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Abstract

We consider partial differential operators H = − div(C∇) in diver-
gence form on Rd with a positive-semidefinite, symmetric, matrix C
of real L∞-coefficients. First, we prove that one can define H as a self-
adjoint operator on L2(Rd) such that the corresponding semigroup
extends as a positive, contraction semigroup to all the Lp-spaces. Sec-
ondly, we establish that H is strongly elliptic if and only if the distri-
bution kernel of the semigroup satisfies appropriate small time lower
bounds. Thirdly, we analyze degenerate operators satisfying the subel-
lipticity condition

H ≥ µ∆1−γ − ν I

for some µ > 0, ν ≥ 0 and γ ∈ [0, 1〉, where ∆ denotes the usual Lapla-
cian, and derive large time Gaussian bounds from a local condition of
strict positivity.
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1 Introduction

In the theory of partial differential equations a key role is played by positive second-order
operators in divergence form, i.e., operators

H = −
d∑

i,j=1

∂i cij ∂j (1)

where ∂i = ∂/∂xi, the coefficients cij are real L∞-functions and the corresponding matrix
C = (cij) is symmetric and positive-definite almost-everywhere. In particular the classical
Nash–De Giorgi theory analyzes operators of the this type under the strong ellipticity
assumption

C ≥ µI > 0 (2)

almost-everywhere. The principal result of this theory is the local Hölder continuity of
weak solutions of the associated elliptic and parabolic equations. In Nash’s approach [Nas]
the Hölder continuity of the elliptic solution is derived as a corollary of continuity of the
parabolic solution and the latter is established by an iterative argument from good upper
and lower bounds on the fundamental solution. Aronson [Aro] subsequently improved
Nash’s bounds and proved that the fundamental solution of the parabolic equation, the
heat kernel, satisfies Gaussian upper and lower bounds. Specifically the kernel K of the
semigroup S is a symmetric function over Rd ×Rd satisfying bounds

a′Gb′;t(x− y) ≤ Kt(x ; y) ≤ aGb;t(x− y) (3)

uniformly for all x, y ∈ Rd and t > 0 where Gb;t(x) = t−d/2e−b|x|
2t−1

and a, a′, b, b′ > 0.
These bounds give qualitatively correct estimates both locally and globally for the heat
kernel.

One important implication of the strong ellipticity assumption (2) is that H can be
precisely defined as a self-adjoint operator on L2(Rd) by quadratic form techniques. Specif-
ically one can define the quadratic form h on L2(Rd) by

h(ϕ) =
d∑

i,j=1

∫
Rd

dx (∂iϕ)(x) cij(x) (∂jϕ)(x) . (4)

with domain D(h) =
⋂d
i=1 D(∂i) = D(∆1/2) where ∆ denotes the self-adjoint Laplacian,

i.e., ∆ = −
∑d

i=1 ∂
2
i , on L2(Rd). Then h is positive, symmetric, densely-defined and,

as a direct consequence of (2), it is also closed. Therefore there is a unique, positive,
self-adjoint operator H with D(H) ⊂ D(h) canonically associated with h. In particular
(ϕ,Hϕ) = h(ϕ) for all ϕ ∈ D(H). This quadratic form definition provides the starting
point of the Nash–De Giorgi theory.

Our intention is to analyze the operator H, formally given by (1), without the strong
ellipticity assumption (2). Therefore the first difficulty is to define H in a precise fashion.
One can still introduce the form h by the above definition but there is no reason for the
form to be closable. Hence there is no evident method of defining H as a positive self-
adjoint operator. We tackle this problem by a ‘viscosity’ method discussed in Section 2.
In particular we argue that H can be defined by monotonic approximation with strongly
elliptic operators. Then in Section 3 we establish that the corresponding viscosity operator
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is strongly elliptic if and only if it has a kernel satisfying the Aronson bounds (3). In
fact it suffices that the kernel, viewed as a distribution, satisfies local lower bounds with a
singularity t−d/2. Then in Section 4 we discuss the structure of mildly degenerate operators,
i.e., operators for which the strong ellipticity condition fails because the coefficients have
possible zeros. In this context one can deduce large t upper bounds on the kernel from
local lower bounds.

2 The viscosity operator

Let l be the closed quadratic form associated with the Laplacian ∆, i.e.,

l(ϕ) =
d∑
i=1

‖∂iϕ‖2
2 = ‖∆1/2ϕ‖2

2

with D(l) = D(∆1/2). Then for each ε ∈ 〈0, 1] define hε by D(hε) = D(h) = D(l) and

hε(ϕ) = h(ϕ) + ε l(ϕ)

where h denotes the form given by (4). Recall that we assume throughout this paper
that the coefficients cij are real L∞-functions and the corresponding matrix C = (cij) is
symmetric and positive-definite almost-everywhere.

Since h is positive the form hε satisfies the strong ellipticity condition

hε(ϕ) ≥ ε l(ϕ) (5)

for all ϕ ∈ D(h). In addition it satisfies the upper bounds

hε(ϕ) ≤ (1 + ‖C‖) l(ϕ) (6)

where ‖C‖ is the essential supremum of the matrix norm of C(x) = (cij(x)). It follows
immediately from (5) and (6) that hε is closed. Therefore there is a positive self-adjoint
operator Hε canonically associated with hε. The operator Hε is the strongly elliptic oper-
ator with coefficients C + εI. But ε 7→ hε(ϕ) decreases monotonically as ε decreases for
each ϕ ∈ D(h). Therefore it follows from a result of Kato, [Kat] Theorem VIII.3.11, that
the Hε converge in the strong resolvent sense, as ε→ 0, to a positive self-adjoint operator
H0 which we will refer to as the viscosity operator with coefficients C = (cij). This
procedure gives a precise meaning to the formal operator H given by (1). Let h0 denote

the form associated with H0, i.e., D(h0) = D(H
1/2
0 ) and h0(ϕ) = ‖H1/2

0 ϕ‖2
2.

