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Chaotic advection in a cavity flow with rigid particles
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The Netherlands
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The effect of freely suspended rigid particles on chaotic material transport in a two-dimensional
cavity flow is studied. We concentrate on the understanding of the mechanism how the presence of
a particle affects the dynamical system of the flow. In contrast to the case studied by Vikhansky
f“Chaotic advection of finite-single bodies in a cavity flow,” Phys. Fluids15, 1830 s2003dg, we
show that even a regular periodic motion of a single particle can induce chaotic advection around
the particle, as a result of the perturbation of the flow introduced by the freely rotating solid particle.
This perturbation is of a hyperbolic nature. In fact, stretching and folding of the fluid elements are
guaranteed by the occurrence of the hyperbolic flow perturbation centered at the particle and by the
rotation of the freely suspended particle, respectively. The fluid-solid flow problem has been solved
by a fictitious-domain/finite-element method based on a rigid-ring description of the solid particle.
A single-particle system is studied in detail in view of the dynamical systems theory and then
extended to two- and three-particle systems. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1884465g

I. INTRODUCTION

Experiments by Marić and Macosko1 show that the ad-
dition of a small number of balls into a minimixer signifi-
cantly improves the dispersion characteristics in polymer
blends. Their results show that the balls enhance the circula-
tion of materials from low to high shear rate regions and
promote breakup of drops.

In this work, we examine the direct influence of the ad-
dition of such a ball on distributive mixing. We study chaotic
advection of fluids in a simple lid-driven cavity flow contain-
ing freely suspended inertialess rigid particles using dynami-
cal systems theory and numerical simulations. A large num-
ber of papers are published which deal with the influence of
a time-periodic movement of different walls2,3 on chaotic
advection.4 Other studies show the influence of changes in
the geometric aspect ratio of the cavity,5 while some others
show that a single oscillating wall can induce chaotic advec-
tion if inertia becomes important.6

Vikhansky7 also studied cavity flows with rigid particles
and claimed that the Lagrangian chaos of the particle motion
induces Eulerian chaos of the flow. Admittedly, this argu-
ment seems evident especially in flows possessing many par-
ticles with complicated time-dependent particle movements,
because of complex interactions between particle/particle
and particle/fluidsreferred to Lagrangian chaos of the par-
ticle motion in Ref. 7d. In this work, however, we report that
even a regular periodic motion of a single particle can induce
chaotic advection of the fluid material as well. We concen-
trate on understanding the mechanism how the existence of a
particle affects the dynamical systems of the flow, by visual-

izing dynamical systems structures and related chaotic mix-
ing behavior through the stretching and folding of fluid ele-
ments.

As a simple illustration, let us consider a single-particle
suspended freely in simple shear flow with shear rateġ, see
Fig. 1 with the coordinate system given therein. When the
particle is small enough compared to the size of the domain,
the angular velocity of the particle equals −1

2ġ sRef. 8d. The
velocity field inside the particlecan be simply expressed in a
decoupled form

up = Ussf+ u8, s1d

whereup= s 1
2ġy,−1

2ġxd is the rigid-body motion of the par-
ticle, Ussf=sġy,0d is the given shear flow in the far field, and
u8= s−1

2ġy,−1
2ġxd is the perturbed velocity field which ap-

pears as a result of the presence of the particle. TheUssf

velocity on the surface of the particle together with the far-
field conditions leads to a simple shear flow solution outside
the particle. The presence of the particle perturbs the velocity
field with the solution that is found by prescribingu8 as a
boundary condition on the surface of the particle and zero
velocity as a far-field condition. The perturbation is hyper-
bolic: fluid material stretches exponentially in the directions
135° and −45° from the shear direction at the rate1

2ġ and
contracts exponentially in the other directions at the same
rate. It is most effective in a region surrounding the rigid
particle, since on thesurfaceof the particle the combined
velocity fields generate a rigid-body motion solution and in
the far field the perturbation is zero.

In addition, the rotation of the freely suspended particle
changes the location of the maximum stretch relative to the
particle boundary continuously and, as a result, lead to fold-
ing of the elements. This mechanism towards chaos is dis-
tinct from that discussed by Vikhansky.7 He concluded that
the flow becomes nonperiodic under the action of the chaoti-
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cally advected particles and the force that the particle exerts
on the fluid and the geometry of the liquid-filled region
evolve in a chaotic manner.

