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1. Introduction

Let ¥(x,y) denote the number of integers specified in the title. A
number of estimates and asymptotic formulae for this function have been
given (cf. [1] and the literature mentioned there). Recently DE BRUUN
(12) proved an asymptotic formula for log ¥(x,y) which holds uniformly
for 2 < y < x. Part of the proof consisted of showing that -

Y(x,y) > (”(y)u* ”) where u = [(log x)/(log ¥)].

It is the purpose of this note to extend this inequality to an asymptotic
formula (which is weaker than DE BRUIIN’S result). In fact we shall prove:

Theorem 1: For 2 < y < x we have for x — oo, uniformly in y,

log ¥(x,y) ~ log <n(y l+ u) §5)

where

u = [(log x)/(log y)]-
We remark that this of course follows from DE BRUNN’s theorem. Our
interest lies mainly in giving a short fairly straightforward proof. For
some ranges of values of y (1) is nearly trivial and the most interesting
part of the proof concerns the range (log x)* <y < (logx Le
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. Proof of Theorem 1

We shall prove (1) by showing that for every ¢ > 0 we have

1+=r
( n(y,).ﬂ) < ¥(x,p) < ( "y ?.+u> for x > xo(e). 2
\ “ / \ b

. The first inequality immediately follows from the fact that <ﬂ(y)u+ u)

represents the number of solutions of
Y @, < u = [(log x)/(log )]
Py

in nonnegative integers o, and this number is less than the number of
solutions of

Yo,logp <logx

sy

which is ¥(x,y) by definition.
In sections b, ¢ and d we prove the second inequality of 2).

. We now consider y < (log x)' **. We first remark that (2) is trivial

for very small values of y, for example y < (log x)*2, because
1 n(y) 1 +£.
Wix,y) < (22X 49 < my)+u if y < (log x)*¥2.
log 2 u

Hence we can assume that y > (log x)*2.

Let N, denote the number of integers < x, free of prime factors
»' ~¢ and let N, denote the number of integers < x all of whose prime

factors satisfy y* 7% < p < y. Then ¥(x,y) < N,N,.
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Trivially N, < log x
log 2

(yl—s)
+ 1) . Furthermore

z(y)
<”(y ) +“> > (m) . From this it follows that

u (y)

log N, fog log x)

N =0 < 4g2
log <7r(y L + u> (log x)




ie. Ny < <7z(y3+u> for x > x,(g).

Now N, is less than the number of solutions of

B log x

Xy xR —
yt=e<psy - (1—é&)logy

in nonnegative integers o , and this number does not exceed

m()+u where u’ = log x — .
u' (1—¢)logy

We now use the fact that if g, b and b(1 + &) are positive integers then

<a+b>1+£ _ ”ljl (1 . L)lﬂ - ﬁl <1 N b(1+'s)> _ (a+b(1+£)>‘

a a—i =0 a—i \ a

n(y)_l_u 1+0(e)
u .

It follows that N, < <

Combining the estimates for N, and N, we find

TC(y)‘I‘M 1+0(e)
Y(x, y)< < u )

proving (2) for y < (log x)* *=.

¢. For y > (log x)"® where for instance n(c) = 2/¢ the right-hand side
of (2) is trivial because

<7c(y) +u> > <£@>u which implies(n(y)+u>1+£ > x
u

u u

d. The case (logx)'** < y < (log x)** will be treated by writing
y = (log x)* and proving

W(x, y) = Xt N ©)
which implies (2).
We first remark that <7t(yz+u> = x! 7Yt g44d the same holds
for (niy )>. So it remains to show that
1—1/a+o(1) .

P(x,y) < x
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To do this we split the integers counted by ¥(x,y) into two classes. First
those with at least u distinct prime factors. Their number is less than

x 1\ 2elog log x\* _

y 2) <x glO8 X\ _ | 1-t/ato(l)
u' p<x p u

The number of integers < x with less than u distinct prime factors < y

1

‘is less than

log x
n(y) +u
log 2
u u
because there are <n(i[y )> different u-tuples of primes < y and for each of
log x
. We have

these the sum of the exponents is less than
log 2

log x
+u n\ n*  [ne\
= x°( | this foilows from | -} < — < .
k k! k

log 2

u |/
So the number of integers in the second class is also x* ~'/*F°®,
This completes the proof of Theorem 1.
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