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Acoustic Modes in a Ducted Shear Flow

Gregory Vilenski∗

Sjoerd W. Rienstra†

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

The propagation of small-amplitude modes in an inviscid but sheared mean flow inside a duct is considered.
For isentropic flow in a circular duct with zero swirl and constant mean flow density the pressure modes are
described in terms of the eigenvalue problem for the Pridmore-Brown equation. A numerical method similar
to the procedure used by Tam & Auriault is proposed for the solution of the modal equation. Since for suffi-
ciently high Helmholtz and wavenumbers, which are of great interest for the applications, the field equation is
inherently stiff, special care is taken to insure the stability of the numerical algorithm designed to tackle this
problem. The accuracy of the method is checked against the well-known analytical solution for the uniform
flow. The numerical method is shown to be consistent with the analytical predictions at least for the Helmholtz
numbers up to 100 and the circumferential wavenumber as large as 50, typical Mach numbers being up to
0.65.

In order to gain further insight into the possible structure of the modal solutions and to get an independent
verification of the robustness of the numerical scheme, the asymptotic solution of the problem based on the
WKB method is derived. The comparisons of the WKB solution against the exact potential flow solution show
remarkably good agreement between the two. This permits us to use the asymptotic solution as a benchmark
for computations with high Helmholtz numbers, where numerical solutions of other authors are not available.

Numerical analysis of the problem with zero mean flow at the wall and acoustic lining shows that Ingard-
Myers condition is recovered for vanishing boundary-layer thickness, although the boundary layer must be
very thin in some cases.

Nomenclature

t , x , r , θ = time, axial, radial and circumferential coordinates
u, v, w = projections of the velocity vector on the coordinate axes x, r and θ
ρ, p = density and pressure
s = tip-to-hub ratio
h = dimensional inner duct radius
d = dimensional outer duct radius
ω = dimensional frequency
m = circumferential wavenumber
k = dimensional lateral wavenumber
M = Mach number˜ = upper-case symbol denoting nondimensional values
c0 = sound speed in the flow without swirl
a0 = sound speed in swirling flow
n = eigenmode number
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I. Introduction

NORMAL mode analysis of small-amplitude disturbances in an annular duct with an appropriately chosen mean
flow has been much used in the problems of turbomachinery noise propagation. Although an engine duct is not

straight, the representation of sound in a duct by modes is very advantageous because of the clarity and the theoretical
insight that it provides. The earlier analyses of this type (e.g. Zorumski [1]) used uniform flow, in which case acoustic
modes can be studied independently from the hydrodynamic modes. By using the multiple scales technique for slowly
varying ducts it is possible to extend the modal approach even further (Rienstra [2, 3] Cooper & Peake [4]).

Although the mean flow in the inlet duct is almost uniform with vorticity concentrated in the thin boundary layer,
the mean flow of the by-pass duct is strongly sheared, sometimes with swirl, which requires more precise modelling.
Since in the latter case the acoustic disturbances are not irrotational any more and are coupled with the hydrodynamic
disturbances due to entropy and vorticity waves, the analysis of small amplitude modes becomes much more involved
both computationally and theoretically. An excellent survey of the vast amount of the literature existing on the issue
can be found in the article by Eversman [5]. More recently the problem of small-amplitude perturbations in swirling
mean flows was considered in the works by Golubev & Atassi [6], Tam & Auriault [7], Nijboer [8], Cooper & Peake
[9], Kousen [10], etc.

The aim of this work is to revisit the problem of the propagation of small disturbances in an annular duct with
sheared mean flow and wall lining. The reasons for this are as follows. Firstly, for sufficiently high Helmholtz and
wavenumbers, which are of the most interest for the applications, the field equation is inherently stiff. This means that
numerical stability of the algorithms designed to tackle this problem becomes a major issue to be taken into account.
Secondly, even for hard walled ducts only limited data on the properties of the spectrum of this equation currently
exists in the literature and only for relatively small values of the Helmholtz number. In particular, coverage of the
properties of the hydrodynamic part of the spectrum, in our view, remains insufficient. Also, the influence of the wall
lining over the spectrum structure and the range of validity of Myers condition as a limiting model for the mean flow
velocity profiles with strong near-wall shear due to no-slip condition are not fully understood.

In order to gain further insight into these issues, we will develop a robust numerical method, valid for very high
Helmholtz numbers. Its validity will be verified against asymptotic results of the WKB type similar to what has been
proposed by Envia [11] and Cooper & Peake [9].

The properties of the hydrodynamic part of the spectrum for the sheared mean flow without swirl (i.e. Pridmore-
Brown equation12) will be studied both analytically and numerically. In particular, the asymptotic analysis will show
that for sheared mean flow with non-zero wall velocity and in the absence of lining the number of hydrodynamic modes
is finite and they are localised near the duct walls. This result will be confirmed numerically. In parallel with this, the
WKB solution will be extended to the case of soft walls. It will be used to predict analytically typical behaviour of the
axial wavenumber in the complex plane when the wall impedance varies in the complex plain.

II. Governing equations

Consider an inviscid non-heat-conducting compressible perfect gas flow inside an infinitely long straight annular
duct of inner radius h and outer radius d . Let x , r and θ be the axial, the radial and the circumferential coordinates,
u, v and w the projections of the velocity vector on the coordinate axes x, r and θ respectively, ρ and p the density
and the pressure. The dimensional equations for conservation of mass, radial, circumferential, lateral components of
momentum and energy are

∂ρ

∂ t
+ 1

r

∂ (rρv)

∂r
+ 1

r

∂ (ρw)

∂θ
+ 1

r

∂ (ρu)

∂x
= 0, (1)

∂v

∂ t
+ v

∂v

∂r
+ w

r

∂v

∂θ
+ u

∂v

∂x
− w2

r
= − 1

ρ

∂p

∂r
, (2)

∂w

∂ t
+ v

∂w

∂r
+ w

r

∂w

∂θ
+ u

∂w

∂x
+ vw

r
= − 1

rρ

∂p

∂θ
, (3)

∂u

∂ t
+ v

∂u

∂r
+ w

r

∂u

∂θ
+ u

∂u

∂x
= − 1

ρ

∂p

∂x
, (4)

∂p

∂ t
+ v

∂p

∂r
+ w

r

∂p

∂θ
+ u

∂p

∂x
+ γ p

(
1

r

∂ (rv)

∂r
+ 1

r

∂w

∂θ
+ ∂u

∂x

)
= 0. (5)
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Here t is time, γ = cp/cv is the ratio of specific heat capacities at constant pressure and constant volume, respectively.
The pressure, the density and the absolute temperature T satisfy the equation of state p = RρT , R = cp − cv . The
energy equation (5) can be also written in terms of the entropy S = cv ln (p/ργ )+ const in the following equivalent
form

dS

dt
≡ ∂S

∂ t
+ v

∂S

∂r
+ w

r

∂S

∂θ
+ u

∂S

∂x
= 0.

Assume that the total flow field is the sum of a mean base flow and small-amplitude unsteady perturbations

(u, v,w, ρ, p) = (u, v,w, ρ, p)+ (̃u, ṽ, w̃, ρ̃, p̃) . (6)

The mean flow is independent of x , its radial velocity is zero, its circumferential velocity is also independent of θ , i.e.,

∂

∂x
≡ 0, v = 0,

∂w

∂θ
= 0.

In this case the mean flow is governed by the following system of equations

∂ρ

∂ t
+ w

r

∂ρ

∂θ
= 0,

w2

r
= 1

ρ

∂ p

∂r
,

∂w

∂ t
+ 1

rρ

∂ p

∂θ
= 0,

∂u

∂ t
+ w

r

∂u

∂θ
= 0,

∂ p

∂ t
+ w

r

∂ p

∂θ
= 0.

which has solution

ρ = ρ(r), w = w(r), u = u

(
r, θ − w(r)

r
t

)
, p = pd −

∫ d

r
ρ(ξ)

w2(ξ)

ξ
dξ, v = 0, (7)

where pd = const is the pressure at r = d , ρ(r), w(r)are arbitrary functions of r , and u is an arbitrary function of its
arguments.