The objective of this work is to understand how the pres-
ence of a single particle, and later a small number of par-
ticles, affects the dynamics of the flow, and in the end, the
mixing performance of the system. Throughout the study, we
focus on a simple model flow system: the two-dimensional
lid-driven cavity flow in the Stokes regime, which is regular
and integrable in the absence of a rigid particle. In order to
solve the solid-liquid flow problem computationally, we use
a rigid-ring description for the particle, developed by Hwang
et al.9

The paper is organized as follows. First, we describe the
system in a mathematical context. Then, in Sec. III, the nu-
merical models are described which are applied to obtain the
velocity field. In addition, the front tracking model used in
the mixing analysis will be described. In Sec. IV, we discuss
single-particle problems: dynamical systems modeling, flow
fields/deformation patterns, and the dynamical system struc-
tures caused by the addition of the particle. Finally, results
are presented for two- and three-particle problems in Sec. V
emphasizing general mechanisms which induces chaotic
fluid advection.

II. SYSTEM

In this study, we consider freely suspendedsi.e., force-
free and torque-freed circular disk particles in a Newtonian
fluid, in which inertia is neglected for both the fluid and the
particles. The two-dimensional lid-driven cavity flow con-
taining these particles is illustrated in Fig. 2. The entire do-

main V, including the interior of the particle, is the compu-
tational domain of this work and the four boundaries ofV
are denoted byGi si =1,2,3,4d and G=øi=1

4 Gi. The upper
boundaryG3 is subject to the constant drag velocityuD. The
Cartesianx and y coordinates are selected as parallel and
normal to the drag velocity direction, respectively. Particles
are denoted byPistd si =1, . . . ,Nd and N is the number of
particles. We use the symbolPstd for øi=1

N Pistd, the collective
region occupied by particles at a certain timet. For a particle
Pi, Xi =sXi ,Yid, Ui =sUi ,Vid, vi =vik, andUi =Uik are used
for the coordinates of the particle center, the translational
velocity, the angular velocity and the angular rotation, re-
spectively; andk is the unit vector in the direction normal to
the plane.

The set of equations for the fluid domain is given by

= · s = 0 in V \ Pstd, s2d

= ·u = 0 in V \ Pstd, s3d

s = − pI + 2hD in V \ Pstd, s4d

u = Ui + vi 3 sx − Xid on ]Pistd si = 1, . . . ,Nd, s5d

u = uG on G, s6d

where uG=uD on G3 and uG=0 on the other boundaries.
Equationss2d–s5d are equations for the momentum balance,
the continuity, the constitutive relation, and rigid-body con-
ditions on particle boundaries, respectively. Quantitiesu, s,
p, I , D andh denote the velocity, the stress, the pressure, the
identity tensor, the rate of deformation tensor, and the vis-
cosity, respectively. Unknown rigid-body motions in Eq.s5d
will be determined by the hydrodynamic interaction. In the
absence of inertia, initial conditions are not necessary for the
fluid velocity as well as for the particle.

Following the work by Hwanget al.,9 we consider the
circular particle as a rigid ring, which is filled with the same
fluid as in the fluid domain and the rigid-body condition is
imposed on the particle boundary only. This description is
possible for the rigid particle, when inertia is negligible. The
idea is similar to the original immersed boundary method of
Peskin10 in which the equations for the fluid velocity are
solved for both inside and outside of the moving boundary of
zero mass. The rigid-ring description requires a discretization
only along the particle boundaries and leads to a significant
reduction in memory usage. From the rigid-ring description,
the set of governing equations for a region occupied by a
particlePi at a certain timet is

= · s = 0 in Pistd, s7d

= ·u = 0 in Pistd, s8d

s = − pI + 2hD in Pistd, s9d

u = Ui + vi 3 sx − Xid in ]Pistd. s10d

Equationss7d–s10d are the equations for the momentum bal-
ance, the continuity, the constitutive relation, and the bound-
ary condition, respectively, which are exactly the same as the

FIG. 1. Decomposition of the velocity field inside the particle for simple
shear flow. The hyperbolic perturbed flowu8 appears due to the presence of
the particle and generates also a hyperbolic perturbed flow outside the
particle.

FIG. 2. The lid-driven cavity flow with rigid disk particles.
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fluid domain equations in Eqs.s2d–s5d. The trivial solution of
this problem inside a particle is simply the rigid-body mo-
tion, applied on the particle boundary extended to the full
particle interior,

u = Ui + vi 3 sx − Xid in Pistd. s11d

In addition, the movement of the particle is given by the
kinematic equations

dXi

dt
= Ui, uXiut=0 = Xi,0, s12d

dUi

dt
= vi, uUiut=0 = Ui,0. s13d

Equations13d is completely decoupled from the other equa-
tions.