If h is closable then the viscosity operator H0 is the operator associated with the
closure h. More generally one has the following.

Proposition 2.1 The following are valid.

I. D(h0) ⊇ D(h) and h0(ϕ) ≤ h(ϕ) for all ϕ ∈ D(h).

II. h0(ϕ) = h(ϕ) for all ϕ ∈ D(h) if and only if h is closable and then h0 = h, the
closure of h.
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Proof It follows from [Kat] Theorem VIII.3.11 that D(h0) = D(H
1/2
0 ) ⊇ D(H

1/2
ε ) =

D(∆1/2) = D(h) and (λI + Hε)
1/2ϕ converges weakly to (λI + H0)1/2ϕ as ε → 0 for all

ϕ ∈ D(h). Therefore

λ ‖ϕ‖2
2 + h0(ϕ) = ‖(λI +H0)1/2ϕ‖2

2 ≤ lim inf
ε→0

‖(λI +Hε)
1/2ϕ‖2

2

= λ ‖ϕ‖2
2 + inf

ε∈〈0,1]
hε(ϕ) = λ ‖ϕ‖2

2 + h(ϕ)

for all ϕ ∈ D(h). This establishes the first statement of the proposition.
If, however, h0(ϕ) = h(ϕ) for all ϕ ∈ D(h), then h0 is a closed extension of h. Hence

h is closable. Conversely if h is closable then h0 = h by the last statement of [Kat]
Theorem VIII.3.11. 2

The viscosity operator H0 generates a self-adjoint contraction semigroup S(0) on L2(Rd)
which can also be constructed by approximation. Since H0 is defined as the strong resolvent
limit of the strongly elliptic self-adjoint operatorsHε associated with the closed forms hε the
semigroup S(0) is the strong limit of the self-adjoint contraction semigroups S(ε) generated
by the Hε. In particular S

(ε)
t converges strongly, on L2(Rd), to S

(0)
t and the convergence

is uniform for t in finite intervals. Note that each hε is a Dirichlet form, i.e., it satisfies
the Beurling–Deny criteria (see, for example, [Dav2] Section 1.3). Specifically the positive
quadratic form h on L2 is a Dirichlet form if it satisfies the following two conditions:

1. ϕ ∈ D(h) implies |ϕ| ∈ D(h) and h(|ϕ|) ≤ h(ϕ),

2. ϕ ∈ D(h) implies ϕ ∧ 11 ∈ D(h) and h(ϕ ∧ 11) ≤ h(ϕ).

The primary result of the Beurling–Deny theory is that h is a Dirichlet form if and only
if the semigroup S generated by the corresponding operator H on L2 is positive and
extends from L2 ∩ Lp to a contraction semigroup on Lp for all p ∈ [1,∞]. Therefore the
semigroup S(ε) generated by Hε is positive and extends to a positive contraction semigroup,
also denoted by S(ε), on each of the spaces Lp(R

d) with p ∈ [1,∞]. Since S(ε) converges
strongly to S(0) on L2(Rd) it follows that S(0) is positive but it is not evident that it extends
to a contraction semigroup on the Lp-spaces, i.e., it is not evident that h0 is a Dirichlet
form. But this is a consequence of the following characterization of Dirichlet forms.

Lemma 2.2 Let h denote the quadratic form associated with a positive self-adjoint oper-
ator H on L2(Rd) and S the contraction semigroup generated by H. Further let Hs =
s−1(I − Ss), for s > 0, with hs the corresponding bounded quadratic form. The following
conditions are equivalent.

I. h is a Dirichlet form.

II. hs is a Dirichlet form for each s ∈ 〈0, 1].

Proof I⇒II. Let S(s) denote the self-adjoint contraction semigroup generated by Hs

on L2. Then

S
(s)
t ϕ = e−s

−1t

∞∑
n=0

(s−1t)n

n!
Snsϕ .

Since, by Condition I, the semigroup S is positive and extends to an Lp-contractive semi-
group it follows immediately that S(s) has similar properties. Hence hs must be a Dirichlet
form.
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II⇒I. Since the hs are Dirichlet forms

s−1(|ϕ|, (I − Ss)|ϕ|) ≤ s−1(ϕ, (I − Ss)ϕ)

for all ϕ ∈ L2 and s ∈ 〈0, 1]. Then the first property characterizing a Dirichlet form follows
by taking the supremum over s. The second property follows similarly. 2

Now let us return to the discussion of the viscosity operator. Since the approximating
forms hε are Dirichlet forms it follows from Lemma 2.2 that

s−1(|ϕ|, (I − S(ε)
s )|ϕ|) ≤ s−1(ϕ, (I − S(ε)

s )ϕ)

for all ϕ ∈ L2(Rd) and s ∈ 〈0, 1]. But S(ε) converges strongly to S(0) as ε→ 0. Hence

s−1(|ϕ|, (I − S(0)
s )|ϕ|) ≤ s−1(ϕ, (I − S(0)

s )ϕ)

for all ϕ ∈ L2(Rd) and s ∈ 〈0, 1]. Similarly one deduces that

s−1(ϕ ∧ 11, (I − S(0)
s )ϕ ∧ 11) ≤ s−1(ϕ, (I − S(0)

s )ϕ)

for all ϕ ∈ L2(Rd) and s ∈ 〈0, 1]. Thus we obtain the following observation by another
application of Lemma 2.2.

