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Chaotic advection in a cavity flow with rigid particles

Wook Ryol Hwang,a) Patrick D. Anderson,b) and Martien A. Hulsen
Materials Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven,
The Netherlands

(Received 30 March 2004; accepted 9 February 2005; published online 4 April 2005

The effect of freely suspended rigid particles on chaotic material transport in a two-dimensional
cavity flow is studied. We concentrate on the understanding of the mechanism how the presence of
a particle affects the dynamical system of the flow. In contrast to the case studied by Vikhansky
[“Chaotic advection of finite-single bodies in a cavity flow,” Phys. Fluitls 1830(2003], we

show that even a regular periodic motion of a single particle can induce chaotic advection around
the particle, as a result of the perturbation of the flow introduced by the freely rotating solid particle.
This perturbation is of a hyperbolic nature. In fact, stretching and folding of the fluid elements are
guaranteed by the occurrence of the hyperbolic flow perturbation centered at the particle and by the
rotation of the freely suspended particle, respectively. The fluid-solid flow problem has been solved
by a fictitious-domain/finite-element method based on a rigid-ring description of the solid particle.
A single-particle system is studied in detail in view of the dynamical systems theory and then
extended to two- and three-particle systems2@5 American Institute of Physics

[DOI: 10.1063/1.1884465

I. INTRODUCTION izing dynamical systems structures and related chaotic mix-
ing behavior through the stretching and folding of fluid ele-
Experiments by Mati and Macoskb show that the ad- ments.
dition of a small number of balls into a minimixer signifi- As a simple illustration, let us consider a single-particle
cantly improves the dispersion characteristics in polymesuspended freely in simple shear flow with shear fatsee
blends. Their results show that the balls enhance the circularig. 1 with the coordinate system given therein. When the
tion of materials from low to high shear rate regions andparticle is small enough compared to the size of the domain,
promote breakup of drops. the angular velocity of the particle equalé'y(Ref. 8. The
In this work, we examine the direct influence of the ad-velocity fieldinside the particlecan be simply expressed in a
dition of such a ball on distributive mixing. We study chaotic decoupled form
advection of fluids in a simple lid-driven cavity flow contain-
ing freely suspended inertialess rigid particles using dynami-  UYp= Ussi+ ', (1)
cal systems theory and numerical simulations. A large num; hereu.=(2v —13x) is the rigid-body motion of the par-
b of papers are publahed uhih dea i e nfuence o ety e ahven st o o th o T an
- p_(_1: i . . . .
advection® Other studies show the influence of changes inu = 27 ZYX) is the perturbed velocity field which ap-

h i t ratio of th Gitvehil h pears as a result of the presence of the particle. Uhe
€ geometric aspect ratio of the cavitwhile some oIners velocity on the surface of the particle together with the far-
show that a single oscillating wall can induce chaotic advec

tion if inertia becomes importaﬁt field conditions leads to a simple shear flow solution outside
. . . _ the particle. The presence of the particle perturbs the velocit
\ﬁkhansk)7 also studied cavity flows with rigid particles P P b P y

d claimed that the L . h f1h el i field with the solution that is found by prescribing as a
and claimed that the Lagrangian chaos of the particle motio oundary condition on the surface of the particle and zero

velocity as a far-field condition. The perturbation is hyper-

ticl ith licated time-d dent particl t"’}Sblic: fluid material stretches exponentially in the directions
icles with complicated ime-depencent particle MOVementSy 3o 4 _45° from the shear direction at the réi;eand

because. of cqmplex interactions bgtween partiCIEzlp""rtid%ontracts exponentially in the other directions at the same
and particleffluid(referred to Lagrangian chaos of the par- rate. It is most effective in a region surrounding the rigid

ticle motion in Ref. 7. In this work, however, we report that article, since on theurfaceof the particle the combined

even a regular periodic motion of a single particle can Induc‘gelocity fields generate a rigid-body motion solution and in

chaolc adiecon of e i et as el e SOnCe e far feld e pertrbaton s zeo
9 In addition, the rotation of the freely suspended particle

particle affects the dynamical systems of the flow, by VISuaI'changes the location of the maximum stretch relative to the