To determine the unknown rigid-body motionssUi ,vid’s
of the particles, one needs balance equations for drag forces
and torques on particle boundaries. In the absence of inertia
and external forces or torques, particles are force-free and
torque-free,

F i =E
]Pistd

s ·nds= 0, s14d

Ti =E
]Pistd

sx − Xid 3 ss ·ndds= 0, s15d

whereTi =Tik andn is a normal vector on]Pi pointing out of
the particlesi =1, . . . ,Nd. We did not use an artificial particle-
particle collision scheme,11 because the particle overlap and
particle/wall collision could be avoided for the multiple-
particle problems we studied in this paper by taking a rela-
tively small time step and a sufficiently refined particle
boundary discretization.9

Finally, we need equations to describe dynamics of the
fluid particles. The motion of the fluid particle is considered
passive and is determined by the fluid velocity at the fluid
particle location, which depends also on the configuration of
the rigid particles. The dynamical system is given by the
advection equation

dx

dt
= v„x,t;Xistd…, uxut=0 = x0 si = 1, . . . ,Nd. s16d

The map xs0d°xstd defines an area- and orientation-
preserving Hamiltonian system, since the incompressibility
condition holds in the entire domain.

III. NUMERICAL METHODS

A. The velocity field

Following the combined weak formulation of Glowinski
et al.11 in which the hydrodynamic force and torque acting
on the particle boundary cancel exactly, Hwanget al.9 de-
rived a weak form with the rigid-ring description of the par-
ticle in the sliding biperiodic computational domain. The
modification of the weak form for the Dirichlet problem is
trivial and therefore we present the final weak form without

detailed derivation. In the combined weak formulation, the
rigid-body constraint is enforced by the constraint equation
using a Lagrangian multiplier, defined on the particle bound-
ary. We denote such a Lagrangian multiplier on]Pi by lp,i,

lp,i P L2s]Pid.

The weak form of the present work can be stated as follows.
For a given particle configurationXi si =1, . . . ,Nd, find

uPW, pPL2sVd, Ui PR2, vi PR andlp,i PL2(]Pistd) such
that

−E
V

p = ·vdA+E
V

2hDfug:DfvgdA

+ o
i

N

klp,i,v − fVi + xi 3 sx − Xidgl]Pi
= 0, s17d

E
V

q = ·udA= 0, s18d

kmp,i,u − fUi + vi 3 sx − Xidgl]Pi
= 0 s19d

for all vPW0, qPL2sVd, Vi PR2, xi PR, and mp,i

PL2(]Pistd). The function spaceW andW0 are the solution
and variational space for the velocity, respectively,

W = hH1sVd2uu = uG on Gj,

W0 = hH1sVd2uu = 0 on Gj,

and the inner productk· , ·l]P is the standard inner product in
L2s]Pd,

km,vl]P =E
]P

m ·vds.

In this problem, the pressure inside the rigid-ring particle
is an undetermined constant. The numerical method with the
fictitious domain technique is nonsingular and it chooses a
value for the pressure, however, the pressure inside the rigid
ring does not affect other results outside the particle. One can
even recover the stresslet on the particle boundary using the
pressure inside the ring and the Lagrangian multiplierlp ssee
Ref. 9d.

A regular rectangular discretization is employed for the
entire computational domain with biquadratic interpolation
of the velocity and linear discontinuous interpolation of the
pressure.9 A discontinuous interpolation of the pressure ap-
pears to be mandatory, since an arbitrary location of the par-
ticle boundary induces discontinuity in the pressure.12 The
point collocation method has been used for equations for the
rigid-ring constraint in Eqs.s17d and s19d, e.g.,

kmp,isxd,usxd − fUi + vi 3 sx − Xidgl]Pi

< o
k=1

Mi

mk
p,i · husxkd − fUi + vi 3 sxk − Xidgj, s20d

whereMi, xk, andmk
p,i are the number of collocation points

on ]Pi, the position of thekth collocation point, and the
multiplier at the collocation point, respectively. We define
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uniformly distributed collocation points on the particle
boundary and the number of collocation points is chosen
proportional to the particle radius. An excessively large num-
ber of collocation points causes element locking, while too
small number of points cannot represent the rigid-body mo-
tion of the circular particle accurately. Approximately one
collocation point in an element appears to give the most
accurate result.9 sSee Fig. 3 for an illustrative example for
discretizations for fluid and particles.d

An equation with a sparse symmetric matrix with many
zeros on the diagonal appears as a result of the above dis-
cretizations, which has been solved by a direct method based
on the sparse multifrontal variant of the Gaussian elimination
sHSL2002/MA41d for each time step.9,13 Once the rigid-
body velocity of the particle is obtained as a part of the
solution, the particle configuration for the next time step is
calculated by integrating the kinematic equationsfEqs. s12d
ands13dg, for which we used an explicit method, the second-
order Adams–Bashforth method.

