

Constraint classification for mixed integer programming
formulations
Citation for published version (APA):
Nemhauser, G. L., Savelsbergh, M. W. P., & Sigismondi, G. C. (1991). Constraint classification for mixed integer
programming formulations. (Memorandum COSOR; Vol. 9130). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0ce3cf95-9bf5-40f8-8099-7fc5e317a4dd

TECHNISCHE UNIVERSITEIT EINDHOVEN
Faculteit Wiskunde en Informatica

Memorandum CaSaR 91-30

Constraint Classificatien for Mixed
Integer Programming Formulations

G.L. Nemhauser
M.W.P. Savelsbergh

G.C. Sigismondi

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Eindhoven, November 1991
The Netherlands

Constraint Classification for Mixed Integer Programming Formulations

G.l. Nemhauser
Georgia Institute of Technology

School ofIndustrial andSystem Engineering
Atlanta, GA 30332-0205

USA

M.W.P. Savelsbergh
Eindhoven UniversityofTechnology

P.O. Box 513
5600 MB Eindhoven

The Netherlands

G.C. Sigismondi
Georgia Institute of Technology

School ofIndustrial andSystem Engineering
Atlanta, GA 30332-0205

USA

1. Introduction
The success of branch-and-cut algorithms for combinatorial optimization problems [Hoffman and
Padberg 1985, Padberg and Rinaldi 1989] and large scale 0-1 linear programming problems
[Crowder, Johnson, and Padberg, 1983] has lead to a renewed interest in mixed integer programming.
The key idea of the branch-and-cut approach is reformulation. Problems are reformulated so as to
make the difference in the objective function values between the solutions to the linear programming
relaxation and the integer program as small as possible.

There are various ways to tighten the linear programming relaxation of an integer program. Prepro
cessing techniques [Hoffman and Padberg, 1991] try, among others things, to reduce the size of
coefficients in the constraint matrix and to reduce the size ofbounds on the variables. Constraint gen
eration techniques [Crowder, Johnson and Padberg, 1983, Van Roy and Wolsey, 1986] try to gen
erate strong valid inequalities.

Reformulation techniques should make the best possible use of the problem structure. It is
beneficial to distinguish two modes of operation. General reformulation techniques, which are
embedded in mixed integer programming systems such as ABC_OPT [Hoffman and Padberg 1989],
MINTO [Savelsbergh, Sigismondi and Nemhauser 1991], MPSARX [Van Roy and Wolsey 1986],
and OSL [IBM Corporation, 1990] try to identify problem structure based on an analysis of the con
straint matrix. Problem specific reformulation techniques are based on an a priori investigation of the
polyhedron associated with the set of feasible solutions.

The first step in the analysis of the constraint matrix is the classification of each constraint. The set
of constraints is partitioned into a number of general types. The partition should be based on the
specific structures that a system uses for its preprocessing, constraint generation, and branching stra
tegies. As a result, there is no consensus on terminology and classification scheme. Generalized
upper bound constraints, for instance, are defined as L. --Xj=1 in Nemhauser and Wolsey [1988] and

JeY·
as L. --XjSl in Wolsey [1990]

JeS·

i=I, ...,m

jeB
jeluC
jeBul
jeC

2

In this note, we define a classification scheme that is used in our system MINTO [Savelsbergh, Sig
ismondi and Nemhauser 1991]. Its purpose is to identify important classes to be used in preprocess
ing, constraint generation, branching, etc. We propose it as a general scheme to be evaluated,
modified and then, hopefully, adopted, by the mixed integer programming community.

