

A compositional proof system for dynamic proces creation

Citation for published version (APA):
Boer, de, F. S. (1991). A compositional proof system for dynamic proces creation. (Computing science notes;
Vol. 9128). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/b1e2361e-223a-4ff2-b1f0-76f2fcfcfb9a

Eindhoven University of Technology

Department of Mathematics and Computing Science

A compositional proof system for dynamic
proces creation

by

Frank de Boer

Computing Science Note 91/28
Eindhoven, September 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A compositional proof system for dynamic process
creation *

F. de Boer

Technical University Eindhoven

P.O. Box 513, 5600 MB Einhoven

The Netherlands

email:wsinfdb@info.win.tue.nl

Abstract We present a compositional proof system for a parallel language with dy
namic process creation. We show how a dynamic system of processes can be described
in terms of specifications ofthe local processes which involve a characterization of their
interface with the environment. The proof system formalizes reasoning about these
interfaces on an abstraction level that is at least as high as that of the programming
language .

• An extended abstract of this paper appeared in the proceedings of LICS'91.

1

2

1 Introduction

The goal of this paper is to develop a compositional proof system for reasoning about
the correctness of a certain class of parallel programs. We shall consider programs
written in a programming language, which we simply call P. The language P is a
simplified relative of POOL, a parallel object-oriented language [Am]. POOL makes
use of the structuring mechanisms of object-oriented programming [Mey], integrated
with concepts for expressing concurrency: processes and communication.

A program of our language P describes the behaviour of a whole system in terms
of its constituents, objects. These objects have the following important properties:
First of all, each object has an independent activity of its own: a local process that
proceeds in parallel with all the other objects in the system. Second, new objects
can be created at any point in the program. The identity of such a new object is
at first only known to itself and its creator, but from there it can be passed on to
other objects in the system. Note that this also means that the number of processes
executing in parallel may increase during the evolution of the system.

Objects possess some internal data, which they store in variables. The value of a vari
able is either an element of a predefined data type (Int or Bool), or it is a reference
to another object. The variables of one object are not accessible to other objects.
The objects can interact only by sending messages. A message is transferred syn
chronously from the sender to the receiver. It contains exactly one value; this can be
an integer or a boolean, or it can be a reference to an object. (This is the only essential
difference between P and POOL: in POOL communication proceeds by a rendezvous
mechanism, where a method, a kind of procedure, is invoked in the receiving object
in response to a message.) Thus we see that a system described by a program in
the language P consists of a dynamically evolving collection of objects, which are all
executing in parallel, and which know each other by maintaining and passing around
references. This means that the communication structure of the processes is deter
mined dynamically, without any regular structure imposed on it a priori. This is in
contrast to the static structure (a fixed number of processes, communicating with
statically determined partners) in [AFR] and the tree-like structure in [ZREB].

In [AB] we developed for the language P a proof system based upon a generalization
of the ideas underlying the proof theory of CSP ([AFR]). In that system the local
behaviour of an object is specified with respect to assumptions about its environment.
In what is called the coopemtion test these assumptions associated with different
objects have to be shown to be mutually consistent with respect to a global invariant,
i.e., an assertion describing the global topology. A drawback of this methodology is
that it provides no tools to understand and reason about a complete system in terms
of its constituents.

In this paper we show how a complete system can be described in terms of its objects,

3

by viewing an object as an entity consisting of some internal data/activity, and an
interface with its environment. Such an interface we model as a history of interactions
of the object with its environment. This basic idea has been applied to a eSP-like
language in [ZREBJ. We generalize this idea to cope with dynamic process creation
and dynamically evolving process structures. In our case an interaction will be either
the creation of an object or a communication event. A specification then of a complete
system can be obtained from specifications of its objects essentially by a conjunction
and viewing the local history of an object as a subsequence of the global history of
the system consisting of those interactions which involve the object.

Another important characteristic of our proof system is that it allows reasoning about
histories and dynamically evolving process structures on an abstraction level that is
at least as high as that of the programming language. In more detail, this means the
following:

• The only operations on 'pointers' (references to objects) are

testing for equality

dereferencing (looking at the value of an instance variable of the referenced
object)

• In a given state of the system, it is only possible to mention the objects that
exist in that state. Objects that have not (yet) been created do not playa role.

The above restrictions have quite severe consequences for the proof system. The
limited set of operations on pointers implies that first-order logic is too weak to express
some interesting properties of pointer structures. Therefore we have to extend our
assertion language to make it more expressive. We will do so by allowing the assertion
language to reason about finite sequences of objects.

We have proved that the proof system is sound and complete with respect to a formally
defined semantics. Soundness means that everything that can be proved using the
proof system is indeed true in the semantics. On the other hand, completeness means
that every true property of a program that can be expressed using our assertion
language can also be proved formally in the proof system.