B. Particle tracking

To study the mixing performance in the two-dimensional
lid-driven cavity flow an adaptive front tracking model is
applied.14 Initially, only a relatively small amount of markers
are required to describe the boundary of the domain to be
tracked in time. During the course of tracking nodes are in-
serted in between nodes where either the distanced has
grown beyond a certain limit, or when the angleai formed
by two consecutive edges is smaller than a critical oneac,
according to the following criteria:

d , h, s21d

d , hc if ai , ac ∨ ai−1 , ac, s22d

with

d = ixi−1 − xii, s23d

ai = arccosS sxi−1 − xid · sxi+1 − xid
ixi−1 − xiiixi+1 − xii

D , s24d

where h and hc are the maximum lengths in straight and
curved regions of the boundary, respectively. In case Eqs.
s21d ands22d are not satisfied, the edge betweenxi−1 andxi is
split into two parts and a new node is inserted at an earlier
time level and tracked to the current time. The actual track-
ing of the individual markers requires the solution of the
ordinary differential equations16d, which is performed using
an adaptive fourth-fifth order Runge–Kutta scheme.

IV. SINGLE-PARTICLE PROBLEMS

We begin with the simplest case: a single rigid particle,
initially at the center of the cavity, in the lid-driven cavity
flow. To make the problem more tractable in the view of the
classical dynamical systems diagnostics, we consider only
the case when the orbit of the rigid particle is sufficiently far
apart from the wall such that complicated particle-wall inter-
actions can be neglected. In this case, the motion of the rigid
particle appears to be periodic in timesi.e., it returns back to
the original positiond and the velocity field of the fluid be-
comes time periodic as well.

A. Modeling

We define the periodT as the time it takes for the rigid
particle to return to its original position; the period only de-
pends on the initial location and the size of the particle. In
this specific problem, we prefer to use a phase variablef
rather thant,

f = vt, mods2pd, f P S, s25d

wherev=2p /T andS is a circle of period 2p. We are now
able to rewrite the dynamical systemfEq. s16dg in the ex-
tended phase spaceR23S,

ẋ = usx;Xsfdd, ẏ = vsx;Xsfdd, ḟ = v. s26d

Since the flow is periodic in time, the Poincaré map can be
naturally selected as a two-dimensional map from onexy
plane to the next periodicxy plane along the flow in the
extended space. In the extended space, the physicalxy plane
at f0 can be identified as the cross sectionSf0

,

Sf0
= hsx,y,fduf = f0 P f0,2pgj.

Then the Poincaré map ofSf0
into Sf0

is defined as

Pf0
:Sf0

→ Sf0
, xsf0/vd ° x„s2p + f0d/v…. s27d

The map preserves the area and the orientation. Now con-
sider the symmetry in the Poincaré map. The motion of a
single particle in the cavity flow is depicted in Fig. 4 in the

FIG. 3. A regular rectangular discretization is used for the entire computa-
tional domain and the particle is described by collocation points along the
particle boundarysrigid-ring descriptiond.

043602-4 Hwang, Anderson, and Hulsen Phys. Fluids 17, 043602 ~2005!

Downloaded 20 Aug 2008 to 131.155.151.25. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



extended phase space. By inspection, one can get the sym-
metry of the velocity fieldu,

usx,y,fd = us1 − x,y,2p − fd,

s28d
vsx,y,fd = − vs1 − x,y,2p − fd.

Using the reflection symmetry aboutx=1/2,

S:sx,yd → s1 − x,yd, s29d

one can obtain the symmetry in the Poincaré map from Eq.
s28d as follows:

P2p−f0

−n = SPf0

n S, s30d

wherePf0

n is thenth iterate ofPf0
andPf0

−n is the inverse of
Pf0

n . See the Appendix for the derivation and more detailed
procedures for similar problems that can be found in Hwang
et al.15,16 From Eq.s30d, Poincaré sections defined atf=0
andp satisfy the reflection symmetry aboutx=1/2 bythem-
selves.

B. The flow field and deformation patterns

Throughout this work, we use the square cavity as
shown in Fig. 2 withL=H=1 as the computational domain
and the upper drag velocity and the viscosity are givenuD

=1 andh=1, respectively. The first test case is constructed
as follows: a single particle with radiusr =0.075 is initially
suspended ats0.5, 0.5d, the center of the domain. We used a
1003100 mesh for the computation with 48 collocation
points for the particle and a time step of 0.01. A 1003100
mesh provides an accurate solution for the velocity and the
velocity gradient.9 The front tracking is performed to obtain
the deformation pattern of materialspassived blobs with a
fourth-fifth order Runge–Kutta method with an error toler-
ance of 10−7. During all computations presented in this work
the following criteria were applied for the front tracking:h
=0.02,hc=0.01, andac=140.

