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Abstract

Consider the M/G /1 queue in which customers are rejected if their total sojourn time
would exceed a certain level K. A pasic performance measure of this system is the
probability PK that a customer gets rejected in steady state. This paper presents
asymptotic expansions for PK as K -+ 00. If the service time B is light-tailed, it
is shown that the loss probability has an exponential tail. The proof of this result
heavily relies on recent results on the two-sided exit problem for Levy processes with
no positive jumps. For heavy-tailed (subexponential) service times, the loss probability
is shown to be asymptotically equivalent to the trivial lower bound P(B > K).

2000 Mathematics Subject Classification: 60K25 (primary), 60J30, 68M20, 90B22
(secondary) .

Keywords & Phrases: queues, storage processes, complete rejection, loss probability,
Levy processes, two-sided exit problem, asymptotic expansions, light tails, heavy tails.

1 Introduction

This paper considers the following variation of the MIG/1 queue: customers that arrive
are accepted if and only if their total sojourn time is less than a fixed constant K. If this
is not the case, then a customer is rejected completely. Thus the workload WK,n in the
system before the n-th arrival is driven by the following recursion:

(1.1 )

We are interested in the probability PK that a customer is rejected in steady state, more
precisely, in the behavior of PK as K - 00. If the system load p < 1 (which we assume
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throughout this paper) it is clear that PK ~ O. This paper gives exact irates of convergence

for both light-tailed and heavy-tailed service times.

The model decribed by (1.1) seems to have a special place in the litbrature on queueing

models with rejection. In particular, it is not as well understood 8$ the MIG/1 queue
where customers are not completely but only partially rejected (i.e. part of a rejected

customer's work is accepted such that the buffer is completely filled); this model is also

known as the finite dam. The steady-state distribution of the workload in this queue

is already known since Takacs [21]. The probability PI< that a customer is (partially)

rejected can be expressed in terms of the tail distribution of the maximum amount of

work Vmax in the system during a busy cycle of the infinite buffer qrueue. In particular,

the following result (which even holds for the GIlG11 queue with partial rejection) can

be found and Bekker & Zwart [5]:

PI< = P(Vmax > K).

Another tractable model is the MIG/1 queue where customers leave the system due to
impatience when their waiting time has exceeded a fixed treshold K. In this case, the

probability of impatience Pk is equal to

i (1 - p)P(WM / G/ l > K)
PK = -----:-=----'----'----.-

1 - pP(WM/G/l > K) ,

with WM / G/ l the steady-state waiting time distribution in the MIG/1 queue, see Boots
& Tijms [8]. These formulas can easily be applied to obtain asymrjtotic expansions for

PI< or Pk, since the asymptotic behavior of P(WM / G/ l > K) and 1p(Vmax > K) is well
known for both the light-tailed and the heavy-tailed case.

Unfortunately, such a simple program cannot be carried out for the MIG/1 queue with
complete rejection. The main problem is the intractable distribution of the amount of

work in the system when a customer is rejected. (In the case of partial rejection, this

amount of work is always K.) Another problem with this queueing model is that its

driving recursion (1.1) fails to be monotone in its main argument WK,n. This rules out the

possibility of relating PK to a first passage probability using the frarp.ework of Asmussen
I

and Sigman [1]. This approach has been proven quite fruitful wheri considering queues
I

with partial rejection; see e.g. [5].

Nevertheless, special treatments are possible for the MIMII and MIDII queues; see Co­
hen [9], Gavish & Schweitzer [14] and Asmussen & Perry [2]. De Kok & Tijms [16] derived

the asymptotic behavior of PK in the MIMII case with service rate /1. In particular, they
show that

(1.2)

as K ~ 00, where f(x) "" g(x) means limf(x)lg(x) = 1. For the more general MIGII
queue, it is conjectured in [16] that PK has an exponential tail. !This conjecture was

only partially resolved by Van Ommeren [18], who obtained asympt<i>tic lower and upper
bounds.

2



The main goal of the present paper is to settle this conjecture for a general class of light­
tailed service-times: it is shown that, for some constants D and "f,

as K ---t 00. Unfortunately, the prefactor D in this expansion is quite difficult to compute.
The expression we obtain for D is related to the solution of a certain Fredholm-type
integral equation.
This result should be contrasted with the case where service times are heavy tailed (more
precisely, when service times are in the class S*, see Section 2). In that case we show
(even for the more general GI / GI /1 queue) that

PK rv P(B > K).

Thus the trivial lower bound PK ~ P(B > K) is attained as K ---t 00.