2. Constraint classification
A general mixed integer programming problem is ofthe form

max I:. BCjXj +I:. /CjXj +I:. c CjXj
JE JE '}E

subjeetto

I:. BaijXj +I:. /aijXj +I:. caijXj - biJE '}E '}E

O:S;Xj:S; 1
lxj :s; Xj :s; Uxj

xjeZ

xjeR

where B is the set of binary variables, I is the set of integer variables, C is the set of continuous vari
ables, the sense - of a constraint can be :s;,~, or =, and the lower and upper bounds may be plus or
minus infinity. See Nemhauser and Wolsey [1988] for a general treatment ofthe subject

To classify constraints, we first distinguish binary variables from integer and continuous ones.
Note that this is different from a variable classification that surely would separate integer and con
tinuous variables if for no other reason than the need to do so in branching. However, we have not yet
found a significant use of constraints that distinguish between integer and continuous variables, e.g.,
we do not use Gomory mixed integer cuts. We use the symbol Y to indicate integer and continuous
variables and x to indicate binary variables. Each constraint class will be an equivalence class with
respect to complementing binary variables, i.e., if a constraint with term ajxj is in a given class then
the constraint with ajxj replaced by aj(l-xj) is also in the class. Consequently, the most general con
straint that can appear in amixed integer programming formulation can be represented as follows

I:. BajXj+I:. /vCajYj -b,
'}E '}E

whereaj for jeB and bare positive, and aj forJeluC are nonzero.
Furthermore, we distinguish variable bounds from simple bounds. In a constraint with a variable

bound, there is a distinct binary variable that bounds all others if it is set to either 0 or 1. The most
general constraint with a variable bound can be represented as follows

I:. BajXj+L· /vCajYj -atxt,'}E '}E

where aj for jeB, aj for JeluC, and at are all positive. Whenever we consider a constraint with a
variable bound, we will assume that the distinct binary variable appears in the right-hand-side of the
constraint and all other variables appear in the left-hand-side ofthe constraint.

The language we propose to define constraint classes uses six fields. The first field describes the
type ofvariables that occur in the constraint. The second field specifies the number ofvariables in the
constraint. The third field characterizes the coefficients of the variables in the constraint. The fourth
field describes the type of bound. The fifth field specifies the sense of the bound. The sixth field
characterizes the value ofthe bound.

3

The classification language consists of a set of rules that define allowable structures. Each rule
defines a nontenninal symbol (classification or field) in tenns ofother nontenninal symbols and ter
minal symbols (values of fields, or 'tokens '); the symbol v is used to represent an exclusive or. Each
nontenninal symbol is enclosed in angular brackets. Each token is followed by a comment on its
interpretation between square brackets. The token 0 indicates the empty symbol; it is used to indicate
a default value, which is usually either the simplest or the most appropriate value.

Each constraint class under consideration is defined by a number of tokens, some of which may be
equal to o. Fornotational convenience, the tokens are represented as follows

<field 1>~~~~<field 4><field 5><fWd 6>

The partitioning of the set of constraints into a number of classes, as done by mixed integer pro
gramming systems, is in fact nothing more than the identification of interesting special cases.

<classification> ::=

<type ofvariables>
<numberofvariabres>
<coefficients ofvariables>
<type ofbound>
<sense ofbound>
<value ofbound>

2.1. Type ofvariables
The first field specifies the type of variables that appear in the left-hand-side of the constraint, Le.,
whether there are both binary and non-binary variables, just binary variables, or just non-binary vari
ables.

<type ofvariables> ::= 0 v BIN v MIX

o

BIN
MIX

[no binary variables]
[all binary variables]
[both binary and non-binary variables]

2.2. Number ofvariables
The second field specifies the number of variables that appear in the left-band-side of the constraint,
Le., whether there is only a single variable or whether there is more than one variable. Note that in the
case of a left-hand-side with both binary and non-binary variables there can never be a single vari
able.

<number ofvariables> ::= 0 vi

o

1
[an arbitrary number ofvariables]
(a single variable]

4

2.3. Coefficients ofvariables
The third field specifies the coefficients of the variables that appear in the left-hand-side of the con
straint, i.e., whether they all have coefficient c or whether they have arbitrary coefficients.

<coefficients ofvariables> ::= 0 v c

o [arbitrary coefficients]

c [all coefficients equal to c]

2.4. Type ofbound
The fourth field specifies the type of bound. TIle type of bound can be either simple or variable. In
constraints with a variable bound all variables in the left-band-side have positive coefficients and
there is a single binary variable with a positive coefficient in the right-hand-side.