Figure 5 shows the velocity and the location of the rigid
particle, which indicates a periodic particle motion withT
=5.71. Plotted in Fig. 6 are the consecutive deformation pat-
terns of the initially circular material linesthe solid lined
surrounding the rigid particlesthe dotted lined during six
periods of flow, with a time interval of 1.2T. The periodic
particle orbit is indicated by the dashed line in the initial

figuresat t=0d. The length of the closed material linel is also
indicated. During front tracking, the enclosed area was kept
within 1% variation. The enclosed area is computed along
the curve bysrx ·ncdsd /2, with the outward normal vectornc

along the curve.17

The deformation patterns in Fig. 6 show the typical cha-
otic behavior with stretching/folding and exponential growth
of the material line, even though the motion of the rigid
particle is regular and periodicsas is the velocity fieldd.
There are two stretching directions around the particle
boundary in each subpart of Fig. 6 and the direction of the
stretch changes in time, due to change of the surrounding
velocity field of the particle.

The existence of the two stretching directions is closely
related to the perturbed hyperbolic velocity field, as men-
tioned in the Introduction. To show the effect on the velocity
field, we plotted two sets of streamlines att=0: one from the
full velocity field u fFig. 7sadg and the otherfFig. 7sbdg of the
perturbed velocity fieldu8=u−u0, whereu0 is the velocity
field in the cavitywithout the particle. In case of the freely
suspended particle, there is no significant change in the
streamlines with the full velocity field. However, the stream-
lines of the perturbed velocity fieldu8 show a hyperbolic
flow resulting from the presence of the particle. In Fig. 7sbd,
the stretching of material occurs in two directions, to the
right-lower direction and to the left-upper direction around
the particle. Compare Fig. 7sbd with the deformation patterns
on the particle boundary att=6T in Fig. 6; also compare it
with Fig. 1. The direction of the stretch changes as the par-
ticle moves to other positions where the surrounding velocity
field is different. In addition, the particle rotates at an angular
velocity related to the local vorticity, which leads to the fold-
ing of the stretched material lines near the rigid particle.
Remark that in simple shear flow the perturbation of the
velocity field caused by a rigid particle will not lead to cha-
otic advection. Without loss of generality we can assume that
the particle only rotates and that the velocity is steady. For

FIG. 4. The motion of a single rigid particle in a lid-driven cavity flow in an
extended phase space.

FIG. 5. The particle motionsU ,V,vd and the locationsX,Yd of the single-
particle problemsr =0.075d. The particle motion is periodic withT=5.71.
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steady two-dimensional flows it is well known that chaotic
mixing is not possible.3,4

C. Dynamical systems

The Poincaré sections at three different phases,f=0,
2p /3, andp, are presented for the single-particle problem
with r =0.075 in Fig. 8 in order to visualize the dynamical
structure in the extended space. A set of 400 evenly distrib-
uted initial points is integrated in time for 250 periods and
then the symmetry relation in Eq.s30d has been applied to
obtain the Poincaré sections. The Poincaré sections atf=0
andp have reflectional symmetry aboutx=1/2; thesections
at f=2p /3 and at 4p /3 are symmetric to each other about
x=1/2.

Figure 8 shows that the dynamical systems in the cavity
are partly chaotic and partly regular. Especially, the region
around the particle is chaotic, since the region undergoes
stretching and folding repeatedly, as mentioned earlier. Inter-
estingly, there is a large Kolmogorov–Arnold–MosersKAM d

torus in the opposite side of the rigid particle. Since it always
appears on the opposite side of the particle, we denote this as
the mirrored crescentand it behaves like a period-1 reso-
nance band. In fact, the mechanism for the creation of the
mirrored structure is quite similar to that of the period-1
resonance. We illustrate the mechanism in Fig. 9. Since the
particle itself plays the role of astravelingd hyperbolic fixed
point, a corresponding elliptic fixed point should exist inside
the region enclosed by the perturbed stable/unstable mani-
folds connected to/from the hyperbolic fixed point. The larg-
est stable orbit covering the elliptic point defines the region
occupied by the mirrored crescent.

The size of the mirrored crescent varies with the size of
the rigid particle. The Poincaré sections forr =0.05 and 0.1
are presented in Fig. 10 atf=0. We used the same initial
particle position asr =0.075 for these two problems. In com-
parison with Fig. 8 of the same phase, one can see that the
mirrored structure increases with the size of the particle. The
larger the particle, the larger the region of the superimposed

FIG. 6. The deformation patterns of
the circular closed material linessolidd
surrounding the rigid particlesdottedd
for six periods in time. The length of
the closed material linel is also indi-
cated. The radius of the particle isr
=0.075 and the initial location is
s0.5,0.5d. The dashed curve in the ini-
tial figure st=0d indicates the particle
orbit.
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hyperbolic flow, which means that there is a larger region
enclosed by the perturbed stable/unstable manifolds con-
nected to/from the hyperbolic fixed point and that the mir-
rored crescent gets larger as well.