In turbomachinery context, (7) could be used as a simplified time-dependent model for the wake flow behind a
fan. If the fan rotates with an angular velocity �̃ and θ ′ is the circumferential angle in the rotating frame so that

θ = �̃t + θ ′, then for the rotor with l blades the wake profile u = u(r, θ ′ + �̃r−w(r)
r t) must be a periodic function in

θ ′ with the period 2π/ l, or after Fourier decomposition in θ ′

u =
∞∑

k=−∞
uk(r)e

ikl
(
θ ′+ �̃r−w(r)

r t
)

=
∞∑

k=−∞
uk(r)e

ikl
(
θ−w(r)

r t
)
.

All three vorticity components are non-zero for the mean flow (7)

�x = 1

r

d (rw)

dr
, �θ = −∂u

∂r
, �r = 1

r

∂u

∂θ
.

If the mean flow is time-independent, (7) reduces to the following well known mean flow solution (see for instance,
Tam & Auriault [7])

u = u(r), v = 0, w = w(r), ρ = ρ(r), p = pd −
∫ d

r
ρ(ξ)

w2(ξ)

ξ
dξ (8)

with the swirl �x = dw/dr +w/r , the circumferential vorticity (shear)�θ = −du/dr , and zero radial vorticity.
For the mean flow (7) small-amplitude disturbance field is governed by the linearized Euler equations

∂ρ̃

∂ t
+ u

∂ρ̃

∂x
+ 1

r

∂ (rρṽ)

∂r
+ w

r

∂ρ̃

∂θ
+ ρ

(
1

r

∂w̃

∂θ
+ ∂ ũ

∂x

)
= 0, (9)

ρ

(
∂ṽ

∂ t
+ u

∂ṽ

∂x
+ w

r

∂ṽ

∂θ
− 2ww̃

r

)
− ρ̃

w2

r
= −∂ p̃

∂r
, (10)

ρ

(
∂w̃

∂ t
+ u

∂w̃

∂x
+ w

r

∂w̃

∂θ
+ ṽ

(
dw

dr
+ w

r

))
= −1

r

∂ p̃

∂θ
, (11)

ρ

(
∂ ũ

∂ t
+ u

∂ ũ

∂x
+ w

r

∂ ũ

∂θ
+ ṽ

∂u

∂r
+ w̃

r

∂u

∂θ

)
= −∂ p̃

∂x
, (12)

∂ p̃

∂ t
+ u

∂ p̃

∂x
+ w

r

∂ p̃

∂θ
+ ṽρ

w2

r
+ γ p

(
1

r

∂ (r ṽ)

∂r
+ 1

r

∂w̃

∂θ
+ ∂ ũ

∂x

)
= 0. (13)
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Assume in what follows that the mean flow is time- and θ -independent and is given by the relations (8). The resulting
small-amplitude disturbances are sought in the form

(̃u, ṽ, w̃, ρ̃, p̃) = (U, V ,W, R, P) exp (−iωt + ikx + imθ) , (14)

where ω is the excitation frequency, k and m are the lateral and the circumferential wavenumbers, respectively. The
amplitudes (U, V ,W, R, P) are unknown functions of r . They satisfy the system of equations

iλR + 1

r

d (rρV )

dr
+ ρ

(
im

r
W + ikU

)
= 0, (15)

iλV − 2w

r
W − w2

ρr
R = − 1

ρ
P ′, (16)

iλW +
(
w′ + w

r

)
V = − im

ρr
P, (17)

iλU + u′V = − ik

ρ
P, (18)

iλP + w2ρ

r
V + γ p

(
1

r

d (r V )

dr
+ im

r
W + ikU

)
= 0. (19)

Here and in what follows the primes denote differentiation with respect to r , λ = −ω+ ku + mw/r is the eigenvalue
of the operator −i

(
∂
∂t + u ∂

∂x + w
r
∂
∂θ

)
. In order to reduce system (15-19) to a single equation, we first eliminate Uand

W . This can be achieved by eliminating W from (16) and(17), im
r W + ikU - from (15) and (19) , expressing the latter

sum via (17) and (18) and substituting it into (15) :

iλρP − iλγ pR +
(
w2

r
ρ2 − γ ρ′ p

)
V = 0, (20)

2imw

ρr2 P − iλw2

ρr
R +

(
2w

r
(w′ + w

r
)− λ2

)
V = − iλ

ρ
P ′, (21)

iλR + 1

r

d (rρV )

dr
+ 1

iλ

(
m2

r2
+ k2

)
P − ρ

λ

(
m

r
(w′ + w

r
)+ ku′

)
V = 0. (22)

Eliminating R from (21) and (22) via (20) yields the system for the pressure and radial velocity amplitudes

iλP ′

ρ
+ B

i P

ρ
− AV = 0, (23)

1

r

d (r V )

dr
+ i�

ρλ
P + CV = 0. (24)

Here

A = λ2 + w4

a2r2
− w2

r

ρ′

ρ
− 2w

r

(
w′ + w

r

)
, B = 2mw

r2
− λw2

a2r
,

C = w2

a2r
− 1

λ

(
m

r
(w′ + w

r
)+ ku′

)
, � = λ2

a2
− k2 − m2

r2
, a2 = γ p

ρ
.

System (23-24) coincides with the related system of equations obtained in the work by Nijboer [8]. Elimination of V
leads to a single differential equation for the pressure amplitude P

P ′′ +
(
λ+ Br

λr
+ C + ρA

λ

d

dr

(
λ

ρA

))
P ′ +

(
A�

λ2 + ρA

λr

d

dr

(
Br

ρA

)
+ BC

λ

)
P = 0. (25)

In order to state boundary conditions for this equation, assume that the duct walls are treated with locally reacting
lining with the complex specific impedances Zh and Zd for r = h and r = d , respectively. According to Ingard [13]
and Myers [14], the following relations must be satisfied on the duct walls

−iωṽn =
(

−iω + u
∂

∂x
+ w

r

∂

∂θ

)(
p̃

Z

)
, (26)
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where ṽn is the projection of the perturbation velocity on the outwardly directed normal to the duct wall (̃vn =
ṽ for r = d and ṽn = −ṽ for r = h), Z = Zd or Z = Zh for r = d or r = h, respectively. Substitution of (14) in (26)
together with (23) gives the required boundary conditions for the equation (25)

P ′ +
(

B

λ
+ iρA

ωZh

)
P = 0 on r = h, (27)

P ′ +
(

B

λ
− iρA

ωZd

)
P = 0 on r = d. (28)

The hard wall boundary condition on either of the walls is recovered in the limit Zh or Zd → ∞.
In the eigenvalue problem (25,27,28) the excitation frequency ω and the circumferential wavenumber m are the

given numbers while the lateral wavenumber k is an unknown spectral parameter. In the special case of zero mean cir-
cumferential velocity w = 0 and constant mean flow density ρ (and hence the pressure) (25) reduces to the Pridmore-
Brown equation

P ′′ + β(r)P ′ + γ (r)P = 0, (29)

where

β(r) =
(

1

r
+ 2ku′

ω − ku

)
, γ (r) =

(
(ω − ku)2

c2
0

− k2 − m2

r2

)
and c2

0 = γ pd

ρ
.

In this case the boundary conditions are

P ′ + iρ (ω − ku)2

ωZh
P = 0 on r = h, (30)

P ′ − iρ (ω − ku)2

ωZd
P = 0 on r = d. (31)

The present work studies the solutions of field equation (29) with various versions of conditions (30,31). The
exception is the numerical procedure described below which was also used to integrate the generic problem (25,27,28).