Lemma 2.3 The form h0 associated to the viscosity operator H0 is a Dirichlet form. Con-
sequently S(0) extends to a positive contraction semigroup on each of the Lp-spaces.

It follows from the positivity and contractivity that the viscosity semigroup S(0) satisfies

0 ≤ S
(0)
t 11 ≤ 11 (7)

for all t > 0 on L∞(Rd). Now let ( · , · ) denote the duality pairing between the Lp-spaces.
Then if ϕ ∈ L2(Rd) it follows that |ϕ|2 ∈ L1(Rd) and (ϕ, ϕ) = (11, |ϕ|2) = (|ϕ|2, 11).
Therefore one deduces from (7) that

‖ϕ‖2
2 = (ϕ, ϕ) ≥ (S

(0)
t 11, |ϕ|2) = (|ϕ|2, S(0)

t 11) (8)

for all t > 0. Note that the strongly elliptic approximants S(ε) satisfy the stronger condition
S

(ε)
t 11 = 11 and for these semigroups one has equality in the last expression. This can be

established by an approximation argument.

3 Strongly elliptic operators

If the coefficients of H satisfy the strong ellipticity condition (2) then the kernel of the cor-
responding semigroup satisfies the Aronson Gaussian bounds (3). These Gaussian bounds
in fact characterize the strongly elliptic operators among the broader class of second-order
divergence form operators. More is true. Strong ellipticity can be characterized by local
lower bounds.

Theorem 3.1 Let H0 be the viscosity operator with coefficients C = (cij) and K(0) the
distribution kernel of the contraction semigroup S(0) generated by H0. The following con-
ditions are equivalent.
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I. There is a µ > 0 such that C ≥ µI almost everywhere.

II. There is a µ > 0 such that H0 ≥ µ∆ in the quadratic form sense on L2(Rd).

III. K
(0)
t is a bounded function satisfying the Aronson Gaussian bounds (3).

IV. There are a, r > 0 such that

K
(0)
t (x ; y) ≥ a t−d/2

for all t ∈ 〈0, 1] and x, y ∈ Rd with |x− y| ≤ rt1/2.

Moreover, if the conditions are satisfied then the form h is closed and h0 = h.

Proof Condition I implies that Hε ≥ (µ + ε) ∆ ≥ µ∆. Therefore (λI + Hε)
−1 ≤

(λI + µ∆)−1 for all λ > 0. Then in the limit ε→ 0 one has

(λI +H0)−1 ≤ (λI + µ∆)−1

for all λ > 0 which is equivalent to Condition II.
Conversely hε(ϕ) ≥ h(ϕ) ≥ h0(ϕ) ≥ µ l(ϕ) for all ϕ ∈ D(∆1/2) by the first statement of

Proposition 2.1 and Condition II. Next let ϕ ∈ D(h) = D(hε), k ∈ R and ξ ∈ Rd. Define
ϕk by ϕk(x) = eikx.ξϕ(x). Then one calculates that

lim
k→∞

k−2hε(ϕk) =

∫
Rd

dx |ϕ(x)|2
(

(ξ, C(x)ξ) + ε(ξ, ξ)
)

.

But

lim
k→∞

k−2l(ϕk) =

∫
Rd

dx |ϕ(x)|2 |ξ|2 .

Since hε(ϕk) ≥ µ l(ϕk) one deduces that∫
Rd

dx |ϕ(x)|2
(

(ξ, C(x)ξ) + ε(ξ, ξ)
)
≥ µ

∫
Rd

dx |ϕ(x)|2 |ξ|2

for all ε ∈ 〈0, 1]. Then in the limit ε→ 0 one concludes that C ≥ µI almost-everywhere.
Next II⇒III by the Nash–Aronson estimates and obviously III⇒IV. Finally we estab-

lish that IV⇒II by the following variation of an argument of Carlen, Kusuoka and Stroock
[CKS].

By the contractivity of S(0) and spectral theory one has

h0(ϕ) ≥ t−1(ϕ, (I − S(0)
t )ϕ)

for all ϕ ∈ D(h0) and all t > 0. Therefore it follows from (8) and self-adjointness of S
(0)
t

that

h0(ϕ) ≥ (2t)−1
(

(S
(0)
t 11, |ϕ|2) + (|ϕ|2, S(0)

t 11)− (ϕ, S
(0)
t ϕ)− (S

(0)
t ϕ, ϕ)

)
for all ϕ ∈ D(h0) and t > 0. Then this can be restated in terms of the kernel as

h0(ϕ) ≥ (2t)−1

∫
Rd

dx

∫
Rd

dy K
(0)
t (x ; y)|ϕ(x)− ϕ(y)|2

5



for all ϕ ∈ D(h0) and t > 0. Next choose a smooth positive function ρ with support in
〈−r, r〉 such that ρ ≤ a and ρ = a if |x| ≤ r/2. Then it follows from Condition IV that