5 . ~ particle boundary continuously and, as a result, lead to fold-
Present address: School of Mechanical and Aerospace Engineering,, of the elements. This mechanism towards chaos is dis-
Gyeongsang National University, Gajwadong 900, Jinju, South Korea. . . . k

bAuthor to whom correspondence should be addressed. Electronic maiinct from that d|Scussed_bY_V|khanS e C(_)ndUded that _
p.d.anderson@tue.nl the flow becomes nonperiodic under the action of the chaoti-
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main (2, including the interior of the particle, is the compu-
tational domain of this work and the four boundaries(bf
are denoted byl (i=1,2,3,4 and F:Ui“:ll“i. The upper
boundaryl’; is subject to the constant drag velocity. The
Cartesianx and y coordinates are selected as parallel and
normal to the drag velocity direction, respectively. Particles
are denoted byP;(t) (i=1,...,N) and N is the number of
FIG. 1. Decomposition of the velocity field inside the particle for simple parpcles. We_use the symbB[t) for Ui'\‘=l_|:)i(F)’ the CO”eCt_Ive
shear flow. The hyperbolic perturbed flaw appears due to the presence of region occupied by particles at a certain tim&or a particle
the particle and generates also a hyperbolic perturbed flow outside th®;, X;=(X;,Y;), U;=(U;,V;), w;=wik, and©;=6;k are used
particle. for the coordinates of the particle center, the translational
velocity, the angular velocity and the angular rotation, re-
spectively; and is the unit vector in the direction normal to

u

cally advected particles and the force that the particle exertﬁ1
) S ; e plane.
on the fluid and the geometry of the liquid-filled region . . Lo
. . The set of equations for the fluid domain is given by

evolve in a chaotic manner.

The objective of this work is to understand how the pres- V-o=0 in Q\P(1), 2)
ence of a single particle, and later a small number of par-
ticles, affects the dynamics of the flow, and in the end, the V-u=0 inQ\P(t), (3
mixing performance of the system. Throughout the study, we
focus on a simple model flow system: the two-dimensional o =-pl +27D in Q\P(t), (4)

lid-driven cavity flow in the Stokes regime, which is regular

and integrable in the absence of a rigid particle. In orderto  u=U;+w; X (x=X;) ondPi(t) (i=1,...N), (5
solve the solid-liquid flow problem computationally, we use
a rigid-ring description for the particle, developed by Hwang u=ur onT, (6)

et al’

The paper is organized as follows. First, we describe th
system in a mathematical context. Then, in Sec. Ill, the nu-
merical models are described which are applied to obtain th

here ur=up on I'; and ur=0 on the other boundaries.
guations(2)—(5) are equations for the momentum balance,
he continuity, the constitutive relation, and rigid-body con-

velocity field. In addition, the front tracking model used in
the mixing analysis will be described. In Sec. IV, we discus

single-particle problems: dynamical systems modeling, flow

fields/deformation patterns, and the dynamical system stru

C-

itions on particle boundaries, respectively. Quantitiegr,

, I, D and 5 denote the velocity, the stress, the pressure, the
Identity tensor, the rate of deformation tensor, and the vis-
cosity, respectively. Unknown rigid-body motions in E§)
will be determined by the hydrodynamic interaction. In the

tures caused by the addition of the particle. Finally, results bsence of inertia, initial conditions are not necessary for the
are presented for two- and three-particle problems in Sec. \? ’ y

emphasizing general mechanisms which induces chaotiéu'd velom.ty as well as for the partlcle.g .
fluid advection. Following the work by Hwanget al,” we consider the

circular particle as a rigid ring, which is filled with the same
fluid as in the fluid domain and the rigid-body condition is
imposed on the particle boundary only. This description is

In this study, we consider freely suspendee., force- possible for the rigid particle, when inertia is negligible. The
free and torque-freecircular disk particles in a Newtonian idea is similar to the original immersed boundary method of
fluid, in which inertia is neglected for both the fluid and the Peski® in which the equations for the fluid velocity are
particles. The two-dimensional lid-driven cavity flow con- solved for both inside and outside of the moving boundary of
taining these patrticles is illustrated in Fig. 2. The entire doZero mass. The rigid-ring description requires a discretization

only along the particle boundaries and leads to a significant
reduction in memory usage. From the rigid-ring description,

Il. SYSTEM

y u the set of governing equations for a region occupied by a
1 D = particle P; at a certain time is
l" )
3 ; V.o=0 inPt), (7)
Q V.-u=0 inPs1), (8)
Ty Pe u |2
' o=-pl+27xD in P(1), (9
P
o Ok u=U + o X (X=X;) in dP;(t). (10)
(0,0) r, X Equations(7)—(10) are the equations for the momentum bal-

ance, the continuity, the constitutive relation, and the bound-

FIG. 2. The lid-driven cavity flow with rigid disk particles. ary condition, respectively, which are exactly the same as the
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fluid domain equations in Eq&2)—(5). The trivial solution of  detailed derivation. In the combined weak formulation, the
this problem inside a particle is simply the rigid-body mo- rigid-body constraint is enforced by the constraint equation
tion, applied on the particle boundary extended to the fullusing a Lagrangian multiplier, defined on the particle bound-