III. Asymptotic analysis

The following non-dimensional quantities will be used in this section

ω̃ = ωd

c0
, k̃ = kd, zh = Zh/ (ρc0) , zd = Zd/ (ρc0) ,

M = u/c0, Mh = u(h)/c0, Md = u(d)/c0, s = h/d.

Also assume that the pressure amplitude P is scaled by ρc2
0, time by d/c0, velocities by the sound speed c0, r and

other distances by d , so that the problem (29-31) can be rewritten in the following non-dimensional form

P ′′ +
(

1

r
+ 2̃kM ′

ω̃ − k̃M

)
P ′ +

((
ω̃ − k̃M

)2 − k̃2 − m2

r2

)
P = 0, (32)

P ′ + i
(
ω̃ − k̃Mh

)2
ω̃zh

P = 0 on r = s(= h/d), (33)

P ′ − i
(
ω̃ − k̃Md

)2
ω̃zd

P = 0 on r = 1. (34)

In order to reduce the system (32-34) to the form convenient for WKB analysis, introduce new independent variable
τ = τ (r) which will be specified in what follows and new dependent variable w(τ) (not to be confused with the total
circumferential velocity w in section 2) such that

P = α(r)
(
τ ′)−1/2

w(τ), α(r) = ω̃ − k̃M√
r

(35)

and, hence,

P ′ = α(r)

[(
τ ′)1/2 dw

dτ
− 1

2
τ ′′ (τ ′)−3/2

w

]
+ dα

dr

(
τ ′)−1/2

w.
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The system (32-34) then takes the following form

d2w

dτ 2
+
{(
τ ′)−2

q − 1

2
τ ′′′ (τ ′)−3 + 3

4

(
τ ′′)2 (τ ′)−4

}
w = 0, (36)

dw

dτ
+
{

−1

2
τ ′′ (τ ′)−1 + α′ (s)

α (s)
+ i

(
ω̃ − k̃Mh

)2
ω̃zh

} (
τ ′)−1

w = 0 at τ = τ (s) , (37)

dw

dτ
+
{

−1

2
τ ′′ (τ ′)−1 + α′(1)

α(1)
− i

(
ω̃ − k̃Md

)2
ω̃zd

} (
τ ′)−1

w = 0 at τ = τ (1) , (38)

where

q(r) = (
ω̃ − k̃M

)2 − k̃2 − m2

r2
− 2̃k2

(
M ′)2(

ω̃ − k̃M
)2 − k̃

(
M ′′ + M ′/r

)
ω̃ − k̃M

+ 1

4r2
. (39)

It is assumed in this section that the duct is not hollow (s > 0), the spectral parameter k̃ is large and, unless specified
otherwise, the frequency ω̃ and the circumferential wavenumber m are of the same order of magnitude as k̃. It follows
from (39) that q(r) = O (̃k2) as k̃ → ∞. The exceptions are the vicinities of turning points, say r = r∗, where
q(r∗) = 0 and the vicinities of the points, where ω̃ − k̃M goes to zero (Cooper & Peake [9]). According to the WKB
methodology (see for instance Barantsev & Engelgart [15]), away from these points the main-order part of the operator
on the left-hand side of (36) can be extracted by letting τ ′(r) = q1/2. In this case the first term in the curly parentheses
is equal to one whereas the remaining terms are O (̃k−2) and can be neglected in the main-order analysis. The case
of one turning point can be dealt with by setting τ ′(r) = (q/τ)1/2. The first term in the curly parentheses in (36) is
then equal to τ = O (̃k2/3), with the other two terms being O (̃k−2/3) uniformly in r , if ω̃ − k̃M(r) �= 0. The case of
ω̃ − k̃M(r)= 0 will be studied separately. Although physically quite possible, the situation of multiple turning points
will not be tackled in the present study.

A. Ordinary WKB approximation

Assume that ω̃, m and k̃ are such that neither q(r) nor ω̃ − k̃M(r) go to zero for s ≤ r ≤ d and let

τ (r) =
∫ r

s

√
q(ξ) dξ, τd = τ (1) ≡

∫ 1

s

√
q(ξ) dξ.

Then, provided that (
ω̃ − k̃M

)2
/ (ω̃z) 	 1 (40)

for z = zh , zd , the problem (36-38) becomes

d2w

dτ 2
+w = 0,

dw

dτ
+ iσhw = 0 at τ = 0,

dw

dτ
− iσdw = 0 at τ = τd . (41)

Here

σh =
(
ω̃ − k̃Mh

)2
ω̃zhτ ′(s)

, σd =
(
ω̃ − k̃Md

)2
ω̃zdτ ′(1)

. (42)

It has non-zero solution w = cos(τ )− iσh sin(τ ) if the spectral parameter k̃ satisfies the equation

ei2τd = ζ, ζ ≡ 1 + σhσd + σh + σd

1 + σhσd − σh − σd
. (43)

1. Perturbations of the hard-wall solutions

For the duct with hard walls σh = σd = 0 the dispersion relation (43) reduces to the following equation for k̃∫ 1

s

√
q(ξ) dξ = −nπ, (44)

where n is an integer number.
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It is interesting to compare the accuracy of WKB prediction of the lateral wavenumbers k̃ based on the dispersion
relation (44) with the well-known exact solution of system (32-34) for a uniform mean flow in a duct with hard walls.
If M ′ is identically zero and zh = zd = ∞, the system (32-34) reduces to the boundary value problem for the Bessel
equation

d2 P

dr2
+ 1

r

dP

dr
+
(
α2 − m2

r2

)
P = 0, r = s, 1 : dP

dr
= 0,

with the dispersion relation being

J ′
m (αs) Y ′

m (α)− Y ′
m (αs) J ′

m (α) = 0, α =
√
ω2

c2
0

− k2,

where the primes stand for derivatives of the Bessel functions with respect to their arguments.
The results of comparison between the WKB approximation (44) of the eigenvalues k̃ and their exact counterparts

based on the above formula are summarized in Table 1, which shows the first five complex eigenvalues for ω̃ = 25,
m = 15, s = 0.6, M = 0.5. It can be seen from Table 1 that apart from the first lateral wavenumber k̃ with the smallest
absolute value, for which the relative error is 3.6%, the WKB prediction is very good, and the accuracy improves as∣∣̃k∣∣ grows. This remarkable feature of the WKB approximation will be used in what follows to check the accuracy of
the proposed numerical scheme for large ω̃, m, where the accuracy of the WKB approximation becomes even better
whereas the accuracy of numerical schemes decreases due to the stiffness of the problem.

Table 1. Ordinary WKB approximation versus exact solution.

WKB Exact Relative error

k̃ = 16.(6)+ i · k̃ = 16.(6)+ i · %

11.69 12.11 3.6

26.62 26.73 0.41

38.04 38.1 0.16

48.49 48.53 0.082

58.48 58.51 0.051

In general, the equations (43) or (44) must be solved numerically. One exception is the case of a slender duct.
Then� = 1 − s 
 1 and

τ (r) = √
q(s)(r − s)+ q ′(s)√

q(s)

(r − s)2

4
+ O(�3), s ≤ r ≤ 1,

since it was assumed that q(r) �= 0. Making use of the expansion q(r) = (
ω̃ − k̃M

)2 − k̃2 −m2/r2 + O(1) as k̃ → ∞
and taking r = 1, yields

q(s) =
(πn

�

)2 − 1

2
q ′(s)�+ . . . ,

or after some algebra

k̃ = −0.5ω̃(Mh + Md )±
√

D

1 − Mh Md
, (45)

D = ω̃2 − (1 − Mh Md )

{(m

s

)2
(1 −�/s)+

(πn

�

)2
}

+ O(�2).