K
(0)
t (x ; y) ≥ t−d/2 ρ(|x− y|2t−1)

for all x, y ∈ Rd and all t ∈ 〈0, 1]. Hence

h0(ϕ) ≥ (2t)−1

∫
Rd

dx

∫
Rd

dy t−d/2 ρ(|x− y|2t−1)|ϕ(x)− ϕ(y)|2

= t−1

∫
Rd

dx t−d/2 ρ(|x|2t−1)

∫
Rd

dξ |ϕ̂(ξ)|2 (1− cos ξ.x)

= t−1

∫
Rd

dx ρ(|x|2)

∫
Rd

dξ |ϕ̂(ξ)|2 (1− cos t1/2ξ.x)

= 2

∫
Rd

dξ |ϕ̂(ξ)|2
∫

Rd

dx ρ(|x|2) t−1 sin2(2−1t1/2ξ.x)

for all ϕ ∈ D(h0) and t ∈ 〈0, 1] where ϕ̂ denotes the Fourier transform of ϕ. Therefore in
the limit t→ 0 one has

h0(ϕ) ≥ 2−1

∫
Rd

dξ |ϕ̂(ξ)|2
∫

Rd

dx ρ(|x|2) (ξ.x)2 = µ

∫
Rd

dξ |ϕ̂(ξ)|2 |ξ|2

for all ϕ ∈ D(h0) with µ > 0. Thus Condition II is satisfied.
The last statement of the theorem follows because Condition I implies that h(ϕ) ≥

µ l(ϕ) for all ϕ ∈ D(h) = D(l). Then h is closed, because of the complementary bound
h(ϕ) ≤ ‖C‖ l(ϕ), and h = h0 by the second statement of Proposition 2.1. 2

The argument that II⇒I in fact proves that the condition of strong ellipticity is equiv-
alent to the seemingly weaker G̊arding inequality.

Corollary 3.2 Let H0 be the viscosity operator with coefficients C = (cij). The following
conditions are equivalent.

I. There is a µ > 0 such that H0 ≥ µ∆ in the quadratic form sense on L2(Rd).

II. There are µ > 0 and ν ≥ 0 such that H0 ≥ µ∆− νI in the quadratic form sense on
L2(Rd).

Proof Obviously I⇒II but to establish the converse we evaluate the form condition
Hε ≥ µ∆− νI with ϕk where ϕk(x) = eikx.ξϕ(x) and ϕ ∈ C∞c (Rd). Then∫

Rd

dx |ϕ(x)|2
(

(ξ, C(x)ξ) + ε(ξ, ξ)
)

= lim
k→∞

k−2hε(ϕk)

≥ lim
k→∞

k−2(µ l(ϕk)− ν ‖ϕk‖2
2) =

∫
Rd

dx |ϕ(x)|2 µ |ξ|2 .

Therefore C + εI ≥ µ I almost everywhere, which gives C ≥ µ I. Then H0 ≥ µ∆ by the
implication I⇒II in the theorem. 2
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The most surprising element of the theorem is the implication IV⇒III. The existence
of small time lower bounds with the correct Euclidean geometry implies Gaussian upper
and lower bounds on the semigroup kernel. This indicates that the key to the analysis in
more general situations is the derivation of good lower bounds.

In fact the Carlen, Kusuoka and Stroock [CKS] argument shows that local lower bounds
for one fixed t give a weaker form of ellipticity which indicates that H0 is asymptotically
strongly elliptic.

Corollary 3.3 Let H0 be the viscosity operator with coefficients C = (cij) and K(0) the
distribution kernel of the contraction semigroup S(0) generated by H0. Further assume there
exist a, r, t > 0 such that K

(0)
t (x ; y) ≥ a for a.e.-(x, y) with |x− y| ≤ r.

It follows that there exists a µ > 0 such that

H0 ≥ µ∆(I + ∆)−1 .

Proof One may suppose t = 1. Then repeating the calculation in the proof of the
implication IV⇒II in Theorem 3.1 with t = 1 gives

h0(ϕ) ≥
∫

Rd

dξ |ϕ̂(ξ)|2
∫

Rd

dx ρ(|x|2) (1− cos ξ.x) .

But by the choice of ρ one can find a µ > 0 such that∫
Rd

dx ρ(|x|2) (1− cos ξ.x) ≥ µ (|ξ|2 ∧ 1) ≥ µ |ξ|2(1 + |ξ|2)−1

for all ξ ∈ Rd. Therefore h0(ϕ) ≥ µ l((I + ∆)−1/2ϕ) for all ϕ ∈ D(h0). 2

4 Subelliptic operators

Strong ellipticity corresponds to non-degeneracy of the operator H and we next discuss
a class of operators with mild degeneracies. Let µ0(x) denote the smallest eigenvalue of
the matrix C(x) = (cij(x)). Then µ0 is an L∞-function and (2) is equivalent to µ0 being
bounded away from zero. Now assume that µ0 has an isolated zero. To be specific assume

µ0(x) = c0

( |x|2

1 + |x|2
)γ

(9)

for some c0 > 0 and γ ∈ [0, 1〉. Since ∆ ≥ σ2 |x|−2 for d ≥ 3 with σ = (d − 2)/2 (see,
for example, [Kat] Remark VI.4.9a and (VI.4.24), or [ReS] Lemma on page 169) it follows
that µ0 ≥ c0 (σ2(σ2I + ∆)−1)γ, where µ0 is viewed as a multiplication operator. Therefore
the viscosity operator H0 satisfies

H0 ≥ c0 ∆(σ2(σ2I + ∆)−1)γ = c0 ∆1−γ(σ2∆(σ2I + ∆)−1)γ . (10)

Consequently, for each µ ∈ 〈0, c0σ
2γ〉 there is a ν > 0 such that

H0 ≥ µ∆1−γ − ν I . (11)

This condition is a global analogue of the local subellipticity condition analyzed by Fef-
ferman and Phong [FeP]. It corresponds to strong ellipticity condition if γ = 0 by Corol-
lary 3.2.