Our paper is organized as follows: In the following section we describe the program
ming language P. In section 3 we define two assertion languages, the local one and
the global one. Then, in section 4 we describe the proof system. The semantics of
the programming language, the assertion languages, and that of correctness formulas
is described in section 5. In section 6 we discuss soundness and completeness of the
proof system. Finally, in section 7 we draw some conclusions.

4

2 The programming language

In this section we give a formal definition of the langnage P. We assnme as given a
set C of class names, with typical element c. By this we mean that symbols like c,
c', C1, etc. will range over the set C of class names. The set C u {Int, Baal} of data
types, with typical element d, we denote by C+. Here Int and Baal denote the types
of the integers and booleans, respectively. For eac1t c E C and d E C+ we assnme
IVar~ to be the set of instance variables of type d in class c, with typical elements xd
and Yd' Such a variable xd occurs in each object of class c and it can refer to objects
of type d only. We assume that 1Vard n IVar~, = 0 whenever c oF If or d oF d'. In
cases where no confusion arises we omit the subscripts and superscripts.

Definition 2.1
We define the set EXPd of expressions of type d in class c, with typical element ed'
Such an expression ed can be evaluated by an object of class c and the object to which
it refers will be of type d.

These expressions are defined as follows:

€d .. - xd
self if d = c

nil

true I false if d = Baal

n if d = Int

e, e + e2 e if d = Int

An expression ed will be evaluated by a certain object Q of class c. An expression
of the form x denotes the value of the variable x that belongs to the object Q. The
expression self denotes the object Q itself. The expression nil denotes no object .at
all. The intended meaning of the other expressions we assume to be self-evident.
Note that in the programming language we put a dot over the equality sign ("') to
distinguish it from the equality sign we use in the metalanguage.

Definition 2.2
We next define the set State of statements in class c, with typical element se. These
statements can be executed by an object of class c.

Statements can be of the following forms:

se .,_ Xd:= ed
Xd := newd
c, C

Xcloed

X~I ?Yd
?yC • d

Sf;Si

if d oJ Int, Bool

if eC then SI else Si fi

while eC do SC od

5

A statement SC can be executed by an object of class c. The object executes the
assignment statement x := e by first evaluating the expression e at the right-hand
side and then storing the result in its own variable x. The execution of the new
statement x := newd by the object ex consists of creating a new object (3 of class d and
making the variable x of the creator (t refer to it. The instance variables of the new
object (3 are initialized to nil and (3 will immediately start executing its local process.
It is not possible to create new elements of the standard data types Int and Bool.

A statement x~,!ed is called an output statement and statements like x~, ?y~ and ?y~ are
called input statements. Together they are called I/O statements. The execution of
an output statement xl~,!ed by an object (t is always synchronized with the execution
of a corresponding input statement X2~'?Yd' or ?Yd' by another object (3. Such a pair
of input and output statements are said to correspond if all the following conditions
are satisfied:

• The variable Xl of the sending object (t should refer to the receiving object (3
(therefore necessarily the type of the variable Xl coincides with the class c' of (3).

• If the input statement to be executed is of the form xl?Y~, then the variable X2
of the receiving object (3 should refer to the sending object (t (again, this means
that the type of the variable X2 coincides with the class c of (t).

• The type d of the expression ed in the output statements should coincide with
the type of the destination variable y~; in the input statement.

If an object tries to execute a I/O statement, but no other object is trying to exe
cute a corresponding statement yet, it must wait until such a communication partner
appears. If two objects are ready to execute corresponding I/O statements, the com
munication may take place. This means that the value of the expression e in the

6

sending object a is assigned to the destination variable y in the receiving object /3.
When an object is ready to execute an input statement ?y there may be several
objects ready to execute a corresponding output statement. One of them is chosen
non-deterministically.

Statements are built up from these atomic statements by means of sequential com
position, denoted by the semicolon ';', the conditional construct if-Ihen-else-fi and the
iterative construct while-do-od. The meaning of these constructs we shall assume to
be known.

Definition 2.3
Finally we define the set Progc

» of programs, with typical element pCn , as follows:

Cn •• (So, sCn-l • Sc») p .. = ct f- 1"'" Cn-l f- n-l . n

Here we require that all the class names Ct, ..• ,Cn are different. Furthermore we
require for every variable x;j occurring in p-that its type d is among Ct, ... ,Cn , Inl, Bool
and th.at in every new-statement x := neWd the type d of the newly created object is
among c}, ... , en-I.

The first part of a program consists of a finite number of class definitions Ci <

S;, which determine the local processes of the instances of the classes Ct, ••. ,Cn-t.
Whenever a new object of class Ci is created, it will begin to execute the corresponding
statement Si. The second part specifies the local process Sn of the root class Cn. The
execution of a program starts with the creation of a single instance of this root class,
the root object, which begins executing the statement Sn. This root object can create
other objects in order to establish parallelism. Due to the above restriction on the
types of new-statements, the root object will always be the only instance of its class.