particle interior, ary. We denote such a Lagrangian multiplier @ by AP/,
u=Ui+ o X (x=X;) inPit). (11) AP e L2(P)).
In addition, the movement of the particle is given by theThe weak form of the present work can be stated as follows.
kinematic equations For a given particle configuratioX; (i=1,... N), find
i~ ueW, pel?Q), U, e R? w; e R andAP' € L?(gP;(1)) such
—=U;,  Xil=o=Xi 0, (12)  that
dt ’
40 —f pv -vdA+f 27D[u]:D[v]dA
- =o, Oil=0=6,. (13 @ e
dt ' N
Equation(13) is completely decoupled from the other equa- + 20 (NP = [Vi+ xi X (X= X)), =0, (17
tions. ‘
To determine the unknown rigid-body motiofid;, @;)’s
of the particles, one needs balar_lce equations for drag _forces J qV -udA=0, (18)
and torques on particle boundaries. In the absence of inertia Jq
and external forces or torques, particles are force-free and
torque-free, (P u=[U;+ @ X (x=X)])p =0 (19
Fi :f o -nds=0, (14) for all veW, qe L%(Q), VieR? xieR, and uP
aPi(t) e L2(dP;(t)). The function spacéV and W, are the solution

and variational space for the velocity, respectively,

T, :f (x-X;) X (o-n)ds=0, (15) W={H"Q)’lu=ur onT},
JPj(t)

whereT;=T;k andn is a normal vector odP; pointing out of Wo={H'(Q)%u=00nT},

the particle(i =1,... N). We did not use an artificial particle— and the inner produ({t. , '>0P is the standard inner pl’OdUCt in
particle collision schemé&, because the particle overlap and L2(3P),

particle/wall collision could be avoided for the multiple-

particle problems we studied in this paper by taking a rela- w,v)w:j u-vds.

tively small time step and a sufficiently refined particle P

boundary discretizatioh. , _— S .
Finally, we need equations to describe dynamics of the In this prob[em, the pressure inside the rigid-ring payﬂcle
fluid particles. The motion of the fluid particle is considered!S @0 undetermined constant. The numerical method with the

passive and is determined by the fluid velocity at the fluigfictitious domain technique is nonsingular and it chooses a

particle location, which depends also on the configuration of/@lué for the pressure, however, the pressure inside the rigid
the rigid particles. The dynamical system is given by theling does not affect other results outs@e the particle. One can
advection equation even recover the stresslet on the particle boundary using the
pressure inside the ring and the Lagrangian multipjie(see
Ref. 9.

A regular rectangular discretization is employed for the
. . . entire computational domain with biquadratic interpolation
-;I)_rhees e?:/%pgxlgz ;Iié'giagesf;ﬁ:mang r?crgatheainnci: O(r?r:'pergfsasti'girllityof the vglocity and linear discontinuous interpolation of the

" : : e pressure. A discontinuous interpolation of the pressure ap-

condition holds in the entire domain. pears to be mandatory, since an arbitrary location of the par-
ticle boundary induces discontinuity in the press’&ré’he
point collocation method has been used for equations for the
rigid-ring constraint in Eqs(17) and(19), e.g.,

(uP(X),u(X) = [U; + e; X (X = Xi) Dap,

dx _

o =o(X,t;X(t)), Xl=o=%Xg (i=1,...N). (16)

IIl. NUMERICAL METHODS
A. The velocity field

Following the combined weak formulation of Glowinski
et al™ in which the hydrodynamic force and torque acting il o
on the particle boundary cancel exactly, Hwaetgal® de- = kZ AU = LU+ o X (= X1, (20)
rived a weak form with the rigid-ring description of the par- - _
ticle in the sliding biperiodic computational domain. The whereM;, x,, and ' are the number of collocation points
modification of the weak form for the Dirichlet problem is on dP;, the position of thekth collocation point, and the
trivial and therefore we present the final weak form withoutmultiplier at the collocation point, respectively. We define

Downloaded 20 Aug 2008 to 131.155.151.25. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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d=xi—1 =, (23

(24)

(Xi—1 = X;) * (Xj+1 = X)) )

Q= arcco<
[%i-1 = XilllXi+1 = x|

*
*

where h and h, are the maximum lengths in straight and
F curved regions of the boundary, respectively. In case Egs.
Ts e [ (21) and(22) are not satisfied, the edge betwegn andx; is

W SR I L K. 4 split into two parts and a new node is inserted at an earlier
time level and tracked to the current time. The actual track-
4 * ing of the individual markers requires the solution of the
m 2 ordinary differential equatiofil6), which is performed using

x | 4 an adaptive fourth-fifth order Runge—Kutta scheme.