It is of interest that the semigroup kernels associated with operators satisfying (11)
satisfy Gaussian upper bounds albeit with geometric modifications.
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Lemma 4.1 Let S(0) denote the positive contractive semigroup generated by the viscosity
operator H0. Assume that there are µ > 0, ν ≥ 0 and γ ∈ [0, 1〉 such that

H0 ≥ µ∆1−γ − ν I . (12)

Then there is a cγ > 0, whose value is independent of µ and ν, such that

‖S(0)
t ‖1→∞ ≤ cγ (µt)−d/(2(1−γ)) eνt (13)

and
‖S(ε)

t ‖1→∞ ≤ cγ (µt)−d/(2(1−γ)) eνt (14)

for all t > 0 and ε ∈ 〈0, 1].

Proof The result follows by a slight variation of Nash’s original arguments for strongly
elliptic operators. The starting point is the observation that the fractional Nash inequality

‖ϕ‖2+4(1−γ)/d
2 ≤ c ‖∆(1−γ)/2ϕ‖2

2 ‖ϕ‖
4(1−γ)/d
1

is valid for all ϕ ∈ L1(Rd) ∩D(∆(1−γ)/2) and a suitable c > 0. This can be verified by the
reasoning on page 169 of [Rob]. Therefore

‖ϕ‖2+4(1−γ)/d
2 ≤ c µ−1

(
hε(ϕ) + ν ‖ϕ‖2

2

)
‖ϕ‖4(1−γ)/d

1 (15)

uniformly for all ε > 0 and ϕ ∈ L1(Rd) ∩D(h) by the subellipticity condition (12).

Setting T
(ε)
t = e−νtS

(ε)
t and using ‖S(ε)

t ‖1→1 ≤ 1 one deduces that

d

dt
‖T (ε)

t ϕ‖2
2 = −2

(
hε(T

(ε)
t ϕ) + ν ‖T (ε)

t ϕ‖2
2

)
≤ −2µ c−1 ‖T

(ε)
t ϕ‖2+4(1−γ)/d

2

‖T (ε)
t ϕ‖4(1−γ)/d

1

≤ −2µ c−1e4ν(1−γ)t/d (‖T (ε)
t ϕ‖2

2)1+2(1−γ)/d

‖ϕ‖4(1−γ)/d
1

.

Then, by integration,

e−νt‖S(ε)
t ϕ‖2 = ‖T (ε)

t ϕ‖2 ≤ c1 (µt)−d/(4(1−γ))‖ϕ‖1

for all t > 0, uniformly for ε ∈ 〈0, 1] with c1 = (cd/(4(1 − γ)))d/(4(1−γ)). Therefore, by a
limiting argument

‖S(0)
t ‖1→2 ≤ c1 (µt)−d/(4(1−γ)) eνt

for all t > 0. Then by duality and the semigroup property, one deduces that (13) is valid
with cγ = c2

1 2d/(2(1−γ)). The bounds (14) follow similarly. 2

In the proof of Lemma 4.1 we used the estimates

Hε ≥ µ∆1−γ − ν I (16)

uniformly for all ε ∈ 〈0, 1]. Obviously (12) implies (16) for all ε > 0. But conversely, if
(16) is valid uniformly for all ε ∈ 〈0, 1] then

((λ+ ν)I +Hε)
−1 ≤ (λI + µ∆1−γ)−1

8



for all λ > 0 and ε ∈ 〈0, 1]. But Hε converges to H0 in the strong resolvent sense. So

((λ+ ν)I +H0)−1 ≤ (λI + µ∆1−γ)−1

for all λ > 0 and (12) is valid.
It is an immediate consequence of the estimates of the lemma that S(0) has a bounded

kernel K(0), which is automatically positive by Lemma 2.3, satisfying the bounds

0 ≤ K
(0)
t (x ; y) ≤ cγ (µt)−d/(2(1−γ))eνt (x, y)-a.e. (17)

for all t > 0. Then one can use Davies’ perturbation method to extend the uniform bounds
(17) to Gaussian upper bounds with respect to an appropriate distance.

One may associate with each positive-definite matrix C of coefficients cij ∈ L∞(Rd) a
‘distance’

dC(x ; y) = sup{|ψ(x)− ψ(y)| : ψ ∈ C∞c (Rd), ψ real and

d∑
i,j=1

cij(z) (∂iψ)(z) (∂jψ)(z) ≤ 1 for almost every z} .

In fact it is not evident that this function is a distance since this would require it to be
finite-valued. It does, however, follow that if C = κI > 0 then dC(x ; y) = κ−1/2|x − y|.
Moreover, if C1 ≥ C2 ≥ 0 then dC1(x ; y) ≤ dC2(x ; y) for all x, y ∈ Rd. Therefore uniform
boundedness of the coefficients immediately implies the lower bounds

dC(x ; y) ≥ ‖C‖−1/2|x− y|

for all x, y ∈ Rd. Further if Cε = C + εI with ε > 0 then

dC(x ; y) ≥ dCε(x ; y) (18)

for all x, y ∈ Rd. Define

dC(x ; y) = lim
ε→0

dCε(x ; y) = sup
ε>0

dCε(x ; y)

for x, y ∈ Rd. It then follows from (18) that

dC(x ; y) ≤ dC(x ; y)

for all x, y ∈ Rd.