7

3 The assertion language

In this section we define two different assertion languages. An assertion describes the
state of (a part of) the system at one specific point during its execution. The first
assertion language describes the internal state of a single object. This is called the
local assertion language. It will be used in the local proof system. The other one, the
global assertion language, describes a whole system of objects. It will be used in the
global proof system.

3.1 The local assertion language

We introduce a new kind of variables: Let Log Var d be an infinite set of logical variables
of type d, with typical element Zd. We assume that these sets are disjoint from the
other sets of syntactic entities. Logical variables do not occur in a program, but only
in assertions.

Definition 3.1
The set LExp'd of local expressions of type d in class c, with typical element l~, is
defined as the set Exp'd but for the additional rule: I'd ::= Zd.

The internal behaviour of an object will be specified with respect to a local history,
which records the sequence of interactions of the object with its environment. Such a
local history can also be understood as describing the interface of an object. To reason
about histories we introduce a new kind of variables: Let Hist Vart be an infinite set
of variables of type t, with typical element Zt, where t denotes the type of histories.

Definition 3.2
The set LHiste of local history expressions, with typical element lhe, is defined as
follows:

Zt

(self, l~,)

(l1~"self,12'd)

(self, h~" 12:/)

lh~ 0 lh2

The local history of an object of class c is represented by the expression he. The
empty history is denoted by f. The expression (self, l~,) denotes a history consisting

8

of one creation record which encodes the information that the object I~, has been cre
ated. The expression (Il~" self, 12~) denotes a history consisting of one communication
record which encodes the information that the object 12d has been received from 11~'.
Analogously, the expression (self,ll~,,12d denotes a history consisting of one record
which encodes the information that the object 12~ has been sent to 11~" Finally, the
expression Ihi 0 1hz is interpreted as the history consisting of the history Ihi followed
by Ih'2.

Definition 3.3
The set LAssc of local assertions in class c, with typical element pC, is defined as
follows:

pC r d if d = Bool

lhi = 1hz
~pe

pi /I pz
3zpC

We shall regard other logical connectives (V, _, V) as abbreviations for combinations
of the above ones.

Local expressions ld' local history expressions Ih e and local assertions pC are evalnated
with respect to the local state of an object of class c, determining the values of its
instance variables and the local history hC

, plus a logical environment, which assigns
values to the logical variables and the history variables (distinct from hC

). Therefore
they talk about this single object in isolation. In the local assertion 3z pC the variable
z can be any history variable distinct from hC or logical variable. Quantification is
interpreted as usual. More specifically, quantification over objects of some class c is
interpreted as ranging over all the possible objects in that class, i.e., including the
objects which have not yet been created.

3.2 The global assertion language

Next we define the global assertion language. To be able to describe interesting
properties of pointer structures we also introduce logical variables ranging over finite
sequences of objects. To do so we first introduce for every d E C+ the type d* of finite
sequences of objects of type d. We define C* = {d* : d E C+} and take ct = C+ U C*,
with typical element a. Now in addition we assume for every d E C+ the set LogVar d'

of logical variables of type d*, which range over finite sequences of elements of type d.
Therefore we now have a set Log Var a of logical variables of type a for every a E ct.

9

Definition 3.4
We give the following typical rules characterizing the set CExp~ of global expressions
of type a, with typical element g~:

g~ .. - Za

roota if a = c
C c'

gcl,xd if a = d

IgJ·1 if a = Int

Yd· : 9dl if a = d, d' = I nt

A global expression is evaluated with respect to a complete system of objects plus a
logical environment. A complete system of objects consists of a set of existing objects
together with their local states, a root object, and a global history. The expression
rootc denotes the root object. The expression g.x denotes the value of the variable x
of the object denoted by g. Note that in this global assertion language we must
explicitly specify the object of which we want to access the internal data. Igl denotes
the length of the sequence denoted by 9. The expression 9, : 92 denotes the nth
element of the sequence denoted by 9" where n is the value of 92 (if g2 is less than 1
or greater than 19d, the result is niL)

Definition 3.5
The set CHist C of global history expressions, with typical element gh C

, is defined as
follows:

Zt

(gl~l ,g2~2)

(gl~l ,g2~2,g3d)

ghelg~,

ghj 0 gh2

The expression h denotes the global history of a complete set of objects. Global
history expressions are introduced to reason about the global history. The expression
(g,Cj ,g2e,) denotes the history consisting of one creation record which encodes that
9, Cj has created g2 e2 . The expression (g'e" g2e2' g3d) denotes the history consisting
of one communication record which encodes that g'el' has sent to g2 c2 the object
93d' The subsequence of a history gh consisting of those communication and creation
records which involve the object ge' is denoted by ghlge,. Finally, the expression
gh, 0 gh2 denotes the global history gh, followed by gh2.