In addition, there are many resonance bands in the
Poincaré sections in Figs. 8 and 10. The dynamics of the
resonance can be approximately determined by the frequency
ratio, denoted byL, the ratio of the frequency associated
with the fluid rotationf f in the unperturbedsno-particled sys-
tem to the frequency associated with the rigid particle motion
fp. In the single-particle problem, the frequency ratio can be
expressed as

Lszd =
f fszd
fp

=
Tp

Tfszd
, s31d

wherez is an index of the orbit of the fluid particle,Tp is the
time period of the particle motion, andTf is the time period
of the fluid particle defined in the unperturbed system. Physi-
cally the frequency ratioL indicates that the number of ro-
tations of the fluid particle during one-particle rotation. We
simply take the initial fluid particley position on the center-

line sx=0.5d as the index of the orbitz. Then the distribution
of the frequency ratio is plotted as a function of the initial
positiony in Fig. 11. The time period of the particle rotation
Tp is found to be 5.62 and 5.84 forr =0.05 and 0.1, respec-
tively. The dominant rational frequency ratios, possessing a
relatively small denominator, are indicated in Fig. 11. In the
most weakly perturbed case,r =0.05 in Fig. 10sad, one can
observe the period-4sL=1/4d, 3 s1/3d, 5 s2/5d, 2 s1/2d, 3
s2/3d, 4 s3/4d, and 4s5/4d resonance bands along the cen-
terline sx=0.5d from the bottom, which are expected from
the frequency ratio distribution. Whenr =0.075, the size of
the inner elliptic island ofL=5/4 is reduced significantly
and the elliptic island ofL=3/4 disappears. Seef=0 in Fig.
8 for a direct comparison. In the most perturbed case,r
=0.1 fFig. 10sbdg, the period-4sL=1/4d and 5 sL=2/5d
have disappeared, due to the increased perturbation. The in-
nermost elliptic rotation has been further destroyed and the
period-4 resonance band appeared instead.

To summarize, as the particle size increases, we get a
stronger chaotic behavior in the regions governed by the
usual resonance phenomena, but at the same time the largest
elliptic island of the mirrored crescent increases also. A pos-
sibility avoiding the dilemma is to add another rigid particle,
which will be discussed in the following section.

Before closing the present section, we show the defor-
mation patterns of small material blobs, originally located
around the four elliptic and four hyperbolic fixed points of
the period-4 orbitsL=5/4d for r =0.075. The location of the
first and fourth-order periodic points is determined using a
technique similar as presented by Andersonet al.6 We com-
puted the deformation patterns for the 24 periods, since mo-
tions in the resonance band are subharmonic and slowsFig.
12d. The patterns show material transports due to the hetero-
clinic tangles between the neighboring hyperbolic fixed
points.

V. PROBLEMS WITH MORE THAN ONE PARTICLE

A. Two-particle problem

Now we proceed to the system possessing two particles.
The two-particle problem is constructed carefully such that
the motion of the two rigid particles is periodic in time, both
with the same period, and thereby the velocity field becomes
also periodic. We use two identical particles with radiusr
=0.075. The first particle is again positioned at the center of
the cavitys0.5, 0.5d, and the second particle positiony along
the centerlinesx=0.5d is determined using the Newton–
Raphson method to satisfy the periodicity. The location of
the second particle was founds0.5, 0.89178d. The period
during which a particle returns back to its original position
corresponds to twice of the period of the two-particle prob-
lem, since the two circular particles are identical. In this
regard, in the two-particle problem, the periodT is defined
such that a particle returns to the original position of the
other particle, and has been foundT=2.805 with a 100
3100 mesh and a time step of 0.01. With the periodT, one
can construct the Poincaré map along with its symmetry re-
lation in the same as done for the single-particle problem.

FIG. 7. The streamlines of the single-particle problemsr =0.075d at t=0: sad
using the full velocity fieldu; sbd using the perturbed velocity fieldu8=u
−u0. u0 is the velocity field of the cavity flow without the particle. The rigid
particle is described by the dashed line and is located ats0.5,0.5d.
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Figure 13 shows the Poincaré section of the two-particle
problem atf=0. Unlike the previous single-particle prob-
lems, there is no large elliptic island in the opposite side of
the particle, since the other particlesor the traveling hyper-
bolic fixed pointd is located exactly where the island would
be expected to be present. Although the problem is specially
constructedsfor the purpose to obtain a periodic flowd, one
can expect that the destructionsor at least shrinkaged of the
mirrored island will take place in general for those problems
with more than one particle.