This solution is perfectly analogous to the uniform mean flow solution which is recovered when Mh is set equal to
Md . The eigenvalues (45) are distributed symmetrically with respect to the real axis in the complex plane k̃ and as n
goes to infinity with ω̃ and m being fixed, k̃ approaches the vertical line k̃ = −0.5ω̃(Mh + Md )/(1 − Mh Md ) (see also
Figure 1).

According to the results recently reported by Rienstra [16] for the lined hollow duct with uniform mean flow, the
problem for a lined duct may be expected to feature a much richer behaviour. Owing to the complicated character of
the dispersion relation (43), further simplifying assumption ω̃ ≈ |m| 
 ∣∣̃k∣∣ as k̃ → ∞ is needed to make this case
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analytically treatable. Also, assume that the inner wall is hard so that σh = 0 and ζ = (1 + σd )/(1 − σd ). Equation
(43) then can be rewritten in the following form

2iτd = −2πni + ln

(
zd + z0

zd − z0

)
, here z0 =

(
ω̃ − k̃Md

)2
ω̃

√
q(1)

, (46)

where n is an integer. Note that for large k̃ the logarithmic term in (46) is O(1) when z0 �= ±zd whereas τd = O (̃k).
Hence to leading order, the solution to the equation (46) is governed by the dispersion relation obtained above for the
hard-wall boundary conditions τd ≈ −πn, where |n| is large. The logarithmic term influences higher order terms.
Expanding z0 and τd in powers of k̃

z0 = −i
(
ζ1k̃ − ζ0 + O (̃k−1)

)
, τd = i

(
κ1k̃ + κ0 − κ−1k̃−1 + O (̃k−2)

)
and substituting these formulas in (46) gives

k̃ + κ0

κ1
− κ−1

κ1
k̃−1 + O (̃k−2) = πni

κ1
− 1

2κ1
ln

zd − i(ζ1k̃ − ζ0 + O (̃k−1))

zd + i(ζ1k̃ − ζ0 + O (̃k−1))
, (47)

where

ζ1 = ω̃−1 M2
d√

1 − M2
d

, ζ0 = (2 − M2
d )Md

(1 − M2
d )

3/2
, κ1 =

∫ 1

s

√
1 − M2 dr, κ0 =

∫ 1

s

ω̃M√
1 − M2

dr,

κ−1 = 1

2

∫ 1

s

{
ω̃2

1 − M2
− m2

r2
− 2M ′2

M2
+ M ′′ + M ′/r

M
+ 1

4r2

}
dr√

1 − M2
.

Consider at first the hard-wall limit |zd | 	 ζ1πn/κ1 	 1 with the real and imaginary parts of the impedance zd

being of the same order of magnitude. Since
∣∣̃k∣∣ ∼ πn/κ1, the logarithmic term on the right-hand side of (47) can be

further simplified, and the following solution for k̃ can be obtained

k̃ =
{
πni

κ1
− κ0

κ1
− iκ−1

πn
. . .

}
− 1

zd

(
ζ1πn

κ2
1

+ . . .

)
. (48)

Here the curly parentheses contains the expansion of the hard-wall solution in powers of n. The second term is the
leading order correction due to the lining. Let R and X be the real and imaginary parts of the specific impedance zd

and k̃r and k̃i - the real and imaginary part of the lateral wavenumber k̃. Then elimination of X from (48) yields the
following relationship between k̃r and k̃i(

k̃r + κ0

κ1
+ ζ1πn

2Rκ2
1

)2

+
(

k̃i − πn

κ1
+ κ−1

πn

)2

=
(
ζ1πn

2Rκ2
1

)2

. (49)

Expression (49) shows that when the real part R of the impedance zd is fixed and its complex part X is allowed to
vary, the eigenvalues whose index n is not too large i.e., |zd | 	 ζ1πn/κ1 	 1) travel along the circle which surrounds
the corresponding hard-wall eigenvalue k̃0 = k̃0

r + k̃0
i , where

k̃0
r = −κ0

κ1
+ . . . , k̃0

i = πn

κ1
− κ−1

πn
+ . . . (50)

Its radius decreases with the damping R and the frequency ω̃ and grows with the Mach number and with the index
n. The centre of the circle is shifted to the left from the position of the hard-wall eigenvalue k̃0 by the amount equal
to its radius for positive n and to the right - for negative n. The neighbouring circles are shifted from one another in
the vertical direction by the amount π/κ1 + O(1/n2) which depends mainly on the Mach number distribution and the
hub-to-tip ratio s.

This result gives theoretical explanation for the appearance of circular trajectories in the complex plane of the
lateral wavenumber for sufficiently large but fixed damping R and varying X which were obtained numerically in
Rienstra [16] for a lined duct with constant mean flow (see also Figures 5a and 5b in what follows). Owing to the
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difference in the sign convention before the term iωt in the above work and the present study, the direction of the
horizontal shifts of the circles (49) is opposite to those in the paper by Rienstra [16].

Consider now a more general situation when |zd | ∼ ζ1πn/κ1 	 1, in which case it follows from (47) that

k̃ = k̃0
r + i k̃0

i − 1

2κ1
ln

(
zd + ζ1πn/κ1 + i(ζ1κ0/κ1 − ζ0)

zd − ζ1πn/κ1 − i(ζ1κ0/κ1 + ζ0)

)
+ O(n−2). (51)

Note that expansion (48) can be obtained from formula (51) in the limit |zd | 	 ζ1πn/κ1.
For |zd | ∼ ζ1πn/κ1 solution (51) breaks down in the vicinities of the points where

zd = −ζ1πn

κ1
− i

(
ζ1κ0

κ1
− ζ0

)
or zd = ζ1πn

κ1
+ i

(
ζ1κ0

κ1
+ ζ0

)
. (52)

If the value of the specific impedance zd is sufficiently close to any of these points, the logarithmic term on the right-
hand side of the expression (47) becomes comparable with the first term πn/κ1and the main order solution is not
governed by the hard wall approximation any more. Thus, it must be assumed that zd does not lie in the immediate
vicinity of the points (52) . The case when the logarithmic term on the right-hand side of the expression (47) dominates
overπn/κ1will be studied in what follows. However, the situation when these terms are of the same order of magnitude
was found difficult for analytical treatment and was tackled numerically.

Taking the real and imaginary parts of (51) leads to the formulas

k̃r − k̃0
r = − 1

4κ1
ln

{(
R2 + (ζ0 − X)2 − A2 − B2

)2 + 4 (B R + A(ζ0 − X))2[
(R − A)2 + (B + ζ0 − X)2

]2
}
, (53)

tan ψ̃ = − 2 (B R + A(ζ0 − X))

R2 + (ζ0 − X)2 − A2 − B2 , ψ̃ = 2κ1(̃ki − k̃0
i ). (54)

Here A = ζ1πn/κ1, B = ζ1κ0/κ1. Assume now that |A| ∼ |X | 	 R. Relations (53,54) then can be used to write k̃r

in terms of k̃i . Indeed,

(ζ0 − X) ≈ A

sin ψ̃
(cos ψ̃ ± 1), k̃r − k̃0

r ≈ 1

κ1

B(ζ0 − X)− R A

(ζ0 − X)2 + A2

and hence,

k̃r − k̃0
r = −R cos(2κ1(̃ki − k̃0

i ))+ B sin(2κ1(̃ki − k̃0
i ))− R

2Aκ1
, if X/A > 0, (55)

k̃r − k̃0
r = −R cos(2κ1(̃ki − k̃0

i ))− B sin(2κ1(̃ki − k̃0
i ))+ R

2Aκ1
, if X/A < 0. (56)

Formulas (55, 56) show that when the real part of the specific impedance R is small and kept fixed while the imaginary
part of the specific impedance X varies, the eigenvalue k̃ with a sufficiently large index n must move along the
sinusoidal line. The zeros of this line coincide with the hard-wall eigenvalues k̃0 = k̃0

r + k̃0
i . For instance, if for

some n > 0 (or n < 0) the correspondent eigenvalue k̃0(n) is taken as a starting point at X = +∞ and then X is
allowed to gradually vary till X = −∞, then moving along the line (55) (or (56), respectively) the eigenvalue value
k̃ will terminate at the point k̃0(n + 1) (or k̃0(n − 1), respectively). This can be also noticed directly from formula
(51). Indeed, as the point zd moves along the line parallel to the imaginary axis from the position zd = R + i∞ to
zd = R − i∞ and passes by singular points (52), but does not cross them, the imaginary part of the logarithm in (51)
increases by −2π . As a result, the imaginary part of the eigenvalue value k̃ gets the overall increment of π/κ1. The
amplitude of the sinusoidal lines (55, 56) decays as 1/n as n → ∞. Note that the obtained results are also in line with
the related numerical findings presented in figure 7 of Rienstra [16].

