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1 Introduction
Production can be viewed as a transformation process in which materials are transformed
into end products. These transformations require resources such as manpower and ma-
chines. Lot sizing is concerned with the determination of production quantities (the lot
sizes) in order to satisfy the demand for end product over time such that production re-
sources are used efficiently.

A lot of research on lot sizing has been focussed on deterministic analysis. For an
overview of this literature the reader is referred to [Bahl, Ritzman & Gupta, 1987; Ag-
garwal & Park, 1993]. Deterministic models are based on the assumption that all problem
data are known in advance. However, this assumption is often not justified in practice,
where many forms of uncertainty effect the production process. Especially uncertainty in
demand can be of great influence on the efficiency of the lot sizing.

In practice one often faces the situation in which demand information comes in gradu-
ally. In such situations it is only for a certain small time horizon into the future that demand
can be considered deterministic. The problem is how to determine the lot sizes in such an
on-line planning situation such that production resources are used efficiently. We distin-
guish between the following three approaches for this problem.

Using a myopic approach, at any decision moment, the world is supposed to stop be-
yond the encountered deterministic time horizon and an optimization or approximation
algorithm for the corresponding deterministic lot sizing problem is applied.

In an explicit modeling approach, the demand process is explicitly modeled by assum-
ing that demand is the realization of a random process, possibly with unknown parameter
values. These unknown parameters may characterize for example the noise part of the de-
mand process or some systematic trend and can be estimated from historical demand data.
With such a modelling of the demand process, lot sizing problems can be formulated as



Markov decision problems [Tijms, 1986] and solved as such. However, analysis in this
area is usually already technically complicated for relatively simple models of the under-
lying random processes. Promising is the application of fuzzy optimization techniques,
where a possibilistic in stead of a probabilistic analysis is used [Lee, Kramer & Hwang,
1991]. In practice, usually the problem is decomposed in an estimation part and an opti-
mization part. In the estimation part the thus obtained model of the demand process is used
to forecast future demand values. In the optimization part these future demand values are
considered as “real” demand and are incorporated in a lot sizing procedure.

Using a black-box approach, one accepts that one is not able to model the underlying
demand process and one takes a parametrized black-box and tries to fit the parameters in
such a way that the black-box shows a sensible input-output behavior on at least a repre-
sentative set of examples. These examples represent situations from the past in which lot
sizing decisions had to be taken. The difference is that afterwards it is often quite easy to
determine what would have been the optimal decisions.

Advantages of using a myopic approach are the absence of history requirements and
its straightforward implementation. Disadvantages are a low performance and a high sys-
tem nervousness, especially if variances in demand are large; see [Blackburn & Millen,
1980]. Both stochastic and fuzzy models assume that the nature of the underlying random
processes are well understood and are not subject to change. In practice, however, this is
often not the case. In such cases the black-box approach might be useful.

Artificial neural networks [Arbib, 1987] and more specifically multi-layered percep-
trons (MLPs) are interesting candidates for being used as black-boxes in production plan-
ning; for their generalization and interpolation abilities, for their pattern recognition skills
[Pao, 1989], for their classification capabilities [Zwietering, 1994] and for their ability to
adapt to changing circumstances. In [Zwietering, Van Kraaij, Aarts & Wessels, 1991] it
was shown that a properly designed and trained MLP outperforms traditional algorithms
for the rolling horizon version of the Wagner-Whitin problem [Wagner & Whitin, 1958].
In this paper we consider an on-line lot sizing problem with overtime. We develop a two-
stage decision procedure for this problem. In the first stage an MLP classifies the decision
situation. It is in this stage that uncertainties are taken into account. The outcome of the
first stage is used as input for the second stage, in which a detailed production plan is calcu-
lated. The proposed approach combines the classification and pattern recognition abilities
of MLPs with traditional deterministic analysis.

The remainder of this paper is organized as follows. In Section 2 we give a brief intro-
duction in MLPs and supervised learning. The on-line lot sizing problem is formulated in
Section 3. Based on results for the deterministic finite horizon problem, which is analyzed
in Section 4, in Section 5 we derive a two-stage strategy for the on-line lot sizing problem.
Finally in Section 6 we discuss some results.

2 Multi-layered perceptrons
In general, a neural network consists of a network of elementary nodes that are linked
through weighted connections. The nodes represent computational units, which are ca-
pable of performing a simple computation that consists of a summation of the weighted
inputs of the node, followed by the addition of a constant called the threshold or bias, and
the application of a non-linear response function. The result of the computation of a unit
constitutes the output of the corresponding node. Subsequently, the output of a node is
used as an input for the nodes to which it is linked through an outgoing connection.