<type ofbound> ::= 0 v VAR

o [simple bound]

VAR [variable bound]

2.5. Sense ofbound
The fifth field specifies the sense ofbound. The sense ofbound is determined by the sense ofthe con
straint, which can be either S:, =, or~.

<sense ofbound> ::= VB v EQ v LB

VB [upper bound]
EQ [equal bound]
LB [lower bound]

2.6. Value ofbound
The sixth field specifies the value of the bound, i.e., whether it is equal to a specific value c or whether
it can be an arbitrary value.

<value ofbound> ::= 0 v c

o [arbitrary bound]

c [bound equal to c]

The language presented above defines a hierarchical structure of constraint classes. Figure 1 expli
citly shows this hierarchical structure for the constraints with sense S:. We now define for each con
straint a unique constraint class by assigning it to the smallest class in the hierarchical structure that
contains it. Table 1 illustrates the classification scheme by presenting classes for several types of
constraints encountered in the literature.

5

Figure 1. Hierarchical structure of less-than-or-equal constraints.

Oassification Inequality Name

BIN1EQl LjEBxj=1 generalized upper bound

BIN1UB 1 L· BX/~1 special ordered set
JE

BIN1UB L. BXj$k (k*l) invariant knapsack
JE

BIN 1VARUB L· BXj~IcXIc plant-location
JE

BIN1VARLB L· BXi~·alcxlc reverse plant-location
JE

BINUB L· Bajxj~/c knapsack

IVARUB
JE

ajYj~lcxlc variable upper bound
IVARLB ajYi~·alcxlc variable lower bound
lUB ajYj~1c simple upper bound
lLB ajYj~1c simple lower bound

Table 1. Examples of classifications.

References
H. Crowder, E.L. Johnson, M.W. Padberg (1983). Solving large-scale zero-one linear program

ming problems. Oper. Res. 31,803-834.
K.L. HotTman, M. Padberg (1985). LP-based combinatorial problem solving. Annals ofOper. Res.

4,145-194.
K.L. HotTman, M. Padberg (1989). ABC_OPT: A branch-and-cut optimizer for solving large 0-1

linearprogrammingproblems. (In preparation)
K.L. HotTman, M. Padberg (1991). Improving LP-representation of zero-one linear programs for

branch-and-cut. ORSAJ. Comput.3, 121-134.

IBM Corporation (1990). Optimization Subroutine Library, Guide and Reference.
G.L. Nemhauser, L.A. Wolsey (1988). Integer Programming and Combinatorial Optimization.

Wiley, Chichester.
M. Padberg, G. Rinaldi (1991). A branch-and-cut algorithm for the resolution of large-scale sym

metric traveling salesman problems. SIAM Review 33, 60-100.

6

T. van Roy, L.A. Wolsey (1986). Solving mixed 0-1 programs by automatic refonnulation. Oper.
Res. 35,45-57.

M.W.P. Savelsbergh, G.C. Sigismondi, G.L. Nemhauser (1991). MINTO, a Mixed INTeger
Optimizer. Memorandum COSOR 91-18, Eindhoven University of Technology; also appeared as
Computation Optimization Report 91-03, Georgia Institute ofTechnology.

L.A. Wolsey (1990). Valid inequalities for 0-1 knapsacks and MIPS with generalised upper bound
constraints. Discrete AppliedMathematics 29, 251-261.