2. Surface modes

Only small corrections to the hard-wall solutions have been considered so far. The first of such solutions was based on
the assumption that R 	 ζ1πn/κ1 	 1 and corresponded to the emergence of circular eigenvalue contours (49) in the
complex plane k̃ . The second solution was obtained in the limit ζ1πn/κ1 	 R and resulted in sinusoidal eigenvalue
contours (55, 56). Consider now the case when z0 is close to either of the points ±zd and the logarithmic term in
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(46) is large. To construct relevant solutions assume that |X | is large, the wall Mach number Md does not vanish and
k̃ → ∞. Dispersion relation (46) then can be rewritten in the following form

e−2κ1 (̃k+κ0+O (̃k−1)) = zd − i(ζ1k̃ − ζ0 + O (̃k−1))

zd + i(ζ1k̃ − ζ0 + O (̃k−1))
. (57)

Its main-order solution is

k̃ = −i zd/ζ1 + . . . if X → −∞ and k̃ = i zd/ζ1 + . . . if X → +∞. (58)

These solutions are analogous to the high-frequency surface-wave modes studied in Rienstra [16] in the context of a
hollow duct in a uniform flow. It is interesting to observe that although they do not have a hard-wall prototype, the
eigenvalues (58) follow from the same dispersion relation as the rest of the acoustic modes. When the wall Mach
number Md = 0, formulas (58) do not apply. This situation has to be tackled numerically.

B. Turning points

Assume that the function q(r) from (36-38) has a simple zero at a point r = r∗, s < r∗ < 1. Then, as is known (see
for instance Barantsev & Engelgart [15]), ordinary WKB procedure is not valid near r∗ and should be modified so as
to retain the structure of the function q(r) in the main part of the operator on the right-hand side of (36). This can be
accomplished by taking

τ (r) =
{

3

2

∫ r

r∗

√
q(ξ) dξ

}2/3

.

Then assuming that m ∼ ω̃ ∼ k̃ as k̃ → ∞ and (40), the problem (36-38) becomes

d2w

dτ 2 + τw = 0,
dw

dτ
+ iσhw = 0 at τ = τh ,

dw

dτ
− iσdw = 0, at τ = τd , (59)

here τh = τ (s), τd = τ (1), σh and σd are given by (42). System (59) has solution w(τ) = A Ai(−τ ) + B Bi(−τ )
which is not identically zero if

I (̃k) = det

∥∥∥∥∥ Ai′(−τd )+ iσd Ai(−τd) Bi′(−τd)+ iσd Bi(−τd)

Ai′(−τh)− iσh Ai(−τh) Bi′(−τh)− iσh Bi(−τh)

∥∥∥∥∥ = 0. (60)

For the sake of simplicity we shall consider only the case when the inner wall is hard so that σh = 0 in (59) and (60).

To main order in k̃ the position of the turning point is given by the equation
(
ω̃ − k̃M(r∗)

)2 − k̃2 − m2/r2∗ = 0, or
equivalently,

k̃ = −ω̃M(r∗)±
√
ω̃2 − (1 − M2(r∗))m2/r2∗
(1 − M2(r∗))

.

Since r∗ > s > 0, assume in what follows that the non-dimensional frequency ω̃ is large enough for the square root
in the above formula to be a real number. This is also the most practically important situation. In this case the lateral
wavenumber k̃ and the function q(r) are also real and, hence, either q ′(r∗) > 0 or q ′(r∗) < 0. For determinacy
consider the first inequality. Then as k̃ → ∞

τh =
{
−3

2
i
∫ r∗

s

√|q(ξ)| dξ

}2/3

→ −∞, τd =
{

3

2

∫ 1

r∗

√
q(ξ)dξ

}2/3

→ +∞

and the dispersion relation (60) yields

cos(ζd + 1
4π)− iσdτ

−1/2
d sin(ζd + 1

4π)+ . . . = 0, (61)

where ζd = ∫ 1
r∗

√
q(ξ) dξ . Substituting σd from (42), zd = R + i X , using the identity τ ′τ 1/2 = √

q(r) and taking the
real and imaginary part of (61) we obtain the system

cos(ζd + 1
4π)−

X

R2 + X2

(
ω̃ − k̃Md

)2
ω̃

√
q(1)

sin(ζd + 1
4π) = 0

R

R2 + X2
sin(ζd + 1

4π) = 0.

(62)
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If zd = ∞, (62) reduces to the hard-wall case considered in Cooper and Peake [9] (see their formula (103) with ψ = 0)∫ 1

r∗

√
q(r) dr = π(n + 1

4 ), n = 0, 1, 2, 3 . . . (63)

It follows from (62) that the problem with lined walls does not admit real turning points. The exception is a very
special case of R = 0 when system (62) reduces to the equation√(

ω̃ − k̃Md
)2 − k̃2 − m2 =

(
ω̃ − k̃Md

)2
ω̃X

tan(ζd + 1
4π). (64)

As with the ordinary WKB approximation, it is useful to check the accuracy of the approximate formula (63) against
the related exact uniform flow solutions with k̃ real. The results of the comparison are shown in Table 2 for the same
values of governing parameters as in Tables 1: ω̃ = 25, m = 15, s = 0.6, M = 0.5. In computation of the relative
error in Table 2 the adjustment for the Doppler shift k̃d in k̃ equal to −16.6(6) was made. It can be seen from Table 2
that the accuracy is reasonably good, although it decreases significantly when the turning point is located very close
to the duct wall. This situation is illustrated in line 4 of the table. Here the turning point actually lies slightly inside
the hub, i.e., rt .p. = 0.589 < s = 0.6 and the related eigenvalue must be taken from the ordinary WKB analysis.
However, the turning point prediction was found to be in perceptibly better agreement with the exact solution.

Table 2. Turning point analysis versus exact solution

No WKB TP Exact Error %

k̃tp k̃
∣∣̃ktp − k̃

∣∣/∣∣̃k − k̃d
∣∣

1 −43.36 −43.59 1.38

2 −38.00 −38.36 2.16

3 −31.12 −32.08 6.23

4 −2.210 −1.251 6.22

5 4.564 5.028 2.14

6 10.45 10.26 0.72

C. Hydrodynamic spectrum

The analysis carried out in the previous sections assumed that the quantity ω̃ − k̃M(r) did not vanish, so that the
coefficients of the governing equation remained smooth. This section aims to study the properties of the eigensolutions
of system (32-34) when ω̃ − k̃M(r) = 0 at some point r = r̃ , s ≤ r̃ ≤ 1. In this case the coefficient before the first
derivative in equation (32) goes to infinity and the function q(r) defined by (39) develops a singularity near r̃ . As
a result, ordinary WKB solution constructed above becomes invalid at the point r̃ , although it still gives the correct
outer limit of the solution for large k̃ as r → r̃ . In order to clarify the structure of the inner solution near r̃ , at first
we consider a model problem for a slender duct. The procedure of matching of the outer WKB solution with the
corresponding inner solution which does not assume that the duct is slender is described in the second part of this
section. This procedure can be extended to a more general equation (25), in order to include the effects of the mean-
flow swirl. It should be noted, however, that equation (25) has the stronger singularity than equation (32) and the
results of this section are not directly applicable to the swirling flow. For the sake of simplicity in this section only the
case of hard-walls will be considered.