IV. SINGLE-PARTICLE PROBLEMS

G, 3 A | anaular discretization 4 for the enti . We begin with the simplest case: a single rigid particle,
o e . comoelnitally at the center of the caviy,in the li-driven cavity
particle boundaryrigid-ring description. flow. To make the problem more tractable in the view of the
classical dynamical systems diagnostics, we consider only
the case when the orbit of the rigid particle is sufficiently far
apart from the wall such that complicated particle-wall inter-
uniformly distributed collocation points on the particle actions can be neglected. In this case, the motion of the rigid
boundary and the number of collocation points is chosefparticle appears to be periodic in tirfiee., it returns back to

proportional to the particle radius. An excessively large num+he original positioh and the velocity field of the fluid be-
ber of collocation points causes element locking, while toocomes time periodic as well.

small number of points cannot represent the rigid-body mo-

tion of the circular particle accurately. Approximately one A. Modeling
collocation point in an element appears to give the most
accurate resuft.(See Fig. 3 for an illustrative example for
discretizations for fluid and particlgs.

We define the period as the time it takes for the rigid
particle to return to its original position; the period only de-
pends on the initial location and the size of the particle. In

An equation with a sparse symmetric matrix with many ' i bl for t h ol
zeros on the diagonal appears as a result of the above di%ltiesrpﬁl(;rltc problem, we prefer to use a phase varighle

cretizations, which has been solved by a direct method basei
on the sparse multifrontal variant of the Gaussian elimination b= ot
(HSL2002/MA4]) for each time step® Once the rigid- - b

body velocity of the particle is obtained as a part of thewherew:27r/T andSis a circle of period . We are now

solution, the particle configuration for the next time step isable to rewrite the dynamical systefiq. (16)] in the ex-
calculated by integrating the kinematic equati¢piss. (12) tended phase spad® xS, '

and(13)], for which we used an explicit method, the second-
order Adams—Bashforth method.

mod2w), ¢ e S, (29)

X=UX(P), Y=o(GX(), ¢=ow. (26)

B. Particle tracking Since the flow is periodic in time, the Poincaré map can be

To study the mixing performance in the two-dimensionalnaturally selected as a two-dimensional map from age
lid-driven cavity flow an adaptive front tracking model is plane to the next periodigy plane along the flow in the
applied* Initially, only a relatively small amount of markers extended space. In the extended space, the physigalane
are required to describe the boundary of the domain to bat ¢, can be identified as the cross sectm;lo,
tracked in time. During the course of tracking nodes are in-
serted in between nodes where either the distahdeas 2¢0:{(x,y,¢)|¢:¢0 e [0,2m]}.
grown beyond a certain limit, or when the angigeformed
by two consecutive edges is smaller than a critical ege  Then the Poincaré map éf% into 24,0 is defined as
according to the following criteria:

d<h, (21) P¢O:2¢O—>E¢O, X(pglw) = X((27 + ¢g)lw). (27

The map preserves the area and the orientation. Now con-
sider the symmetry in the Poincaré map. The motion of a
with single particle in the cavity flow is depicted in Fig. 4 in the

d<h, if y<a.Oai_1< ag, (22
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identity

FIG. 4. The motion of a single rigid particle in a lid-driven cavity flow in an

s | Lo ,-" .
extended phase space. \ :

Rigid body motion (U,V,®,X.Y)

extended phase space. By inspection, one can get the syn
metry of the velocity fieldu, 23 1 ) 3 n S

ux,y,é) =u(l —-xy,2m - ¢),

(28) FIG. 5. The particle motioitU,V, w) and the locatior{X,Y) of the single-
U(X y d’) =-p(1-X y, 21 — d’) particle problem(r=0.075. The particle motion is periodic witi'=5.71.

Using the reflection symmetry aboxt1/2,
_ figure (att=0). The length of the closed material lihés also
Si(xy) = (1=xy), (29) indicated. During front tracking, the enclosed area was kept

one can obtain the symmetry in the Poincaré map from Eqwithin 1% variation. The enclosed area is computed along
(29) as follows: the curve by($x-n.ds)/2, with the outward normal vectar,

P —gpn g (30 along the curve’
2m=¢g T T 4o The deformation patterns in Fig. 6 show the typical cha-

otic behavior with stretching/folding and exponential growth
f the material line, even though the motion of the rigid
article is regular and perioditas is the velocity field
here are two stretching directions around the particle
boundary in each subpart of Fig. 6 and the direction of the
stretch changes in time, due to change of the surrounding
velocity field of the particle.