In an MLP the nodes are arranged in layers, and the connections are not allowed to



cross a layer, i.e, there are connections between the inputs of the network and the nodes in
the first layer and between subsequent layers only.

When applying MLPs for a certain task, besides choosing the number of layers and
the number of units per layer, one has to choose the weights such that the network per-
forms the task accurately. These are the parameters of the black-box to be fitted, which
in general cannot be determined beforehand. The common names for fitting parameters
in the context of neural networks are learning or training, and when the learning is done
on the basis of direct comparison of the output of the network with known correct an-
swers, one speaks of supervised learning. In a supervised learning problem, one is given
an MLP and a set S = {(x1, t1), (x2, t2), . . . , (xN, tN )} of examples. Each example con-
sists of an input vector xk and a corresponding desired output vector tk. The problem is
to find weights w such that the difference between the output vector of the MLP on in-
put of a particular xk and the target vector tk is minimized for the entire set, measured
by E(w) = ∑N

k=1 ‖ g(w;xk) − tk ‖2, where w denotes the weight vector and g(w;xk) de-
notes the output vector of the MLP with weights w after processing input vector xk. This
makes the supervised learning problem equivalent to the task of searching weight space
for a minimum of E(w). The best-known method for descending the E(w) surface is the
backpropagation algorithm [Rumelhart, McClelland & Williams, 1986].

A supervised learning problem is called a classification problem if the desired output
vector tk is one of a finite number of possibilities (classes). For any classification problem
MLPs offer a possible solution, as an alternative for conventional classification techniques;
cf. [Huang & Lippmann, 1988].

Although the ability of an MLP to memorize and recall data in the abovementioned way
is impressive, it becomes truly interesting when the network could extend this behavior to
similar data it has never seen. This is called generalization. MLPs have shown to be able
to generalize in a wide variety of tasks.

3 Problem formulation
Consider the situation in which production has to be planned for a product for which de-
mand occurs during discrete time periods labeled t = 1,2, . . . . Demand for a certain pe-
riod becomes known n ≥ 0 periods ahead, so at any moment in time demand is known
for n consecutive periods into the future. Demand occurring during a certain period must
be satisfied by production during that period or by production during an earlier period. In
a period there is a limited regular time production capacity of C units product. At extra
production costs it is possible to produce during overtime. Let dt, Xt, and It denote the
demand in period t, the production in period t, and the inventory position at the end of pe-
riod t, respectively. The cost function related to production is denoted by P(·). The cost
function related to carrying inventory is denoted by H(·). Without loss of generality we
assume I0 = 0. Then the problem can be formulated as choosing X1, X2, . . . , to minimize
the average costs per period

lim
τ→∞

1
τ

τ∑
t=1

[P(Xt) + H(It)], (1)

subject to

It = It−1 + Xt − dt, t = 1,2, . . . ,

Xt ≥ 0, It ≥ 0, t = 1,2, . . . .



In this paper we assume that the production cost function P(·) is piecewise linear and the
inventory cost function H(·) is linear as follows

P(X) =
⎧⎨
⎩

0 if X = 0,
S + pX if 0 < X ≤ C,
S + pX + r(X − C) if X > C,

H(I) = hI, for all I ≥ 0,

where p ≥ 0 denotes the regular time production cost per unit product, h ≥ 0 denotes the
holding cost per unit product per period, S ≥ 0 denotes the setup cost, and r ≥ 0 denotes
the difference in cost per unit product between regular time and overtime production.

Since the planning horizon is infinite, the size of an instance of this problem is un-
bounded. In general the limit (1) does not exist, and an optimal production policy is not
obtainable. We will refer to this problem as the on-line infinite horizon problem.

In the introduction we mentioned a number of approaches for dealing with on-line lot
sizing situations. One of the approaches was to combine an optimization algorithm for
the finite horizon problem in combination with a rolling horizon procedure. This means
that a so called rolling plan is formed by solving the deterministic n period problem and
implementing only the first period’s decision. One period later, the horizon is updated and
the process repeated. This strategy lies at the basis of the approach we propose, and it
turns out that the analysis of the deterministic finite horizon problem plays an important
role. Therefore, in the next section, we analyze the deterministic finite horizon problem.
Without loss of generality we assume that the planning horizon covers periods 1,2, . . . , n
and that I0 = In = 0.