1. Slender duct

Let �+ = 1 − r̃ , �− = r̃ − s, � = 1 − s, where 0 < s ≤ r̃ ≤ 1, and assume that� 
 1. Introduce new independent
variable η = (r − r̃)/�. Note that η = O(1) since −�−/� ≤ η ≤ �+/�. Then

r−1 = r̃−1 + O(�), ω̃ − k̃M(r) = −�k̃(M ′(̃r)η + O(�)), M(r) = M ′ (̃r)+ O(�)

and equation (32) becomes, to leading order in �,

d2 P

dη2 − 2

η

dP

dη
− ν2 P = 0,

dP

dη

(
η = −�−

�

)
= dP

dη

(
η = �+

�

)
= 0, (65)
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here ν2 = �2(̃k2 + m2/̃r2). The first equation of system (65) has general solution

P = c+ (1 − νη) exp(νη)+ c− (1 + νη) exp(−νη), (66)

with c−, c+ = const. Substitution of (66) into the boundary conditions leads to the following system for c− and c+
dP

dη

(
η = −�−

�

)
= ν2�−

�

(
c+ exp(−ν�−

�
)+ c− exp(ν

�−
�
)

)
= 0,

dP

dη

(
η = �+

�

)
= −ν2�+

�

(
c+ exp(ν

�+
�
)+ c− exp(−ν�+

�
)

)
= 0.

This system does not permit non-zero solutions for real k̃ unless either �+ = 0 or �− = 0. Each of these cases leads
to the eigensolution

P = (1 + νη) exp(−ν(η − 1))− (1 − νη) exp(ν(η − 1)), (67)

where η = (r − 1)/�, ν = �
√

k̃2 + m2, k̃ = ω̃/Md , Md �= 0 for r̃ = 1 and η = (r − s)/�, ν = �
√

k̃2 + m2/s2,

k̃ = ω̃/Mh , Mh �= 0 for r̃ = s.

2. General case

For large k̃ and away from the point r = r̃ the WKB-solution to the Pridmore-Brown equation (32) which satisfies the
hard-wall boundary conditions is

P = ω̃ − k̃M√
r

(
τ ′)−1/2 cos(τ )+ . . . , τ (r) =

∫ r

a

√
q(ξ) dξ, (68)

where a = s > 0, if s ≤ r < r̃ and a = 1, if r̃ < r ≤ 1. If r is kept fixed and such that r �= r̃ and k̃ → ∞ the function
q(r) previously defined by the expression (39) becomes, to leading order,

q(r) = q0(r), where q0(r) = (
ω̃ − k̃M

)2 − k̃2 − m2/r2, (69)

since for the most singular term in (39) holds the estimate

2̃k2
(
M ′(r)

)2(
ω̃ − k̃M(r)

)2 = 2
(
M ′(r)

)2
(M (̃r )− M(r))2

≤ const

(̃r − r)2

 k̃2, (70)

provided |̃r − r | 	 1/̃k and M ′(r) is bounded for s ≤ r ≤ 1. In order to obtain outer asymptotic expansion of the
solution near the point r̃ , substitute (69) in (68) and take the limit r → r̃±. This gives

P = − k̃M ′ (̃r)(r − r̃)

2
√

r̃µi

(
e−I−−µ(r−r̃ ) + eI−+µ(r−r̃ )

)
+ . . . as r → r̃−, (71)

P = − k̃M ′ (̃r)(r − r̃)

2
√

r̃µi

(
e−I+−µ(r−r̃ ) + eI++µ(r−r̃ )

)
+ . . . as r → r̃+, (72)

where

I− =
∫ r̃

s

√−q0(r) dr, I+ =
∫ r̃

1

√−q0(r) dr, µ =
√

k̃2 + m2/̃r2.

Owing to the singularity (70), formulas (71,72) are invalid in the region, where |̃r − r | ∼ 1/̃k, since in this region the
singularity becomes comparable with the leading order term −k̃2 − m2/r2 in the expansion of q(r). Prompted by the
solution (67) of the model problem, introduce local coordinate ξ = µ(r − r̃) which is centred on the singular point r̃
and is O(1) in the region where |̃r − r | ∼ 1/̃k. Then, to leading order, the Pridmore-Brown equation becomes

d2 P

dξ2
− 2

ξ

dP

dξ
− P = 0. (73)

It must be supplemented with the conditions of matching with the main-order solution (71,72) obtained in the outer
region, i.e.,

P(ξ → ±∞) → Aξ
(

e−(I±+ξ) + e(I±+ξ))+ . . . , A = − k̃M ′ (̃r)
2
√̃

rµ3i
. (74)
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Equation (73) has general solution

P = c+ (1 − ξ) exp(ξ)+ c− (1 + ξ) exp(−ξ). (75)

It can satisfy the restrictions at the infinity only provided c+ = −A exp(I+), c− = A exp(I−) and I+ − I− = 2π in,
where n is an integer. The latter restriction can be rewritten as∫ 1

s

√
k̃2 + m2/r2 − (

ω̃ − k̃M
)2

dr = 2π in, (76)

where ω̃/max(M(r)) ≤ k̃ ≤ ω̃/min(M(r)) for s < r < 1. Substitution of ω̃ = k̃M (̃r ) into equation (76) gives∫ 1

s

√[
1 − (M (̃r)− M(r))2

]
k̃2 + m2/r2 dr = 2π in. (77)

which is impossible for a subsonic mean flow. Thus, the only possibility is that r̃ = s or r̃ = 1. In the first case (74)
gives way to the following boundary conditions

P(ξ → +∞) → Aξ
(

e−(I++ξ) + e(I++ξ))+ . . . ,
dP

dξ
(0) = 0

so that c+ = −A exp(I+), c− = A exp(−I+), k̃ = ω̃/Mh in the solution (75). In the second case the appropriate
boundary conditions are

P(ξ → −∞) → Aξ
(

e−(I−+ξ) + e(I−+ξ))+ . . . ,
dP

dξ
(0) = 0,

and c+ = −A exp(I−), c− = A exp(−I−), k̃ = ω̃/Md , respectively.
Overall, the results of this section show that if the structure of the boundary-layer flow in the immediate vicinity

of the duct walls is discarded and the lateral component of the mean flow velocity is assumed non-zero on the walls,
then for sufficiently large k̃ hydrodynamic modes of Pridmore-Brown equation are localized near the walls and their
phase velocity is close to the mean flow velocity at the walls. As it will be clear from what follows, this may be not
true, however, if the mean flow velocity has typical boundary-layer flow profile that satisfies no-slip conditions on the
walls.

It is useful to compare the results of this section to the multiple-scale analysis of Golubev & Atassi [6] obtained
for the mean flow with the solid-body swirl. The above authors demonstrate the existence of a critical layer centred
on the purely convective lateral wavenumber, where the accumulation of nearly convective eigenvalues takes place for
non-zero swirl. Remarkably enough, if the swirl is set to zero in their dispersion relation (43), the nearly-convected
modes disappear and the only remaining eigenvalue is the purely convective mode which is also the case here. Note
that clustering of nearly-convective modes was reported in Golubev & Atassi [6] for a differential equation which does
not reduce to the Pridmore-Brown equation studied in this section.