10

Definition 3.6
The set GAsse of global assertions, with typical element pe, is defined as follows:

pc g'j if d = Bool

ghi = gh~
,pe

P[AP{

3zpe

In the global assertion 3z P the variable z can be any history variable distinct from
h or logical variable. Again, other logical connectives are regarded as abbreviations.

Quantification over (sequences of) integers and booleans is interpreted as usual. How
ever, quantification over (sequences of) objects of some class c is interpreted as ranging
only over the existing objects of that class, i.e., the objects that have been created
up to the current point in the execution of the program. For example, the asser
tion 3ze true is false in some state iff there are no objects of class c in this state.
Quantification over history variables is interpreted as ranging over finite sequences of
interactions involving only existing objects.

Next we define a transformation of a local (history) expression or assertion to a global
one. This transformation will be used to specify the global behaviour of a program
in terms of the local behaviour of objects.

Definition 3.7
Given a local expression I:J and a global expression ge we define a global expression
l'j 1 ge' This expression denotes the result of evaluating the local expression I in the
object denoted by the global expression g. The definition proceeds by induction on
the complexity of the local expression I. We give the following typical cases:

xl 9 = g.x

self 1 9 = 9

For a local history expression Ih' we define the global history expression Ih e 1 g, as
follows:

(he) 1 9

Ih 1 9

(self, I) 1
(11,self,lz)

if Ih = z, f

= (g,llg)

(111 g,g,lz l g)

(self,II,lz) = (g,111 g,lz1g)

(lh l 0 1h z) 1 9 Ihl 1 9 0 1hz 1 g)

11

It is important to note that (hC) 1 g = hlg expresses that the local history of an object
g can be obtained from the global history h by considering only those interactions
involving g. Finally, for a local assertion pC we define the global assertion pC 1 gc as
follows:

(~p)l g

(Plllp2) 1 g

(3z p)l g

3.3 Correctness formulas

(~p 1 g)

(Pllg)II(P2 Lg)

3z(plg)

In this section we define how we specify an object and a complete system of objects,
using the formalism of Hoare triples. We start with the specification of an object.

Definition 3.8
We define a local correctness formula to be of the following form:

{p'}SC{t}·

Here the assertion p is called the precondition and the assertion q is called the postcon
dition. The meaning of such a correctness formula is described informally as follows:

Every terminating execution of S by an object of class c starting from a
state satisfying p will end in a state satisfying q.

Global correctness formulas describe a complete system:

Definition 3.9
A global correctness formula is of the form

{pC}pC{QC}

The precondition pc describes the initial local state of the root object. Initially this
root object is the only existing object, so it is sufficient for the precondition of a
complete system to describe only its local state. On the other hand, the final state of
an execution of a complete system is described by an arbitrary global assertion. The
meaning of the global correctness formula {p} p{ Q} can be rendered as follows:

If the execution of the program p starts with a root object that satisfies
the local assertion p and no other objects, and if moreover this execution
terminates, then the final state will satisfy the global assertion Q.

12

4 The proof system

We first introduce the local proof system which allows us to reason about the correct
ness of a single object.

4.1 The local proof system

The proof system for local correctness formulas is an extension of the usual system
for sequential programs. Creation statements and input statements are modeled by
mndom assignments to the local history.

Definition 4.1
The local proof system consists of the following axioms describing the creation and
I/O statements:

Creation
{V'ZiP'[zd,hC 0 (self,zd)/xd,hC)]}xd:= new{pC}

This axiom describes the execution of a statement xd := new E StatC by assigning
to the variable Xd a randomly choosen object of class d and extending the local
history hC with the corresponding creation record. (In case d = c we have to require
additionally that the identity of the created object is distinct from the creator.) The
weakest precondition of the assertion p with respect to the statement x~ := new then
is calculated by universally quantifying over all the possible objects of class d. Note
that in the local assertion language we indeed interpret quantification over objects of
class d as ranging over all the possible objects of class d.

Output
{pCWo (self,x,e)/hC]}x!e{pC}

This axiom describes the execution of an output statement x!e E StatC by extending
the local history hC by the corresponding communication record.

Input!

This axiom describes the execution of an input statement X?Yd E State by assigning
to the variable Yd a randomly choosen object of class d and extending the local history
by the corresponding communication record. As with the axiomatization of object
creation such a random choice is modeled by universally quantifying over all the
possible objects of class d.

13

Input2
{/\ 'v'Zc', Zd P[Zd' hC

0 (zc" self, zd) / Yd, hC]}?Yd{P}
c'

Finally, the execution of an input statement ?Yd E StatC is described by randomly
choosing both a sender and the object sent, assigning the latter object to the variable
Yd and extending the local history hC by the corresponding communication record. (In
case d = C we have to require additionally that the identity of the sender is distinct
from the receiver.) The random choice of the object sent is modeled by universally
quantifying over all the objects of class d, and the random choice of the sender by
the universal quantification over all possible objects of any class, the choice of a class
being modeled by the conjunction over all C E C.