Not surprisingly, the methods we use to prove the asymptotic expansions for PK strongly
depend on whether service time are light-tailed or heavy-tailed. In the light-tailed case,
we heavily rely on results on the two-sided exit problem for completely asymmetric Levy
processes (i.e. Levy processes with no positive or no negative jumps). In present form,
these results are known since Suprun [20], who approached the problem using Wiener-Hopf
factorization. The results of [20] came available to a wider audience in Bertoin [7]. The
latter paper attacks the two-sided exit problem using excursion theory. A recent survey
containing martingale proofs is Kyprianou [17]. The results which are of direct use for us
are collected in Section 4. Using these results, we are able to obtain an expression for the
distribution of the amount of work right before a loss occurs. This distribution provides
the key to deriving the asymptotics. When service times are heavy-tailed, the key is to
show is that the system workload is 0(1) (as the buffer size K ---t 00) when a customer is
rejected. This is possible by exploiting some estimates due to Asmussen [3] and Foss &
Zachary [13].
This paper is organized as follows: a detailed model description of the M/ G/1 queue with
complete rejection, as well as some auxiliary results on the M / G/1 queue with infinite
buffer size, are given in Section 2. We present our main results in Section 3. Section 4 is
devoted to the two-sided exit problem for Levy processes with no positive jumps. These
results are then applied in Section 5 to obtain a proof of the asymptotics for PK in the
light-tailed case. A proof of the heavy-tailed asymptotics can be found in Section 6.

2 Preliminaries

This section contains several preliminary results. We start with a description of the
workload process of the M/G/l queue with complete rejection. Then we give several
asymptotic results for the single server queue without rejection which are used in this
paper.
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2.1 The M/G/l queue with complete rejection

Customers arrive according to a Poisson process with rate A. Service times are given by the
LLd. sequence Bi , i 2: 1. A generic service time is denoted by B, and has Laplace-Stieltjes
transform (LST) (3(s). Throughout the paper, it is assumed that p = AE[B] < 1.
The workload process in the MIGl1 queue with complete rejection is defined as follows:
Let T1, T2, ... be the interarrival times of the customers and denote the arrival epoch of the

n-th customer after time 0 by Tn, Le., Tn = L:~=l Tk. The workload process {VK(t), t E lR}
is then defined recursively by

where 1(-) is the indicator function. The workload process {VK(t), t E lR} is regenerative,
with customer arrivals into an empty system being regeneration points.

2.2 The single-server queue with infinite buffer size

Our analysis partly relies on several results for the standard single server queue. In
particular, we need the tail behavior of the waiting-time distribution, and the tail behavior
of the distribution of the maximum workload during a busy cycle; these results are gathered
in this section.
As mentioned in the introduction, we both consider light-tailed and heavy-tailed asymp­
totics. When we assume that the service time distribution is light tailed, we mean the
following:

Assumption L
There exists a constant , > 0 such that

~E[eI'B] = 1,,,+,
E[BeI'B] < 00.

(2.4)

(2.5)

If Assumption L is valid, then the tail of the waiting-time distribution in the MIGl1
queue satisfies:

U --t 00. (2.6)

The constant C is given by C = (1- p)/(AE[BeI'B] - 1). This result, due to Lundberg, is
classical and can be found in most applied probability textbooks; see for example Theorem
XIII.5.2 of Asmussen [4].

A similar result holds for the maximum amount of work during a cycle, defined as Vmax'

The following result is due to Iglehart [15], and is again valid under Assumption L:

P(Vmax > u) rv Coe-l'l.£,

with Co = C(E[eI'B] - 1), where C is the same constant which appears in (2.6).

4
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The above results are all concerned with light-tailed service times. In this paper we call
service times heavy-tailed if they belong to the class S*, i.e.

Assumption H

Let F(x) = P(B :::; x) and F(x) = 1 - F(x). Then,

l
x F(x - y) -

lim F() F(y)dy = 2E[B].
x->oo 0 x

If Assumption H holds, then the following asymptotic estimate holds, even for the GI / GI /1
queue; see Asmussen [3] and Foss & Zachary [13]:

P(Vrnax > K) '" E[N]P(B > K). (2.8)

The prefactor E[N] is the expected number of customers arriving during one busy cycle.
Foss & Zachary [13] also show a converse result: if (2.8) holds, then the service time distri­
bution satisfies Assumption H. For background on heavy tails, we refer to the monograph
Embrechts et al. [12].