4 The deterministic finite horizon problem
The deterministic n period problem can be formulated as to choose {Xt}n

t=1, to minimize
n∑

t=1

[ P(Xt) + H(It) ], (2)

subject to

I0 = In = 0, (3)

It = It−1 + Xt − dt, t = 1,2, . . . , n, (4)

Xt ≥ 0, It ≥ 0, t = 1,2, . . . , n. (5)

Special cases of this model include the case r = 0 in which the model becomes equivalent
to the Wagner-Within model [Wagner & Whitin, 1958] and the case r = ∞ in which there
is no overtime production possible [Florian & Klein, 1971]. A similar model was analyzed
in [Dixon, 1980], in which the amount of overtime production and inventory per period was
bounded.

To facilitate the exposition of properties of optimal solutions, let us define the fol-
lowing notions. A solution is called a production plan and consists of a sequence X =
(X1, . . . , Xn). In a production plan X, period t is called a production period if Xt > 0,
and whenever It = 0, we say X has an inventory regeneration point at the end of period t.
Given a production plan X, a subsequence (Xu+1, Xu+2, . . . , Xv) of X, with 0 ≤ u < v ≤ n,
is called a subplan of X, if Iu = Iv = 0 and It > 0, for all t = u + 1, u + 2, . . . , v − 1. The
following lemma represents the so called inventory decomposition property, which is eas-
ily proven by contradiction.



Lemma 4.1. Consider an optimal feasible production plan X. Suppose that X has an in-
ventory regeneration point at the end of period t for some t, 0 < t < T. Then this optimal
solution could also have been found by independently finding solutions for the first t peri-
ods and the last T − t periods, given It. �

From this together with I0 = In = 0 it follows that any optimal production plan can be
decomposed into one or more subplans. Given all of the regeneration points, one could
determine the optimal production plan by solving the subproblems between each pair of
consecutive regeneration points. Unfortunately, the optimal regeneration points are not
known a priori. However, if the solutions for the subproblems are known for all possi-
ble pairs of regeneration points, then one can select the best combination of regeneration
points.

Let g(u, v) denote the cost of a minimum cost production plan for periods u + 1, . . . , v,
given Iu = Iv = 0 and It > 0 for t = u + 1, . . . , v − 1, i.e., an optimal subplan. Let the
regeneration points be represented in a network as nodes. Then g(u, v) represents the cost
of traversing the arc from node u to node v. A production plan is a path from node 0 to
node n, since I0 = In = 0 holds. Since backlogging is not permitted, the network is acyclic.
Hence, the problem can be formulated as finding the shortest path in an acyclic network,
which is easily solved by dynamic programming and requires O(n2) computations.

In the now following, a number of properties of optimal production plans are given,
which facilitate an efficient algorithm for finding optimal subplans. For a detailed handling
of the problem and the proofs the reader is referred to [Stehouwer, Aarts & Wessels, 1995].

Theorem 4.1. There exists an optimal an optimal production plan X having the properties
that each subplan (Xu+1, Xu+2, . . . , Xv) of X

(i) contains not more than one production period t, with Xt �= C, and
(ii) Xi ≤ Xj, for all production periods i, j, u + 1 ≤ i < j ≤ v.

�

We introduce the notion cumulative demand axis as described in [Chung & Lin, 1988].
Instead of giving each period an equal length on a time axis, each period is represented
by an interval of length proportional to the demand in that period, and demand is spread
uniformly over a period. The origin is used to indicate the beginning of period 1. We then
mark the points B1 = 0 and Bt = ∑t−1

i=1 di, for t = 2, . . . , n + 1. Each point Bt refers to
the end of period t − 1 and the beginning of period t, hence the interval from Bt to Bt+1

represents the demand in period t. We define the notation (i1, i2, . . . , ik), with u + 1 ≤
ik < . . . i2 < i1 ≤ v to denote a subplan (Xu+1, Xu+2, . . . , Xv) with production periods
i1, i2, . . . , ik. Using the cumulative demand axis, it follows that production in period i1
is used to meet the demand from Bv+1 − Xi1 to Bv+1. Production in period i2 is used to
meet the demand from Bv+1 − Xi1 − Xi2 to Bv+1 − Xi1, and so on. In a subplan the produc-
tion in each period can only be used to meet present or future demand and inventory must
be positive, therefore we shall require Bv+1 − Xi1 > Bi1, Bv+1 − Xi1 − Xi2 > Bi2 and so
on. Clearly any subplan can be represented as such.