There are a number of resonance bands and KAM tori in
the Poincaré sectionsFig. 13d. The resonance bands of period
3, 4, and 5 appear as expected from the frequency ratios 1/3,
1/4, and 1/5sand 2/5d in Fig. 11. Note that the period is
approximately half the period of the single-particle prob-
lems. In Fig. 14 we present six consecutive deformation pat-
terns of a circular fluid blob for 28 periods with an interval
of 5.6T along with the length stretchl.

Other combinations of two-particle systems can be con-
sidered where the ratio of the radii of the two particles may
act as a parameter. However, we do not expect any funda-
mental changes with respect to the dynamics of the mixing
flows compared to the case as presented in this paper, and
such an analysis is therefore not within the scope of this
paper.

B. Three-particle problem

The final example is the system containing three rigid
particles of the same sizer =0.05. There is no periodicity in
the flow; at least we could not determine three-particle loca-
tions such that the three particles return to their original lo-
cation after a certain time. We have placed the particles ini-
tially at the locationss0.5, 0.4d, s0.5, 0.6d, and s0.5, 0.8d in
the cavity and analyzed the displacement and deformation of
a fourth passive blob. The continuous deformation patterns
of the initial blob att=0 sinitiald, 30, 60, and 84 are plotted
in Fig. 15. Once again, one can observe the stretching in two
directions around the particle boundary.

FIG. 9. The occurence of a large KAM torussthe mirrored crescentd in the
opposite position of the rigid particle.

FIG. 8. The Poincaré sections atf
=0, 2p /3, and p for the single-
particle problem withr =0.075.
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The particle, initially placed at the lowest position, ro-
tates around the other two particles and the inserted fluid
blob. The two other particles continuously tumble while the
inserted blob starts to stretch and fold around these two par-
ticles. Until t=46, the initial lowest particle is not directly
involved in the stretching and folding process of the inserted
blob. After this time, the blob reaches the lowest particle
where it starts to fold around.

In Fig. 16, the length stretch of the circular blob in the
three-particle problem is plotted in time and shows the ex-
ponential growth confirming that the flow is chaotic. In the
same figure results for the single- and two-particle case have
been inserted where the length stretch has been scaled with
its original length. In order to have a systematic comparison,
for the single-particle results, we plotted the result from the
initial blob of r =0.09 as shown in Fig. 6 and also the initial
blob of r =0.05 used in the two-particle or three-particle
problem using the same location of the blob. The latter one is
denoted with the asteriskspd. For the two-particle problem,
the length stretch result using the initial blob ofr =0.05 as in
Fig. 14 along with the two blobs ofr =0.09 which enclose

the upper and the lower particles initially, respectively. In the
latter case, the relative length stretch result from the blob
embracing the lower particle is denoted with a single asterisk
spd and the one from the upper particle is denoted with two
asteriskssppd.

What we clearly see from Fig. 14 is that the stretching
and folding really takes place close to the rigid particles,
especially in the result for the single-particle case. In the
single-particle case we observe the time period of the flow
from the length stretch in Fig. 16. Until aboutt=5.7 we see
a steady increase in the length stretch, which decreases for a
short time, approximately a quarter of a period, and then
increases again. Apparently, the flow inhibits regions where
contraction takes place for a certain time. After the contrac-
tion a steep increase in length stretch is observed again. The
process is repeated for every period of flow.

In general, the cases with blobs enclosing the rigid par-
ticle show more pronounced length stretch, as one expects
from the chaotic region formed near the rigid particle bound-
ary. The results from the two- and three-particle systems with
blobs not enclosing the particle in Fig. 16 show that the
length stretch is less compared to the single-particle case.

VI. CONCLUSIONS

In this study, we investigated chaotic material advection
in a two-dimensional lid-driven cavity flow laden with freely
suspended rigid particles, which is regular and integrable in
the absence of the particle. We focused on understanding the
mechanism how the presence of rigid particles affect the dy-
namical systems of the flow and lead to chaotic advection.
We used a finite-element/fictitious-domain method with a
rigid-ring description for the particle to solve the solid-liquid
flow and a high-order adaptive frontal tracking method for
fluid particle tracking.

In the single-particle problem, which is carefully con-
structed to keep the flow periodic, we discussedsid the
stretching and folding of fluid material around the particle,
sii d the existence of a large elliptic islandsthe mirrored cres-
centd in the opposite side of the particle, which grows with
the size of the rigid particle, andsiii d the usual resonance
structures which decays with increasing particle size. The
reason for these phenomena is the occurrence of hyperbolic

FIG. 10. The Poincaré sections atf
=0 for different rigid particle sizes:sad
r =0.05; sbd r =0.1.

