Definition 5.11 
We define 

F{P}p{Q}iffVw,li,aEP[p](Ii): li,wFP =? O",WFQ· 
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6 Soundness and Completeness 

In this section we discuss the soundness and the completeness of the proof system. 

The soundness of the global proof system follows from the soundness of the local proof 
system and the validity of the program rule and the consequence rule for programs. 
Soundness of the local proof system is established by a standard induction on the 
length of the derivation. The validity of the program rule and the consequence rule 
follow immediately from the definition of the semantics of the programming language 
and the assertion languages. 

By applying the coding techniques developed in [dB] one can prove the expressibility 
of the strongest postcondition of a precondition p with respect to a statement S. 
Formally, 

Lemma 6.1 
For every local assertion p and statement S there exists a local assertion SP(p, S) 
such that 

(J,w F SP(p, S) iff there exists (J' E S[S]((J) such that (J',w F p. 

Essentially by an application of the standard techniques for proving completeness of 
sequential programming languages (see [Apt]) we can prove the completeness of the 
local proof system. 

Theorem 6.2 
For every local assertions p and q, statement S we have 

1= {p}S{q} implies f- {p}S{q}. 

Now we can prove the completeness of the global proof system. 

Theorem 6.3 
For every local assertion p, global assertion Q, program p we have 

1= {p}p{Q} implies f- {p}p{Q}. 

Proof 
Let p, Q and p = (C1 ;- Sf', ... ,Cn-1 ;- S~"...ll : S~n) such that F {p}p{Q}. By the 
definition of the strongest postcondition we have F {p 1\ Initn}Sn{SP(p 1\ Initn, Sn)} 
and, for 1 :::: i < n, F {Init;}Si{SP(Initi, Si)}. So by the comnpleteness of the local 
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proof system we derive the derivibility of the above local correctness assertions. An 
application of the program rule thus gives us 

f- {p}p{SP(pll Initn,Sn) 1 root II 1\ IIzjSP(Initj,Sj) 1 z;}. 
l:5 i<n 

From the semantics of the programming language and the global assertion language 
it follows that 

F= SP(p II Initn, Sn) 1 root II 1\ IIzjSP(Initj, Sj) 1 Zj --> Q. 
l:5i <n 

An application of the consequence rule thus gives us the desired result: 

f- {p}p{Q}. 

o 
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7 Conclusion 

We presented a compositional proof system for a parallel language with dynamic 
process creation. We proved the soundness and completeness with respect to a formal 
semantics. Further research will be devoted to the generalization of the presented 
proof method to the language POOL where processes communicate by means of a 
rendezvous mechanism. 

Another important issue is the application of the proposed proof method and a com
parison with the non-compositional proof method developed in [dB]. 
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