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science
PROBABILITY THEORY, STATISTICS, OPERATIONS RESEARCH
AND SYSTEMS THEORY
P.O. Box 513
5600 MB Eindhoven, The Netherlands

Secretariate: Dommelbuilding 0.03
Telephone : 040-473130

-List of COSOR-memoranda - 1991

Number

91-01

91-02

91-03

91-04

91-05

91-06

91-07

91-08

91-09

91-10

91-11

Month

January

January

January

January

February

March

March

April

May

May

May

Author

M.W.I. van Kraaij
W.Z. Venema
J. Wessels

M.W.I. van Kraaij
W.Z. Venema
J. Wessels

M.W.P. Savelsbergh

M.W.I. van Kraaij

G.L. Nemhauser
M.W.P. Savelsbergh

R. J .G. Wilms

F. Coolen
R. Dekker
A. Smit

P.J. Zwietering
E.H.L. Aarts
J. Wessels

P.J. Zwietering
E.H.L. Aarts
J. Wessels

P.J. Zwietering
E.H.L. Aarts
J. Wessels

F. Coolen

Title

The construction of a
strategy for manpower
planning problems.

Support for problem formu
lation and evaluation in
manpower planning problems.

The vehicle routing problem
with time windows: minimi
zing route duration.

Some considerations
concerning the problem
interpreter of the new
manpower planning system
formasy.

A cutting plane algorithm
for the single machine
scheduling problem with
release times.

Properties of Fourier
Stieltjes sequences of
distribution with support
in [0,1).

Analysis of a two-phase
inspection model with
competing risks.

The Design and Complexity
of Exact Multi-Layered
Perceptrons.

The Classification Capabi
lities of Exact
Two-Layered Peceptrons.

Sorting With A Neural Net.

On some misconceptions
about subjective probabili
ty and Bayesian inference.

COSOR-MEMORANDA (2)

91-12

91-13

91-14

91-15

91-16

91-17

91-18

91-19

91-20

91-21

91-22

91-23

May

May

June

July

July

August

August

August

September

September

September

September

P. van der Laan

1. J. B. F. Adan
G.J. van Houtum
J. Wessels
W.H.M. Zijm

J. Korst
E. Aarts
J.K. Lenstra
J. Wessels

P.J. Zwietering
M.J.A.L. van Kraaij
E.H.L. Aarts
J. Wessels

P. Deheuvels
J.H.J. Einmahl

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

M.W.P. Savelsbergh
G.C. Sigismondi
G.L. Nemhauser

P. van der Laan

P. van der Laan

E. Levner
A.S. Nemirovsky

R.J.M. Vaessens
E.H.L. Aarts
J.H. van Lint

P. van der Laan

Two-stage selection
procedures with attention
to screening.

A compensation procedure
for multiprogramming
queues.

Periodic assignment and
graph colouring.

Neural Networks and
Production Planning.

Approximations and Two
Sample Tests Based on
P - P and Q - Q Plots of
the Kaplan-Meier Estima
tors of Lifetime Distri
butions.

Functional description of
MINTO, a Mixed INTeger
Optimizer.

MINTO, a Mixed INTeger
Optimizer.

The efficiency of subset
selection of an almost
best treatment.

Subset selection for an
-best population:

efficiency results.

A network flow algorithm
for just-in-time project
scheduling.

Genetic Algorithms in
Coding Theory - A Table
for A] (n, d) .

Distribution theory for
selection from logistic
populations.

COSOR-MEMORANDA (3)

91-24

91-25

91-26

91-27

91-28

91-29

91-30

October

October

October

October

October

November

November

1. J. B. F. Adan
J. Wessels
W.H.M. Zijm

1. J. B. F. Adan
J. Wessels
W.H.M. Zijm

E.E.M. van Berkum
P.M. Upperman

R.P. Gilles
P.H.M. Ruys
S. Jilin

I.J.B.F. Adan
J. Wessels
W.H.M. Zijm

J. Wessels

G.L. Nemhauser
M.W.P. Savelsbergh
G.C. Sigismondi

Matrix-geometric analysis
of the shortest queue
problem with threshold
jockeying.

Analysing Multiprogramming
Queues by Generating
Functions.

D-optimal designs for an
incomplete quadratic model.

Quasi-Networks in Social
Relational Systems.

A Compensation Approach for
Two-dimensional Markov
Processes.

Tools for the Interfacing
Between Dynamical Problems
and Models withing Decision
Support Systems.

Constraint Classification
for Mixed Integer Program
ming Formulations.