FIG. 11. The frequency ratio distribution of the single- and two-particle
problems.
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perturbed flow caused by the presence of the rigid particle.
The two-particle problem is also carefully constructed to sat-
isfy the periodicity. Since one particle has been placed ex-
actly where a mirrored island from the other particle would
appear, there does not appear a large mirrored island in the
two-particle problem. The single- and two-particle problems
are just periodic and there is no Lagrangian chaos in the
particle motion, which is a major difference from the work of
Vikhansky.7 The route to chaos in particle-laden flow consid-
ered in these problems is not generated by chaotic Lagrang-
ian motion of the particle, but originates from the presence of
the freely suspended particles inducing a hyperbolic per-
turbed flow. We also show results for a three-particle prob-
lem, which is not periodic, and discussed mixing patterns
along with the length stretch.

The method for solving the solid-fluid problem in this
paper can be extended to systems with a viscoelastic fluid,
which are of great importance for mixing in polymer pro-
cessing. In the viscoelastic system, the particle motion, the
rheological behavior, and the particle/particle interaction be-
havior are quite different from Newtonian behavior, e.g.,
separating two particles generate strong elongational flows
between the two particles, which of course affect dynamical
systems and mixing performances.18
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APPENDIX: SYMMETRIES IN THE SINGLE-PARTICLE
PROBLEM

Here we derive the symmetry in the Poincaré mapfEq.
s30dg from the symmetry in the velocity fieldfEq. s28dg for
the single-particle problem. The procedures adopted here are
similar to those used in Hwanget al.15,16for the steady three-
dimensional open flow system with the spatially periodic
perturbation.

For the notational convenience, let us define a phase-
inversive reflection symmetry transformationSxf such that

Sxf:sx,y,fd → s1 − x,y,2p − fd. sA1d

SxfSxf= I, with the identity transformationI. Then the sym-
metry of the velocity fieldfEq. s28dg can be rewritten as

uspd = usSxfpd, vspd = − vsSxf pd sA2d

at the fluid material pointp=sx,y,fd in R23S. Now con-
sider the motion of a fluid particlep in the flow. First, let us
define infinitesimal forward time integrationF and backward
time integrationB such that

Fp = sx + udt,y + vdt,f + vdtd, sA3d

Bp = sx − udt,y − vdt,f − vdtd. sA4d

Then

FSxf p = s1 − x + udt,y − vdt,2p − f + vdtd,

= SxfBp. sA5d

Therefore, the infinitesimal particle motion satisfies the fol-
lowing symmetry:

Bp = SxfFSxf p. sA6d

Moreover, by applying successive application, this symmetry
holds also for finite time step,

FIG. 12. The consecutive deformation patterns for small material blobs initially located around the four elliptic and hyperbolic fixed points in the orbit of
period 4sL=5/4d in the single-particle problem withr =0.075.

FIG. 13. The Poincaré section for the two-particle problem withr =0.075.
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FIG. 14. The six consecutive deformation patterns of a circular fluid blob in the two-particle problem withr =0.075 for 28 periods with interval 5.6T along
with length stretchl. The particles and the fluid blob are denoted by the dotted and solid lines, respectively.

FIG. 15. The consecutive deformation
patterns of a fluid blob for the
three-particle problem withr =0.05.
The particles and the fluid blob are de-
noted by the dotted and solid lines,
respectively.
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Bn ¯ B1p = SxfFnSxf ¯ SxfF1Sxf p

= SxfsFn ¯ F1dSxf p for all integern.

sA7d

The motion of the fluid particle in the physical spaceR2

can be represented by the flowxstd using the mapw such that

w:R2 → R2, xstd = wfst0d
fstd

„xst0d…, t . t0. sA8d

Using the two-dimensional reflection symmetryS in Eq.
s29d, the time-reversal backwardsnot inversed flow, denoted
by w̃, can be written as

w̃−s
−r = Sws

rS. sA9d

The mapw sor w̃d commutes with 2p, i.e.,

sw0
2pdn = w0

2pn, sw̃0
−2pdn = w̃0

−2pn. sA10d

We choose the commutative two-dimensional map as the
Poincaré map,

Pf0
; wf0

2p+f0. sA11d

Then thenth iterate ofPf0
and its inverse can be written as

Pf0

n = wf0

2np+f0, Pf0

−n = w̃f0

−2np+f0. sA12d

Using Eqs.sA8d with sA12d, we get the symmetry of the
Poincaré mapfEq. s30dg as follows:

P2p−f0

−n = SPf0

n S. sA13d
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