The existence of the two stretching directions is closely
related to the perturbed hyperbolic velocity field, as men-

Throughout this work, we use the square cavity astioned in the Introduction. To show the effect on the velocity
shown in Fig. 2 withL=H=1 as the computational domain field, we plotted two sets of streamlinestat): one from the
and the upper drag velocity and the viscosity are giugn full velocity field u [Fig. 7(a)] and the othefFig. 7(b)] of the
=1 and =1, respectively. The first test case is constructedoerturbed velocity fieldi’=u-u,, whereug is the velocity
as follows: a single particle with radius=0.075 is initially ~ field in the cavitywithoutthe particle. In case of the freely
suspended &0.5, 0.9, the center of the domain. We used a suspended particle, there is no significant change in the
100X 100 mesh for the computation with 48 collocation streamlines with the full velocity field. However, the stream-
points for the particle and a time step of 0.01. A 20000 lines of the perturbed velocity field’ show a hyperbolic
mesh provides an accurate solution for the velocity and théow resulting from the presence of the patrticle. In Figh)7
velocity gradien?. The front tracking is performed to obtain the stretching of material occurs in two directions, to the
the deformation pattern of materigbassive blobs with a  right-lower direction and to the left-upper direction around
fourth-fifth order Runge—Kutta method with an error toler- the particle. Compare Fig(B) with the deformation patterns
ance of 10’. During all computations presented in this work on the particle boundary @t 6T in Fig. 6; also compare it
the following criteria were applied for the front trackiny: ~ with Fig. 1. The direction of the stretch changes as the par-
=0.02,h;=0.01, anda,=140. ticle moves to other positions where the surrounding velocity

Figure 5 shows the velocity and the location of the rigidfield is different. In addition, the particle rotates at an angular
particle, which indicates a periodic particle motion with  velocity related to the local vorticity, which leads to the fold-
=5.71. Plotted in Fig. 6 are the consecutive deformation pating of the stretched material lines near the rigid particle.
terns of the initially circular material lindthe solid ling Remark that in simple shear flow the perturbation of the
surrounding the rigid particléthe dotted ling during six  velocity field caused by a rigid particle will not lead to cha-
periods of flow, with a time interval of 112 The periodic  otic advection. Without loss of generality we can assume that
particle orbit is indicated by the dashed line in the initial the particle only rotates and that the velocity is steady. For

WherePn is thenth iterate ofP¢ and qu is the inverse of
Pn See the Appendix for the derlvatlon and more detailed’
procedures for similar problems that can be found in Hwan
et al’*® From Eq.(30), Poincaré sections defined @ét0
and 7 satisfy the reflection symmetry abaxut 1/2 bythem-
selves.

B. The flow field and deformation patterns

Downloaded 20 Aug 2008 to 131.155.151.25. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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t= 0.00 (0.0T):|=0.5654 t= 6.84 (1.2T):1 = 1.2041

FIG. 6. The deformation patterns of
the circular closed material linsolid)
surrounding the rigid particlédotted
for six periods in time. The length of
the closed material liné is also indi-
cated. The radius of the particle is
=0.075 and the initial location is
(0.5,0.5. The dashed curve in the ini-
tial figure (t=0) indicates the particle
orbit.

t=13.68 (2.4T):1=6.3632 1=20.52 (3.6T ):| =35.427

t=27.36 (4.8T ):1=122.96 1=34.20 ( 6.0T ):1 =431.75

steady two-dimensional flows it is well known that chaotic torus in the opposite side of the rigid particle. Since it always

mixing is not possiblé&:* appears on the opposite side of the particle, we denote this as
_ the mirrored crescentind it behaves like a period-1 reso-
C. Dynamical systems nance band. In fact, the mechanism for the creation of the

The Poincaré sections at three different phasges), mirrored structu-re is quite similar tq thqt of. the pgriod—l
2713, andm, are presented for the single-particle problemésonance. We illustrate the mechanism in Fig. 9. Since the
with r=0.075 in Fig. 8 in order to visualize the dynamical Particle itself plays the role of &raveling hyperbolic fixed
structure in the extended space. A set of 400 evenly distribPOint, & corresponding elliptic fixed point should exist inside
uted initial points is integrated in time for 250 periods andthe region enclosed by the perturbed stable/unstable mani-
then the symmetry relation in Eq30) has been applied to folds connected to/from the hyperbolic fixed point. The Iarg-
obtain the Poincaré sections. The Poincaré sections=&  est stable orbit covering the elliptic point defines the region
and 7 have reflectional symmetry aboxit 1/2; thesections ~ occupied by the mirrored crescent.
at ¢=2m/3 and at 4r/3 are symmetric to each other about ~ The size of the mirrored crescent varies with the size of
x=1/2. the rigid particle. The Poincaré sections fer0.05 and 0.1