3 Main results

In this section we present the main results of this paper, i.e. asymptotic expansions for PK

under light-tailed and heavy-tailed assumptions. We first present our result for light-tailed
service times. Define

W(x) = P(WM / G/ 1 :::; x)/(1 - p),

Q(x, y) = [W(x) - I(x?y) W(x - y)]>'P(B > y),

Ql(X,y) = Q(x,y),

Qn(x, y) = 1~0 Qn-l(X, z)Q(z, y)dz, n:2: 2,

00
Q*(x, y) = L Qn(x, y).

n=l
With these definitions we are able to state our first theorem:

(3.9)

(3.10)

Theorem 3.1. Assume that the arrival process is Poisson, let p < 1, and assume that the
service-time distribution satisfies Assumption L. Then there exists a constant D E (0,00)
such that

PK '" De-'YK .

The prefactor D can be written as

D = (1 - p)CoDo,

with Co given below (2.1) and

100 100 e'YX
- 1

Do = 1 + Q*(x, y) >'P(B > x)dxdy.
y=o x=o 1- P

5
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Thus, as conjectured in De Kok & Tijms [16J, the probability PK indeed has an expo­
nential tail. Unfortunately, the prefactor D is very difficult to compute; especially when
using the expression given above. Recall that for the M / M /1 queue, D can be computed:
it is shown in De Kok & Tijms [16J that D = (1- p)e-P, cf. (1.2). Note that Q*(x, y) can
be viewed as the solution of a Fredholm-type integral equation with kernel Q(x, y). The
relation between such equations and queues with rejection has been observed before in [2].
A probabilistic interpretation of Q(x, y) is given in Section 4.

As the next result shows, the asymptotics for PK in the heavy-tailed case are much easier
to describe. Moreover, it is not necessary to consider Poisson arrivals:

Theorem 3.2. Assume that the arrival process is a renewal process, let p < 1, and assume

that the service-time distribution satisfies Assumption H. Then

PK rv P(B > K).

Thus, the trivial lower bound PK 2: P(B > K) is asymptotically exact when service
times are heavy tailed. Theorem 3.2 reveals that, in the heavy-tailed case, a customer is
most likely rejected since its own service time is large. Right before (thus also right after)

rejection, the workload in the system is 0(1) as K ---t 00.

In the proof of Theorems 3.1 and 3.2 we use the following representation for PK. Let NK
denote the number of customers arriving during a busy period, and let LK the number of
customers lost during a busy cycle. Then, using the theory of regenerative processes, we
obtain

PK = E[LK]
E[NK ]

= E[LK ILK 2: 1J P(L > 1)
E[NKJ K_

= E[LK ILK 2: I Jp (TT K)
E[NKJ Vmax 2: .

In the third equality, we used the obvious identity P(LK 2: 1) = P(Vmax 2: K).
With this representation at our disposal, the idea of the proof is clear: In both the light­
tailed and the heavy-tailed case, it holds that E[NK] ---t E[N] (which equals 1/(1 - p)
in the M/G/l queue). Furthermore, the asymptotic behavior of P(Vmax 2: K) is given
in Subsection 2.2, both under Assumption L and Assumption H. Thus, it remains to
show that E(LK I LK 2: 1) converges to a constant as K ---t 00. In Section 6 we show
that this constant converges to 1 if service-times are heavy-tailed. Obtaining the limit of
E(LK ILK 2: 1) under light-tailed assumptions (which equals Do) is much more involved.
This requires several non-trivial results on Levy processes which are given in the following
section.

4 The two-sided exit problem

This section concentrates on the two-sided exit problem and paves the way to the proof
of Theorem 3.1, which is the subject of the next section. We use the same notation as .
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Bertoin [7]: consider a Levy process X t , t 2: a with no positive jumps. Define Px (-) as
P(· l Xo = x), and set P = Po. The distribution of X t is given by its moment generating
function

An important special case (in view of our queueing application) is when

Nt

Xt =t- LBi'
i=l

(4.12)

with (as in the previous sections) B i , i 2: 1 an i.i.d. sequence with common LST (:J(s), and
Nt, t 2: a a Poisson process with rate >.. In that case,

'l/;(s) = s - >'(1- (:J(s)).

Fix a, and define

T = inf{t : Xi ~ (0, an.
Let /IT be the jump at time T, i.e., /IT = XT - XT-' This section presents the joint
distribution of XT- and /IT, both for fixed a and a --+ 00.
First, we treat the case of fixed a. We start with a classical result (Takacs [21]):

Px(XT = a) = W(x)/W(a),

with W : [0 00) --+ [0, 00) the unique continuous function such that

(4.13)

The function W is known as the scale function; if Xt is compound Poisson, one can relate
W to the steady state waiting time distribution in the M/G/l queue if the latter exists,
d. (3.1). The joint distribution of XT- and /IT has been given in Bertoin [7]; see also
Suprun [20]. In the present paper, we only need Corollary 2 of [7], which is restated in
the following proposition.