When we describe the behaviour of a complete system in terms of the local behaviour
of its objects we select out of the random choices made by an object (l the correct
ones by requiring its local history to be the sequence of those interactions of the global
history which involve (l.

The axiom for assignment and the rules for the other constructs are as usual.

4.2 The global proof system

In this section we show how to specify the global behaviour of a complete system in
terms of the local behaviour of objects. In the following definitions, let pCn = (Cl <-

SCI sCn-l sen)
1 , ... ,Cn-If- n-I: n'

Definition 4.2
The program rule of the global proof system has the following form:

{InitdSd qd, 1 :S k < n, {p II Initn}Sn {qn}

{p}p{qn! root II !\l",i<n 'v'Zi qi ! Zi}

The premisses of this rule should be interpreted as being derivable from the local
proof system. Here Initk, for 1 :S k < n, denotes the local assertion !\xElVar(S.)(x '"

nil) II hk '" E. This assertion describes the initial local state of newly created objects
of class Ck. On the other hand, Initn denotes the local assertion !\c!\xEIVaro(Sn)(x '"

nil) II hn '" f, which describes the initial local state of the root object. So initially the
variables of the root object of a type different from Int or Baal are undefined. This
reflects the fact that initially only the root object exists. Note that in the conclusion
of the program rule we take as precondition the precondition of the local process of
the root object because initially only this object exists. The postcondition consists of
a conjunction of the assertion qn ! root expressing that the final local state of the root
object is characterized by the local assertion qn, and the assertions 'v'Zi qi ! Zi, which
express that the final local state of every existing object of class Ci is characterized
by the local assertion qi.

14

Definition 4.3
We have the following consequence rule for programs:

Pn--->PI, {pdp{QI}, QI--->Q
{Pn}P{ Q}

15

5 Semantics

In this section we define in a formal way the semantics of the programming language
and the assertion languages. First, in section 5.1, we deal with the assertion languages
on their own. Then, in section 5.2, we give a formal semantics to the programming
language. Finally, section 5.3 formally defines the notion of truth of a correctness
formula.

5.1 Semantics of the assertion languages

For every type a E C t , we shall let 0" denote the set of objects of type a, with
typical element 0". To be precise, we define Od = Z, d = Int and Od = B, d = Bool,
whereas for every class c E C we just take for OC an arbitrary infinite set. With 01
we shall denote Od U {.l}, where .1 is a special element not in Od, which will stand for
'undefined', among others the value of the expression nil. Now for every type d E C+
we let Od' denote the set of all finite sequences of elements from 01 and we take
Of = Od'. This means that sequences can contain .1 as a component, but a sequence
can never be .1 itself (as an expression of a sequence type, nil just stands for the empty
sequence). Finally, let 0' = Rec', where Rec = (Uc,c' OC x OC')UUc,c',d OC X Oc' X Od).
0' is the set of histories, i.e., finite sequences of creation and communication records.

Definition 5.1
We shall often use generalized Cartesian products of the form

II B(i).
iEA

As usual, the elements of this set are the functions f with domain A such that
f(i) E B(i) for every i E A.

Definition 5.2
Given a function f E A -; B, a E A, and bE B, we use the variant notation f{bJa}
to denote the function in A -; B that satisfies

f{bJa}(a') = { b if a' = a
f(a') otherwise.

Definition 5.3
The set LStateC of local states of class c, with typical element 8c, is defined by

LStateC = OC X II(IVard -; 01) X 0'.
d

16

A local state (Jc describes in detail the situation of a single object of class c at a
certain moment during program execution. The first component, denoted by (J.self,
determines the identity of the object. The values of the instance variables are given
by the second component, whereas the local history of the object, denoted by (J.h, is
given by the last component.

It will turn out to be convenient to define the function \7c E Lstate C such that
\7(2)(X) = .1.., for every x E Ud IVard and \7(3) = f. Note that this function \7 gives
the values of the variables of a newly created object: these are all initialized to nil,
furthermore the local history of this new object is initialized to the empty sequence.

Definition 5.4
The set eState of global states, with typical element", is defined as follows:

eState = aT pd) x II (OC -> II(IVard -> of)) X 0'
d C d

where pc, for every c E C, denotes the set of finite subsets of OC, and for d = Int, Bool
we define pd = {ad}.

A global state describes the situation of a complete system of objects at a certain
moment during program execution. The first component specifies for each class the
set of existing objects of that class, that is, the set of objects that have been created
up to this point in the execution of the program. Relative to some global state a an
object 0 E ad can be said to exist if 0 E a(l)(d). For the built-in data types we have
for every global state" that "(I)(lnl) = Z and a(I)(Bool) = B. Note that .1.. !/c a(l)(d)

for every d E C+. The second component of a global state specifies for each object
the values of its instance variables. The last component, denoted by ".h, specifies the
global history.