IV. Numerical procedure

The eigenvalue system (25,27,28) was solved numerically using the following method. The field equation (25)
was first rewritten in the form of a system of two first-order ordinary differential equations

u = P ′, u′ = −β(r)u − γ (r)P, (78)

where β(r) and γ (r) are the coefficients before P ′and P in equation (25). For zero circumferential mean flow ve-
locity they are identical to β(r) and γ (r) appearing in the Pridmore-Brown equation (29). To reduce the amount of
computations these coefficients were rewritten as follows

β(r) = B

λ
+�+ 1

λ

d

dr
(λ) , γ (r) = A�

λ2 + 1

λ

d

dr
(B)+ B�

λ
, � = 1

r
− 1

ρA

d

dr
(ρA)+ C,

so that their common part � could be computed only once per run. System (78) was approximated by the following
implicit finite-difference scheme

P j+1 − P j

δ
= u j+1,

u j+1 − u j

δ
= −β j+1u j+1 − γ j+1 P j+1, j = 0, 1, 2, 3, . . . N − 1 (79)
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where δ = (d − h)/N , r j = h + jδ, j = 0, 1, 2, 3, . . . N, N is a sufficiently large integer number. Since system (79)
is linear, it was solved with respect to the unknown variables u j+1 and P j+1

P j+1 = (1 + δβ j+1)P j + δu j

1 + δβ j+1 + δ2γ j+1
, u j+1 = P j+1 − P j

δ
, j = 0, 1, 2, 3, . . . N − 1. (80)

Formulas (80) were supplemented with the initial conditions at r = r0 = h

P0 = 1, u0 = −
(

B

λ
+ iρA

ωZh

)
P0 (81)

and were used together with (81) to compute for a given initial guess of the spectral parameter k = kn the functions
u j+1 and P j+1 and the value

I (kn) = 1

M

[
uN +

(
B

λ
− iρA

ωZd

)
P N
]
, M =

∫ d

h
|P| dr. (82)

Here I (kn) measures the error in the boundary condition on the wall r = r N = d , the role of the parameter M is
equivalent to renormalisation of the solution after each run in r . Generally, it was not necessary unless very high
frequencies ω and circumferential wavenumbers m were used (say, for Helmholtz number equal to 80 and m = 50).
Since normally I (kn) �= 0 for an arbitrary guess value kn , global Newtonian iterations in k were needed to insure the
equality I (k) = 0. The following formula

kn+1 = kn − I (kn)

dI (kn )
dk

(83)

was used to update the value of the spectral parameter k. The amount of computations in (83) could be reduced in
comparison with the classical Newton’s method if the derivative dI (kn)/dk was approximated by the finite difference
(I (kn)− I (kn−1))/(kn − kn−1) (modified Newton’s method). The iteration process was continued until the difference
between the two successive values of I (kn) became smaller than a given threshold value.

Table 3. WKB-approximation versus numerical solution

k̃ (WKB) k̃ (numerics) error %

−49.23 + i 23.60 −49.17 + i 23.78 −0.06 − i 0.18

−49.34 + i 46.67 −49.32 + i 46.71 −0.02 − i 0.04

−49.41 + i 62.96 −49.41 + i 62.96 0.00 − i 0.00

−49.46 + i 76.88 −49.47 + i 76.87 0.01 − i 0.01

−49.50 + i 89.53 −49.52 + i 89.51 0.02 + i 0.02

An alternative approach with the initial conditions posed on the outer wall r = r N = d , formulas (80) employed
in the reverse order in j and the iteration procedure organized in order to satisfy the boundary condition on the inner
wall r = r0 = h was also used. Although it did not have any effect on the acoustic part of the spectrum, in the case
of Pridmore-Brown equation it was found more advantageous to march from the inner wall towards the outer wall
when computing the hydrodynamic mode localised near the outer wall and to reverse the direction of marching for the
hydrodynamic mode localised near the inner wall.

Other numerical schemes with the higher order of approximation than the first-order scheme proposed here were
used to solve system (78). Among them were implicit Runge-Kutta, Crank-Nicolson and several other schemes specif-
ically designed for stiff equations (see for details Fornberg & Driscoll [17]). However, for sufficiently large m and
ω when the stiffness of the system (78) became the most important issue the present scheme was found to be more
computationally stable. Our experience with other schemes showed that for large m and ω there could be difficulties
in prediction of the eigensolution with the largest cut-on wavenumber due to the development of numerical instability.

Comparison of numerical results with the exact solutions for the case of uniform mean flow showed numerical
solutions to be accurate at least up to four - five decimal digits for the first several hundred eigenvalues with N ≈
1000 − 3000.

In the range of large Helmholtz numbers ω̃ and m and for non-uniform mean flow the solution was tested against
the WKB approximation. An example of such comparison for ω̃ = 85, m = 45, s = h/d = 0.6 and the mean flow
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Mach number distribution given by the parabola

M = Mmax
1 + A(̃r − s)(1 − r̃)

1 + A(1 − s)2/4
(84)

with Mmax = 0.5 and A = 8 is presented in Table 3 which shows several first cut-off wavenumbers. The agreement
between the WKB predictions of the cut-off modes and their computed values was surprisingly good. For cut-on
modes the situation closely mimicked that of Table 2. The maximum error was about 6% for the wavenumber with the
smallest absolute value and rapidly decreased with increasing k̃ (not shown).

V. Numerical results

A. Ducts with hard walls

Typical plots of acoustic eigenvalues for three parabolic mean-flow velocity profiles (84) with different extent of non-
uniformity A = 1, 8, 25 are presented in Figure 1. Also shown is the uniform-flow spectrum. These plots correspond
to ω̃ = 25, m = 15, s = h/d = 0.6 and Mmax = 0.5. Qualitatively all the plots are similar to the uniform-flow case.
The only differences are the slight deviation of the first several complex eigenvalues from the vertical direction and
the rightward shift of the whole pattern for non-zero A which is due to the decrease of the average speed of the mean
flow.

Re(k

Im(kmn

mn

)

)

Figure 1. Effect of mean flow non-uniformity (84) on the acoustic part of lateral wavenumber spectrum, ω̃ = 25, m = 15, s = h/d = 0.6
and Mmax = 0.5. + - uniform flow, ♦ - A = 1 (Md = 0.381), � - A = 8 (Md = 0.379), × - A = 25(Md = 0.25).

Computation of the hydrodynamic part of the spectrum for the above example proves to be more difficult. If
the number of mesh points N is low (say, N < 3000), several real eigenvalues clustering closely to each other can be
observed. However, as the mesh becomes more refined the number of these pseudo-eigenvalues rapidly decreases until
only one eigenvalue is left, say k̃ = 25/0.379 ≈ 66 for A = 8. In agreement with the asymptotic theory proposed
above, this eigenvalue corresponds to the Mach number at the duct walls Mh = Md ≈ 0.379. Two eigenfunctions
correspond to this eigenvalue. One of them is localized near the inner wall r̃ = 0.6 and the other one - near the outer
wall r̃ = 1. They are plotted in Figure 2. Note, that, since the field equation is not symmetric with respect to the
mid-radius r̃ = 0.8, the eigenfunctions shown in Figure 2 are also not symmetric about this point.
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Figure 2. Two hydrodynamic pressure eigenfunctions corresponding to k̃ = 66, ω̃ = 25, m = 15, s = h/d = 0.6 and Mmax = 0.5, A = 8.
Each eigenfunction is localized near the corresponding duct wall.

If the wall Mach number is gradually decreased with the maximum Mach number being fixed, these hydrodynamic
eigenfunctions become more compactly localised near the duct walls. This situation is illustrated in Figure 3, where
two eigenmodes each one corresponding to the parabolic mean-flow velocity profile (84) with A = 8, and 100 are
shown. These values of the parameter A correspond to the inner wall Mach numbers Mh ≈ 0.379 and 0.1, respectively.
For a mean-flow profile without near-wall non-uniformities of the boundary-layer type no new hydrodynamic modes

 0
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 140

 0.6  0.61  0.62  0.63  0.64  0.65  0.66  0.67  0.68  0.69  0.7

r

Figure 3. Hydrodynamic pressure eigenfunctions near the inner wall: ω̃ = 25, m = 15, s = h/d = 0.6 , Mmax = 0.5 and the inner wall
Mach numbers Mh ≈ 0.379 and 0.1 (A = 8, and 100 in (84), respectively). Modes with larger amplitudes correspond to smaller Mh .
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were found numerically even for very small Mh .