Proposition 4.1. (Bertoin [7]) For every x, y E (0, a) and every z ::; -y we have

(
w(x)w(a - y) )

Px(XT- E dy; /IT E dz) = W(a) - I(x?y) W(x - y) A(dz)

where A denotes the Levy measure of X. In particular,

(
w(x)w(a - y) )

Q(a, x, y) := Px(XT- E dy; XT ::; 0) = W(a). - I(x?y) W(x - y) A(y, 00).

(4.14)
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Using this proposition, we now derive the asymptotic distribution of (XT-, AT) under the
assumption that X t is of the form (4.12) and that X t has a positive drift. Under (4.12),
the latter assumption is equivalent to

E (X (1)) = 1 - >.E(B) = 1 - p > O.

Note that, when (4.12) holds, the Levy measure in Proposition 4.1 is given by

A(dz) = >'dJP>(B ::; z).

Using Proposition 4.1 we obtain the following result.

Proposition 4.2. Assume that Xt is compound Poisson as in (4.12) with p < 1 and that

Assumption L holds. Then, as a -+ 00, for each x,

e'YY - 1
Pa-x(XT- E dy; AT E -dz IXT ::; 0) -+ 1 >.dP(B ::; z).

-p
(4.15)

In particular,

e'YY - 1
Pa-x(XT- E dy IX T ::; 0) -+ >'P(B > y). (4.16)

1-p

This proposition gives the asymptotic distribution of the level of Xt right before jumping
below O. As one can see, the asymptotic distribution is independent of the level x, which
is not very surprising.

Proof. The proof follows from direct computations. Fix x, y, z and write for a > x + y,
using Proposition 4.1 and (4.13),

W(a - x)W(a - y) - W(a)W(a - x - y)
Pa-x(XT- E dy; AT E -dz IXT ::; 0) = W(a) _ W(a _ x) >.dP(B ::; z).

We treat the numerator and denominator on the right hand side of this expression sepa­
rately. First, we analyze the denominator. Using (2.6), it follows that, as a -+ 00,

1 C_
W(a) = - - -e 'Ya(l + 0(1)).

1-p 1-p
(4.17)

This implies.

e'Yx - 1
W(a) - W(a - x) f"V C .

1-p

To obtain the asymptotic behavior of the numerator, we apply (4.17) four times. A simple
.computation then gives

_1_ 1 [e'YY(e'Yx _ 1) _ (e'Yx _ 1)]
1 - pe'Yx -1
e'YY - 1

1-p'=

Ce-'Ya(l + 0(1)) [ () ]W(a - x)W(a - y) - W(a)W(a - x - y) f"V (1 _ p)2 1 + e'Y x+y - e'Yx - e'YY .

This implies

W(a - x)W(a - y) - W(a)W(a - x - y))
-+

W(a) - W(a - x)

which completes the proof. O·
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The previous result provided the asymptotic distribution when one starts at a high level
a - x, Le. close to a. We also need the asymptotic distribution as a -t 00 when we start
at level x (Le., close to 0); this is presented in the next proposition.
Recall that Q(a, x, y) = Px(XT- E dy; X T ~ 0).

Proposition 4.3. As a -t 00,

Q(a, x, y) -t Q(x, y) = [W(x) - I(x~y)W(x - Y)]AP(B 2: y).

Proof. A straightforward combination of Proposition 4.1 and (4.17).

We close this section with some remarks:

o

• The function Q(x, y), appearing as limit in Proposition 4.3 and already defined in.
Section 3, can be interpreted as as follows: consider a risk process with initial capital
x. Then Q(x, y)dy is the probability that ruin eventually occurs, and that the surplus
before ruin is in the interval (y, y+dy). The distribution of the surplus prior to ruin
has been in investigated in Schmidli [19] .

• Both Proposition 4.2 and 4.3 are for compound Poisson processes. This assumption
can be relaxed: asymptotics for the scale function W(x) without the assumption
(4.12) can be derived from results in Bertoin & Doney [6], who prove an analogue
of (2.6) for the supremum of a Levy process. Since our primary interest is in the
compound Poisson case, we omit the details.

We now turn to an analysis of the loss probability PK.

5 Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1, which states the asymptotics for PK under
the (light tail) Assumption L. Recall that

P = E[LK ILK 2: 1] P(l1, K)
K E[NK] max 2: .