We introduce the following abbreviations: a(1)(d) will be abbreviated to ,,(d), and

,,(d) U {.1..} to a~). Whenever it is clear. from the context that 0 E OC, we abbreviate
"(2)(C)(0), i.e., the local state of 0:, by "(0:). Furthermore, for any variable x E IVard'
we abbreviate a(2)(c.40:)(x), the value.of the variable x of the object 0, by a(o)(x).
The global history of a state a will be denoted by a.h.

Definition 5.5
We now define the set LEnvof logical environments, with typical element w, by

LEnv = II(LogVar a -> a';. x (HistVar -> 0').
a

A logical environment assigns values to logical variables and history variables. We
abbreviate W(a)(za) to w(za).

17

Definition 5.6
The following semantic functions are defined in a straightforward manner. We omit
most of the detail and only give the most important cases:

1. The function [:I E EXPd ---> LStateC
---> 01 assigns a value [[e](O) to the expres

sion e~ in the local state OC. For example, t:[self](O) = O.self.

2. The function Cd E LExPd ---> LEnv ---> LStateC
---> 01 assigns a value £[/](w)(O)

to the local expression l:l in the logical environment wand the local state OC.

3. The function Hi E LHistC --> LEnv --> LStateC --> 0' assigns a value H/[/h](w)(O)
to the local history expression Ih c in the logical environment wand the local
state oe. For example, Hi/[hC](O) = O.h.

4. The function ga E CExPa --> LEnv --> CState --> 01 assigns a value g[g](w)(a)
to the global expression ga in the logical environment wand the global state a.
For example, 9[g.x](w)(a) = a(9[g](w)(O))(x).

5. The function Hg E CHist --> LEnv --> CState --> 0' assigns a value Hg[gh](w)(a)
to the global history expression gh in the logical environment wand the global
state a. For example, Hg[h](w)(a) = a.h.

6. The function AC E LAssC --> LEnv ---> LStatee --> B assigns a value A[P](w)(O)
to the local assertion pC in the logical environment wand the local state ()C.

Here the following cases are special:

AI/](w)(O) = {true if C[/](w)(O) = true
false if C[I](w)(O) = false or £[/](w)(O) = J.

A[3z
d

p](w)(0) = {true if ther~ is an ci E Od such that A[P](w{ a/ z})(0) = true

false otherwIse

7. The function A E CAss --> LEnv ---> CState ---> B assigns a value A[P](w)(a)
to the global assertion P in the logical environment wand the global state a.
The following cases are special:

A[g](w)(a) = {true if C[g](w)(a) = true
false if L[g](w)(a) = false or C[g](w)(a) = J.

A[3z
d

P](w)(a) = {true if there is an ad E aid) such that AIP](w{ a/ z})(a) = true
false otherwise

18

Note that the quantification ranges over O"(d), the set of existing objects of type d
(which does not include 1-).

Al3zd• P](w)(O") =

true if there is an ad' E Od' such

that a(n) E O"~) for all n E N

and AIP](w{a/z})(O") = true

false otherwise

For sequence types, quantification ranges over those sequences of which every
element is either 1- or an existing object. For history types, quantification ranges
over those elements of ot that consist only of interactions between existing
objects.

The values g[ga](w)(O") of the global expression ga, the global history expression
1lg lgh](w)(O") and A[g](w)(O") of the global assertion P are in fact only meaningful
for those wand 0" that are consistent and compatible:

Definition 5.7
We define the global state 0" to be consistent, for which we use the notation 0[(0")
iff

1. The value in 0" of a variable of an existing object is either 1- or an existing object
itself.

2. The history of 0" describes only interactions between existing objects.

3. There exists a unique object, Le., the root-object, for which there are no occur
rences of records in the history of 0" witnessing its creation. Furthermore, for
any other existing object there is precisely one occurrence of a record witnessing
its creation.

4. Finally, for every object different from the root-object there exist no occurrences
of records in the history of 0" before the record which witnesses its creation. In
other words, an object different from the root-object cannot have interactions
before its creation.

The formalisation of these conditions we leave to the reader. It is worthwhile to note
that the first two conditions are of a purely logical nature, Le., they determine the
semantics of the global assertion language. The last two conditions, however, can be
expressed in the global assertion language.

We define the logical environment w to be compatible with the global state 0", with the
notation O[(w,O"), iff OJ«O") and, additionally, w assigns to every logical variable Zd

19

of a simple type the value 1- or an existing object, and to every sequence variable Zd'

a sequence of which each element is an existing object or equals 1-. Furthermore, w
assigns to every history variable a history which consists only of interactions between
existing objects. Finally, w assigns to the logical variable roote the root-object of u,
where c is the class to which this object belongs, and for any other class c' w(roote')
is undefined.