Proposition 4.2 Assume that the viscosity operator H0 satisfies the subellipticity condi-
tion (12). Then for all δ > 0 there exists an a > 0 such that

K
(0)
t (x ; y) ≤ a (µt)−d/(2(1−γ)) eδνt e−dC(x;y)2((4+δ)t)−1

(x, y)-a.e. (19)

uniformly for all t > 0. The value of a is independent of µ and ν.
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Proof The result is established by Davies’ perturbation method [Dav1] as elaborated
by Fabes and Stroock [FaS] applied to the strongly elliptic approximants Hε. The use of
the approximants is necessary to avoid domain problems in the argument. The important
features are the uniform bounds (14) on ‖S(ε)

t ‖1→∞ and the positive-definiteness of C. The
arguments lead to bounds

K
(ε)
t (x ; y) ≤ a (µt)−d/(2(1−γ)) eδνt e−dCε (x;y)2((4+δ)t)−1

, (20)

with a independent of ε, µ and ν. Next one has the following convergence result.

Lemma 4.3 If the viscosity operator H0 satisfies the subellipticity condition (12) then the

kernels K
(ε)
t converge in the weak∗ sense on L∞(Rd×Rd), as ε→ 0, to the kernel K(0) of

the semigroup generated by the viscosity operator H0.

Proof If ε ∈ 〈0, 1] then ‖Cε‖ ≤ ‖C‖+ 1. Therefore dCε(x ; y) ≥ (1 + ‖C‖)−1/2|x− y| and
it follows from (20) that

K
(ε)
t (x ; y) ≤ a (µt)−d/(2(1−γ)) eνt e−b|x−y|

2t−1

(21)

for all t > 0, x, y ∈ Rd and ε ∈ 〈0, 1]. The convergence of the K(ε) follows from these
uniform upper bounds and the L2-convergence of S(ε) to S(0) (see, for example, [ElR]
Proposition 2.2). 2

Finally the kernel bounds (19) follow from the bounds (20) on K(ε) by taking the limit
ε→ 0. We omit further details. 2

Note that if for some x, y ∈ Rd one has dC(x; y) =∞ then K
(0)
t (x ; y) = 0. Further the

foregoing arguments give a large t bound on the kernel but with a factor t−d/(2(1−γ))eενt

which does not reflect the expected asymptotic behaviour, even if ν = 0.

The Gaussian upper bounds give information on lower bounds by a variation of standard
arguments for strongly elliptic operators.

Corollary 4.4 Assume that the viscosity operator H0 satisfies the subellipticity condition
(12). Let r, t > 0. Then there is an a′ > 0 such that

(ϕ, S
(0)
t ϕ) ≥ a′ ‖ϕ‖2

1 (22)

for all positive ϕ ∈ L1(Rd) ∩ L2(Rd) with diam(suppϕ) ≤ r. Hence if K
(0)
t is continuous

at (x, x) ∈ Rd ×Rd then

K
(0)
t (x ;x) ≥ a′ .

The value of a′ depends on H0 only through the parameters µ, ν, γ and ‖C‖.

Proof First we prove the analogue of (22) for the approximants S(ε).

Since S(ε) is self-adjoint it follows that (ϕ, S
(ε)
t ϕ) = ‖S(ε)

t/2ϕ‖2
2 ≥ 0. Hence

|(ϕ, S(ε)
t ψ)|2 ≤ (ϕ, S

(ε)
t ϕ) (ψ, S

(ε)
t ψ) (23)

for all ϕ, ψ ∈ L2(Rd). Next let x0 ∈ Rd and ϕ be a positive integrable function with
support in the Euclidean ball BE(x0 ; r) = {y ∈ Rd : |y − x0| < r}. Further let ψ be the
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characteristic function of the ball BE(x0 ;R) with R > r. We evaluate (23) with this choice
of ϕ and ψ.

Using positivity and contractivity of S(ε) on L∞(Rd) one deduces that

(ψ, S
(ε)
t ψ) ≤ VE(R)

where VE(R) is the volume of BE(x0 ;R). But as Hε is strongly elliptic S
(ε)
t 11 = 11 and

(ϕ, S
(ε)
t ψ) = (ϕ, 11)− (ϕ, S

(ε)
t (11− ψ)) ≥ ‖ϕ‖1

(
1− sup

x∈BE(x0;r)

∫
{y:|y−x0|≥R}

dy K
(ε)
t (x ; y)

)
.

Then since K
(ε)
t satisfies the bounds (21) one can choose R sufficiently large that

(ϕ, S
(ε)
t ψ) ≥ 2−1‖ϕ‖1

uniformly for ε ∈ 〈0, 1] and x ∈ Rd. Therefore substituting these last two estimates in (23)
one deduces that

(ϕ, S
(ε)
t ϕ) ≥ (4VE(R))−1 ‖ϕ‖2

1

uniformly for ε ∈ 〈0, 1]. Since S
(ε)
t converges strongly to S

(0)
t it follows that (22) is valid

with a′ = (4VE(R))−1. The value of R is dictated by the Gaussian bounds (21) and hence
depends on H0 only through the parameters µ, ν, γ and ‖C‖.

Finally suppose K
(0)
t is continuous at a diagonal point, which we may take to be (0, 0).