Theorem 4.2. Consider an optimal production plan X. Let (Xu+1, Xu+2, . . . , Xv) be a
subplan of X, with production periods (i1, i2, . . . , ik), for some k ∈ {1,2, . . . , v − u}. De-
fine i0 := v + 1. Let duv denote the cumulative demand for periods u + 1, . . . , v. Then the



following holds

(i) ik = u + 1
(ii) duv > (k − 1)C

(iii)

⎧⎪⎨
⎪⎩

Xik = duv if k = 1

Xik = Xik−1 · · · = Xi2 = C ∧ Xi1 = duv − (k − 1)C if k > 1 ∧ duv ≥ kC

Xik = duv − (k − 1)C ∧ Xik−1 = Xik−1 · · · = Xi1 = C otherwise
(iv) in = max{ j | u + 1 < j < in−1 ∧ Bv+1 − ∑n

m=1 Xim > Bj}, n = 1,2, . . . , k − 1.

�

Theorem 4.2 implies that for determining an optimal subplan (Xu+1, Xu+2, . . . , Xv) only
(v − u) values of k have to be examined. For each value of k the corresponding subplan
can be determined in at most (v − u) steps. Therefore, an optimal subplan can be found in
O((v − u)2) steps. Since there are O(n2) arcs, an optimal production plan can be found in
O(n4) steps. In [Stehouwer, Aarts & Wessels, 1995] it is shown that only subplans of lim-
ited length have to be examined, which in many cases reduces the number of computations
drastically.

5 The on-line infinite horizon problem
In any sensible planning strategy for the on-line infinite horizon problem, decisions are
based on at least the available future demand information. When applying a pure myopic
approach this is the only information that is used. An MLP constructed for this problem
will have at least n input units, one for each known future demand, and one output unit,
representing the first period’s lot size decision. Such an MLP can be trained by supervised
learning with examples of past decision situations. Examples could be generated by taking
past demand sequences of length n and solving the corresponding finite horizon problems.
Training an MLP with such examples is equivalent to learning the MLP a standard rolling
horizon procedure, i.e., applying a pure myopic approach. However, there is no need to be
myopic when generating learning examples. An Example can also be generated by taking
a demand sequence of length m ≥ n from demand history and by solving the corresponding
m period finite horizon problem. The input part of the example are the first n demands of
this demand sequence and the desired output part is the first period’s production lot. In fact
an MLP trained with such examples predicts the optimal production lot for the first period
for a m period problem give the first n demands.

We prefer the use of MLPs as classifiers, not only for their classifying abilities, but also
for their analyzability. To identify a classification problem here, we take a look at the stan-
dard rolling horizon procedure. Remark that the first period’s production lot is obtained by
solving a deterministic n period problem. From the results in Section 4, we know that the
size of this lot is determined by the position of the first regeneration point in the optimal
production plan. Given this regeneration point, the size of this lot can easily be calculated.

This gives rise to an approach in which the lot size is determined in two stages. In the
first stage, the optimal first regeneration point r ∈ {1,2, . . . , n} is determined by the MLP.
In the second stage, the outcome of the first stage is used to calculate the first period’s
production lot by solving g(0, r) and finding an optimal subplan. This decomposition is
justified by the inventory decomposition property; see Lemma 4.1. The first stage can be
reformulated as a classification problem (�, L, �) as follows

� = {d ∈ R
n |dt ≥ 0, t = 1,2, . . . , n},

� = {�l | l ∈ L},
L = {1,2, . . . , n},



where � denotes a set of objects that must be classified, L denotes a set of labels, and
� denotes a collection of subsets of �, one for each label. For a given demand vector
(d1, . . . , dn) ∈ � the problem is to find a label l ∈ L such that d ∈ �l. For l = 1,2, . . . , n,
�l can be characterized as

�l = {d ∈ � | g(0, l) + f (l, n) ≤ g(0, r) + f (r, n), for all r = 1,2, . . . , n},
and solving (�, L, �) becomes equivalent to finding l such that the costs g(0, l) + f (l, n)

are optimal, i.e., to determine the first regeneration point in the optimal solution. Here
f (u, v) denotes the cost of an optimal production plan for the periods u + 1, u + 2, . . . , v,
provided that Iu = Iv = 0.

When determining first regeneration points for training examples, again there is no
need to be myopic and demand sequences of length m ≥ n can be taken. It is possible that
such a first regeneration point lies beyond period n. In the situations we considered this
was not the case. How such situations can be handled is described in [Stehouwer, Aarts &
Wessels, 1995].