5.2 The semantics of the programming language

In this section we describe a compositional semantics of the programming language.
First, we define the semantics of statements:

Definition 5.8
We define the semantic function se EState -> LStatee -> P(LStatee) by induction

on the complexity of statements. We give the following cases:

Creation

S[Xe:= new](II) = {1I{a,lI.ho (lI.self,a)/x,lI.h}: a E oe}

So the execution of a statement Xe := new consists of randomly choosing an object
a E oe, assigning a to Xe, and appending to the local history lI.h the record witnessing
the creation of a. ((a,j3), for a,j3 E Ue oe, denotes the history consisting of the
record which witnesses the creation of (3 by 0', and, for a,{3 E ot, Q' 0 f3 denotes the
the concatenation of a and 13.)

Output

S[x!e](II) = {1I{II.h 0 (lI.self,lI(x),.c[eHII))/II.h}}

The execution of an output statement x!e consists of appending to the local history
lI.h the corresponding communication record. (For 0.,13 E Ueoe, 7 E UdOi, the
history consisting of the communication record witnessing· the transmission of 7 from
a to 13, is denoted by (0.,13,7).)

Input1

S[x?Yd](II) = {1I{o.,e.ho (lI(x),II.self,o.)/Yd,lI.h}: a E Od}

The execution of an input statement x?y consists of randomly choosing an object of
the appropriate type, assigning it to the variable Y, and extending the local history
lI.h with the corresponding communication record.

20

Input2

S[?Yd](Ii) = {1i{a,li.hO ({3,Ii.self,a)/Yd,li.h}: a E Od,{3 E Uoc}
c

The execution of an input statement ?y consists of randomly choosing a sender and
the object sent, assigning the latter object to the variable Y, and extending the local
history Ii.h by the corresponding communication record.

The other constructs are dealt with in the standard way. (The semantics of the itera
tion construct is given by the least fixed point of a continous higher-order operator.)

Definition 5.9
We define the semantic function pc E Progc --+ LStateC --+ P(eState) as follows: Let

p = (C1 <- Sf', ... Cn -1 <- S~~l: S~n). For Ii such that Initp(li) we define

P[p](Ii) = {a': S[Sn](Ii) = a'(,oola')II Va E a,(c;)S[S;](\7c,) = a'(a), 1 ~ i < n}

and for Ii such that Initp(li) does not hold we define P[p](Ii) = 0. Here Initp(li) holds
if and only if Ii(xc) = .L, C E C, XC E IVar~n. Furthermore, ,oola' denotes the root
object of a' .

It is important to note that by requiring the local histories to be projections of the
global history we enforce agreement between the local choices concerning commu
nications. Furthermore, since we consider only consistent states, the local choices
concerning the identities of created objects are correct in the sense that no object is
created twice. Formally one can prove the correctness of the semantics of statements
with respect to a "standard" operational semantics as described in [ABKRJ.

5.3 Truth of correctness formulas

In this section we define formally the truth of the local and global correctness formulas.
First we define the truth of local correctness formulas.

Definition 5.10
We define

Next, we define the truth of global correctness formulas.

Definition 5.11
We define

F{P}p{Q}iffVw,li,aEP[p](Ii): li,wFP =? O",WFQ·

21

6 Soundness and Completeness

In this section we discuss the soundness and the completeness of the proof system.

The soundness of the global proof system follows from the soundness of the local proof
system and the validity of the program rule and the consequence rule for programs.
Soundness of the local proof system is established by a standard induction on the
length of the derivation. The validity of the program rule and the consequence rule
follow immediately from the definition of the semantics of the programming language
and the assertion languages.

By applying the coding techniques developed in [dB] one can prove the expressibility
of the strongest postcondition of a precondition p with respect to a statement S.
Formally,

Lemma 6.1
For every local assertion p and statement S there exists a local assertion SP(p, S)
such that

(J,w F SP(p, S) iff there exists (J' E S[S]((J) such that (J',w F p.

Essentially by an application of the standard techniques for proving completeness of
sequential programming languages (see [Apt]) we can prove the completeness of the
local proof system.

Theorem 6.2
For every local assertions p and q, statement S we have

1= {p}S{q} implies f- {p}S{q}.

Now we can prove the completeness of the global proof system.

Theorem 6.3
For every local assertion p, global assertion Q, program p we have

1= {p}p{Q} implies f- {p}p{Q}.