Then for λ > 0 replace ϕ in (22) by ϕλ where ϕλ(x) = λ−dϕ(λ−1x). It follows that
‖ϕλ‖1 = ‖ϕ‖1. Moreover,

lim
λ→0

(ϕλ, S
(0)
t ϕλ) = lim

λ→0

∫
Rd

dx

∫
Rd

dy ϕ(x)ϕ(y)K
(0)
t (λx ;λy) = ‖ϕ‖2

1 K
(0)
t (0 ; 0) .

Therefore K
(0)
t (0 ; 0) ≥ a′. 2

Remark 4.5 If the kernel K
(0)
t is a continuous function over Rd ×Rd it follows from the

corollary that it is strictly positive on the diagonal, i.e.,

inf
x∈Rd

K
(0)
t (x ;x) ≥ a′ > 0 .

If, however, if K
(0)
t is uniformly continuous then one has a stronger off-diagonal property.

Explicitly, if
lim
x→0
‖L(x)K

(0)
t −K

(0)
t ‖∞ = 0

where (L(z)K
(0)
t )(x ; y) = K

(0)
t (x − z ; y) then it follows from Corollary 4.4 that there are

a′, r > 0 such that
K

(0)
t (x ; y) ≥ a′ > 0

for all x, y ∈ Rd with |x−y| < r. Uniform continuity of the kernel in the first variable is of
course equivalent to uniform continuity in the second variable, by symmetry, and separate
uniform continuity is equivalent to joint uniform continuity.
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The upper bound (17) on the kernel gives an estimate t−d/(2(1−γ)) on the singularity

of the kernel as t → 0. Explicitly, ‖K(0)
t ‖∞ ≤ a eν (µt)−d/(2(1−γ)) for all t ∈ 〈0, 1]. This

is an optimal estimate for the local singularity for the class of subelliptic operators under
consideration. If C = µ0I with µ0 given by (9) and if d ≥ 3 then the kernel has this
singularity. This can be established by a local variation of the reasoning used to deduce
Corollary 4.4.

First, by the rescaling x→ t1/(2(1−γ))x and the simultaneous replacement ε = δtγ/(1−γ)

one finds
K

(ε)
t (x ; y) = t−d/(2(1−γ))K

(t,δ)
1 (t−1/(2(1−γ))x ; t−1/(2(1−γ))y)

where K(t,δ) is the semigroup kernel of the operator Ht,δ = Ht+δ∆ with Ht = −∇c(t)∇ and

c(t)(x) = c0

(
|x|2(1 + |x|2t1/(1−γ))−1

)γ
. Note that Ht,δ is the strongly elliptic approximant

to the operator Ht. Taking the weak∗ limit δ → 0 of the last identity one obtains the
identity

K
(0)
t (x ; y) = t−d/(2(1−γ))K

(t,0)
1 (t−1/(2(1−γ))x ; t−1/(2(1−γ))y)

for all t ∈ 〈0, 1].
Secondly, Ht,δ ≥ H1,δ ≥ H0 and since H0 satisfies the subellipticity condition (12) one

has bounds Ht,δ ≥ µ∆1−γ − ν I uniformly for t, δ ∈ 〈0, 1]. Therefore, by Corollary 4.4, one
deduces that for all r > 0 there is an a′ > 0 such that

(ϕ, S
(t,0)
1 ϕ) ≥ a′‖ϕ‖2

1

for all positive integrable ϕ with support in {x : |x| < r} uniformly for t ∈ 〈0, 1]. Hence

sup
|x|,|y|<r

K
(t,0)
1 (x ; y) ≥ a′

uniformly for t ∈ 〈0, 1]. But then by scaling one has

a′ t−d/(2(1−γ)) ≤ t−d/(2(1−γ)) sup
|x|,|y|<r

K
(t,0)
1 (x ; y)

= sup
|x|,|y|<r

K
(0)
t (t1/(2(1−γ))x ; t1/(2(1−γ))y) ≤ sup

|x|,|y|<r
K

(0)
t (x ; y)

where the last inequality uses t ∈ 〈0, 1]. In particular, it follows together with Lemma 4.3,
that there are a, a′ > 0 such that

a′ t−d/(2(1−γ)) ≤ ‖K(0)
t ‖∞ ≤ a t−d/(2(1−γ))

for all t ∈ 〈0, 1].

If K
(0)
t is continuous at (0, 0) then K

(t,0)
1 is continuous at (0, 0) and K

(t,0)
1 (0 ; 0) ≥ a′

uniformly for all t ∈ 〈0, 1] for some a′ > 0 by Corollary 4.4. Then

a′ t−d/(2(1−γ)) ≤ K
(0)
t (0 ; 0) ≤ a t−d/(2(1−γ))

for all t ∈ 〈0, 1]. The point (0, 0) is, of course, special since the coefficients of H vanish

at the origin. If x 6= 0 one would expect K
(0)
t (x ;x) � t−d/2 for small t. Therefore any

improvement in the upper bounds would require techniques which give a position dependent
singularity.
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One can also construct examples of second-order operators satisfying the subellipticity
condition (12) for which the singularity of t 7→ ‖K(0)

t ‖∞, as t → 0, is given by t−D/2 with
D ∈ 〈d, d/(1− γ)〉. Therefore the condition (12) does not determine the singularity of the
kernel. Hence one cannot expect to obtain a characterization of the subellipticity condition
by kernel bounds analogous to the statement of Theorem 3.1 in the strongly elliptic case.
Nevertheless one can establish a weaker result in a similar direction.