Figure 8 shows that the dynamical systems in the cavityare presented in Fig. 10 @=0. We used the same initial
are partly chaotic and partly regular. Especially, the regiorparticle position ag=0.075 for these two problems. In com-
around the particle is chaotic, since the region undergoeparison with Fig. 8 of the same phase, one can see that the
stretching and folding repeatedly, as mentioned earlier. Intemnirrored structure increases with the size of the particle. The
estingly, there is a large Kolmogorov—Arnold—MogKAM ) larger the particle, the larger the region of the superimposed
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line (x=0.5) as the index of the orbif. Then the distribution

of the frequency ratio is plotted as a function of the initial
positiony in Fig. 11. The time period of the particle rotation
T, is found to be 5.62 and 5.84 fo~0.05 and 0.1, respec-
tively. The dominant rational frequency ratios, possessing a
relatively small denominator, are indicated in Fig. 11. In the
most weakly perturbed cases0.05 in Fig. 1@0a), one can
observe the period-6A=1/4), 3 (1/3), 5(2/5), 2 (1/2), 3
(2/13), 4 (3/4), and 4(5/4) resonance bands along the cen-
terline (x=0.5 from the bottom, which are expected from
the frequency ratio distribution. Whar=0.075, the size of
the inner elliptic island ofA=5/4 is reduced significantly
and the elliptic island oA =3/4 disappears. Se¢=0 in Fig.

8 for a direct comparison. In the most perturbed case,
=0.1 [Fig. 10b)], the period-4(A=1/4) and 5(A=2/5)
have disappeared, due to the increased perturbation. The in-
(b) nermost elliptic rotation has been further destroyed and the
period-4 resonance band appeared instead.

To summarize, as the particle size increases, we get a
stronger chaotic behavior in the regions governed by the
usual resonance phenomena, but at the same time the largest
elliptic island of the mirrored crescent increases also. A pos-
sibility avoiding the dilemma is to add another rigid particle,
which will be discussed in the following section.

Before closing the present section, we show the defor-
mation patterns of small material blobs, originally located
around the four elliptic and four hyperbolic fixed points of
the period-4 orbi{A=5/4) for r=0.075. The location of the
first and fourth-order periodic points is determined using a
technique similar as presented by Andersoral® We com-
puted the deformation patterns for the 24 periods, since mo-
tions in the resonance band are subharmonic and &figv
12). The patterns show material transports due to the hetero-

FIG. 7. The streamlines of the single-particle problegm0.075 att=0: (a) clinic tanales between the neighboring hyperbolic fixed
using the full velocity fieldu; (b) using the perturbed velocity field’=u . 9 9 9 hyp
—Ug. Ug is the velocity field of the cavity flow without the particle. The rigid points.

particle is described by the dashed line and is locatg.8¢0.5.

) ) ] V. PROBLEMS WITH MORE THAN ONE PARTICLE
hyperbolic flow, which means that there is a larger region

enclosed by the perturbed stable/unstable manifolds corf®: TWo-particle problem

nected to/from the hyperbOIiC fixed pOint and that the mir- Now we proceed to the system possessing two partides_

rored crescent gets larger as well. The two-particle problem is constructed carefully such that
In addition, there are many resonance bands in thghe motion of the two rigid particles is periodic in time, both

Poincaré sections in Figs. 8 and 10. The dynamics of thqiith the same period, and thereby the velocity field becomes

resonance can be approximately determined by the frequengyso periodic. We use two identical particles with radius

ratio, denoted byA, the ratio of the frequency associated =0.075. The first particle is again positioned at the center of

with the fluid rotationf; in the unperturbedno-particle sys-  the cavity(0.5, 0.5, and the second particle positigralong

tem to the frequency associated with the rigid particle motionhe centerline(x=0.5 is determined using the Newton—

fp. In the single-particle problem, the frequency ratio can beraphson method to satisfy the periodicity. The location of

expressed as the second particle was foun@.5, 0.89178 The period
f(o) T during which a particle returns back to its original position
AQ) = e T_p_ (31 corresponds to twice of the period of the two-particle prob-
P (0 lem, since the two circular particles are identical. In this

where( is an index of the orbit of the fluid particl&, is the  regard, in the two-particle problem, the peridds defined
time period of the particle motion, and is the time period such that a particle returns to the original position of the
of the fluid particle defined in the unperturbed system. Physiether particle, and has been foufid=-2.805 with a 100
cally the frequency ratio\ indicates that the number of ro- X100 mesh and a time step of 0.01. With the perlgedne
tations of the fluid particle during one-particle rotation. We can construct the Poincaré map along with its symmetry re-
simply take the initial fluid particley position on the center- lation in the same as done for the single-particle problem.
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$=2m/3

FIG. 8. The Poincaré sections &t
=0, 27/3, and = for the single-
particle problem withr=0.075.