Proof
Let p, Q and p = (C1 ;- Sf', ... ,Cn-1 ;- S~"...ll : S~n) such that F {p}p{Q}. By the
definition of the strongest postcondition we have F {p 1\ Initn}Sn{SP(p 1\ Initn, Sn)}
and, for 1 :::: i < n, F {Init;}Si{SP(Initi, Si)}. So by the comnpleteness of the local

22

proof system we derive the derivibility of the above local correctness assertions. An
application of the program rule thus gives us

f- {p}p{SP(pll Initn,Sn) 1 root II 1\ IIzjSP(Initj,Sj) 1 z;}.
l:5 i<n

From the semantics of the programming language and the global assertion language
it follows that

F= SP(p II Initn, Sn) 1 root II 1\ IIzjSP(Initj, Sj) 1 Zj --> Q.
l:5i <n

An application of the consequence rule thus gives us the desired result:

f- {p}p{Q}.

o

23

7 Conclusion

We presented a compositional proof system for a parallel language with dynamic
process creation. We proved the soundness and completeness with respect to a formal
semantics. Further research will be devoted to the generalization of the presented
proof method to the language POOL where processes communicate by means of a
rendezvous mechanism.

Another important issue is the application of the proposed proof method and a com
parison with the non-compositional proof method developed in [dB].

24

References

[Am] P.H.M. America: Issues in the Design of a Parallel Object-Oriented Lan
guage. ESPRIT project 415A, Doc. No. 452, Philips Research Laboratories,
Eindhoven, the Netherlands, November 1988. Also in Formal Aspects of
Computing.

[AB] P. America and F.S. de Boer. A proof system for process creation. Work
ing Conference on Programming Concepts and Methods, Sea Gallilee, Israel,
1990.

[ABKR] P. America, J.W. de Bakker, J.N. Kok and J.J.M.M. Rutten. Operational
semantics for a parallel object-oriented language. Conference Record of the
13th Symposium on Principles of Programming Languages (POPL), St. Pe
tersburg, Florida, 1986, pp. 194-208.

[Apt]

[dB]

[AFR]

[Mey]

K.R. Apt. Ten years of Hoare logic: a survey - part 1. ACM Transactions
on Programming Languages and Systems, Vol. 3, No.4, October 1981, pp.
431-483.

F.S. de Boer. Reasoning about dynamically evolving process structures. Ph.
D. thesis 1991.

K.R. Apt, N. Francez, W.P. de Roever: A proof system for Communicating
Sequential Processes, ACM Transactions on Programming Languages and
Systems, Vol. 2, No.3, July 1980, pp. 359-385.

B. Meyer: Object-Oriented Software Construction. Prentice-Hall, 1988.

[ZREB] J. Zwiers, W.P. de Roever, P. van Emde Boas: Compositionality and concur
rent networks: soundness and completeness of a proof system. In Proceedings
of the 12th ICALP, Nafplion, Greece, July 15-19,1985, Springer LNCS 194,
pp. 509-519.

In this series appeared:

89/1 E.Zs.Lepoeter-Molnar

89(2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 I.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
I.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

89/13 A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 I.S.C.P. van
der Woude

89/16 A.T.M.Aerts
K.M. van Hee

89/17 MJ. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal frameworlc for data modeling.

A program generator for simulated annealing
problems.

ELDA. data manipulatie taal.

Optimal segmentations.

Towards a frameworlc for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
KM. van Hee

90/10 M.J. van Diepen
KM. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 KR. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networlcs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 11 O.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionaiity in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls. p. IS.

Two Case Studies in ExSpect. p. 24.

The Nature of Delay-Insensitive Computing. p.18.

Data. Process and Behaviour Modelling in an integrated
specification framework. p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
"if.. .• then ... ". p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFICATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p.

Tenninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A parallel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The PDB Hypennedia Package. Why and how it was
built. p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.l.l.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rill. van Oeldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/2l 1. Coenen
W.-P. de Roever
J.Zwiers

91/22 O. Wolf

91/23 K.M. van Hee
LJ. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
OJ. Houben
1. Parcdaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAOs.
p.25.

Transforming Functional Database Schemes to Relational
Representations. p. 21.

Transformational Query .solving. p. 35.

Som~ categorical properties for a model for second order
lambda calculus with subryping. p. 21.

,Knowledge Base 'Systems. a'Formal Model, p. 21.

Assertional Data Reilication Proofs: Survey and
Perspective. p. 18.

Schedule Management: an Object Oriented Approach. p.
26.

Z and high level Petri nets. p. 16.

Formal semantics for BRM with examples. p. .

,
A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness. p. 52. .

The 0000 based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation. p. 24.

	Abstract
	1. Introduction
	4. The programming language
	3. The assertion language
	3.1 The local assertion language
	3.2 The global assertion language
	3.3 Correctness formulas
	4. The proof system
	4.1 The local proof system
	4.2 The global proof system
	5. Semantics
	5.1 Semantics of the assertion languages
	5.2 The semantics of the programming language
	5.3 Truth of correctness formulas
	6. Soundness and Completeness
	7. Conclusion
	References