By monotone convergence we have E[NK] -t E[N] = 1/(1 - p), and from (2.7) we obtain
P(Vmax 2: K) '" Coe-'YK . Thus, to prove Theorem 3.1, it suffices to show that, under
Assumption Land p < 1,

E[LK I LK 2: 1] -t Do,

with Do defined as in Section 3. Write

00

E[LK ILK 2: 1] = LP(LK 2: n ILK 2: 1)
n=l

(5.18)

We now obtain an expression for P(LK 2: n I LK 2: 1) in terms of the undershoot
probabilities Q(a, x, y), as derived in the previous section. For this, it will be convenient·
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to work with the process RK(t) = K - VK(t) representing the spare capacity of the buffer
at time t; recall that VK(t) is the workload at time t as defined in Section 2.1. Let tn be
the time of the n-th rejection in a cycle. We take tn = 00 if LK < n. Define for n ;:::: 2 the
following densities:

Then, using the strong Markov property, it is obvious that for n ;:::: 2,

PK,n(X, y) = Q(K, x, y).

Set

Then, for n ;:::: 2,

PK,n(Y) = rK
PK,n(X, Y)PK,n-l(X)dxJo+

= . rK
Q(K,X,Y)PK,n-l(X)dx.Jo+

It remains to specify PK,l(X). This probability is given by

PK,l(Y) =lK
Q(K, K - u, y)dP(B ~ u).

Finally, note that for n ;:::: 2,

We now let K --t 00. Then, using Proposition 4.3 and (5.20), we obtain

PK,n(X, y) --t Q(x, y).

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

We now inductively prove that the quantities PK,n(X) converge. We start with n = 1.
Using Proposition 4.2 we obtain

e'YY - 1
Q(K,K-u,y)--t 1 AP(B>Y)=:Pl(Y)'

-p

It is not difficult to show that for each Y, Q(K, x, y) is bounded in K and x, 0 ~ x ~ K.
Thus, using the bounded convergence theorem, we obtain

From this, we readily obtain by an inductive argument:

PK,n(Y) --t Pn(Y) = roo Q(x,Y)Pn-l(x)dx.JO+

10
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Finally, we obtain that, for n ~ 2,

P(LK ~ niL ~ 1) --+ Pn:= 100

Pn(y)dy.

Thus, since PI = 1, we conclude that

00 00 roo
E[LK ILK ~ 1] --+ LPn = L io Pn(y)dy.

n=I n=I 0

(5.28)

(5.29)

That this quantity equals Do as given by (3.11) can easily be verified by iterating (5.27).
This completes the proof of Theorem 3.1.

6 Proof of Theorem 3.2

In this Section, it is assumed that Assumption H is in force. Starting point is again the
expression

1
PK = E[NK] E[LK ILK ~ l]P(Crnax > K).

Since, d. (2.8),

P(Vrnax > K) ""' E[N]P(B > K),

and since E[NK] --+ E[N], it suffices to show that

(6.30)

To prove this, we use an estimate due to Foss & Zachary [13]. Since B is in particular
long-tailed, there exists a function h(x) = o(x) with h(x) --+ 00 as x --+ 00 such that
P(B > x) ""' P(B > x - h(x)). Recall that tl is the first time a customer gets rejected.
We now have the following fact [13]:

Now write

E[LK ILK ~ 1] = E[LK1(VK(tl-)$h(K) ILK ~ 1]

+ E[LK1(VK(tl-»h(K) ILK ~ 1]
= I + II.

We first prove that term I converges to 1 and then show that II --+ O. In both cases it
suffices to prove the upper bound, the lower bound being trivial. To achieve an upper
bound, we assume that the service discipline is changed into partial rejection after time tl'
This gives a sample-path wise increase of the workload process; thus it does not decrease
the number of losses until the system empties. Denote the number of losses in the partial
rejection model by LlJ<. It is shown in [5] that LlJ< I LlJ< ~ 1 has a geometric distribution·
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with rate 1/E[NK]. This implies that E[Li< I Li< ~ 1] = E[Nk] ~ E[N]. We shall use
these results below.

Term I

As a worst case, we take VK(tI) = VK(tl-) = h(K). It is clear that the probablity of a
loss after time tl and before the queue empties is 0(1) as K --> 00. Given that this occurs,
the number of losses after time tl is geometrically distributed with rate 1/E[NK]' Thus
the expected number of losses, given that a loss occurs, equals E[NK] ~ E[N]. From this,
we conclude that

I ~ 1 + E[N]o(I).

Term II
Assume now, to obtain an upper bound, that the system starts at level K at time tl. The
number of additional customers that get rejected is again geometrically distributed with
rate I/E[NK]. Thus, as K --> 00,

This concludes the proof of Theorem 3.2.
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