Figure 13 shows the Poincaré section of the two-particle  There are a number of resonance bands and KAM tori in
problem at¢$=0. Unlike the previous single-particle prob- the Poincaré sectioffrig. 13. The resonance bands of period
lems, there is no large elliptic island in the opposite side of3, 4, and 5 appear as expected from the frequency ratios 1/3,
the particle, since the other partidler the traveling hyper- 1/4, and 1/5(and 2/5 in Fig. 11. Note that the period is
bolic fixed poin} is located exactly where the island would approximately half the period of the single-particle prob-
be expected to be present. Although the problem is speciallems. In Fig. 14 we present six consecutive deformation pat-
constructedfor the purpose to obtain a periodic flmone  terns of a circular fluid blob for 28 periods with an interval
can expect that the destructi¢or at least shrinkageof the  of 5 6T along with the length stretch
m_irrored island will take .place in general for those problems  oiher combinations of two-particle systems can be con-
with more than one particle. sidered where the ratio of the radii of the two particles may
act as a parameter. However, we do not expect any funda-
mental changes with respect to the dynamics of the mixing
flows compared to the case as presented in this paper, and
such an analysis is therefore not within the scope of this
paper.

mirrored crescent

B. Three-particle problem

The final example is the system containing three rigid
particles of the same size=0.05. There is no periodicity in
the flow; at least we could not determine three-particle loca-
tions such that the three particles return to their original lo-
cation after a certain time. We have placed the particles ini-
tially at the locationg0.5, 0.4, (0.5, 0.6, and (0.5, 0.8 in
the cavity and analyzed the displacement and deformation of
a fourth passive blob. The continuous deformation patterns
of the initial blob att=0 (initial), 30, 60, and 84 are plotted
FIG. 9. The occurence of a large KAM tor(he mirrored crescehin the in Fig. 15. Once again, one can observe the stretching in two
opposite position of the rigid particle. directions around the particle boundary.

particle
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FIG. 10. The Poincaré sections &t
=0 for different rigid particle sizega)
r=0.05;(b) r=0.1.

(a) (b)

The particle, initially placed at the lowest position, ro- the upper and the lower particles initially, respectively. In the
tates around the other two particles and the inserted fluithtter case, the relative length stretch result from the blob
blob. The two other particles continuously tumble while theembracing the lower particle is denoted with a single asterisk
inserted blob starts to stretch and fold around these two paf+) and the one from the upper particle is denoted with two
ticles. Until t=46, the initial lowest particle is not directly asterisks(xx).
involved in the stretching and folding process of the inserted  What we clearly see from Fig. 14 is that the stretching
blob. After this time, the blob reaches the lowest particleand folding really takes place close to the rigid particles,
where it starts to fold around. especially in the result for the single-particle case. In the

In Fig. 16, the length stretch of the circular blob in the single-particle case we observe the time period of the flow
three-particle problem is plotted in time and shows the exfrom the length stretch in Fig. 16. Until abot#5.7 we see
ponential growth confirming that the flow is chaotic. In the a steady increase in the length stretch, which decreases for a
same figure results for the single- and two-particle case havghort time, approximately a quarter of a period, and then
been inserted where the length stretch has been scaled witthcreases again. Apparently, the flow inhibits regions where
its original length. In order to have a systematic comparisongcontraction takes place for a certain time. After the contrac-
for the single-particle results, we plotted the result from thetion a steep increase in length stretch is observed again. The
initial blob of r=0.09 as shown in Fig. 6 and also the initial process is repeated for every period of flow.
blob of r=0.05 used in the two-particle or three-particle In general, the cases with blobs enclosing the rigid par-
problem using the same location of the blob. The latter one isicle show more pronounced length stretch, as one expects
denoted with the asterisk:). For the two-particle problem, from the chaotic region formed near the rigid particle bound-
the length stretch result using the initial blobref0.05 as in  ary. The results from the two- and three-particle systems with
Fig. 14 along with the two blobs af=0.09 which enclose blobs not enclosing the particle in Fig. 16 show that the

length stretch is less compared to the single-particle case.

16l one p: =0.050 —— i VI. CONCLUSIONS
one p: 1=0.075 ------
al <P oy | In this study, we investigated chaotic material advection
aiaTee in a two-dimensional lid-driven cavity flow laden with freely
5/4 I i N - . . ) .
12 o B ] suspended rigid particles, which is regular and integrable in
< 7 \§ the absence of the particle. We focused on understanding the
g 1 1/1 } mechanism how the presence of rigid particles affect the dy-
i \ namical systems of the flow and lead to chaotic advection.
2 08 3/4 . We used a finite-element/fictitious-domain method with a
& 2/3 — 1 rigid-ring description for the particle to solve the solid-liquid
= 06f J _/r,f—"“'” . \- flow and a high-order adaptive frontal tracking method for
27 I e I fluid particle tracking.
04133 i e % In the single-particle problem, which is carefully con-
14X e “;’f structed to keep the flow periodic, we discusggd the
02 5 F e p stretching and folding of fluid material around the particle,
0 T , , , i (i) the existence of a large elliptic islarithe mirrored cres-
0 02 04 0.6 0.8 1 cen) in the opposite side of the particle, which grows with

v the size of the rigid particle, an(ii) the usual resonance

FIG. 11. The frequency ratio distribution of the single- and two-particle Structures which decays With_ increasing particle size. Th?
problems. reason for these phenomena is the occurrence of hyperbolic
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T~=
t=0 t=127T t=24T