In the next section we present some results of MLPs trained with such examples. These
network function as follows. There are n inputs, one for each known demand. There are
n outputs, one for each class label in L. An example exists of an input part, the first n
demands, and an output part. This output part is vector of length n with n − 1 zeros and 1
one. On input of an example the MLP classifies this example as that class label of which
the output of the corresponding output unit has maximum response.

6 Numerical results and discussion
To validate the proposed approach, a number of representative examples of planning situa-
tions are considered. Therefore, we use the parameter settings which are derived in [Dixon,
Elder, Rand & Silver, 1983]. In this paper we report on the case r = 0.1, S = 60, and
C = 200, with a horizon of length n = 6. A complete description of the numerical results
can be found in [Stehouwer, Aarts & Wessels, 1995]. We consider two types of demand
patterns. In all cases the average demand is set at 200 units per period.

1. Level with noise - Demands for individual periods are generated independently from
an uniform distribution with a mean of 200 units and standard deviations of 10 and
50 units.

2. Seasonal with noise - A sine with an amplitude of 100 units and a cycle of n = 6
periods is generated. To this the average level of 200 units as described in the level
case is added.

For both patterns we generate three sets of 2895 examples, one for training (learning set),
one for determining the best MLP during training (test set), and one for validation of the
best MLP (validation set). Each example is obtained by taking a demand sequence of
length m = 100, and solving the corresponding finite horizon problem as explained in the
previous section. This value of m is determined empirically. Adding more demands infor-
mation seems not to have any impact on the first regeneration points.

We train two-layered MLPs with n = 6 input units, n = 6 output units, and 3, 6, 12, 15,
and 18 units in the hidden layer with standard backpropagation. We use a learning rate of
0.1 and a momentum term of 0.9. To average out the dependency on the initial weights, for
every number of hidden units, we average over 10 MLPs trained with different randomly
chosen initial weights.

After and during training of an MLP, its performance on the different sets is measured
in two different manners. The first manner is to measure the percentage correct classifica-
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Figure 1: Performance on the sets averaged over 10 trained MLPs for demand pattern 2
with an uniform noise level with a mean of 200 and a standard deviation of 50 units.

tion on these sets. However, this is not a clear indiction of the actual performance in terms
of production and inventory costs. In the second manner, for each example we compare
the decision made by the MLP with the decision that would have been optimal with respect
to the m period horizon of which the example originated in case of perfect demand infor-
mation. Suppose for a particular demand sequence d1, . . . , dm, on presentation of the first
n demands d1, . . . , dn to the network, the MLP classifies it as having class label r. This
means that, in the second stage, we calculate our production plan by solving g(0, r). As-
sume that from period r through m an optimal plan is calculated by calculating f (r, m).
In case r is the first regeneration point of the m period problem this corresponds with an
optimal decision. In case the classification was not correct and r is not the first regener-
ation point, a loss of g(0, r) + f (r, m) − f (0, m) is incurred. However, there is no need
to stick to the subplan structure here. Since f (0, r) ≤ g(0, r) by definition, it is better to
calculate our production plan by solving f (0, r). The corresponding loss then is equal to
f (0, r) + f (r, m) − f (0, m). The total performance of an MLP on a set of examples is
obtained by summing the losses over the entire set.

It turns out that the MLPs are able to perform more than 90 percent correct classifica-
tion on all sets for all tested patterns. A typical effect of increasing the number of hidden
units on the performance on the different sets is shown in Figure 1. Remark that there is an
optimal number of hidden units with respect to the networks generalization ability mea-
sured on the validation set. For this case this is 15 hidden units. Adding more units does
only improve the results on the learning set. This effect is called over-fitting.

We compare our results with an ordinary rolling horizon approach. The outcome of this
comparison is tabulated in Table 1. From this table it is clear that our approach outperforms
this pure myopic approach on both percentage correct classification and cost losses for all
patterns. The MLP approach shows a robust behavior with respect to the demand structure.
Noteworthy is the excellent performance compared with the myopic approach in case of
patterns in which the amount of noise is small compared with the deterministic part of the
pattern. It is in these cases that the pattern recognition abilities of MLPs are exhibited. A
drawback of the use of MLPs is the large amount of time required for training.



Approach
Demand MLP Myopic

Standard Average Standard
Pat- Deviation % Average Deviation %
tern Noise Correct Loss Loss Correct Loss
1 10 97.9 72.2 0.0 97.9 72.2
2 10 92.5 361.3 9.3 78.2 2326.3
1 50 92.1 514.7 22.2 89.0 1346.0
2 50 92.1 518.4 27.5 91.9 870.4

Table 1: Results for the different demand patterns
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