B. Soft-wall solutions

This section aims to study the impact of the near-wall shear-layer gradient on behaviour of modal solutions. Hollow
lined duct is considered. The following boundary-layer type mean-flow velocity profile is taken

M = Mmax
ea(1−r̃) − e−a(1−r̃)

ea(1−r̃) + e−a(1−r̃)
. (85)

The parameter a > 0 controls the steepness of the mean velocity profile near the duct wall r̃ = 1. Apart from the
limiting case of a = +∞ which corresponds the uniform mean flow, three flow situations with a = 500, 250, and 50
are considered. They correspond to the near-wall “boundary layer thickness” δ of approximately 1%, 1.5% and 7%
of the total duct radius, with the rest of the mean flow being virtually uniform. As in Rienstra [16], maximum Mach
number Mmax = 0.5, Helmholtz number ω̃ = 5 and m = 1 are used throughout this section.

Figure 4 shows typical trajectories of the lateral wavenumber k̃ when the imaginary part X of the specific impedance
zd varies from minus to plus infinity while its real part remains fixed and relatively large (R = 2). The case of the
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(b) mean-flow profile a = 250
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(c) mean-flow profile a = 50

Figure 4. Trajectories of k̃ for ω̃ = 5, m = 1, Mmax = 0.5, Zd = 2 + i X , −∞ < X < ∞: (a) - uniform mean flow, (b) - mean-flow velocity
profile (85) with a = 250 (δ≈ 0.015d), (c) - mean-flow velocity profile (85) with a = 50 (δ≈ 0.07d). The hard wall eigenvalues are marked
with the “+” sign.
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(b) mean-flow profile a = 500
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(c) mean-flow profile a = 50

Figure 5. Trajectories of k̃ for ω̃ = 5, m = 1, Mmax = 0.5, Zd = 0.5 + i X , −∞ < X < ∞: (a) - uniform mean flow, (b) - mean-flow velocity
profile (85) with a = 500 (δ≈ 0.01d), (c) - mean-flow velocity profile (85) with a = 50 (δ≈ 0.07d). The hard wall eigenvalues are marked
with the “+” sign.

uniform mean flow and two boundary-layer profiles (85) with a = 250, and 50 are depicted. For the part of the acous-
tic spectrum shown in Figure 4 the quantity ζ1πn/κ1 ≈ 0.21n. Hence, with the exception of the first several indexes
n holds the relation R 	 ζ1πn/κ1 	 1. As a result, in agreement with the theoretical prediction (49), most of the
lateral wavenumber trajectories are close to the circles whose centres are shifted slightly to the left from their hard-wall
values in the upper half-plane k̃ (positive n) and to the right in the lower half-plane (negative n). As predicted by the
theory, for the uniform mean flow and the mean velocity profile with thin near-wall shear-flow sublayers (a = 250)
the radii of these circles slowly grow with n (i.e., away from the real axis). If the shear flow region is relatively thick,
as is the case with a = 50 in Figure 4c, opposite tendency prevails and the circles which are further away from the real
axis have smaller radii, as in the zero mean flow case studied in Rienstra [16]. Note that the results depicted in Figure
4c for a = 50, do not contradict the proposed theory, since the theory assumes that wall Mach number Md is non-zero.
When the boundary-layer thickness is small, Ingard-Myers boundary condition permits the use of an “inviscid ap-
proximation” of the mean-flow profile with non-zero wall velocity instead of the “boundary-layer” mean-flow velocity
profile which satisfies the no-slip condition. However, the range of validity of Ingard-Myers boundary condition is
exceeded if the boundary layer becomes sufficiently thick. As a result, this places the restriction on the applicability
of formula (49) for boundary-layer profiles. The example in Figure 4c shows that although Ingard-Myers boundary
condition is correct in the limit of vanishing boundary-layer thickness, the numerical results based on its application
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Figure 6. Trajectories of k̃ for ω̃ = 5, m = 1, Mmax = 0.5, Zd = 0.2 + i X , −∞ < X < ∞: (a) - uniform mean flow, (b) - mean-flow velocity
profile (85) with a = 500 (δ≈ 0.01d), (c) - mean-flow velocity profile (85) with a = 50 (δ≈ 0.07d). The hard wall eigenvalues are marked
with the “+” sign.

can differ perceptibly from the results obtained for a mean-flow profile with vanishing wall velocity even when the
boundary-layer thickness is as small as several percent of the free-field wavelength.

Figure 5 shows the trajectories followed by the lateral wavenumber k̃ as X varies from minus to plus infinity for
R = 0.5. Now in the uniform-flow case for almost all n holds the inequality ζ1πn/κ1 	 R. As a result, the number
of circular trajectories reduces to only four and two slowly decaying vertical sinusoidal lines (55) and (56) can be
observed in the upper and lower half-planes as Im (̃k) → ±∞, respectively (Figure 5a). These lines smoothly merge
with the horizontal surface-mode trajectories given by solution (58) which is valid when Re(̃k) → ±∞. Estimates of
the Im (̃k) for surface modes based on formulas (58) give an approximate value of ±8.67 which is reasonably close
to the computed value of ±9.05 for large Re(̃k). However, already for the mean-flow velocity profile with a very
thin near-wall sublayer shown in Figure 5b (a = 500) the eigenvalue pattern features substantial differences from its
uniform-flow counterpart. It can be seen that only the lower surface-mode branch remains in Figure 5b. As opposed to
the uniform-flow case, the imaginary part of the surface-mode eigenvalue does not remain finite for large X but goes
to zero. In the limit X → ∞ the surface mode becomes a hydrodynamic mode which is localized near the duct wall
and convected with almost zero phase velocity. As the boundary-layer thickness increases (Figure 5c), the eigenvalue
pattern deviates further away from its uniform-flow prototype and becomes structurally similar to the corresponding
contour plot with zero mean-flow Mach number studied in Rienstra [16].
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It is interesting to note that as opposed to the slowly-varying mean-flow profiles with non-zero wall Mach numbers
studied in the previous section, the computations with the profiles of the boundary-layer type result in appearance of
real-valued hydrodynamic modes, which number grows with mesh refinement. These modes can be seen in figures
Figure 5b and 5c. Presently it is unclear whether the nature of these solutions is genuine or this is the feature of the
numerical analysis.

Although further decrease of the real part of the wall impedance R has little effect on lateral wavenumber contours
for the uniform flow, the trajectories of k̃ for the boundary-layer mean flow profiles undergo substantial structural
changes as R is reduced from 0.5 to 0.2 (see Figure 6). One remarkable feature of the eigenvalue patterns obtained
for the boundary-layer type mean flow profiles and low R is that as the imaginary part of the wall impedance X varies
from minus to plus infinity one of the lower half-plane cut-off acoustic modes gradually evolves into a hydrodynamic
mode.

VI. Conclusions

Overall, a robust numerical algorithm for determination of duct eigenmodes in sheared and/or swirling mean flows
was developed. For sheared mean flows it was tested against existing data and was shown to be capable of handling
very high frequencies.

An analytical theory was developed in order to check the proposed algorithm where the independent data was not
available and to give insight into qualitative behaviour of the solutions.

The obtained results show that for the mean flow profiles with non-zero wall Mach numbers the number of hydrody-
namic eigenmodes is finite and they are localized near the duct walls. For the boundary-layer mean-flow profiles which
satisfy the no slip condition the situation is more complex. Our numerical analysis confirms the existence18 of a con-
tinuous, unbounded hydrodynamic spectrum which arises from the singularity in the equations where ω̃− k̃M(r) = 0.
Further analysis of this result is needed.
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