FIG. 12. The consecutive deformation patterns for small material blobs initially located around the four elliptic and hyperbolic fixed pointebihdhe o
period 4(A=5/4) in the single-particle problem with=0.075.

perturbed flow caused by the presence of the rigid particleACKNOWLEDGMENT

The two-particle problem is also carefully constructed to sat- ) )
isfy the periodicity. Since one particle has been placed ex-  1his work was supported by the Dutch Polymer Insti-
actly where a mirrored island from the other particle wouldtuté; Project No. 161.

appear, there does not appear a large mirrored island in the

two-particle problem. The single- and two-particle problems

are just periodic and there is no Lagrangian chaos in thePPENDIX: SYMMETRIES IN THE SINGLE-PARTICLE
particle motion, which is a major difference from the work of PROBLEM

Vikhansky! The route to chaos in particle-laden flow consid- ) ) ]

ered in these problems is not generated by chaotic Lagrang- Here we derive the symmetry in the Poincaré rap.

ian motion of the particle, but originates from the presence of30)] from the symmetry in the velocity fielfEq. (28)] for
the freely suspended particles inducing a hyperbolic perthe single-particle problem. The plrsof6edees adopted here are
turbed flow. We also show results for a three-particle probSimilar to those used in Hwargg al."for the steady three-
lem, which is not periodic, and discussed mixing patternslimensional open flow system with the spatially periodic
along with the length stretch. perturbation. _ _

The method for solving the solid-fluid problem in this ~ For the notational convenience, let us define a phase-
paper can be extended to systems with a viscoelastic fluidnversive reflection symmetry transformati&h,, such that
Which are of gre_at import_ance for mixing in_polyme_r pro- Ser 6y B) — (1 =Xy,27~ ¢). (A1)
cessing. In the viscoelastic system, the particle motion, the
rheological behavior, and the particle/particle interaction be-Sy,Sy,=1/, with the identity transformatioh Then the sym-
havior are quite different from Newtonian behavior, e.g.,metry of the velocity fieldEq. (28)] can be rewritten as
separating two particles generate strong elongational flows _ _
between the two particles, which of course affect dynamical U(p) = U(SxgP), - v(p) =~ 0(Sxs P) (A2)
systems and mixing performancts. at the fluid material poinp=(x,y,¢) in R?xS. Now con-

sider the motion of a fluid particlp in the flow. First, let us
define infinitesimal forward time integratiohand backward
time integrationB such that

Fp=(x+ust,y+uvét,p+ o), (A3)
Bp=(x—-udt,y-v&,¢— wdt). (A4)
Then
FSpp=(1-x+udy-vét,2m— ¢+ ),
= Sy4Bp. (A5)

Therefore, the infinitesimal particle motion satisfies the fol-
lowing symmetry:

Bp = S,4FSxs P (A6)

1/4 15 0=0

Moreover, by applying successive application, this symmetry
FIG. 13. The Poincaré section for the two-particle problem witt9.075. holds also for finite time step,
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O

1= 0.00( 0.0T); 1= 0.31

t=15.71( 56T );|= 0.80

t=381.42(112T);1= 1.82

1=4712(16.8T);1= 7.26

1=62.83 (22.4T ); = 51.40

t=78.54(28.0T);| =681.50

FIG. 14. The six consecutive deformation patterns of a circular fluid blob in the two-particle problem=/Git@75 for 28 periods with interval 5Téalong
with length stretcH. The particles and the fluid blob are denoted by the dotted and solid lines, respectively.

t= 0;1= 031

t=60,;1= 4879

t= 84.,;1=2353.15

FIG. 15. The consecutive deformation
patterns of a fluid blob for the
three-particle problem withr=0.05.
The particles and the fluid blob are de-
noted by the dotted and solid lines,
respectively.
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10000 T T T T T

— Py, = o5, P=g e, (A12)

1000 e Using Egs.(A8) with (A12), we get the symmetry of the

Poincaré magpEq. (30)] as follows:

100 -n — n
Py, = SP}S. (A13)
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