Theorem 4.6 Let H0 be the viscosity operator with coefficients C = (cij) and K(0) the
distribution kernel of the contraction semigroup S(0) generated by H0. Assume

1. H0 satisfies the subellipticity condition (12) for some γ ∈ 〈0, 1].

2. There are a, r > 0 such that
K

(0)
1 (x ; y) ≥ a

for almost every x, y ∈ Rd with |x− y| ≤ r.

Then for all δ > 0 there exists an a > 0 such that

K
(0)
t (x ; y) ≤ a t−d/2e−dC(x;y)2((4+δ)t)−1

(x, y)-a.e.

for all t ≥ 1.

Remark 4.7 Note that the local lower bounds of Condition 2 follow from the subellipticity
of Condition 1 if K

(0)
t is uniformly continuous. This is a consequence of Remark 4.5.

Proof Again the proof is based on Nash’s original arguments as elaborated by Carlen,
Kusuoka and Stroock [CKS].

By Corollary 3.3 there exists a σ > 0 such that

h0(ϕ) ≥ σ

∫
Rd

dξ |ϕ̂(ξ)|2
(
|ξ|2 ∧ 1

)
(24)

for all ϕ ∈ D(h) with ϕ̂ the Fourier transform of ϕ.
Assume that ϕ ∈ D(h)∩L1. It then follows by Fourier transformation, as in the proof

of Corollary 4.9 in [CKS], that

‖ϕ‖2
2 =

∫
{ξ:|ξ|≤R}

dξ |ϕ̂(ξ)|2 +

∫
{ξ:|ξ|≥R}

dξ |ϕ̂(ξ)|2

≤ cRd ‖ϕ‖2
1 +

∫
{ξ:|ξ|≥R}

dξ (R−2|ξ|2 ∧ 1) |ϕ̂(ξ)|2

≤ cRd ‖ϕ‖2
1 +R−2

∫
Rd

dξ (|ξ|2 ∧ 1) |ϕ̂(ξ)|2

≤ cRd ‖ϕ‖2
1 +R−2σ−1hε(ϕ)

for all R ∈ 〈0, 1] and ε > 0 where the last inequality uses (24). Then the Nash inequality

‖ϕ‖2+4/d
2 ≤ c′ hε(ϕ)‖ϕ‖4/d

1 (25)
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follows for all ϕ ∈ D(hε) ∩ L1 with hε(ϕ) ≤ ‖ϕ‖2
1 by setting R = (hε(ϕ)/‖ϕ‖2

1)1/(d+2).
The inequality is uniform for ε ∈ 〈0, 1]. Note that (25) is analogous to the earlier Nash
inequality (15) but with γ = 0 and ν = 0. In addition there is the important restriction
hε(ϕ) ≤ ‖ϕ‖2

1.
Next it follows from the contractivity of S(ε) on L1 that

‖S(ε)
t ‖1→∞ ≤ ‖S(ε)

1 ‖1→∞ (26)

for all t ≥ 1. In particular t 7→ ‖S(ε)
t ‖1→∞ is uniformly bounded for t ≥ 1. The conditions

(25) and (26) correspond to the assumptions of Theorem 2.9 of [CKS]. Therefore the
theorem establishes the large time estimates

‖S(ε)
t ‖1→∞ ≤ a t−d/2 (27)

for all t ≥ 1. These estimates are again uniform for ε ∈ 〈0, 1].
The estimates (27) convert to large time Gaussian bounds, with the distance associated

with Cε, by Davies perturbation theory as in Proposition 4.2, but with γ = 0 and ν = 0.
Specifically one deduces that for all δ > 0 there exists an a > 0 such that

K
(ε)
t (x ; y) ≤ a t−d/2 e−dCε (x;y)2((4+δ)t)−1

uniformly for all t ≥ 1, x, y ∈ Rd and ε ∈ 〈0, 1]. Finally, taking the limit ε → 0, one
obtains the large time bounds on K(0). 2

An essential feature of the above analysis was the estimate (24) which follows from
the local lower bound. This complements the subellipticity estimate (12) which can be
reformulated as

h0(ϕ) ≥
∫

Rd

dξ
(
µ |ξ|2(1−γ) − ν

)
|ϕ̂(ξ)|2 .

Combination of the two conditions then gives

h0(ϕ) ≥
∫

Rd

dξ
(
σ (|ξ|2 ∧ 1)

)
∨
(
µ |ξ|2(1−γ) − ν

)
|ϕ̂(ξ)|2 .

Thus if f is any positive function on 〈0,∞〉 such that f(x) �
(
σ (x ∧ 1)

)
∨
(
µx1−γ − ν

)
one then has

h0(ϕ) ≥ c

∫
Rd

dξ f(|ξ|2) |ϕ̂(ξ)|2 = c (ϕ, f(∆)ϕ)

for all ϕ ∈ D(f(∆)). In particular one can choose f(x) = µ′ x (1 + x)−γ with µ′ > 0. The
positivity bound (24) is a restriction on the lower part of the spectrum and is reflected by
the fact that f(x) � x as x→ 0. This behaviour effectively means thatH0 is asymptotically
strongly elliptic. Subellipticity is, however, a restriction on the upper part of the spectrum
reflected by f(x) � x1−γ as x→∞. This special choice of f gives the operator inequality

H0 ≥ µ′∆(I + ∆)−γ

which incorporates both the local and global behaviour. It is analogous to the bound (10)
in the example at the beginning of the section.
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